Question 1

\[\frac{\partial x_1(p, p, e)}{\partial p_1} \] evaluated at \(\bar{p} \) is 0.8

Therefore demand for good 1 (circle the correct answer) increases decreases if the price of good 1 is increased.

\[\frac{\partial x_1(p, p, e)}{\partial p_1} = \frac{\partial x_1(p, w)}{\partial p_1} + \frac{\partial x_1(p, w)}{\partial w} e_1 \]
\[= -0.2 + 0.1(10) = 0.8 \]

Question 2 Consider a choice structure \((C(.), B)\) where \(B = \{\{x_1, x_2\}, \{x_1, x_2, x_3\}\}\). Suppose that \(C(\{x_1, x_2\}) = x_1\). Then which of the following violate the weak Axiom (Circle all that apply)

1. \(C(\{x_1, x_2, x_3\}) = \{x_1\} \)
2. \(C(\{x_1, x_2, x_3\}) = \{x_2\} \)
3. \(C(\{x_1, x_2, x_3\}) = \{x_3\} \)
4. \(C(\{x_1, x_2, x_3\}) = \{x_2, x_4\} \)
5. \(C(\{x_1, x_2, x_3\}) = \{x_1, x_3\} \)
6. \(C(\{x_1, x_2, x_3\}) = \{x_1, x_2, x_3\} \)

Question 3 Consider a choice structure \((C(.), B)\) where \(B = \{\{x_1, x_2\}, \{x_1, x_2, x_4\}, \{x_1, x_3\}\}\). Suppose that \(C(\{x_1, x_2\}) = x_2, C(\{x_1, x_2, x_4\}) = x_4, \text{ and } C(\{x_1, x_3\}) = x_3\). Then the following preferences rationalize the choice structure (In each of the following insert either \(\succeq\) or \(\preceq\)).

\[
\begin{align*}
&x_1 \preceq x_2 \\
&x_1 \preceq x_3 \\
&x_1 \preceq x_4 \\
&x_2 \preceq x_3 \\
&x_2 \preceq x_4 \\
&x_3 \preceq x_4
\end{align*}
\]

Now find different preferences that rationalize the above choice structure:
Note that \(x_2 \geq x_3 \) also works. No other preferences rationalize the choice structure.

Question 4 At prices \(P = (2, 2) \) a consumer chooses \(x = (4, 6) \). At prices \(P' = (4, P'_2) \) the consumer chooses \(x' = (6, 2) \). Suppose that the weak Axiom is satisfied. Then

(Insert the lower and upper bounds on \(P'_2 \). Note that these bounds can also be 0 and \(\infty \).)

\[2 < P'_2 < \infty \]

\(x' \) is affordable at prices \(P \). Thus, the weak Axiom is violated if \(x \) is affordable at prices \(P' \), i.e., if \((6, 2) \geq (4, 6) P' \). This implies \(24 + 2P'_2 \geq 16 + 6P' \). Therefore, the weak Axiom is violated if \(P'_2 \leq 2 \)

Question 5 Suppose that demand is given by \((w/(p_1 + p_2), w/(p_1 + p_2))\). We want to prove directly (i.e., not by computing the substitution matrix) that the weak Axiom is satisfied.

(a) Suppose that \(x(p_1, p_2, w) \neq x(p'_1, p'_2, w') \). Assume by way of contradiction that the weak Axiom is violated for \((p_1, p_2, w) \) and \((p'_1, p'_2, w') \). Then the following two inequalities must hold:

\[w' \geq \frac{w(p'_1 + p'_2)}{p_1 + p_2} \]

\[w \geq \frac{w'(p_1 + p_2)}{p'_1 + p'_2} \]

(b) Without loss of generality we can assume that wealth is 1 in both cases, i.e., \(w = w' = 1 \). Thus,

\[1 \geq \frac{p'_1 + p'_2}{p_1 + p_2} \]

\[1 \geq \frac{p_1 + p_2}{p'_1 + p'_2} \]

\(p'_1 + p'_2 = p_1 + p_2 \). However, since \(w = w' = 1 \) this implies that \(x(p_1, p_2, w) = x(p'_1, p'_2, w') \), a contradiction. Therefore, the weak Axiom is satisfied.
Question 6 Suppose that there are only two commodities, i.e., \(X = \mathbb{R}_+^2 \). At prices \(\bar{p} = (4, 1) \) and wealth \(\bar{w} \) it is optimal to consume 2 units of good 1. Suppose that \(\frac{\partial x_1(\bar{p}, \bar{w})}{\partial p_1} = -1 \) and \(\frac{\partial x_1(\bar{p}, \bar{w})}{\partial w} = 0.4 \).

(a) The substitution matrix is given by (Fill in the missing numbers.)

\[
D_p h(p, u) = \begin{pmatrix}
-0.2 & 0.8 \\
0.8 & -3.2
\end{pmatrix}
\]

The Slutsky equation implies

\[
\frac{\partial h_1(\bar{p}, \bar{u})}{\partial p_1} = \frac{\partial x_1(\bar{p}, \bar{w})}{\partial x_1} + x_1 \frac{\partial x_1(\bar{p}, \bar{w})}{\partial w} = -1 + 2(0.4) = -0.2.
\]

(b) You can conclude that (do not use the the above substitution matrix to find the answer)

\[
\frac{\partial x_2(\bar{p}, \bar{w})}{\partial p_1} = 2, \quad \frac{\partial x_2(\bar{p}, \bar{w})}{\partial w} = -0.6
\]

Differentiate the budget line equation with respect to \(p_1 \) to get

\[
x_1(\bar{p}, \bar{w}) + p_1 \frac{\partial x_1(\bar{p}, \bar{w})}{\partial p_1} + p_2 \frac{\partial x_2(\bar{p}, \bar{w})}{\partial p_1} = 0.
\]

Therefore,

\[
2 + 4(-1) + \frac{\partial x_2(\bar{p}, \bar{w})}{\partial p_1} = 0.
\]

Therefore, \(\frac{\partial x_2(\bar{p}, \bar{w})}{\partial p_1} = 2 \). If we differentiate the budget line equation with respect to \(w \) then we get

\[
p_1 \frac{\partial x_1(\bar{p}, \bar{w})}{\partial w} + p_2 \frac{\partial x_2(\bar{p}, \bar{w})}{\partial w} = 1.
\]

Therefore,

\[
4(0.4) + \frac{\partial x_2(\bar{p}, \bar{w})}{\partial w} = 1,
\]

which implies \(\frac{\partial x_2(\bar{p}, \bar{w})}{\partial w} = -0.6 \).

Question 7 See page 59 of the textbook.

Question 8 Suppose that “\(\succeq \)” are continuous and locally non-satiated preferences on \(\mathbb{R}_+^L \).

We now want to construct a utility function that represents these preferences. We define
\[u(x) = \min_{y \in \mathbb{R}^+_L} \sum_{i=1}^{L} y_i \text{ subject to } y \succeq x. \]

(a) Suppose that \(x \succeq x' \). We want to prove that \(u(x) \succeq u(x') \). Suppose by way of contradiction that \(u(x) < u(x') \). Let \(y' \) be the solution of the minimization problem for \(x' \), i.e., \(\sum_{i=1}^{L} y'_i = u(x') \) and \(y' \succeq x' \). Complete the proof in the box below ...

Let \(y \) be the solution to the minimization problem for \(x \). Then \(y \succeq x \) which implies \(y \succeq x' \). But \(\sum_{i=1}^{L} y_i = u(x) < u(x') = \sum_{i=1}^{L} y'_i \). Thus, \(y' \) does not solve the minimization problem, a contradiction.

(b) We now want to prove that \(u \) is continuous. Thus, consider a sequence of consumption bundles \(x^n, n \in \mathbb{N} \) with \(\lim_{n \to \infty} x^n = x \). Let \(y^n \) be the solution to the above minimization problem given \(x^n \), i.e., \(y^n \succeq x^n, y^n \in \mathbb{R}^+_L \) and \(\sum_{i=1}^{L} y^n_i = u(x^n) \). Assume that we have proven that the sequence \(y^n \) converges, i.e., \(\lim_{n \to \infty} y^n = y \) (one can prove that \(y^n \) must contain convergent subsequences by compactness arguments). Now prove that \(y \) fulfills the constraints of the minimization problem.

Since \(y^n \) fulfills the constraint of the minimization problem, we have \(y^n \succeq x_n \). By continuity we get \(y \succeq x \).

(c) It remains to prove that \(u(x) = \sum_{i=1}^{L} y_i \), i.e., that \(y \) solves the optimization problem. Suppose by contradiction that there exist \(y' \) with \(y' \succeq x \) and \(\sum_{i=1}^{L} y'_i < \sum_{i=1}^{L} y_i \).

Let \(\epsilon > 0 \) such that \(\sum_{i=1}^{L} y'_i + L \epsilon < \sum_{i=1}^{L} y_i \). By local non-satiation, there exists \(\hat{y} \) with \(||\hat{y} - y'|| < \epsilon \) and \(\hat{y} \succ y' \). Because \(||\hat{y} - y'|| < \epsilon \) and \(\sum_{i=1}^{L} y'_i + L \epsilon < \sum_{i=1}^{L} y_i \), it follows that \(\sum_{i=1}^{L} \hat{y}_i < \sum_{i=1}^{L} y_i \). Because \(y' \succeq x \) we get \(\hat{y} \succ x \). By continuity of preferences, \(\hat{y} \succ x^n \) for all sufficiently large \(n \).

Since \(y^n \to y \) follows that \(\sum_{i=1}^{L} \hat{y}_i < \sum_{i=1}^{L} y^n_i \) for all sufficiently large \(n \). This, however, implies that \(y^n \) does not solve the minimization problem, a contradiction.