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Foreword

In the fall of 1995 the National Science Foundation awarded a grant
to Indiana University System for the project Mathematics Through-
out the Curriculum whose objective was to develop inderdisciplinary
undergraduate courses with substantial mathematical content. The
primary focus was to expose students in a wide variety of subjects to
the usefulness of mathematical techniques. We were asked to design a
course that would include topics from economic theory. Our response
was a course that put together material from decision theory and game
theory in a novel way. This book is the culmination of that effort.

The book evolved from the need to offer a course in decision the-
ory that would include the classical material on optimization theory
as well as from the newer and more recent literature in game theory.
Since no existing text covered the topics in the manner required for the
project, we put together our own material that included classical opti-
mization theory, game theory, auctions and bargaining. The book has
been written with the objective of introducing the rather sophisticated
concepts of modern decision theory to a readership that is familiar
with only elementary calculus and elementary probability theory. It
is a self-contained treatment of almost everything that can be called
decision theory—from classical optimization theory to modern game
theory. We have included applications from economics, political sci-
ence, finance, and management. Examples are used to show both the
need for a theory and to demonstrate the framework within which the
theory can be applied. Thus, the examples and applications are used
as a major pedagogic device.

In writing the book our objective was to introduce some of the cen-
tral ideas of decision theory and game theory without trying to treat
either subject exhaustively; which we think cannot be done adequately
in a single text. Therefore, we tried to be eclectic. Whether we suc-
ceeded in this effort is for the reader to judge. There is a pattern we
follow, which the careful reader may disern. We start with the most
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elementary decision making problem, that of the single decision maker
and move on to progressively more complex decision problems which
culminate in the discussion of sequential rationality. We then move on
to see how the intellectual capital that has been acquired can be used to
study topics of more immediate interest like auctions and bargaining.

A special feature of the book is that it treats decision theory and
game theory as part of the same body of knowledge. This feature sep-
arates it from the texts which are devoted to only game theory or deal
solely with decision theory. In the book, single-person decision theory is
used as the building block of game theory. This is the essential theme
underlying the book. It highlights the interplay that exists between
single-person decision problems and multi-person decision problems.

The text leaves out important elements from both decision the-
ory as well as game theory. We never discuss dynamic programming,
though hints of the theory are present when we discuss backward in-
duction. Our treatment of multivariate decision problems is at best
cursory. Large chunks of game theory are also not discussed. There
is a huge literature on the refinements of Nash equilibrium that we
haven’t even touched, and we totally bypassed the extensive work on
repeated games. We are well aware of all these omissions and many
more that we have not mentioned. Our excuse is that we did this to
avoid writing an incredibly formitable manuscript that would intimi-
date the student. We wanted to write a text that would serve as a
solid introduction to some of the basic issues and techniques of modern
decision making and games.

The reader with a year of college level mathematics that includes
some elementary calculus and finite mathematics would be comfortable
with the material in the book. We have made every effort to make the
book as self-contained as possible. Thus, although some of the material
in the later chapters requires some extra knowledge of mathematics,
the necessary material is developed as an integral part of the text. The
book is written with some thought to the sequence in which topics
are introduced. Each chapter builds on the material presented in the
earlier chapters. For instance, the chapters on sequential games build
on the chapter of sequential decision-making. We paid special attention
to this because much of game theory is technical and, as a result, it
becomes unduly difficult if the ideas are not presented in their proper
order.
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This text can be used for a course at the undergraduate level as
well as at the introductory graduate level. It is aimed at the under-
graduate student who wants to take a serious look at decision theory;
for instance, the economics major or the business major or even the
mathematics major. The book is also appropriate for use at the grad-
uate level to teach introductory courses in optimization and game the-
ory and MBA courses in decision theory. Because of its content, the
book would appeal to anyone who thinks seriously about making good
decisions. Thus, the material in this book is useful to the business
manager, the policy maker, the budding entrepreneur as well as to the
serious undergraduate student in economics or business who aspires to
acquire a graduate degree. We strongly believe that the book inter-
weaves the different strands of decision theory and game theory well,
and can be used for a fairly sophisticated course in game theory—in
many contexts—even for students who have only a moderate back-
ground in mathematics.

In the first chapter we develop classical optimization theory using
elementary calculus. The material in this chapter is similar to that usu-
ally found in texts written for courses in mathematics for economists.
The first chapter thus is a condensed version of the chapters on op-
timization in a book like Mathematics for Economic Analysis [23] by
Sydsaeter and Hammond or a book like Fundamental Methods of Math-
ematical Economics [2] by Chiang. The novelty in the first chapter is
in the way we introduce the material. Using problems from economics,
business, operations research and so forth, we demonstrate how to use
the first and second order conditions of calculus to find optimal solu-
tions to optimization problems. In this chapter our aim is to show how
to use the mathematics in a variety of useful and interesting ways.

While Chapter 1 deals with classical optimization theory with a sin-
gle decision-maker, Chapter 2 introduces the fundamentals of modern
game theory. Chapter 2 builds on the techniques developed in Chap-
ter 1, and focuses on game theory, while at the same time drawing
extensively from the material in Chapter 1. In the second chapter, we
develop the theory of strategic form games and their solutions. We also
present applications from markets, voting, auctions, resource extrac-
tion and so forth. In Chapter 3, we study sequential decision-making
and introduce the language of trees and graphs to define sequential
games. Thus, we avoid the usual questions about graphs and trees
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that inevitably arise when one starts to define sequential games. In
Chapters 4 and 5 we discuss sequential games using the techniques of
Chapter 3 as building blocks. We deal with the concepts of subgame
perfection and sequential rationality in some detail.

Chapter 6 is devoted to a discussion of auctions. We study various
types of auctions and the possible outcomes. Our discussion of auc-
tions is done within the framework of game theory. Thus, we view an
auction as a game and examine the equilibrium outcome of the game.
Chapter 7 is concerned with bargaining. We treat both the axiomatic
approach to bargaining as well as the analysis of bargaining problems
using sequential games. Thus, Chapter 7 investigates the Nash bar-
gaining solution, the Shapley value and the core. It also deals with
sequential bargaining. Chapters 6 and 7 are, in fact, applications of
the principles developed in the earlier chapters.

We take this opportunity to thank the principal investigators of the
project, Professors Bart Ng of IUPUI and Dan Maki of Indiana Uni-
versity, for providing us with summer support to develop the course.
We also thank Robert Sandy, the Chairman of the Department of Eco-
nomics, IUPUI, for his support. We would like to thank our students
Eric Broadus, Lisa Whitecotton, and David Parent for their critical
impact while the text was being developed. Finally, we would like to
acknowledge the patient understanding of our wives, Bernadette and
Tuhina, who allowed us to spend many hours away from our families.

C. D. Aliprantis & S. K. Chakrabarti
Indianapolis, May, 1998
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Chapter 1

Choices

CCHOICE

Individuals as well as groups have to make decisions in many different
contexts. As individuals, we have to make decisions about how to
divide our income among different goals and objectives. A firm has to
decide among the different things it needs to do in order to compete
effectively in the marketplace. Governments need to make decisions
about their foreign policy, domestic policy, fiscal policy and monetary
policy. Students need to decide among courses they need to take every
semester. The list of situations in which individuals have to make a
decision is indeed very impressive.

When we are faced with decisions, we wonder as to which decision
would be best. Sometimes we spend enormous amounts of time and
energy agonizing about what to do. Faced with the same alternatives,
two individuals may choose quite differently. Is one individual then
wrong and the other right? Has one individual made a good decision
and the other a bad one? Obviously, the answer to these questions lie
in the criteria used to evaluate decisions. As is well-known, individuals
have different objectives and diverse interests which may affect their
decision making.

As a decision problem usually has an objective to be attained and
a set of alternative choices with which to achieve it, a Decision Prob-
lem or an Optimization Problem has an objective function (the
goal to be achieved) and a feasible set or a choice set (the alternative
choices). The issue is then which choice will best achieve the specified
objective or goal.

In this chapter, we sketch some of the main principles of the math-
ematical theory of optimization. The intention is not to overwhelm the
reader with technical details but rather to present some of the major
results in the area. We also indicate how the techniques of optimization
might be used not only to get accuracy in decision making but also,
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more importantly, to indicate how to start thinking about formulating
and modeling these decision problems.

1.1. Functions
FUNC

One of the basic concepts of mathematics is that of a function. The
notion of a function is essential for the study of mathematics as well as
its applications. It is also going to be of fundamental importance here.

In Calculus, we usually teach that a function is a “formula” y =
f(x), which relates two variables x and y. The variable x is called the
independent variable and y the dependent. For instance,

y = x2, y =
√

x− 2 and y =
x + 1
x− 1

are all functions. The collection of all values of x for which the formula
f(x) “makes algebraic sense” is called the domain of the function.
For instance, the domain of the function y = x2 is the set IR of all real
numbers1 and the domain of f(x) =

√
x− 2 consists of all real numbers

x for which x− 2 ≥ 0, i.e., [2,∞).
The concept of a function is much more general than the one dis-

cussed above and is closely related to that
of a set. Recall that a set can be naively
defined as a collection of objects (or ele-
ments) viewed as a single entity—as usual,
we shall denote sets by capital letters. A
function f is usually defined as a “rule”
that assigns to every element x from a set
X a unique element y = f(x) in another
set Y . The object x is called the input
and the element f(x) is called the output. Schematically, the function
f is denoted by f : X → Y and its geometrical interpretation is shown in
the above figure. The set X is now called the domain of the function.
If Y = IR, then f is called a real function.

Here are a few general examples of functions.

• Define the real function f : IR → IR via the formula f(x) = 3x.
That is, the rule f informs us that if x is a real number, then

1Throughout this book the symbol IR will denote the set of real numbers.
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in order to find the output f(x) we must multiply x by 3. For
instance, f(2) = 6, f(−3) = −9 and f(0) = 0.

• Let X denote the collection of all books in your library and let
IN = {1, 2, 3, . . .} (the set of natural numbers). Define a function
f : X → IN via the rule:

f(x) = the number of pages of the book x .

For instance, if book b has 235 pages, then f(b) = 235.

• Let A denote the collection of all cars in your city and let B
denote the set of all possible colors. Then we can consider the
function c that assigns to each car its color. That is, c: A → B is
the rule that for a given car x, c(x) is its color. For instance, if
car a has yellow color, then c(a) = yellow and if x is a red car,
then c(x) = red.

• Let B be the set of all birds in a forest and let T denote the set
of all trees in the forest. You can define a function f : B → T via
the rule: if b is a bird, then f(b) is the tree where the bird b has
its nest.

• Assume that P denotes the set of all persons living in the United
States and let C be the collection of all US congressional repre-
sentatives. We can define a function f : P → C by letting f(a)
be the congressional representative of the district where person a
lives.

Can you think of other examples of functions from every day life?

Exercises

1. Find the domain of the function f(x) = x+1
x−1 .

2. Consider the set P of all persons living presently in your city. Determine
which rules from the ones below define functions.

a. For each person x, let f(x) be the father of person x.

b. For each person x, let g(x) be the son of person x.
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c. For each person x, let h(x) be the height of person x.
d. For each person x, let w(x) be the weight of person x.

3. Consider the set of natural numbers X = {1789, 1790, 1791, . . . , 1996}
and let P denote the set of all US presidents. Define the function
f : X → P via

f(x) = the President of the United States on December 1 of the year x .

For instance, f(1826) = J. Q. Adams, f(1863) = A. Lincoln, f(1962) =
J. F. Kennedy and f(1971) = R. M. Nixon. What are the values f(1789),
f(1900), f(1947) and f(1988)?

4. Consider X and P as in the previous exercise and for each year x in X
let

f(x) = the President of the United States on November 22 of the year x .

Does this rule f define a function from X to P?

5. Let B denote the collection of all books in your library and for each
book x let f(x) be the author of the book x.

Does this rule define a function? If not, then what modification can
you make to the rule in order to make it a function?

1.2. The optimization problem
OPP

It is not an overstatement to say that every time we make a decision,
we face an optimization problem. When we enter a store, like Walmart,
we have a list of things that we want to buy. But whatever we want
to buy presents us with a decision. Should we buy the cheaper brand?
Or should we go with the more expensive brand which probably has
the higher quality? Or maybe the issue is whether we really need that
extra pair of trousers or that additional skirt? A family looking to buy
a house has to decide whether it wants more space, or a smaller house
in the right location. Every year the federal government has to pass a
budget after deciding which program gets what funds. In economics, a
central feature of consumer theory is about the choice that a consumer
makes. In the theory of the firm, a firm decides how to maximize profits
and minimize costs.

All these decision problems have a feature in common. There is a
set of alternatives Ω from which the decision maker has to choose. If
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the individual who walks into Walmart needs to buy a pair of trousers,
then he or she may have half a dozen of choices from which to select. In
the case of the family which has decided to buy a house given the price
range (that is, given its budget) there might be many different models
available in various locations. These different models of houses then
define the set Ω for the family. As we shall see shortly, a consumer, in
the theory of consumer behavior has a choice set—as does the firm in
the theory of the firm.

The other common feature of all decisions is that the decision maker
needs to devise some criterion of choosing between alternatives. In
other words, the decision maker must have some ranking over the dif-
ferent alternatives in the choice set. This ranking is expressed by a
real valued function f :Ω → IR where the higher value of an alterna-
tive implies that it has a higher rank than an alternative with a lower
value.

The concepts of a set and a function that were introduced in the
previous section are the basic tools used to describe an optimization
problem. In its abstract form, an optimization problem consists of a
set Ω (called the choice set or the opportunity set2) and a function
f :Ω → IR (called the objective function). The goal is to select an
alternative from the set Ω that maximizes or minimizes the value of
the objective function f . That is, the decision maker either solves

1. Maximize f(ω) subject to ω ∈ Ω, or

2. Minimize f(ω) subject to ω ∈ Ω.

Since minimizing f(ω) subject to ω ∈ Ω is equivalent to maximizing
−f(ω) subject to ω ∈ Ω, the above problems can be combined into the
following general optimization3 problem.

2The choice set is also referred to as the constraint set or the feasible
set.

3The word optimization is derived from the Latin word “optimum” which
means the “best.”
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The Optimization Problem

Maximize f(ω)
such that ω ∈ Ω .

Any choice ω∗ ∈ Ω that yields the maximum value of the objective
function f is known as a maximizer (or as an optimizer) of f over
the choice set Ω.

We now illustrate the idea of the optimization problem with some
examples of common interest.

EX2

Example 1.1. Assume that a consumer entering a supermarket wishes
to buy apples and oranges at a cost that will not exceed his available
amount of $12 dollars. Apples cost $1 per pound and oranges $2 per
pound.

The consumer not only wishes to purchase the largest possible “bun-
dle” of apples and oranges but he also wishes to get the most “satisfac-
tion.” In practice, the satisfaction (or taste) of a consumer is expressed
in terms of a function—known as the utility function of the consumer.
In this case, let us assume that the utility function is given by

u(x, y) = xy .

The pair (x, y) represents a possible “bundle” of apples and oranges
that can be purchased by the consumer. Since u(2, 3) = 6 > 4 = u(4, 1)
the consumer prefers the bundle (2, 3) (two pounds of apples and three
pounds of oranges) to the bundle (4, 1) (four pounds of apples and one
pound of oranges).

The cost of a bundle (x, y) is simply the number x + 2y. The
constraint that the consumer should not spend more than 12 dollars is
expressed by saying that his allowable bundles (x, y) are the ones which
satisfy x + 2y ≤ 12. In other words, the choice set Ω of the consumer
is the set

Ω = {(x, y): x ≥ 0, y ≥ 0 and x + 2y ≤ 12} .
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Now we can write the choice problem of the consumer as: Maximize
u(x, y) = xy subject to (x, y) ∈ Ω.

EX3

Example 1.2. A promoter of social events wishes to determine the
ticket price of an upcoming event that will maximize her revenue. From
past experience she knows that if the ticket price is $12 per person, then
the attendance is approximately 1, 200 people. Her experience also tells
her that for every $1 increase in the price she will lose 150 people, while
a $1 drop in the price will attract 150 additional people to the event.
In addition, she knows that every person will spend on average $6
on concessions. The promoter’s problem is now the following: What
should be the admission price in order to maximize the total revenue?

To set up the problem as an optimization problem, we proceed as
follows. We denote by x the increase in dollars of the $12 ticket. (As
usual, x < 0 means a decrease in price.) That is, the price per ticket
is 12 + x dollars. Then the attendance will be 1200 − 150x people
and the concessions will bring a revenue of 6(1200 − 150x) dollars. If
R(x) denotes the revenue obtained after the increase of the price by x
dollars, then we have:

R(x) = Revenue from Tickets + Revenue from Concessions
= (# of People) · (Price per Ticket) + 6 · (# of People)
= (1200− 150x)(12 + x) + 6(1200− 150x)
= (1200− 150x)(18 + x)
= −150x2 − 1, 500x + 21, 600

Thus, the promoter’s problem here is to maximize

R(x) = −150x2 − 1, 500x + 21, 600

subject to x > −12, or x ∈ (−12,∞).
EX4

Example 1.3. Experimental evidence suggests that the concentration
of a drug in the bloodstream (measured in milligrams per liter) t hours
after its injection into the human body is given by

C(t) =
t

t2 + 9
.

When does the maximum concentration take place?
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That is, how many hours t after its injection into the body does the
drug have its largest concentration? In the language of optimization
theory we must solve the problem: Maximize C(t) subject to t ≥ 0.

EX5

Example 1.4. Assume that the price per bushel of wheat is $4 and
the price of fertilizer per pound is 25 cents. A farmer has observed that
when he uses n pounds of fertilizer per acre, his land yields

√
n + 30

bushels of wheat per acre. How many pounds of fertilizer per acre will
maximize the farmer’s profit?

From the formula Profit = Revenue − Cost, it is easy to see that
the profit per acre is:

P (n) = 4
√

n + 30− 0.25n .

The farmer has to maximize P (n) subject to n ≥ 0.
EX6

Example 1.5. A car dealership owner sells 200 cars a year. To keep
a car in storage costs $100 a year. The cost of ordering new cars from
the manufacturer involves a fixed cost of $100 plus $80 per car. How
many times per year should he order cars, and in what lot size, in order
to minimize his annual cost.

To set up this problem in our optimization form, we start by as-
suming that x is the lot size of the order—of course, x > 0. Then the
number of orders per year will be 200

x . Since the cost of ordering x cars
is 100 + 80x, the cost per year for ordering the 200 cars is

(100 + 80x)200
x = 20,000

x + 16, 000

dollars. On the other hand, assuming that out of the x cars an average
of x

2 is held in storage, the yearly inventory cost is

100× x
2 = 50x

dollars. Therefore, the total annual cost for the car dealership owner
is

C(x) = 50x + 20,000
x + 16, 000

dollars.
To solve our problem we now have to minimize the function C(x)

subject to x > 0.
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Exercises

1. A company knows from empirical evidence that the demand for a cer-
tain product is given by the function

D(p) = 120− 2
√

p ,

where p denotes the price of the product in dollars. Set up an opti-
mization problem for maximizing the revenue of the company in terms
of the price p of the product. [Answer: R(p) = 120p− 2p

3
2 ]

2. A television manufacturer determines that in order to sell x television
sets, the price must be

p = 1, 200− x .

The cost of the manufacturer for producing x television sets is

C(x) = 4, 000 + 30x .

Set up an optimization problem that will maximize the profit of the
manufacturer. [Answer: P (x) = −x2 + 1, 170x− 4, 000 ]

florist

3. You walk into a floral shop with $20 in your pocket and you wish to
spend all the money purchasing a bouquet of carnations and roses.
Carnations are $1 a stem (a piece) and roses are $3 a stem. If your
satisfaction is described by the utility function u(x, y) = x2y3 (where
x is the number of carnations and y the number of roses in the bouquet),
what maximization problem if solved will offer you the most satisfactory
bouquet for your money?

1.3. First order conditions

The solution to an optimization problem is closely related to the rate
of change of the objective function. The rate of change of a function is
known in mathematics as the derivative of the function. The deriva-
tive of a function f : (a, b) → IR at a point c is the limit (if it exists)

f ′(c) = lim
x→c

f(x)− f(c)
x− c

.

If the function has derivative at every point c, then it is said to be
differentiable. As mentioned at the beginning, the derivative f ′(c)
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represents the rate of change of f(x) at the point c relative to the
change of x. Constant functions have zero rates of change and so their
derivatives are also zero.

We list below the basic rules for computing derivatives. Details can
be found in any elementary calculus text; see for instance reference [23]
in the bibliography at the end of the book.

The Rules for Computing Derivatives

• The Power Rule: (xp)′ = pxp−1

• The Product Rule: (fg)′ = f ′g + fg′

• The Quotient Rule:
(

f
g

)′
= f ′g−fg′

g2

• The Chain Rule: [f(g(x))]′ = f ′(g(x))g′(x)

We are now ready to present the following basic result regarding
optimization of functions of one variable defined on an open interval of
the set of real numbers. A point (i.e., a real number) c is said to be a
critical point or a stationary point for a function f if its derivative
f ′(c) at c is zero, i.e., if f ′(c) = 0.
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111.3: First order conditions

The First-Order Test for Optima

Let f : (a, b) → IR be a differentiable function and assume that f
has a unique stationary point c ∈ (a, b), i.e., c is the only point
in (a, b) with f ′(c) = 0.

• If f ′(x) > 0 for some a < x < c and f ′(x) < 0 for some c < x < b,
then f attains its maximum at x = c and c is the unique maxi-
mizer of the function f over (a, b).

• If f ′(x) < 0 for some a < x < c and f ′(x) > 0 for some c < x < b,
then f attains its minimum at x = c and c is the unique minimizer
of the function f over (a, b).

The preceding result is called the First-Order Test since it involves
only the first derivative of the function. The geometric meaning of the
maximum and minimum of a function defined on an open interval (a, b)
is shown in Figure 1.1. F2

Figure 1.1.

When the objective function has a second derivative, we can use the
following Second-Order Test to find the nature of stationary points.
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The Second-Order Test for Optima

Let f : (a, b) → IR be a twice differentiable function and assume that
f has a unique stationary point c ∈ (a, b), i.e., c is the only point
in (a, b) with f ′(c) = 0.

• If f ′′(c) < 0, then f attains its maximum at x = c and c is the
unique maximizer of the function f over (a, b).

• If f ′′(c) > 0, then f attains its minimum at x = c and c is the
unique minimizer of the function f over (a, b).

Let us use the First-Order Test to solve the optimization problems
stated in the examples of the previous section.

Solution to the optimization problem of Example 1.1. The set
Ω is shown in Figure 1.2. It is usually called the budget set of the
consumer. The line x + 2y = 12 is known as the budget line.

Notice that an increase in the bundles x and y will strictly increase
the value of the utility function u = xy. This guarantees that the
maximizers of u(x, y) must lie on the budget line x + 2y = 12 (Why?).
Now observe that

u = u(x, y) = xy = (12− 2y)y = −2y2 + 12y

and 0 ≤ y ≤ 6. Therefore, we must maximize u(y) = −2y2 + 12y
subject to 0 ≤ y ≤ 6.

Taking the derivative, we get u′(y) = −4y+12 = −4(y−3). Letting
u′(y) = 0 yields y = 3 and so the only critical point is y = 3. Now
it is easy to observe that u′(y) > 0 if y < 3 and u′(y) < 0 if y > 3.
The latter, in connection with the First-Order Test, guarantees that u
is maximized at y = 3. But then x = 12− 2y = 12− 2 · 3 = 6.

Thus, the bundle (6, 3) maximizes the utility function u(x, y) = xy
over the set Ω.F3

Solution to the optimization problem of Example 1.2. We must
maximize the function

R(x) = −150x2 − 1, 500x + 21, 600
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Figure 1.2.

subject to x ∈ (−12,∞). Factoring, we can rewrite R(x) as

R(x) = 150(−x2 − 10x + 144) .

Differentiating, we obtain R′(x) = 150(−2x− 10) = −300(x + 5). This
easily implies that x = −5 is the only stationary point of R. Moreover,
we have

R′(x) > 0 for x < −5 and R′(x) < 0 for x > −5 .

By the First-Order Test, we see that R attains a maximum value at
x = −5.

That is, a decrease of $5 in the ticket price will yield the maximum
revenue R(−5) = $25, 351. In other words, the admission ticket price
of $12− $5 = $7 will maximize the revenue. The graph of the function
R(x) is shown in Figure 1.3(a). F4

Solution to the optimization problem of Example 1.4. Differ-
entiating the function C(t) = t

t2+9 using the Quotient Rule, we get

C ′(t) =
(t)′(t2 + 9)− t(t2 + 9)′

(t2 + 9)2
=

1 · (t2 + 9)− t · (2t)
(t2 + 9)2

=
9− t2

(t2 + 9)2
.

To find the critical points of C(t), we must solve the equation C ′(t) = 0.
In our case, this means that we must solve the equation 9 − t2 = 0.
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Figure 1.3.

Solving, we get t = ±3. Since we are optimizing over the interval
[0,∞), we must consider only the critical point t = 3.

Now notice that C ′(t) > 0 for 0 ≤ t < 3 and C ′(t) < 0 for all
3 < t < ∞. By the First-Order Test, we see that C(t) attains its
maximum at t = 3. Consequently, the maximum concentration of the
drug is

C(3) =
3

32 + 9
=

3
18

=
1
6

= 0.1666 milligrams per liter ,

and takes place three hours after its injection into the human body.
The graph of the function C(t) is shown in Figure 1.3(b).

Solution to the optimization problem of Example 1.4. In this
case, we must optimize the function

P (n) = 4
√

n + 30− 1
4n = 4(n + 30)

1
2 − 1

4n

subject to n ∈ [0,∞). Differentiating, we get

P ′(n) = 4 · 1
2
(n + 30)−

1
2 − 1

4
=

4
2
√

n + 30
− 1

4
=

8−
√

n + 30
4
√

n + 30
.

For the critical points of P (n) we must solve the equation P ′(n) = 0 or
8−

√
n + 30 = 0. The latter equation can be written as

√
n + 30 = 8.

Squaring both sides, we get n + 30 = 64, or n = 34.
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It is easy to see that P ′(n) > 0 for 0 ≤ n < 34 and P ′(n) < 0 for
all 34 < n < ∞. By the First-Order Test, we see that P (n) attains its
maximum at n = 34. Thus, the farmer must use 34 pounds of fertilizer
per acre in order to maximize his profit. The maximum profit per acre
is

P (34) = 4
√

34 + 30− 34
4

= 4× 8− 8.5 = 23.5 .

Solution to the optimization problem of Example 1.5. Differ-
entiating the cost function C(x) = 50x + 20,000

x + 16, 000, we get

C ′(x) = 50− 20, 000
x2

=
50(x2 − 400)

x2
=

50(x− 20)(x + 20)
x2

.

It is easy to see that C ′(x) < 0 for 0 < x < 20, C ′(x) > 0 for x > 20
and C ′(20) = 0. So, by the First-Order Test, x = 20 is the minimizer
of C(x) over the open interval (0,∞).

In other words, the owner of the car dealership must order 200
20 = 10

times a year at a lot size of 20 cars in order to minimize his inventory
cost.



16 Chapter 1: Choices

Exercises

1. The cost function of a manufacturer for producing x units of a commod-
ity is C(x) = 2x2 + 40x + 5000. The selling price of the commodity in
the market is $1000 per unit. How many units should the manufacturer
produce in order to maximize his profit? Also, what is the maximum
profit? [Answer: 240 units will bring the maximum profit of $110, 200 ]

2. The temperature T (measured in degrees Fahrenheit) during a person’s
illness at time t (measured in days after the beginning of the illness) is
given by

T (t) = −0.3t2 + 1.2t + 98.6 .

What is the highest temperature of the person and at what time does
it take place? [Answer: The temperature has its highest value of 99.8
degrees on the second day of the illness ]

3. A television manufacturer determines that in order to sell x units of a
new television, the price per television set must be

p = 960− x .

The total cost of producing x television sets is given by the cost function

C(x) = 4000 + 30x .

How many television sets must the manufacturer produce and sell in
order to maximize his profit? [Answer: 465 ]

4. The owner of an 80-unit motel knows that all units are occupied when
he charges $60 a day per unit. Each occupied room costs $4 for service
and maintenance a day. From experience the owner also knows that for
every x dollars increase in the daily rate of $60 there will be x units
vacant. What daily price per unit will maximize the owner’s profit?
[Answer: $72 ]

5. A cable television firm serves 20, 000 households and charges $30 per
month. A marketing survey reveals that each decrease of $1 in the
monthly charge will result in 500 new customers—and, of course, an
increase of $1 will result in a loss of 500 customers. What increase
or decrease will maximize the monthly revenue and what is the largest
possible monthly revenue? [Answer: An increase of $5 will bring the
largest possible revenue of $612, 500 ]

6. An appliance store sells 810 television sets per year. It costs 12 dollars
to store a set for a year. To reorder new television sets from the man-
ufacturer, there is a fixed cost of $60 plus $10 for each set. How many
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times per year should the store reorder and in what lot size in order to
minimize inventory costs? [Answer: 9 times a year with a lot size of 90
television sets ]

7. A tree that is planted at time t = 0 has a current value at time t years
after it was planted given by the function P (t) = 2t − 10. Assume
that the interest rate is 5% per year discounted continuously. When
should the tree be cut down in order to maximize its present discounted
value? [HINT: The present discounted value of the tree is Q(t) =
(2t− 10)e−0.05t. ]

1.4. Optimizing using the Lagrange method

In the last two sections we discussed the technique of finding the opti-
mum when the choice set is an interval. In many situations however,
we need to find the optimum when the choice set is quite explicitly
described by a set of equations. Here we discuss the case in which
the choice set is a subset of the xy-plane desribed by an equation
g(x, y) = c. That is, our choice set is given by

Ω = {(x, y) ∈ IR2: g(x, y) = c } .

The constraint function g(x, y) as well as the objective functions are
usually assumed to have continuous partial derivatives on an open set
O containing Ω. In this case, our optimization problem is formulated
as:

Maximize u(x, y) subject to g(x, y) = c

The geometrical meaning of the constraint g(x, y) = c is shown in
Figure 1.4. F5

Our optimization problem here has a nice physical interpretation.
We can think of the equation g(x, y) = c as representing the shape of a
wire and u(x, y) as measuring the temperature (or the mass density) of
the wire at the location (x, y). A solution to our optimization problem
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O

x

y

18 Chapter 1: Choices

Figure 1.4.

will then give the location on the wire with the highest temperature
(or the highest mass density).

To solve this type of optimization problem, we must employ a
method known as Lagrange’s Method. This method uses partial
derivatives. Recall that if f(x, y) is a function of two variables, then
the partial derivative ∂f

∂x with respect to x is the derivative of f(x, y)
with respect to x treating the variable y as a constant. And similarly,
the partial derivative ∂f

∂y is the derivative of f(x, y) with respect to y

if we treat x as a constant. For instance, if f(x, y) = x2 + 2xy3 + y2,
then

∂f

∂x
= 2x + 2y3 and

∂f

∂y
= 6xy2 + 2y .

We can also take partial derivatives of functions having more than
two variables. When we compute the partial derivative with respect to
a variable, we must remember during the differentiation process to treat
all other variables as constants. For instance, consider the functions

f(x, y, z) = x2 + 2x
√

y + xz2 and g(x, y, z, v) = xy + zv2 − cos v .

Their partial derivatives are

∂f

∂y
=

x
√

y
,
∂f

∂z
= 2xz,

∂g

∂z
= v2 and

∂g

∂v
= 2zv + sin v .

The basic steps involved in using Lagrange’s method can be de-
scribed as follows. With the functions u and g, we associate a new
function L, known as the Lagrangean, defined by the formula

L(x, y,λ) = u(x, y) + λ[c− g(x, y)] .
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In analogy with the First-Order Test, the solution to our optimization
problem takes place when all partial derivatives of the Lagrangean L
are zero, i.e., when ∂L

∂x = ∂L
∂y = ∂L

∂λ = 0. The guidelines for applying
Lagrange’s method are summarized below.

Guidelines for Lagrange’s Method

To solve the optimization problem

“Maximize (or Minimize) u(x, y) subject to g(x, y) = c,”

we must solve the system of equations

∂L
∂x = 0, ∂L

∂y = 0 and ∂L
∂λ = 0 ,

or, more explicitly, we must solve the system of equations

∂u

∂x
= λ

∂g

∂x
∂u

∂y
= λ

∂g

∂y
g(x, y) = c

for the three unknowns x, y and λ.
Then all maximizers and minimizers of the objective function

u(x, y) are among the pairs (x, y) that appear in the solutions of
the above system.

The examples below are used to illustrate Lagrange’s method.
ExLa

Example 1.6. A company has two factories, each manufacturing the
same product. Factory A produces x units of the product at a cost of
2x2 + 50, 000 dollars and factory B can produce y units at a cost of
y2 + 40, 000. If an order for 1, 200 units is to be filled, how should the
production be distributed among the two factories in order to minimize
the total production cost? Also, what is the minimum cost?
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To solve this problem, we calculate first the cost function C(x, y) for
producing x units from factory A and y units from factory B. Clearly,

C(x, y) = (2x2 + 50, 000) + (y2 + 40, 000) = 2x2 + y2 + 90, 000 .

If we are filling an order of 1, 200 units, then we have the constraint
g(x, y) = x+y = 1, 200. So, by the Lagrangean method, we must solve
the system of equations

∂C

∂x
= λ

∂g

∂x
,
∂C

∂y
= λ

∂g

∂x
, g(x, y) = 1, 200 .

Computing the derivatives, we get:

4x = λ (1)
2y = λ (2)

x + y = 1, 200 . (3)

From (1) and (2), we get 2y = 4x, or y = 2x. Substituting this value
into (3), we get x + 2x = 1, 200 or 3x = 1, 200. This implies x = 400
and y = 1, 200− 400 = 800.

Thus, the total production cost will be minimized if factory A pro-
duces 400 units and factory B produces 800 units. The total cost of
the production is

C(400, 800) = 2× 4002 + 8002 + 90, 000 = 1, 050, 000

dollars.
ExLab

Example 1.7. A manufacturer uses an amount of capital K and L
hours of labor to produce Q units of a product according to the produc-
tion function

Q(K, L) = 60K
1
2 L

1
3 .

The price of capital is $20 per unit and labor costs $15 per hour.
What are the cost minimizing values of K and L that will produce

a quantity of 4, 200 units of the product? Also, what is the minimum
cost of producing the 4, 200 units?

The cost function for K units of capital and L hours of labor is

C(K, L) = 20K + 15L .
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So, our problem can be formulated in optimizing terms as follows:

Minimize C(K, L) = 20K + 15L

Subject to Q(K, L) = 60K
1
2 L

1
3 = 4, 200 .

We shall solve this problem using Lagrange’s method. First, we com-
pute the derivatives ∂Q

∂K and ∂Q
∂L . We have

∂Q

∂K
=

60
2

K
1
2−1L

1
3 =

Q

2K
and

∂Q

∂L
=

60
3

K
1
2 L

1
3−1 =

Q

3L
.

Now the Lagrange method requires to solve the system

∂C

∂K
= λ

∂Q

∂K
,
∂C

∂L
= λ

∂Q

∂L
, 60K

1
2 L

1
3 = 4, 200 .

Substituting the derivatives, we obtain the system:

20 = λ Q
2K (4)

15 = λ Q
3L (5)

60K
1
2 L

1
3 = 4, 200 (6)

Dividing (4) by (5), we get 20
15 = 3L

2K , or 4
3 = 3L

2K . This implies

L = 8
9K . ($)

Substituting this value into (6), we get 60K
1
2

3√8
3√9

K
1
3 = 4, 200, from

which it follows K
1
2+ 1

3 = 4,200× 3√9
120 = 72.8. Thus K

5
6 = 72.8 and so

K = (72.8)
6
5 = 72.81.2 = 171.62 .

Now using ($), we get L = 8×171.62
9 = 152.55.

In other words, a capital of 171.62 units and a labor of 152.55
hours will produce the 4, 200 units of the product at the minimal cost
of 20× 171.62 + 15× 152.55 = $5, 721.

The next example uses the Lagrangean method to address a central
issue in the theory of consumer behavior. The basic problem is to find
the commodity basket which maximizes the consumer’s utility subject
to his income constraint.
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ExLau

Example 1.8. (Utility Maximization) The budget set of the con-
sumer is

Ω = {(x, y): x ≥ 0, y ≥ 0, and p1x + p2y ≤ m} ,

where p1 and p2 are prices and m is the income.
We use the Lagrangean method to present another method of solv-

ing the problem posed in Example 1.1. We must solve the following
optimization problem:

Maximize u(x, y) = xy s.t. x ≥ 0, y ≥ 0 and x + 2y ≤ 12 .

It is easy to convince ourselves that the maximum takes place on the
“budget line” x + 2y = 12. Hence, we solve the optimization problem:

Maximize u(x, y) = xy s.t. x ≥ 0, y ≥ 0, x + 2y = 12 .

The Lagrangean method requires us to solve the system

∂u
∂x = λ∂(x+2y)

∂x , ∂u
∂y = λ∂(x+2y)

∂y , x + 2y = 12 ,

or

y = λ (7)
x = 2λ (8)

x + 2y = 12 . (9)

Substituting the values of x and y from (7) and (8) into (9), we get
2λ + 2λ = 12. This implies λ = 3. Hence x = 6 and y = 3. That is,
the maximizer is (6, 3).

Exercises

1. Solve Problem 3 of Section 1.2. [Answer: A bouquet of 8 carnations
and 4 roses will give the best satisfaction. ]

2. A producer has $10, 000 to spend on the development and promotion of
a new product. From experience he knows that if x thousand dollars are



231.5: Uncertainty and chance

used for development and y thousand dollars on advertisement, sales
will be approximately Q(x, y) = 100x

3
2 y

1
2 units. How many thousands

of dollars should the producer spend on development and how many
on advertisement in order to maximize sales? What is the maximum
number of units that the producer can sell? [Answer: x = 7.5; y = 2.5;
maximum # of units 3, 248 ]

3. Maximize the utility function u(x, y) = x3y2 over the budget set

Ω =
{
(x, y): x ≥ 0, y ≥ 0 and 3x + 5y = 15

}
.

4. There are 80 yards of fencing available to enclose a rectangular field.
What are the dimensions (i.e., the length and the width) of the enclosed
rectangle with the largest posssible area? What is the largest area?
[Answer: Length = Width = 20 yd ]

5. A cylindrical can is to hold 4π cubic inches of apple juice. The cost
per square inch of constructing the metal top and bottom is twice the
cost per square inch of constructing the cardboard side. What are
the dimensions of the least expensive can? [Answer: Radius = 1 in;
Height = 4 in ]

1.5. Uncertainty and chance
sec15

It has been said that the only two certain things in this world are death
and taxes. Everything else is governed by randomness and uncertainty.
To understand random phenomena in a systematic way, mathemati-
cians developed the Theory of Probability .4 It is based on the funda-
mental concept of a probability space.

A probability space is a pair (S, P ), where S is a finite set, called
the sample space, and P is a function that assigns to every subset A
of S a real number P (A) between 0 and 1. If we let S = {s1, s2, . . . , sn}
and pi = P ({si}) (the probability of the singleton {si}), then the func-
tion P satisfies the following properties:

1. pi ≥ 0 for each i and
∑n

i=1 pi = 1.

2. If A is a subset of S, then P (A) =
∑

si∈A pi.

4A delightful history of this can be found in Peter Bernstein’s book Against
the Gods, John Wiley and Sons, New York, 1998.
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In particular, we have

P (*©) = 0 and P (S) = 1 .5

The subsets of the sample space S are called events. If A is an
event, then P (A) is the probability of the event A, i.e., the chance of the
occurance of A. The sample space S can be an infinite set. However,
in this case, the probability function P is a special set function (called
a probability measure) defined on a specific collection of subsets of S
(the events).

Events can be thought of as representing the random outcomes
of chance experiments. For example, in tossing a coin, the outcomes
are “Heads” or “Tails.” In this situation, our sample space is the set
S = {H, T}. For the coin to be fair (or unbiased), we assign the
probabilities P (H) = P (T ) = 1

2 . However, if we think that the coin is
not fair, then we can assign other probabilities to the events H and T ;
for instance, we can put P (H) = 1

3 and P (T ) = 2
3 .

In the chance experiment of throwing dice, the sample space is the
set S = {1, 2, 3, 4, 5, 6}, where each number i represents the event: after
throwing the die the number i appears on the top face. If we think that
the die is fair, then we assign the probabilities pi = 1

6 for each i.
A very useful way of understanding the outcomes of random events

is by means of the random variables. To discuss this concept, we start
with a probability space (S, P ).

A random variable is a function X: S → IR (from the sample
space into the real numbers). With the random variable X, we can
associate several events in the sample space. If A is a subset of IR (the
set of real numbers), then we denote by X ∈ A the event of the sample
space {s ∈ S: X(s) ∈ A}. That is, we have

X ∈ A = {s ∈ S: X(s) ∈ A} ⊆ A .

For instance, if x is an arbitrary real number, then

X ≤ x = {s ∈ S: X(s) ≤ x} .

d:dist

5The symbol *© denotes, as usual, the empty set—the set without any
elements.
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Definition 1.9. (The Distribution of a Random Variable) If
X: S → IR is a random variable, then the distribution function of
X is the function F : IR → IR defined by

F (x) = P (X ≤ x)

for each real number x.

We present two examples to illustrate the concept of distribution
function of a random variable.

ranv

Example 1.10. Consider the chance experiment of tossing a coin. We
mentioned before that the sample space is S = {H, T} and (assuming
that we are tossing an unbiased coin) the probabilities are P (H) =
P (T ) = 1

2 .
Consider the random variable X: S → IR defined by X(H) = 1 and

X(T ) = 2. Then it is easy to see that

X ≤ x =






*© if x < 1,
{H} if 1 ≤ x < 2,
{H, T} if x ≥ 2.

This gives the following distribution function

F (x) = P (X ≤ x) =

{ 0 if x < 1,
1
2 if 1 ≤ x < 2,
1 if x ≥ 2.

Its graph is shown in Figure 1.5(a).
F6

ranv1

Example 1.11. Here we consider the chance experiment of tossing a
fair die. The sample space is S = {1, 2, 3, 4, 5, 6} and pi = 1

6 for each
i. The random variable X: S → IR is defined by X(i) = i. It is easy
to see that the distribution function F of X is defined as follows: If kx

denotes the number of integers among 1, 2, 3, 4, 5, 6 that are less than
or equal to x, then

F (x) = kx
6 .

The graph of F (x) is shown in Figure 1.5(b).

The shapes of the graphs of the distribution functions shown in Fig-
ure 1.5 depict the fundamental properties of all distribution functions.
They are described in the next theorem.
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Figure 1.5.

disprop

Theorem 1.12. (Properties of Distributions) If F : IR → IR is the
distribution function of a random variable X, then:

i. 0 ≤ F (x) ≤ 1 for each x.

ii. F is increasing, i.e., F (x) ≤ F (y) if x < y.

iii. lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

iv. P (a < X ≤ b) = F (b)− F (a) if a < b.

v. P (X = a) = the jump of the distribution function F (x) at x = a.

A typical example of a distribution function is shown in Figure 1.6.F7

There are three important numbers associated with random vari-
ables. They are known as the expectation, the variance and the stan-
dard deviation. They are defined as follows.

d:exp

Definition 1.13. If X: S → IR is a random variable, then:

1. The expectation or the expected value E(X) of X is the real
number

E(X) =
n∑

i=1

piX(si) .

2. The variance Var(X) of X is the non-negative real number

Var(X) =
n∑

i=1

pi[X(si)− E(X)]2 .
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Figure 1.6.

3. The standard deviation σ of X is the positive square root of
Var(X), that is,

σ =
√

Var(X) .

We illustrate the preceding notions using Examples 1.10 and 1.11.
For Example 1.10, we have:

E(X) = 1
2 × 1 + 1

2 × 2 = 3
2

Var(X) = 1
2(1− 3

2)2 + 1
2(2− 3

2)2 = 1
4

σ =
√

Var(X) =
√

1
4 = 1

2 .

For Example 1.11, we have

E(X) = 1
6 × 1 + 1

6 × 2 + 1
6 × 3 + 1

6 × 4 + 1
6 × 5 + 1

6 × 6 = 21
6 = 7

2

Var(X) = 1
6

6∑

i=1

(i− 7
2)2 = 35

12

σ =
√

Var(X) =
√

35
12 = 1.708 .

In many situations of randomness and uncertainty the distribution
function of a random variable is good enough to provide all informa-
tion regarding the chance experiment. For this reason, in applications
the sample space (and even the random variable) are relegated to the
background and they are replaced by the distribution function of the
random variable. Certain distributions are very common and appear in
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many natural problems. As a matter of fact, in a variety of applications
the distributions are also continuous functions and can be expressed in
terms of a density function as follows.

d:denf

Definition 1.14. A distribution function F of a random variable is
said to have a density function if there exists a non-negative function
f : IR → IR (called the density function) such that

F (x) =
∫ x

−∞
f(t) dt

holds for all x.

The density function f , besides being positive, also satisfies the
property

∫ ∞
−∞ f(t) dt = 1. The density function allow us to compute

the probabilities of the random variable X in terms of integrals. We
have

P (a ≤ X ≤ b) =
∫ b

a
f(t) dt

for all reals a < b. In terms of the density function, the expected
value and the variance of a random variable can be computed from the
following formulas.

E(X) =
∫ ∞

−∞
tf(t) dt

Var(X) =
∫ ∞

−∞
[t− E(X)]2f(t) dt .

We close the section by presenting two important examples of dis-
tribution functions that are very common in practical problems.
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UN-D

Example 1.15. (The Uniform Distribution) A random variable X
is said to have a uniform distribution function F over a finite closed
interval [a, b] if F has the density function

f(x) =
{

1
b−a if a < x < b,
0 if x ≤ a or x ≥ b .

The distribution function F is now given by

F (x) =
∫ x

−∞
f(t) dt =

{ 0 if x ≤ a,
x−a
b−a if a < x < b,
1 if x ≥ b .

The graphs of the density and distribution functions of a uniformly
distributed random variable are shown in Figure 1.7. F8

Figure 1.7.

Computing the expectation, variance and standard deviation of a
uniformly distributed random variable X, we find that:

E(X) =
∫ ∞

−∞
tf(t) dt = 1

b−a

∫ b

a
t dt = b2−a2

2(b−a) = a+b
2

Var(X) = 1
b−a

∫ b

a
(t− a+b

2 )2 dt = (b−a)2

12

σ =
√

Var(X) =
√

(b−a)2

12 = (b−a)
√

3
6 .

N-D
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Example 1.16. (The Normal Distribution) A random variable is
said to have a normal distribution with parameters m and σ2 if its
distribution has the density function

f(x) = 1
σ
√

2π
e−

(x−m)2

2σ2 .

That is, the distribution function of a normally distributed random
variable X with the parameters m and σ2 is given by the formula

ΦX(x) = 1
σ
√

2π

∫ x

−∞
e−

(t−m)2

2σ2 dt .

The graph of the density function f(x) is a bell-shaped curve that is
symmetric with respect to the line x = m. The graphs of the functions
f(x) and ΦX(x) are shown in Figure 1.8.F9

Figure 1.8.

It turns out that the expectation and variance of a normally dis-
tributed random variable X with the parameters m and σ2 are given
by

E(X) = m and Var(X) = σ2 .

A random variable which is normally distributed with parameters
m = 0 and σ = 1 is said to have the standard normal distribution.
The standard normal distribution function Φ is given by

Φ(x) = 1√
2π

∫ x

−∞
e−

t2

2 dt .
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The values of Φ are shown on the table at the end of the section. For
negative values of x the value of Φ can be computed from the formula

Φ(−x) = 1− Φ(x) .

In general, if X is a normally distributed random variable with pa-
rameters m and σ2, then its distribution ΦX is related to the standard
distribution via the formula

ΦX(x) = Φ(x−m
σ ) . ($)

The formula shown above together with the table listing the values of
Φ(x), allow us to compute the values of any normal distribution.

Exercises

1. Sketch the distribution function of the random variable of Example 1.10
with probabilities P (H) = 1

3 and P (T ) = 2
3 . Also, compute its ex-

pectation, variance and standard deviation. [Answers: E(X) = 5
3 ;

Var(X) = 2
9 ]

2. The return of a stock can be viewed as a random variable X. Sketch
the distribution of the “return random variable” X for a stock which
has a return of 3% with a probability of 1

3 , 6% with a probability of
1
3 and 10% with a probability of 1

3 . What is the sample space of the
random variable X?

3. A bus company schedules a southbound train every 30 minutes at a
certain station. A lady enters the station at a random time. Let X be
the random variable that counts the number of minutes she has to wait
for the next bus.

Assume that the statement “she enters the station at random time”
means that X has a uniform distribution at the interval [0, 30]. Draw
the graph of the distribution and compute the probability that she has
to wait at most 21 minutes for the next train. [Answer: 30% ]

4. Let X be the random variable that counts the number of typographical
errors on a page of this book. If X has a uniform distribution on
the interval [0, 1.1], what is the probability that there is at least one
typographical error on this page? [Answer: 9.1% ].
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5. The annual rainfall (in inches) in a certain location is a random variable
X. Assume that X is normally distributed with parameters m = 30
and σ = 5. What is the probability that this location will have over 35
inches of rain in any given year? [Answer: 15.87% ]

6. Let X be a random variable measuring the number of miles that a car
can run before its battery wears out. Assume that the distribution of
X is given by

F (x) =
{

1− e−0.0001x if x ≥ 0,
0 if x < 0 .

If a person takes a 5, 000-mile trip, what is the probability that the per-
son will be able to complete the trip without replacing the car battery?
[Answer: e−0.5 ≈ 60.65% ]

7. The lifetime in years of a certain electronic tube can be described by a
random variable X whose distribution has the density function

f(x) =
{

xe−x if x ≥ 0,
0 if x < 0 .

What is the expected life of such a tube? [Answer: 2 years ]

8. A certain brand of cereal claims that the mean number of raisins in each
box is 80 with a standard deviation of 6. If the raisins are normally
distributed, what are the chances that an arbitrary box has (a) fewer
that 70 raisins and (b) more than 90 raisins?

What should be your answers if the raisins are uniformly distributed?
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A Table with the Values of Φ(x)

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7398 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9929 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
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1.6. Decision making under uncertainty

In many situations the outcome of a decision depends on chance. When
an individual buys a stock or a bond the individual generally does not
know precisely the future value of his investment. When a farmer de-
cides on the kind of crop to plant he does not know what price the crop
will fetch when it is harvested. When an individual buys a lottery ticket
the individual is very uncertain about winning the lottery. Nonetheless,
decisions have to be made under such conditions of uncertainty, and the
question then is whether there is a consistent way of thinking about
how to make decisions under these conditions. Here we explore the
fundamentals of a theory of decision making under uncertainty known
as Expected Utility Theory.

To motivate the discussion, let us assume for the sake of simplicity,
that an individual has to decide how to invest $100. The choices are:

1. to buy a bond which returns 6% with certainty, or

2. to invest in a stock which returns 3% with a probability of 1
3 , 6%

with a probability of 1
3 and 10% with a probability of 1

3 .

Clearly, investing in the stock is risky as there is a chance that one
may end up with the smaller return of 3%. But then again, there is
also a good chance that one may end up with the higher return of 10%.
What choice will the individual make in this situation? Obviously, the
answer will depend on the risk taking propensities of the individual.
If the individual is willing to take some risk she will compute the ex-
pected returns from the two investments. In the case of the bond the
expected return is 6%. In the case of the stock, the expected return is
a little more complex and is computed as

1
3
× 3% +

1
3
× 6% +

1
3
× 10% = 6.33% .

Therefore, the expected return from the stock is higher than the ex-
pected return of 6% of the bonds. One should note that, in terms of the
language of probability theory, the expected return is none other than
the expected value of the random variable which gives us the value of
the different possible returns from the stock.

In decision making under uncertainty, the different possible out-
comes that can result, in general, lead to different levels of wealth.
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Wealth can usually be translated into consumption and, hence, utility.
We can, therefore, speak of the utility generated by wealth w and write
it as u(w). In the more abstract and formal language of mathematics,
we would say that if a decision d leads to one of the alternative levels
of wealth w1, w2 and w3, then the decision will result in one of three
alternative levels of utility u(w1), u(w2) and u(w3). If the probabilities
with which these three outcomes can occur are known to be p1, p2 and
p3, then the expected utility of the decision d is given by

Eu(d) = p1u(w1) + p2u(w2) + p3u(w3).

The function u(w), which is called the utility function over wealth
or the von Neumann–Morgenstern utility function, is intrinsic
to the individual and represents his preferences over different levels of
wealth. For our purposes, a utility function over wealth is any
strictly increasing function u: [0,∞) → IR. In the discussion that fol-
lows we ignore the case of negative wealth since bankruptcy laws pre-
vent individuals from having negative levels of wealth.6

Now every decision made under uncertainty can be viewed as having
chosen a lottery L over alternative levels of wealth wi, where each level
of wealth wi can be assigned a probability pi. The probability pi is
the probability of receiving wealth wi when the decision is made or the
lottery is played. Therefore, we can denote a lottery L by the collection
of pairs L = {(wi, pi): i = 1, . . . , n}, when the lottery has n possible
alternative outcomes and each outcome i occurs with probability pi.
Indeed, the proper way to think of decision making under uncertainty
is to think of it as involving making choices over alternative lotteries.
Thus, an individual given a choice between two lotteries L1 and L2

would either prefer L1 to L2 or L2 to L1 or be indifferent between the
two lotteries.

Now assume that two lotteries with the same set of alternatives are
given, say

L1 = {(wi, pi): i = 1, . . . , n} and L2 = {(w′
i, p

′
i): i = 1, . . . , n} .

6In some cases, the utility when w = 0 is taken to be −∞, i.e., u(0) = −∞.
In principle, it is possible to define a utility function on (−∞,∞), but this
often leads to problems with interpretation of the utility function. Note,
however, that the utility function u can take negative values.
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Then every probability p (i.e., 0 ≤ p ≤ 1) gives rise to a new lottery

pL1 + (1− p)L2 = {(pwi + (1− p)w′
i, ppi + (1− p)p′i): i = 1, . . . , n} .

If the lotteries L1 and L2 do not have the same set of alternatives, then
we can take the union A of all possible alternatives of both lotteries
and consider that L1 and L2 have alternatives A. Notice, of course,
that an alternative in A which is not an alternative of L1 is assumed to
have probability zero for the lottery L1 and an alternative of A which is
not an alternative of L2 has probability zero for the lottery L2. Thus,
for any probability p the lottery pL1 + (1− p)L2 is well defined. Any
lottery of the form pL1 + (1− p)L2 is called a compound lottery.

Now suppose that an individual prefers the lottery L1 to the lottery
L2. It is reasonable to expect that the ranking of L1 and L2 should
remain unchanged if we mix a third lottery L3 with both L1 and L2.
This reasoning leads to the following axiom.

Definition 1.17. (The Independence Axiom) An individual’s choice
over lotteries satisfies the independence axiom whenever a lottery
L1 is preferred to another lottery L2, then for each 0 < p < 1 the
compound lottery pL1 + (1− p)L3 is preferred to the compound lottery
pL2 + (1− p)L3 for all lotteries L3.

Another property of choice over lotteries that is used is that of
continuity.

Definition 1.18. (The Continuity Axiom) An individual’s choice
over lotteries satisfies the continuity axiom whenever a sequence {pn}
of probabilities (i.e., 0 ≤ pn ≤ 1 holds for each n) converges to p, i.e.,
pn → p and the lottery pnL1 + (1− pn)L2 is preferred to a lottery L3

for all n, then pL1 + (1− p)L2 is preferred to L3.

Intuitively, the above definition means that an individual’s choice
over lotteries satisfies the continuity axiom if small changes in the prob-
abilities with which the lotteries are chosen changes the rank over the
lotteries only slightly.

Let L denote the set of all lotteries. Then an individual’s choice
over lotteries is simply a utility function U :L→ IR. If an individual’s
choice over lotteries satisfies the axioms of independence and continuity,
then the individual’s choice has a particularly nice representation in
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terms of expected utilities. This result, which is central in the theory
of decision making under uncertainty, is known as the “Expected Utility
Theorem,” and is stated below.7

EXUT

Theorem 1.19. (Expected Utility Theorem) If an individ-
ual’s utility function U :L → IR over the set of lotteries satis-
fies independence and continuity, then there is a von Neumann–
Morgenstern utility function u over wealth such that

U(L) =
n∑

i=1

piu(wi)

for every lottery L = {(wi, pi): i = 1, . . . , n}.

One may now argue, of course, that the utility of the decision,
which is the utility from the lottery, is different from the expected util-
ity computed above. This is indeed a reasonable argument that the
expected utility may possibly give us an erroneous notion of the true
utility of the decision. However, if the utility profiles over lotteries are
consistent with the axioms of independence and continuity, one can
invoke the expected utility theorem to argue that if the utility profile
over wealth is properly chosen, then one can use expected utilities to
correctly compute the true utility profile over the lotteries. In such
cases, since the objective of the decision maker is to choose the lottery
that gives him the highest utility, the Expected Utility Theorem guar-
antees that this can be achieved by finding the lottery that maximizes
the expected utility over wealth.

Quite often the expected return of a lottery L is described by a
continuous “return” distribution with a density function f(r) over the
rate of return r. In this case, if an individual has a utility function u(w)
over wealth and invests $W in the lottery, then his expected utility of

7For further details about the Expected Utility Theorem see the books by
H. L. Varian [24, p. 156], D. M. Kreps [9, Proposition 3.1, p. 76], and A.
Mas-Colell, M. D. Whinston, and J. R. Green [12, Chapter 6].



38 Chapter 1: Choices

the lottery L is given by the formula

Eu(L) =
∫ ∞

−1
u((1 + r)W )f(r) dr .

Observe that f(r) is defined over the interval, where r = −1 is the
value for which the individual’s wealth has been driven down to zero.

We are now ready present two examples to illustrate the Expected
Utility Theorem.

EXSUB

Example 1.20. Suppose an individual is offered two gambles. In the
first gamble he has to pay $100 in order to win $500 with a probability
of 1

2 or win $100 otherwise. The individual’s utility over wealth i.e.,
his von Neumann–Morgenstern utility function, is u(w) =

√
w. The

expected utility of the first gamble is:

1
2
√

500− 100 +
1
2
√

100− 100 =
1
2
√

400 =
20
2

= 10 .

In the second gamble the individual pays $100 for the chance of
winning $325 with a probability of 1

2 and $136 also with a probability
of 1

2 . The expected utility of the second gamble is

1
2
√

225 +
1
2
√

36 =
1
2
× 15 +

1
2
× 6 =

21
2

= 10.5 .

The individual, therefore, prefers the second gamble even though in the
first gamble he stands to win a larger sum. Now if the same gamble is
offered to an individual whose utility of wealth is given by u(w) = w,
then the expected utility of the first gamble for the second individual
is,

1
2
× 400 = 200 ,

while the expected utility of the second gamble is

1
2
× 225 +

1
2
× 36 = 130.5 .

The second individual prefers the first gamble.

The example illustrates an important fact about decision making
under uncertainty, namely that different individuals have quite different
tolerance for risk. In the example, the first individual is not very
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comfortable taking risks while the second individual seems to tolerate
it quite well. Indeed, this element is so important in the theory of choice
under uncertainty that in the literature one distinguishes between three
types of individuals: those who are risk averse, those who are risk
neutral and those who are risk seeking.

It is worth noticing in the example that the expected value of the
gambles (to be distinguished from the expected utility) is $200 and
$130.5, respectively. The second individual evidently ranks lotteries ac-
cording to expected value. An individual who ranks gambles according
to their expected value is said to be risk neutral. The first individual,
however, does not rank according to expected value. Indeed, if the first
individual is offered a choice between the first gamble and a sure win
of $200, the individual would choose the sure win over the gamble as
the expected utility of the sure win of $200 is

√
200 = 14.14 which is

greater than 10; the expected utility of the gamble. Such individuals
who prefer the sure thing to gambles with the same expected value are
said to be risk averse. Likewise, a risk seeking individual prefers
the gamble to a sure thing with the same expected value.

In general, we can characterize an individual’s risk taking propensi-
ties by the nature of their utility function u: [0,∞) → IR. If the utility
function is linear in wealth, that is, the utility function u is of the form

u(w) = aw + b

the individual is risk neutral. If the utility function u is strictly con-
cave the individual is risk averse and lastly, if the utility function
is strictly convex the individual is risk seeking. The graphs in Fig-
ure 1.9 illustrate utility functions with the three different risk taking
propensities. F10

Let us recall the definitions of concave and convex functions. A real
function u: I → IR, where I is an interval, is said to be:

• convex, whenever

u(αx1 + (1− α)x2) ≤ αu(x1) + (1− α)u(x2)

holds for all x1, x2 ∈ I with x1 *= x2 and each 0 < α < 1, and

• concave, whenever

u(αx1 + (1− α)x2) ≥ αu(x1) + (1− α)u(x2)

holds for all x1, x2 ∈ I with x1 *= x2 and each 0 < α < 1.
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Figure 1.9.

If the above inequalities are strict, then f is called strictly convex,
respectively strictly concave. In terms of derivatives, it is well known
that if a function u satisfies u′′(w) > 0 (resp. u′′(w) < 0) for each w,
then u is strictly convex (resp. strictly concave).

Typical examples of risk averse utility functions are provided by
the functions u(w) = n

√
w and typical examples of risk seeking utility

functions are the functions u(w) = wn, where n is a natural number.
ex:insur

Example 1.21. (Application to Insurance) Suppose an individual
owns a house worth $W. There is a possibility that the house may
be destroyed by flood or fire with probability p. Assume also that
the individual can buy $1 amount of coverage for $x. Here x is the
insurance premium. How much coverage will the individual buy?

An individual will, in general, buy enough coverage that is compat-
ible with his or her tolerance for risk (i.e., compatible with the indi-
vidual’s utility function u(w)) and the cost of the coverage. We expect
the individual to choose just the right (optimal) amount of coverage.

Formally, we express this as an expected utility maximizing choice.
The reason for doing this is the Expected Utility Theorem. Hence, the
amount of coverage q purchased by an individual would maximize the
expected utility

E(q) = pu(q − xq) + (1− p)u(W − xq) . ($)

This formula is justified as follows. If the house is destroyed, then the
owner will receive the amount q of the coverage minus the amount xq
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paid to purchase this coverage, a total of q − xq. Since the probability
of destruction of the house is p, this implies that the expected utility
from destruction of the house is pu(q − xq). On the other hand, with
probability 1−p the house will not be destroyed, in which case its value
is W − xq and therefore its expected utility is (1− p)u(W − xq).

Next, notice that since u is not defined for negative wealth, it follows
from ($) that W − xq ≥ 0 or q ≤ W

x . This guarantees that the domain
of the expected utility function E(q) is the closed interval [0, W

x ].
Now assume that W = $100, 000, p = 0.01 and x = 0.02. As we

shall see next, the method of maximizing E(q) depends upon the type
of individual. We analyze the situation by distinguishing between the
following three cases.

CASE I: The individual is risk averse with utility function over wealth
u(w) =

√
w.

In this case, it follows from ($) that

E(q) = p
√

(1− x)q + (1− p)
√

W − xq

= 0.01
√

0.98q + 0.99
√

W − 0.02q

= 0.01[
√

0.98q + 99
√

W − 0.02q ] .

The graph of E(q) is shown in Figure 1.10. Taking the derivative, we
get

E′(q) = 0.01
[ 0.98

2
√

0.98q
− 99× 0.02

2
√

W − 0.02q

]

= 0.005
[ √

0.98
q
− 1.98√

W − 0.02q

]
.

Letting E′(q) = 0, we get
√

0.98
q = 1.98√

W−0.02q
and by squaring both

sides we see that 0.98
q = (1.98)2

W−0.02q or 0.98(W −0.02q) = 3.9204q. Letting
W = 100, 000 and multiplying, we obtain 98, 000 − 0.0196q = 3.9204q
or 98, 000 = 3.94q. This implies

q =
98, 000
3.94

= $ 24, 873.10 .
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CASE II: The individual is risk seeking with utility function over wealth
u(w) = w2.

Computing the expected utility from ($), we get

E(q) = 0.01(0.98q)2 + 0.99(W − 0.02q)2

= 0.01[0.9604q2 + 99(W 2 − 0.04Wq + 0.0004q2)]
= 0.01(q2 − 3.96Wq + 99W 2) .

The graph of this function is shown in Figure 1.10. Notice that q = 0 is
is the maximizer of E(q), which means that this risk seeking individual
will not purchase any insurance.F11

Figure 1.10.

CASE III: The individual is risk neutral with utility function over wealth
u(w) = w.

Here the expected utility is

E(q) = p(1− x)q + (1− p)(W − xq)
= [p(1− x)− (1− p)x]q + (1− p)W
= (p− x)q + (1− p)W
= −0.01q + 99, 000 .

This is a linear function (see Figure 1.10) and is maximized when q = 0.
In other words, if the premium is 2 cents for every dollar of coverage,

a house that is currently valued at $100,000 and which has a chance
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of 1 in 100 of being destroyed by a flood or a fire would be insured
up to $24, 873 by a risk averse individual with utility function u(w) =√

w and will not be insured neither by a risk seeking individual with
utility function u(w) = w2 nor by a risk neutral individual with utility
function u(w) = w.

ex:s

Example 1.22. (Choosing the Optimal Portfolio) Suppose an in-
dividual has $10,000 to invest between a stock and a bond. The stock
is a financial asset which has a variable return that is uniformly dis-
tributed with an average return of 10% and a standard deviation of 2%.
The bond returns 5% with certainty. The individual is risk averse and
her utility function over wealth is given by u(w) =

√
w.

Faced with a choice between putting her money in the stock or
the bond, this individual will choose a portfolio which makes her the
most comfortable. Is there some way in which we can find out which
portfolio the individual is most likely to choose?

Given her utility function over wealth, a reasonable prediction would
be that she would choose the portfolio that maximizes her expected util-
ity. Let s be the proportion of the $10,000 invested in the stock, where,
of course, 0 ≤ s ≤ 1. The investor’s expected utility is then given by

Eu(s) = 1
b−a

∫ b

a

√
10, 000s(1 + r) dr +

√
10, 000(1− s)× 1.05

= 100
[

1
b−a

∫ b

a

√
s(1 + r) dr +

√
(1− s)× 1.05

]
,

where [a, b] is the interval which gives the possible returns from the
stock and r represents the return from the stock.

Since the distribution is uniform and the mean is 0.1 and the stan-
dard deviation is 0.02, it follows from Example 1.15 that

a + b

2
= 0.1 and

(b− a)2

12
= 0.0004 .

This gives a + b = 0.2 and b− a =
√

12× 0.0004 = 0.0692. Solving the
system, we get a = 0.0654 and b = 0.1346. Therefore,

Eu(s) = 100
[ √

s

0.0692

∫ 0.1346

0.0654

√
1 + r dr +

√
(1− s)× 1.05

]
.
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Computing the integral, we get
∫ 0.1346

0.0654

√
1 + r dr = 2

3(1 + r)
3
2

∣∣∣
0.1346

0.0654
= 2

3 [(1.1346)1.5 − (1.0654)1.5]

= 2
3(1.2085− 1.0997) = 0.0725 .

Therefore,

Eu(s) = 100
[

0.0725
0.0692

√
s +

√
1.05

√
1− s

]

= 100(1.0477
√

s +
√

1.05
√

1− s) .

The First-Order Test dEu(s)
ds = 0 for a maximum gives

50
[

1.0477√
s
−

√
1.05√
1−s

]
= 0, or 1.0477√

s
=

√
1.05√
1−s

.

Squaring both sides, we get 1.0976
s = 1.05

1−s , or 1.0976(1 − s) = 1.05s.
This implies 1.0976 = 1.05s + 1.0976s = 2.1476s, and consequently

s =
1.0976
2.1476

= 0.511 .

This shows that this investor will put only 51.1% of her $10,000 in
stocks, the rest (48.9%) she will invest in bonds.

From the von Neumann–Morgenstern utility function of the individ-
ual it is clear that this individual is risk averse. What would happen if
the individual is risk seeking? In that case also the investor would want
to choose the portfolio that maximizes the expected utility—where the
utility is now that of a risk-seeking individual. Since the expected
wealth from holding the stock is $11,000 and from holding the bond
only $10,500, the risk seeking investor will indeed put all her money
in stocks, as she loves the risk of investing in the riskier asset. See
Exercises 8 and 9 at the end of this section for verifications of these
claims.

Exercises

1. An individual with utility function u(w) = w over wealth invests $ W
in a lottery which has a continuous return distribution over the rate r.
What should be his expected utility? [Answer: (1 + m)W , where m is
the expected value of the distribution. ]
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2. An individual has a von Neumann–Morgenstern utility function of the
form u(w) =

√
w. What would the individual be willing to pay for a

lottery that pays $1, 000, 000 with a probability of 0.0015 and zero
otherwise?

Donut

3. You are a risk neutral individual whose net worth is $ 10, 000 and you
are thinking of opening a Donut Franchise. To open the franchise you
must invest $5,000. If you buy the franchise, the probability is 1

3 that
you will make $500,000, 1

3 that you break even and 1
3 that you lose the

entire investment. What would be your decision? In general, at what
probabilities would you change your decision?

4. In Exercise 3 above what would your answer be if u(w) = lnw?

5. In certain casinos the “expected values of all gambles are negative.”
Which of the three risk types of individuals would you expect to see in
these casinos?

6. In Example 1.21 we discussed how much insurance an individual would
buy. Now suppose an individual, if he buys insurance, will have to
buy coverage that is 80% of the value of the house. What premium x
is the individual willing to pay for a house that is worth $100,000 if
u(w) =

√
w?

7. What would be the answer to the preceding exercise if the utility func-
tion is u(w) = w?

RS

8. Refer to Example 1.22 and consider a risk seeking investor having the
utility function over wealth u(w) = w2. Show that:

a. The expected utility is given by the formula

Eu(s) = 108
[

1
0.0692

∫ 0.1346

0.0654
s2(1 + r)2 dr + (1.05)2(1− s)2

]

= 108(2.313s2 − 2.204s + 1.102) ,

where 0 ≤ s ≤ 1 is the proportion of the $10, 000 invested in the
stock.

b. Eu(s) is maximized when s = 1. That is, show that a risk seeking
investor will put all her money in the stock.

RN

9. Again refer to Example 1.22 and consider a risk neutral investor having
the utility function over wealth u(w) = w. Show that:
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a. The expected utility is given by the formula

Eu(s) = 104
[

1
0.0692

∫ 0.1346

0.0654
s(1 + r) dr + 1.05(1− s)

]

= 104(0.05s + 1.05) ,

where 0 ≤ s ≤ 1 is the proportion of the $10, 000 invested in the
stock.

b. Eu(s) is maximized when s = 1. That is, show that this risk
neutral investor will put all her money in the stock.

c. What will two risk neutral investors with utility functions over
wealth u1(w) = 0.5w and u(w) = 0.9548w do?

10. Consider Example 1.22. If on the average the stock returned 10% with
a standard deviation of 1% what would be the individual’s optimal
portfolio? What is her choice between the stock and the bond? [Answer:
Stock 51.16%; Bond 48.84% ]

11. In the preceding exercise what would happen if the stock returned
12% with a standard deviation of 2%? [Answer: Stock 51.72%; Bond
48.28% ]

12. Consider the insurance problem of Example 1.21 with parameters W ,
p, and x. What amount of coverage q will a risk averse investor with
utility function over wealth u(w) = 1 − e−w buy? Express q in terms
of the parameters W , p and x. [Answer: q = W + ln(p(1−x)

x(1−p) ) ]



Chapter 2

Decisions and Games

Chap2

In the previous chapter, we discussed how one can identify the best
choice from a set of alternative choices. In every context that we dis-
cussed there, the decision maker, by choosing the right alternative could
unambiguously influence the outcome and, therefore, the utility or sat-
isfaction that he or she received. This is not always true. In many
cases, the well being of an individual depends not only on what he or
she does but on what outcome results from the choices that other indi-
vidual make. In some instances, this element of mutual interdependence
is so great that it must be explicitly taken into account in describing
the situation.

For example, in discussing the phenomenon of Global Warming it
would be ludicrous to suggest that any one country could, by changing
its policies, affect this in a significant way. Global warming is precisely
that: a global phenomenon. Therefore, in any analysis of global warm-
ing we have to allow for this. But then this raises questions about what
is the right strategy1 to use in tackling the problem. How should any
one country respond? What will be the reaction of the other countries?
and so on. Clearly, this is quite different from the situations analyzed
in the last chapter. Here strategic play is important and it is not as
clear as to what is an optimal strategy.

Let us take a look at another situation in which strategic play is
important. The following excerpt taken from the New York Times2

reported on a settlement made by airlines on a price fixing lawsuit.

• Major airlines agreed to pay $40 million in discounts to state and
local governments to settle a price fixing lawsuit. The price fix-
ing claims centered on an airline practice of announcing price

1The word “strategy” is the Greek word “στρατηγική ” which means a plan or
a method or an approach.

2Source: “Suit Settled by Airlines,” New York Times, p. D8, October 12, 1994.
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changes in advance through the reservations systems. If competi-
tors did not go along with the price change, it could be rescinded
before it was to take effect.

It seemed that the airlines were trying to coordinate price increases
by using a signaling scheme. If the other airlines did not go along with
the change the price increase would not take effect. Why would an
airline be interested in knowing how the other airlines would respond?
Why were the airlines so wary about changing prices unilaterally? The
reasons are not immediately obvious. Some of the incentives for do-
ing what the airlines were doing can be surmised from the following
description of the situation.

ExNYT

Example 2.1. Suppose US Air and American Airlines (AA) are think-
ing about pricing a round trip airfare from Chicago to New York. If
both airlines charge a price of $500, the profit of US Air would be $50
million and the profit of AA would be $100 million. If US Air charges
$500 and AA charges $200 then the profit of AA is $200 million and
US Air makes a loss of $100 million. If, however, US air sets a price of
$200 and AA charges $500 then US Air makes a profit of $150 million
while AA loses $200 million. If both charge a price of $200 then both
airlines end up with losses of $10 million each. This information can
be depicted in the form of a table as shown below.

American Airlines
Fare $500 $200

US Air $500 (50,100) (−100,200)
$200 (150,−200) (−10,−10)

The Fare Setting Game

The example is illustrative of what was happening in the airline
industry. It is worth noting that it would be best for both airlines to
coordinate price changes because without such coordination the airlines
would end up making fairly serious losses. In situations of this kind
the following three elements always seem to be present:

1. there are two or more participants,

2. each participant has a set of alternative choices, and
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3. for each outcome there is a payoff that each participant gets.

These are the essential ingredients that constitute what is called a game
in strategic form. In more formal language, a strategic form game
consists of a a set of players, for each player there is a strategy set ,
and for each outcome (or strategy combination) of the game there is a
payoff for each player.

It would be nice if we could find certain central principles that would
allow us to analyze the solution to games, in the same way that we were
able to find general principles for solving optimization problems, as we
did in the last chapter. One might start by asking what is most likely to
happen in a game once the players are completely informed about the
game they are playing. In other words, given a situation that can be
modeled as a game, what guiding principles should we use in deciding
the most plausible outcome of the game?

We proceed by first analysing two-person games in which the strat-
egy sets are small and finite. Some of the more interesting elements of
games start to emerge even in this most elementary construct. We take
a look at dominant strategies and solutions obtained through the elim-
ination of dominated strategies. The concept of a Nash equilibrium is
then introduced. The Prisoner’s Dilemma, a two-person matrix game,
is analyzed as are a few other matrix games.

The chapter then discusses n-person games reintroducing the con-
cepts of dominant strategies and Nash equilibrium in a more general
context. It then moves on to the applications. The Cournot duopoly
shows how two firms competing to sell the same product find the out-
put they should produce. The median voter model illustrates the use of
game theory in understanding ideological shifts in the position of can-
didates. The example on the extraction of common property resources
shows how useful game theory can be in understanding the existence
of sometimes perverse incentives. The last example deals with second
price auctions in which the highest bidder wins and pays the second
highest bid. The remarkable fact that emerges is that every bidder
should bid their true valuation of the product.

The chapter ends with a discussion of how to solve games using
mixed strategies. We discuss the difference between pure strategies and
mixed strategies using examples like the game of matching pennies.
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2.1. Two-person matrix games

The most elementary depiction of a game is the one featured in the
fare setting game. In that example, we gave a description of the pay-
offs or the profits that the airlines would make for every possible out-
come of the game using a table. We can use such a matrix format for
many interesting games. We start our discussion with one of the most
well-known matrix games called the Prisoner’s Dilemma. The game
illustrates a social phenomenon which is best understood using game
theoretic ideas. It describes a situation in which the players would do
better by cooperating but nevertheless seem to have an incentive not
to do so!

Ex:PrD

Example 2.2. (The Prisoner’s Dilemma) This game—which per-
haps has been the most widely analyzed game—is given by the following
matrix:

Player 2
Strategy Mum Fink

Player Mum (−1,−1) (−10,0)
1 Fink (0,−10) (−5,−5)

The Prisoner’s Dilemma Game

The matrix game shown here is best described as a situation where
two individuals who have committed a crime have a choice of either
confessing the crime or keeping silent. In case one of them confesses
and the other keeps silent, then the one who has confessed does not go
to jail whereas the one who has not confessed gets a sentence of ten
years. In case both confess, then each gets a sentence of five years. If
both do not confess, then both get off fairly lightly with sentences of
one year each.

The matrix game shows clearly that there are two players and the
strategy set of each player is {Mum, Fink}. The payoffs are given by
the pairs (a, b) for each outcome, with a being player 1’s payoff and b
player 2’s payoff; here, of course, −a and −b represent years in jail. The
matrix completely describes a game in strategic form. In examining the
game, one notices the following features:

1. both players have a stake in keeping mum as they both get a sen-
tence of one year each, and
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2. given that a player is going to keep mum, the other player has an
incentive to fink .

These are precisely the sort of paradoxes that are so inherent in playing
games. The central issue is not only about the choice that a player
makes but also about the choices of the other players.

A close examination of the game shows that if player 1 uses the
“confess” (Fink) strategy, then he gets a better payoff for each choice
that player 2 makes. To see this, let u1(·, ·) denote the utility function
of player 1 and note that if player 2 plays “Mum,” then

u1(Fink, Mum) = 0 > −1 = u1(Mum, Mum) ,

while if player 2 plays “Fink,” then

u1(Fink, Fink) = −5 > −10 = u1(Mum, Fink) .

That is, no matter what the choice of player 2, it is best for player 1
to play the strategy Fink. We say that the strategy fink is a strictly
dominant strategy of player 1. A similar examination of player 2’s
strategies reveals that the strategy Fink is a strictly dominant strategy
for player 2.

In the absence of any communication or any coordination scheme,
rational players are expected to play their strictly dominant strategies
since a strictly dominant strategy gives a player an unequivocally higher
payoff. A solution to the “Prisoner’s Dilemma,” could, therefore, end
up being (Fink, Fink). This is the solution using strictly dominant
strategies.

We note that the solution using strictly dominant strategies will
give each player a sentence of five years each of which, of course, is
a worse outcome than if each prisoner could trust the other to keep
mum. This conflict between playing noncooperatively, in which case
the strictly dominant strategy solution seems so persuasive, and playing
so as to coordinate to get the better payoff is what makes predicting
the outcome of a game difficult.

Going back to the fare setting game, we notice that setting the fare
of $200 is a strictly dominant strategy for both airlines. Hence, the
strictly dominant strategy solution causes both airlines to make a loss
of $10 million. This then provides airlines with an incentive to try and
reach some form of a price fixing agreement.
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The two games that we have discussed so far are examples of matrix
games. They are formally defined as follows.

d:mgame

Definition 2.3. (Matrix Game) A matrix game is a two player
game such that:

i. player 1 has a finite strategy set S1 with m elements,

ii. player 2 has a finite strategy set S2 with n elements, and

iii. the payoffs of the players are functions u1(s1, s2) and u2(s1, s2)
of the outcomes (s1, s2) ∈ S1 × S2.

The matrix game is played as follows: at a certain time player
1 chooses a strategy s1 ∈ S1 and simultaneously player 2 chooses a
strategy s2 ∈ S2 and once this is done each player i receives the payoff
ui(s1, s2). If S1 = {s1

1, s
1
2, . . . , s

1
m}, S2 = {s2

1, s
2
2, . . . , s

2
n} and we put

aij = u1(s1
i , s

2
j ) and bij = u2(s1

i , s
2
j ) ,

then the payoffs can be arranged in the form of the m×n matrix shown
below.

Player 2
Strategy s2

1 s2
2 · · · s2

n

Player s1
1 (a11, b11) (a12, b12) · · · (a1n, b1n)

1 s1
2 (a21, b21) (a22, b22) · · · (a2n, b2n)
...

...
... . . . ...

s1
m (am1, bm1) (am2, bm2) · · · (amn, bmn)

The Two-Person Matrix Game

The “fare setting game” and the “prisoner’s dilemma” are matrix
games and we have seen that both have a solution in strictly dominant
strategies. In both cases the strategy sets are made up of two elements
so that if a strategy dominates another strategy, then a player knows
which strategy he or she has to play. The concepts of dominance and
strict dominance are fairly general concepts and can be defined for
every matrix game as follows.

d:sdom

Definition 2.4. A strategy si of player 1 in a matrix game is said
to:
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a. dominate another strategy sj of player 1 if

u1(si, s) ≥ u1(sj , s)

for each strategy s of player 2, and

b. strictly dominate another strategy sj of player 1 if

u1(si, s) > u1(sj , s)

for each strategy s of player 2.

The dominating and strictly dominating strategies for player 2 are
defined in a similar manner. In other words, a strategy si of player 1
which strictly dominates a strategy sj , gives player 1 a higher payoff
for every choice that player 2 could make. Hence, there is no reason for
player 1 to play a strictly dominated strategy sj . This presents us with
the possibility that strictly dominated strategies will never be used and,
hence, can be dropped from consideration. Thus, in playing a game
players may progressively throw out strictly dominated strategies. This
process of eliminating strictly dominated strategies sometimes leads
us to a solution of a matrix game. Such a method of solving games
is referred to as the method of iterated elimination of strictly
dominated strategies.

The following matrix game can be solved using iterated elimination
of strictly dominated strategies.

Player 2
Strategy L C R

Player T (1,0) (1,3) (3,0)
1 M (0,2) (0,1) (3,0)

B (0,2) (2,4) (5,3)

In examining the game one notices that C strictly dominates R for
player 2. Therefore, player 2 eliminates the strategy R and the game
is reduced to:

Player 2
Strategy L C

Player T (1,0) (1,3)
1 M (0,2) (0,1)

B (0,2) (2,4)
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In this reduced game we notice that T strictly dominates M for player
1 so player 1 eliminates M and the game reduces to:

Player 2
Strategy L C

Player T (1,0) (1,3)
1 B (0,2) (2,4)

The resulting game is a 2 × 2 matrix game in which player 2 has the
strictly dominant strategy C so that L is now eliminated. Player 1
can now choose between T and B and he will clearly choose B. The
solution using iterated elimination of strictly dominated strategies is,
therefore, (B, C).

Unfortunately, this method of solving a matrix game cannot be used
for many games. For instance, the matrix game

Player 2
Strategy L R

Player T (1,1) (0,0)
1 B (0,0) (1,1)

has no strictly dominated strategies. This game is a variant of the game
called the battle of the sexes. The story told about the battle of the
sexes goes as follows. A couple, one a male the other a female, want
to go to the “Opera” or the “Bullfight.” The female prefers the opera
to the bullfight while the male prefers to go to the bullfight; but they
also want to spend time together. The resulting game can be written
as:

Female Player
Strategy Opera Bullfight

Male Opera (1,2) (0,0)
Player Bullfight (0,0) (2,1)

This game too has no strictly dominated strategies.
If one pauses at this point to think a little, he will realize that

the requirement for a strategy to be strictly dominant is rather strin-
gent. Therefore, it would be nice if one could say something about
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the solution of games which do not have strictly dominated strategies.
The Nash equilibrium concept which we define below gives us such a
solution.

Nasheq

Definition 2.5. A pair of strategies (s∗1, s∗2) ∈ S1×S2 is a Nash equi-
librium3 of a matrix game if

1. u1(s∗1, s∗2) ≥ u1(s, s∗2) for each s ∈ S1, and

2. u2(s∗1, s∗2) ≥ u2(s∗1, s) for each s ∈ S2.

In other words, a Nash equilibrium is an outcome (i.e., a pair of
strategies) of the game from which none of the players have an incentive
to deviate, as given what the other player is doing, it is optimal for a
player to play the Nash equilibrium strategy. In this sense, a Nash
equilibrium has the property that it is self-enforcing . That is, if both
players knew that everyone has agreed to play a Nash equilibrium, then
everyone would indeed want to play his Nash equilibrium strategy for
the simple reason that it is optimal to do so.

The Nash equilibrium has been widely used in applications of game
theory. Perhaps a reason for this popularity of the Nash equilibrium is
that when one looks at an outcome which is not a Nash equilibrium,
then there is at least one player who is better off playing some other
strategy if that outcome is proposed. An outcome that is not a Nash
equilibrium is, therefore, not going to be self-enforcing.

Notice that the game

Player 2
Strategy L R

Player T (1,1) (0,0)
1 B (0,0) (1,1)

which does not have strictly dominated strategies has two Nash equi-
libria, namely (T, L) and (B, R). It is also worth noting that if we look
at an outcome which is not a Nash equilibrium then one player will
want to deviate from playing that outcome. For instance, if we take

3This equilibrium concept was introduced by John Nash in 1951; see ref-
erence [16] in the bibliography list. For this and related work Professor Nash
was awarded the Nobel Price in Economics in 1994.
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the strategy (T, R), then player 2 is better-off playing L if he knows
that player 1 is going to play T . One should further notice at this point
that: if a game can be solved using iterated elimination of strictly dom-
inated strategies then the game has a unique Nash equilibrium which is
precisely the strategy pair found through eliminating strictly dominated
strategies.

A question that arises now is whether every matrix game has a
Nash equilibrium. The answer, briefly, is no. For instance, it is easy to
see that the matrix game

Player 2
Strategy L R

Player T (0,3) (3,0)
1 B (2,1) (1,2)

does not have a Nash equilibrium. Games without Nash equilibria in
pure strategies can often be solved by using mixed strategies. In the
last section of this chapter we discuss mixed strategies in some detail.

Exercises

1. Find the Nash equilibria of the Fare Setting Game of Example 2.1.

2. Find the Nash equilibrium of the Prisoner’s Dilemma Game of Exam-
ple 2.2. Also, find a strategy profile that gives a higher payoff than the
payoff the players get in the Nash equilibrium.

3. Show that if a matrix game can be solved by using iterated elimination
of dominated strategies, then the solution is a Nash equilibrium.

4. Consider the matrix game:

Player 2
Strategy L R

Player T (1,0) (0,0)
1 B (0,0) (0,1)

Using the method of iterated elimination of dominated strategies verify
that the strategies TL, TR and BR are all Nash equilibria.
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5. Give an example of a matrix game having at least two Nash equilibria
one of which can be obtained by the method of elimination of domi-
nated strategies and the other cannot be obtained by the method of
elimination of dominated strategies.

6. Verify that if a matrix game can be solved by using iterated elimination
of strictly dominated strategies, then the game has a unique Nash equi-
librium which is precisely the strategy pair found through eliminating
strictly dominated strategies.

7. A zero-sum game is a matrix game such that u1(s1, s2) = −u2(s1, s2)
for each strategy profile (s1, s2) ∈ S1 × S2. In other words, a zero-sum
game is a matrix game such that the payoffs of the players are negatives
of each other (or else, they sum up to zero) for every strategy profile.
For zero-sum games, we need only the payoff matrix A of one of the
players—the payoffmatrix of the other player is−A. Thus, in a manner,
every m × n matrix can be thought of as the payoff matrix of one of
the players in a zero-sum game.

An m×n matrix A = [aij ] has a saddle point at a location (i, j) if

aij = max
1≤k≤m

akj = min
1≤r≤n

air .

That is, the matrix A has a saddle point at a location (i, j) if aij is the
largest element in its column and the smallest element in its row.

a. Determine the saddle points of the matrices



−1 0 2
3 1 1
0 1 2



 and




−4 0 3 4
−6 1 2 3
−3 0 −1 −2



 .

b. Show that a matrix A = [aij ] has a saddle point at (i, j) if and
only if the strategy (i, j) is a Nash equilibrium for the zero-sum
game determined by the matrix A.

2.2. Strategic form games
SFMGS

We saw that a game between two players can be written as a matrix
game. We also saw how to analyze matrix games. In many applications
the games are often played between more than two players. Also, the
strategy sets of the players may be such that the games do not have
a nice matrix representation. Fortunately, however, most of the ideas
about how to solve games that we introduced for matrix games can be
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easily extended to a more general class of games—the class of strategic
form games. We start by defining strategic form games in a more formal
way.

str-game

Definition 2.6. A strategic form game (or a game in normal
form) is simply a set of n persons labelled 1, 2, . . . , n (and referred to
as the players of the game) such that each player i has:

1. a choice set Si (also known as the strategy set of player i and
its elements are called the strategies of player i), and

2. a payoff function ui: S1 × S2 × · · ·× Sn → IR.

The game is played as follows: each player k chooses simultaneously
a strategy sk ∈ Sk and once this is done each player i receives the payoff
ui(s1, s2, . . . , sn). A strategic form game with n players, strategy sets
S1, . . . , Sn and payoff functions u1, . . . , un will be denoted by

G = {S1, . . . , Sn, u1, . . . , un} .

So, in order to describe a strategic form game G we need the strategy
sets and the payoff functions of the players.

You should notice immediately that each payoff function ui is a real-
function of the n variables s1, s2, . . . , sn, i.e., ui(s1, s2, . . . , sn), where
each variable sk runs over the strategy set of player k. The value
ui(s1, s2, . . . , sn) is interpreted as the payoff of player i if each player
k plays the strategy sk.

The Cartesian product S1 × S2 × · · · × Sn of the strategy sets is
known as the strategy profile set or the set of outcomes of the
game and its elements (s1, s2, . . . , sn) are called strategy profiles or
strategy combinations. Of course, the payoff ui(s1, s2, . . . , sn) for a
player i might represent a monetary gain or loss or any other type of
“satisfaction” which is of importance to the player.

We present here an example of a strategic form game.
ex:StrG

Example 2.7. (A Strategic Form Game) This is a strategic form
game with three players 1, 2, 3. The strategy sets of the players are

S1 = S2 = S3 = [0, 1] .
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Their payoff functions are given by

u1(x, y, z) = x+y−z , u2(x, y, z) = x−yz and u3(x, y, z) = xy−z ,

where for simplicity we let s1 = x, s2 = y and s3 = z.
If the players announce the strategies x = 1

2 , y = 0 and z = 1
4 , then

their payoffs will be

u1(1
2 , 0, 1

4) = 1
4 , u2(1

2 , 0, 1
4) = 1

2 and u3(1
2 , 0, 1

4) = −1
4 .

Notice that the strategy profile (1, 1, 0) gives a better payoff to each
player.

When a strategic form game is played, a player’s objective is to
maximize her payoff. However, since the payoff of a player depends not
just on what she chooses but also on the choices of the other players, the
issue of optimizing one’s payoff is a lot more subtle here than in the case
of the simpler decision problem when there is just one decision maker.
An individual player may, if she or he knows the choices of the other
players, choose to maximize her payoff given the others’ choices. But
then, all the other players would want to do the same. Indeed, it seems
quite natural to look for an outcome that results from the simultaneous
maximization of individual payoffs. Such a strategy profile is usually
called—as in the case of matrix games—a Nash equilibrium and is
defined as follows.

Neql

Definition 2.8. A Nash equilibrium of a strategic form game

G = {S1, . . . , Sn, ui, . . . , un}

is a strategy profile (s∗1, s∗2, . . . , s∗n) such that for each player i we have

ui(s∗1, . . . , s
∗
i−1, s

∗
i , s

∗
i+1, . . . , s

∗
n) ≥ ui(s∗1, . . . , s

∗
i−1, s, s

∗
i+1, . . . , s

∗
n)

for all s ∈ Si.

While the Nash equilibrium seems to be reasonable as the proposed
solution to a strategic form game, it is in the interest of a player to play
a Nash equilibrium strategy only if the player is quite certain that the
others are going to play the Nash equilibrium. Often this requires that
each player knows this, every player knows that every player knows
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this, and so on ad infinitum. In other words, it must be common
knowledge that the players are going to play the Nash equilibrium.
In fact, this simply means that every player knows that the particular
Nash equilibrium is to be played. The appeal of Nash equilibrium stems
from the fact that if a Nash equilibrium is common knowledge, then
every player would indeed play the Nash equilibrium strategy, thereby
resulting in the Nash equilibrium being played. In other words, a Nash
equilibrium strategy profile is self-enforcing . Hence, if the players are
searching for outcomes or solutions from which no player will have an
incentive to deviate, then the only strategy profiles that satisfy such a
requirement are the Nash equilibria.

There is a useful criterion for finding the Nash equilibrium of a
strategic form game when the strategy sets are open intervals of real
numbers. It is easy to see that if, in such a case, a strategy profile
(s∗1, . . . , s∗n) is the Nash equilibrium of the game, then it must be a
solution of the system of equations

∂ui(s∗1, . . . , s∗n)
∂si

= 0 , i = 1, 2, . . . , n . ($)

Therefore, the Nash equilibra are among the solutions of the system
($). When the system ($) has a unique solution, then it is the only Nash
equilibrium of the game. This is essentially the test for determining the
Nash equilibrium in strategic form games whose strategy sets are open
intervals. In precise mathematical terms this is formulated as follows.
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A Nash Equilibrium Test

Let G be a strategic form game whose strategy sets are open inter-
vals and with twice differentiable payoff functions. Assume that
a strategy profile (s∗1, . . . , s∗2) satisfies:

1.
∂ui(s∗1, . . . , s∗n)

∂si
= 0 for each player i,

2. each s∗i is the only stationary point of the function

ui(s∗1, . . . , s
∗
i−1, s, si+1, . . . , s

∗
n) , s ∈ Si ,

and

3.
∂2ui(s∗1, . . . , s∗n)

∂2si
< 0 for each i.

Then (s∗1, . . . , s∗n) is a Nash equlibrium of the game G.

In practice, we usually find the solution of the system ($) and then
use other economic considerations to verify that the solution is the
Nash equilibrium of the game.

Here is an example illustrating the Nash Equilibrium Test.
NashEQT

Example 2.9. Consider a three-person strategic form game in which
each player has a strategy set equal to the open interval (0,∞). The
payoff functions of the players are given by

u1(x, y, z) = 2xz − x2y

u2(x, y, z) =
√

12(x + y + z)− y

u3(x, y, z) = 2z − xyz2 .

To find the Nash equilibrium of the game, we must solve the system
of equations

∂u1

∂x
= 0,

∂u2

∂y
= 0 and

∂u3

∂z
= 0 .
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Taking derivatives, we get

∂u1

∂x
= 2z − 2xy,

∂u2

∂y
=

√
3

x + y + z
− 1 and

∂u3

∂z
= 2− 2xyz .

So, we must solve the system of equations

2z − 2xy = 0,

√
3

x + y + z
− 1 = 0 and 2− 2xyz = 0 ,

or, by simplifying the equations,

z = xy (1)
x + y + z = 3 (2)

xyz = 1 . (3)

Substituting the value of xy from (1) to (3) yields z2 = 1, and (in view
of z > 0) we get z = 1. Now substituting the value z = 1 in (1) and
(2), we get the system

xy = 1 and x + y = 2 .

Solving this system, we obtain x = y = 1. Thus, the only solution of
the system of equations (1), (2) and (3) is x = y = z = 1.

Computing the second derivatives, we get

∂2u1

∂x2
= −2y < 0 ,

∂2u2

∂y2
= −

√
3

2 (x + y + z)−
3
2 < 0 ,

∂2u3

∂z2
= −2xy < 0 ,

for all choices x > 0, y > 0 and z > 0. The Nash Equilibrium Test
guarantees that (1, 1, 1) is the only Nash equilibrium of the game.

Exercises

1. Prove that the strategy profiles (1,α, 0) (where 0 ≤ α ≤ 1) are the only
Nash equilibria of the game presented in Example 2.7.
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2. Consider the game of Example 2.7. Assume that the players have the
same payoff functions but their strategy sets are now S1 = S2 = S3 =
(0, 1). Does this game have a Nash equilibrium? (Compare your con-
clusion with the answers in the preceding exercise.)

3. Verify that (1, 1, 1) is the only Nash equilibrium of the game in Exam-
ple 2.9.

4. Consider a two-person strategic form game such that S1 = S2 = IR.
The utility functions of the two players are

u1(x, y) = xy2 − x2 and u2(x, y) = 8y − xy2 .

Find the Nash equilibrium of the game. [Answer: (2, 2) ]

5. Find the Nash equilibrium of a two-person strategic form game with
strategy sets S1 = S2 = IR and utility functions

u1(x, y) = y2−xy−x2−2x+y and u2(x, y) = 2x2−xy−3y2−3x+7y .

[Answer: (− 19
11 , 16

11 ) ]

6. Consider a two-person strategic form game with S1 = S2 = IR and
utility functions

u1(x, y) = x2 − 2xy and u2(x, y) = xy − y2 .

Verify that this game does not have a Nash equilibrium.

7. Let {α1, . . . ,αn} and {β1, . . . ,βn} be two sets each consisting of n dis-
tinct positive real numbers. We consider the two-person strategic form
game with the following characteristics.

a. The strategy set S1 of player 1 consists of all n-dimensional vectors
s = (s1, . . . , sn), where (s1, . . . , sn) is a permutation of the positive
real numbers {α1, . . . ,αn}. (So, S1 has n! elements—all possible
permutations of {α1, . . . ,αn}.) Similarly, S2 consists of all n-
dimensional vectors t = (t1, . . . , tn) whose components form a
permutation of the real numbers β1, . . . ,βn; again, S2 consists of
n! elements.

b. The payoff functions of the players are given by

π1(s, t) =
n∑

i=1

siti and π2(s, t) =
n∑

i=1

sit
2
i .
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If s∗ = (s∗1, . . . , s∗n) and t∗ = (t∗1, . . . , t∗n) satisfy

s∗1 < s∗2 < · · · < s∗n and t∗1 < t∗2 < · · · < t∗n ,

then show that the strategy profile (s∗, t∗) is a Nash equilibrium. [HINT:
Note that if an arbitrary strategy profile s = (s1, . . . , sn) satisfies
sk+1 < sk for some k, then

sk+1t
∗
k + skt∗k+1 − (skt∗k + sk+1t

∗
k+1) = (t∗k+1 − t∗k)(sk − sk+1) > 0 . ]

2.3. Applications
ASFMGS

We now look at examples of strategic form games from economics and
political science. One of the first games analyzed in economics was by
the eighteenth century French mathematician Augustin Cournot .4 His
solution to the two person game anticipated the Nash equilibrium by
almost a century.

The Cournot duopoly model describes how two firms selling exactly
identical products decide on their individual output levels. The model
as presented is in many ways simplistic but it captures some of the
essential features of competition between firms and has become a foun-
dation stone of the theory of industrial organization. Variants of the
model would include the case in which there are n firms rather than
two firms, or the firms may compete in prices rather than in quantities
(the Bertrand Model).

e:CDM

Example 2.10. (The Cournot Duopoly Model) This is a strate-
gic form game played between two firms; we will call them firm 1 and
firm 2. The two firms produce identical products with firm 1 producing
an amount of q1 units and firm 2 producing an amount of q2 units. The
total production by both firms will be denoted by q, i.e., q = q1 + q2.

Let p(q) = A−q be the price per unit of the product in the market,
where A is a fixed number. Assume that the total cost to firm i of
producing the output qi is ciqi, where the ci are positive constants.

This economic model may be written as a strategic form game in
which:

4Antoine-Augustin Cournot (1801–1877) was a French mathematician and
philosopher of science. With the publication of his famous book Recherches sur
les Principes Mathématiques de la Théorie des Richesses (Paris, 1838), he was the
first to formulate the problem of price formation in a market with two firms. He is
considered by many as one of the founders of modern mathematical economics.
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• There are two players; the two firms.

• The strategy set of each player is the set of positive quantities
that a firm can choose. That is, the strategy set of each player is
(0,∞).

• The payoff function of firm i is simply its profit function

πi(q1, q2) = (A− q1 − q2)qi − ciqi.

The problem faced by the firms is how to determine how much
each one of them should produce in order to maximize profit—notice
that the profit of each firm depends on the output of the other firm.
Since, we will assume that the firms choose their production quantities
independently and simultaneously, it is reasonable to think of the Nash
equilibrium as the solution.

We shall find the Nash equilibrium of the game using the Nash
Equilibrium Test. To this end, note first that

π1(q1, q2) = (A− q1 − q2)q1 − c1q1

= −(q1)2 + (−q2 + A− c1)q1

and

π2(q1, q2) = (A− q1 − q2)q2 − c2q2

= −(q2)2 + (−q1 + A− c2)q2 .

So, according to the Nash Equilibrium Test, the Nash equilibrium
(q∗1, q∗2) is the solution of the system

∂π1(q1, q2)
∂q1

= −2q1 − q2 + A− c1 = 0

∂π2(q1, q2)
∂q2

= −q1 − 2q2 + A− c2 = 0 ,

or, after rearranging,

2q1 + q2 = A− c1

q1 + 2q2 = A− c2 .
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Solving the above linear system, we get

q∗1 =
A + c2 − 2c1

3
and q∗2 =

A + c1 − 2c2

3
.

Finally, notice that if A > c1 + c2, then we find that the two firms
produce a positive output at the Nash equilibrium.

It is instructive to pause here a little and think about the Nash
equilibrium of the duopoly game. Since the duopoly is really a market,
it could be argued that what we should really want to find is the market
equilibrium. Therefore, if possible we should find a pair (q̂1, q̂2) and a
price p̂ which satisfy the market equilibrium conditions:

i. The quantity demanded q(p̂) at the price p̂ is exactly q̂1 + q̂2, and

ii. (q̂1, q̂2) is the output that the firms will want to supply at the
price p̂.

The claim is that the Nash equilbrium output pair (q∗1, q∗2) is pre-
cisely what gives us the market equilibrium output. Indeed, the price
that is realized in the duopoly market when the firms produce q∗1 and
q∗2, respectively is

p∗ = A− q∗1 − q∗2 = A− A + c2 − 2c1

3
− A + c1 − 2c2

3
=

A + c1 + c2

3
.

The quantity demanded at this price p∗ is

q(p∗) = A− p∗ =
2A− c1 − c2

3
.

But

q∗1 + q∗2 =
A + c2 − 2c1

3
+

A + c1 − 2c1

3
=

2A− c1 − c2

3
.

This shows that
q(p∗) = q∗1 + q∗2 ,

so that the quantity demanded at p∗ is indeed what the firms produce
in a Nash equilibrium. But would the firms want to produce their Nash
equilibrium output at this price? The answer is yes, of course, as at
this price the Nash equilibrium output of the firm is the firm’s profit
maximizing output.

We have just made a significant observation.
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• The Nash equilibrium of the duopoly game gives us exactly what
we want for the duopoly, namely, the market equilibrium of the
duopoly.

The next example that looks at the nature of election platforms.
While again one may argue as to how rich in institutional details the
model is, it provides us with a fairly deep insight into some of the
rationale that candidates have for choosing election platforms. The
choice of an election platform is seldom independent of the platform
of the other candidates and the reason for running as a candidate has
always something to do with the the desire to win. Therefore, given
that winning is important to a candidate, it is of interest to ask how
this would influence a candidate’s choice of position in the ideological
spectrum.

Mvoter

Example 2.11. (The Median Voter Model) Consider an elector-
ate which is distributed uniformly along the ideological spectrum from
the left a = 0 to the right a = 1. There are two candidates, say 1 and
2, and the candidate with the most votes wins. Each voter casts his
vote for the candidate that is closest to his ideological position. The
candidates know this and care only about winning. If there is a tie,
then the winner is decided by, say, the toss of a coin. Given such a
scenario is it possible to make a prediction about the ideological position
that the two candidates would choose?

We first note that we can view the situation as a strategic form
game played between two players—the two candidates. The strategy
of each player i is to choose an ideological position ai ∈ [0, 1]. In other
words, the strategy set of each player is [0, 1]. The payoff function
ui(a1, a2) of player i is the percentage of the vote obtained by him if
the strategy profile (a1, a2) is adopted by the players. It turns out that

u1(a1, a2) =






a1+a2
2 if a1 < a2

0.50 if a1 = a2

1− a1+a2
2 if a1 > a2 ,

and

u2(a1, a2) =






1− a1+a2
2 if a1 < a2

0.50 if a1 = a2
a1+a2

2 if a1 > a2 .



a2

a
a2a1 10 a1+

2

1a0 s1 s2s1+a
2 2

s1+s2

u1(s1,s2)

u1(s1,a) u2(s1,a)

u2(s1,s2)
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To verify the validity of these formulas, consider the case of a
strategy profile (a1, a2) with a1 < a2; see Figure 2.1. Then the ide-
ologies closer to a1 rather than to a2 are represented by the inter-
val [0, a1+a2

2 ]. This means that the percentage of people voting for
candidate 1 is a1+a2

2 , i.e., u1(a1, a2) = a1+a2
2 . Similarly, the interval

[a1+a2
2 , 1] represents the ideologies closer to a2 rather than to a1, and

so u2(a1, a2) = 1− a1+a2
2 .

Figure 2.1.

It is reasonable to argue that a Nash equilibrium of this game may
be the most likely outcome as each candidate would vie for the largest
number of votes given the position of his rival. As a matter of fact, we
claim that:

• The only Nash equilibrium of this game is (1
2 , 1

2).

We shall establish the above claim in steps. To do this, we fix a
Nash equilibrium (s1, s2).

Figure 2.2.

STEP I: s1 = s2.

Assume by way of contradiction that s1 *= s2. By the symmetry
of the situation, we can assume s1 < s2. In this case, it is easy to
see that any strategy a for candidate 2 between s1+s2

2 and s2 satisfies



1a0 s1+a
2

u2(s1,a) > 0.5 =u2(s1,s2)

0.5s1=s2

u1(a,0.5)

1a0 a+0.5
2

u1(a,0.5)

0.5 aa+0.5
2
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u2(s1, a) > u2(s1, s2); see Figure 2.2. The latter shows that (s1, s2) is
not a Nash equilibrium, which is a contradiction. Hence, s1 = s2.

STEP II: s1 = s2 = 1
2 .

To verify this, assume by way of contradiction s1 = s2 *= 1
2 . Again,

by the symmetry of the situation, we can suppose that s1 = s2 < 1
2 .

If candidate 2 chooses any strategy a such that s1 < a < 0.5, then it
should be clear that u2(s1, a) > u2(s1, s2) = 0.5; see Figure 2.3. This
clearly contradicts the fact that (s1, s2) is a Nash equilibrium, and so
s1 = s2 = 1

2 must be true.

Figure 2.3.

The preceding two steps show that the strategy profile (s1, s2) =
(1
2 , 1

2) is the only possible candidate for a Nash equilibrium of the game.
To complete the argument, we shall show that (1

2 , 1
2) is indeed a Nash

equilibrium.

STEP III: The strategy profile (1
2 , 1

2) is a Nash equilibrium.

From Figure 2.4 it should be clear that if candidate 2 keeps the
strategy 1

2 , then candidate 1 cannot improve his utility u1(1
2 , 1

2) = 0.5
by choosing any strategy a *= 0.5.

Figure 2.4.

This model’s prediction is, therefore, that each candidate will seek
to appeal to the median voter ; the voter who is exactly in the middle
of the distribution of the ideological spectrum. For a generalization of
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this model, see Exercise 10 at the end of this section.

The next example is in some ways perhaps one of the more interest-
ing applications of game theory. It shows how perverse incentives can
sometimes work against what is in the common interest. While the
example focuses on the exploitation of a commonly owned resource,
like the world’s fishing grounds, a little re-examination of the example
shows that it has implications for Global Warming and the exploita-
tion of the world’s rain forests; to mention just a few of the situations
that would fit into this general mold. It brings to surface an element
that is present in many games including the prisoner’s dilemma: the
Nash equilibrium which describes what happens when the players play
non-cooperatively may lead to an outcome in which each player gets
less than what they could get by adhering to a cooperative agreement
like e.g. treaties among countries on fishing rights.

e:UseC

Example 2.12. (Use of Common Property Resources) Suppose
that there are n countries that have access to fishing grounds in open
seas. It is widely accepted that the fishing grounds of the world, which
may be viewed as common property resources, have been over-fished,
i.e., the amount of fishing has been so intensive that there is a sense
that in the near future the fish population will reach levels so low that
some species may be in danger of extinction.

One of the major achievements of game theory—from a practical
stand-point—has been to show why such common property resources
will always be exploited beyond the point that is the most desirable
from the collective view point. The argument, which we make in some
detail here, is that the Nash equilibrium of the game that is played
between the consumers of the resource will always lead to an outcome
which is worse than the socially most desirable.

We do this by using a simple model of a strategic form game. Let
there be n players with player i using ri amount of the resource. The
total resource used is then R =

∑n
i=1 ri. The following now describe

the chief features of the game.

1. The cost to player i of getting ri units of the resource depends
not only on the amount ri used by the player but also on the
amount R− ri =

∑
j *=i rj used by the other players. This cost is

denoted by C(ri, R− ri). We shall assume that the cost function
C: (0,∞)× (0,∞) → (0,∞) satisfies the following properties:
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a. ∂C(r,R)
∂r > 0, ∂C(r,R)

∂R > 0, ∂2C(r,R)
∂r2 > 0 and ∂2C(r,R)

∂R2 > 0 for
all r > 0 and R > 0. That is, the marginal cost of using
a resource increases with the total amount of the resource
used.5 Hence, as the countries catch more, the marginal cost
of catching additional fish goes up.

b. The marginal cost function satisfies

lim
r→∞

∂C(r,R)
∂r = ∞ and lim

R→∞
∂C(r,R)

∂R = ∞ .

Indeed, it is not unreasonable to assume that the marginal
cost starting from some small number greater than zero in-
creases monotonically without bound. These properties of
the cost function are consistent with the intuition that as
more fish is caught the harder it becomes to catch additional
amounts.

c. To simplify matters, the cost function C will be taken to be
a separable function of the form C(r, R) = κ(r) + K(R). In
this case, the properties in part (a) can be written as

κ′(r) > 0, κ′′(r) > 0, K ′(R) > 0, and K ′′(R) > 0

for all r > 0 and R > 0. An example of a separable cost
function of the above type is given by C(r, R) = r2 + R2.

2. The utility that a player receives from ri units of the resource is
u(ri). We suppose that the function u: (0,∞) → (0,∞) satisfies
u′(r) > 0 and u′′(r) < 0 for each r > 0. This simply means that,
as the amount of r consumed increases, the value of an additional
unit of r falls. (In mathematical terms, u is a strictly increasing
and strictly concave function.)

We also assume that the marginal utility at zero is greater
than the marginal cost at zero, i.e.,

lim
r→0+

u′(r) > lim
r→0+

κ′(r) .

The situation we have just described can be written as an n-person
game in strategic form as follows.

5Recall that the marginal cost of a cost function C(x) is the derivative
C ′(x). As usual, C ′(x) is interpreted as the cost of producing an additional
unit of the product when x units have already been produced.
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• There are n players.

• The strategy set of player i is (0,∞), the open interval of all
positive real numbers. (In fact, Si = (0, Rmax), where Rmax is a
certain maximum amount of the resource.)

• The payoff of player i is

πi(r1, r2, . . . , rn) = ui(ri)− C(ri, R− ri)
= u(ri)− [κ(ri) + K(R− ri)] .

By the Nash Equilibrium Test, the Nash equilibria of the game are
the solutions (r∗1, . . . , r∗n) of the system

∂πi(r1, r2, . . . , rn)
∂ri

= 0 , i = 1, 2, . . . , n ,

subject to ∂2πi(r∗1 ,...,r∗n)
∂r2

i
< 0 for each i = 1, . . . , n. Taking into account

that R =
∑n

j=1 rj and R − ri =
∑

j *=i rj , a direct computation of the
partial derivatives gives

∂πi(r1, r2, . . . , rn)
∂ri

= u′(ri)− κ′(ri) = 0 , i = 1, 2, . . . , n ,

and ∂2πi(r∗1 ,...,r∗n)
∂r2

i
= u′′(ri) − κ′′(ri) < 0 for each i = 1, . . . , n. (For this

conclusion, we use the fact that u′′(r) < 0 and κ′′(r) > 0 for each
r > 0.)
The geometry of the situation guarantees r1 = r2 = · · · = rn = ρ∗.6

That is, at a Nash equilibrium (r∗1, . . . , r∗n) each player consumes ex-
actly the same amount of the resource

r∗1 = r∗2 = · · · = r∗n = ρ∗ = R∗

n ,

where R∗ = r∗1 + r∗2 + · · · + r∗n = nρ∗. So, (R∗

n , . . . , R∗

n ) is the only
Nash equilibrium of the game; see also Exercise 6 at the end of the

6Since u′′(r) < 0 for each r > 0, we know that u′ is a strictly decreasing
function. Since κ′′(r) > 0 for each r > 0, the function κ′ is strictly increasing.
So, u′(r) = κ′(r) has a unique solution ρ∗; see Figure 2.5. For more about
this see Exercise 6 at the end of this section.
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Figure 2.5.

section. Hence, the amount R∗ of the resource consumed at the Nash
equilibrium is the unique solution of the equation

u′(R∗

n ) = κ′(R∗

n ) . ($)

In contrast to the condition for a Nash equilibrium given above, the
social optimum7 R∗∗ solves

max
R>0

{
n
[
u(R

n )− [κ(R
n ) + K(R− R

n )]
]}

.

That is, the social optimum R∗∗ is chosen to maximize the total payoff
to all the members of society. The First-Order Test for this gives

n
[

1
nu′(R∗∗

n )− [ 1
nκ

′(R∗∗

n ) + (1− 1
n)K ′(R∗∗ − R∗∗

n )]
]

= 0 ,

which, after some algebraic simplifications, yields

u′(R∗∗

n ) = κ′(R∗∗

n ) + (n− 1)K ′(n−1
n R∗∗) . ($$)

7The social optimum is the amount which leads to the maximum joint
payoff . Hence, if society is made up of the players in the game, then the social
optimum gives us the amount that would lead to the most desirable outcome
from the social viewpoint.
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Again, we leave it as an exercise for the reader to verify that ($$) has
a unique solution R∗∗ = nρ∗∗; see Exercise 6 at the end of the section
and Figure 2.5. From examining ($), ($$) and Figure 2.5, we see that
R∗ > R∗∗.

Clearly, the amount of resource R∗ that is used in a Nash equi-
librium is strictly greater than the amount R∗∗ of consumption of the
resource that is best for the common good. One wonders at this point
about the intuition behind this rather remarkable result. A moment’s
thought shows that if the game is played independently by the players
then the private incentives are to use the resource as much as is justi-
fied by the cost of consuming the resource to the individual player. In
a Nash equilibrium, a player is concerned about the impact of his con-
sumption of the resource only on his cost, and ignores the cost imposed
on the others. The cost to the individual, however, is a lot less than the
cost imposed on society collectively. For the socially optimum amount
of consumption of the resource however, the cost imposed on everyone
is taken into consideration, and as a result the amount of consumption
justified by the overall cost to society is less.

The next example is based on a model of a “Second Price Auction.”
The issue here is the amount that an individual at the auction should
bid in order to maximize her surplus from the auction. Obviously,
an immediate complication is that the surplus that a bidder receives
depends on whether she has the winning bid. Since, whether an indi-
vidual wins depends on the bids that the others make, we see that the
payoff of an individual depends on the entire array of bids. Auctions,
therefore, can be written as n-person strategic form games. We see in
this example that thinking of auctions in the form of a game can lead
us to very interesting and sharp insights.

e:SPrA

Example 2.13. (Second Price Auction) A seller has an expensive
painting to sell at an auction that is valued at some amount by n
potential buyers. Each buyer k has his own valuation vk > 0 of the
painting. The buyers must simultaneously bid an amount; we denote
the bid of buyer i by bi ∈ (0,∞). In a second price auction the highest
bidder gets the painting and pays the second highest bid. If there is
more than one buyer with the highest bid, the winner is decided by a
drawing among the highest bidders and she pays the highest bid. The
rest receive a payoff of zero.
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We can formulate this auction as a strategic form game in which
there are:

1. n players (the n buyers; the auctioneer is not considered a player),

2. the strategy set of each player is (0,∞), and

3. the payoff of a player k is the following expected utility function

πk(b1, . . . , bn) =






vk − s if bk > s
0 if bk < s

1
r (vk − s) if k is among r buyers with highest bid ,

where s designates the second highest bid.8

We claim that the strategy profile (v1, v2, . . . , vn) is a Nash equi-
librium for this game. We shall establish this in two steps.

• A player i never gains by bidding bi > vi.

To see this, assume bi > vi and let b−i = maxj *=i bj . We distinguish
five cases.
CASE 1: b−i > bi

In this case, some other bidder has the highest bid and so player i
gets zero, which he could get by bidding vi.
CASE 2: vi < b−i < bi

In this case, bidder i wins and gets vi − b−i < 0. However, if he
would have bid vi, then his payoff would have been zero—a higher
payoff than that received by bidding bi.
CASE 3: b−i = bi

Here bidder i is one among r buyers with the highest bid and he
receives vi−b−i

r < 0. But, by bidding vi he can get 0, a higher payoff.
CASE 4: b−i < vi

In this case bidder i gets vi− b−i which he could get by bidding vi.
CASE 5: b−i = vi

Here again bidder i is one among r buyers with the highest bid and
he receives vi−b−i

r = 0. But, by bidding vi he can also get 0.
8Note that if player k is the only buyer with the highest bid, then s =

maxi &=k bi.
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• A player i never gains by bidding bi < vi.

If b−i > vi then bidder i would have a zero payoff which is the same
as the payoff she would get if she bid vi. On the other hand, we leave
it as an exercise for the reader to verify that if b−i ≤ vi, then player i
would do at least as well if she bid vi.

We have thus shown the following:

• The strategy profile (v1, v2, . . . , vn) is a Nash equilibrium.

Therefore, it is reasonable to expect that every bidder will bid their
true valuation of the painting and the bidder with the highest valuation
wins. Note that this is true even if the bidder’s do not know the
valuation of the other bidders.

Exercises

1. Two firms (call them 1 and 2) produce exactly identical products. Firm
one produces q1 units of the product and firm 2 produces q2 units so
that the total number of units of the product in the market is q = q1+q2.
We assume that:

a. the market price of the product is p(q) = 100− 2√q,

b. the production cost of producing q1 units by firm 1 is C1(q1) =
q1 + 10, and

c. the production cost of producing q2 units by firm 2 is C2(q2) =
2q2 + 5.

Set up a strategic form game with two players (as in Example 2.10)
whose payoffs functions are the profit functions of the firms. Determine
the following.

i. The profit functions π1(q1, q2) and π2(q1, q2) of the firms.

ii. The Nash equilibrium of the game.

iii. The market price of the product at the Nash equilibrium.

iv. The profits of the firms at the Nash equilibrium.

[HINTS: (i) π1(q1, q2) = (99− 2
√

q1 + q2)q1 − 10 and

π2(q1, q2) = (98− 2
√

q1 + q2)q2 − 5
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(ii) The Nash equilibrium can be found by solving the system

∂π1(q1, q2)
∂q1

= 0 and
∂π2(q1, q2)
∂q2

= 0 ,

or (after computing derivatives and simplifying)

3q1 + 2q2 = 99
√

q1 + q2 (1)
2q1 + 3q2 = 98

√
q1 + q2 . (2)

Dividing (1) and (2) and simplifying, yields q2 = 96
101q1. Substitut-

ing this value in (1) and working the algebra, we get q1 = 795.88.
This implies q2 = 756.48. So, the Nash equilibrium is (q∗1 , q∗2) =
(795.88, 756.48).
(iii) The market price is p = 21.2.
(iv) π1(795.88, 756.48) = 16, 066.78; π2(795.88, 756.48) = 14, 519.42

2. Consider a strategic form game with two players. A best response
(or a reaction) function for a player 1 is a function r1: S2 → S1 such
that

u1(r1(s2), s2) = max
s1∈S1

u1(s1, s2) .

A best response function of the second player is defined analogously.
Find the response functions of the players in the Cournot duopoly

model of Example 2.10. [Answers: r1(q2) = A−q2−c1
2 and r2(q1) =

A−q1−c2
2 ]

Cprfirms

3. Consider the Cournot Duopoly Model as described in Example 2.10.
Compute the profits of the firms at the Nash equilibrium. [Answer: If
(q∗1 , q∗2) is the Nash equilibrium, then

π1(q∗1 , q∗2) =
(A + c2 − 2c1)2

9
and π2(q∗1 , q∗2) =

(A + c1 − 2c2)2

9
,

where A + c2 − 2c1 ≥ 0 and A + c1 − 2c2 ≥ 0. ]

4. Consider the Cournot Duopoly Model discussed in Example 2.10. If
the market has three firms instead of 2 firms, can you find the Nash
equilibrium? What if you have n firms? What do you think happens if
n →∞?

5. (The Bertrand Model) Consider a market with two firms which pro-
duce identical products. The capacity of each firm is fixed so that the
firms choose prices instead of quantities. Let q = A − p be the to-
tal quantity sold when the price is p. If both firms charge the same
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price, then each sells one-half of the total. If the firms charge differ-
ent prices, then the firm with the lower price sells everything. Assume
that each firm has enough capacity to produce the entire amount of
the output for the market at any price. The marginal cost of firm
i is ci. The positive parameters c1, c2 and A satisfy c1 *= c2 and
2 max{c1, c2} < A + min{c1, c2}.

a. Write down the strategic form game with the price pi being the
strategy of the firm i.

b. Show that

πi(p1, p2) =






pi(A− pi)− ci(A− pi) if pi < pj
1
2 [p(A− p)− ci(A− p)] if pi = pj = p ≥ ci

0 if pj < pi .

c. Show that the game does not have a Nash equilibrium.

d. We say that a strategy combination (s∗1, s∗2, . . . , s∗n) for an n-person
strategic form game is an ε-Nash equilibrium (where ε > 0) if
for each player i we have

ui(s∗1, . . . , s
∗
i−1, s

∗
i , s

∗
i+1, . . . , s

∗
n) ≥ ui(s∗1, . . . , s

∗
i−1, si, s

∗
i+1, . . . , s

∗
n)−ε

holds true for each strategy si ∈ Si of player i.
Show that for each ε > 0 the game has an ε-Nash equilibrium.

exer:UseC

6. In this exercise, we shall fill in some of the mathematical details regard-
ing the use of common property resources encountered in Example 2.12.
Assume that the functions C and u satisfy the properties stated in Ex-
ample 2.12.

a. Establish that the equation u′(r) = κ′(r) has a unique solution
ρ∗ which gives the Nash equilibrium of the game R∗ = nρ∗.
[Hint: Since u′ is strictly decreasing and κ′ is strictly increas-
ing the equation cannot have more than one solution. Now use
limr→0+ [u′(r) − κ′(r)] > 0 and limr→∞[u′(r) − κ′(r)] = −∞ to
conclude that the equation has indeed a unique solution ρ∗; see
Figure 2.5. ]

b. Show that the “Common Property Resources” problem of Exam-
ple 2.12 has a unique social optimum R∗∗, by establishing that
the equation u′(r) = κ′(r) + (n− 1)K ′((n− 1)r) has a unique so-
lution ρ∗∗. [Hint: Notice that the function f(r) = u′(r) is strictly
decreasing and the function g(r) = κ′(r) + (n − 1)K ′((n − 1)r)
is strictly increasing. Now argue as in the previous part; see also
Figure 2.5. ]
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c. Show that R∗∗ < R∗. What happens if n →∞?

7. Consider the “Common Property Resources” problem of Example 2.12
with functions u(r) =

√
r, κ(r) = 2r2 and K(R) = R2. Show that

these functions satisfy the required properties and compute the Nash
equilibrium R∗ and the social optimum R∗∗. [Answers: R∗ = n

4 and
R∗∗ = n

3
√

4[4+2(n−1)2]2
]

8. Consider the functions u,κ, K: (0,∞) → (0,∞) defined by

u(r) = r + 1− e−2r , κ(r) = r + e−r − 1 and K(R) = R2 .

Show that:

i. u′(r) > 0 and u′′(r) < 0 for each r > 0 and limr→0+ u′(r) = 3 > 0.

ii. κ′(r) > 0 and κ′′(r) > 0 for each r > 0, limr→0+ κ′(r) = 0 and
limr→∞ κ′(r) = 1.

iii. K ′(R) > 0 and K ′′(R) > 0 for each R > 0, limR→0+ K ′(R) = 0
and limR→∞ K ′(R) = ∞.

iv. With these functions, the “Common Property Resources” problem
as stated in Example 2.12 does not have a Nash equilibrium. Why
doesn’t this contradict the conclusion of Example 2.12?

v. With these functions, the “Common Property Resources” problem
as stated in Example 2.12 has a social optimum.

9. (Global Warming) Suppose there are n countries that produce goods
which cause the emission of carbon dioxide. Let B(x) denote the ben-
efit from the production of x amounts of the goods lumped together.
Assume that B′(x) > 0, and B′′(x) < 0. Also assume that the total
cost of producing xi units by each country i is κ(xi)+K(X−xi), where
X =

∑n
i=1 xi. The functions κ, K: (0,∞) → (0,∞) satisfy κ′(x) > 0,

κ′′(x) > 0, K ′(X) > 0 and K ′′(X) > 0 for each x > 0 and X > 0. In
addition, the marginal benefit for each country at zero is assumed to
be larger than the marginal cost at zero.

a. Write this as an n-person strategic form game (where the players
are the countries).

b. Find the condition for the Nash equilibrium of the game.

c. Find the condition for the socially optimum amount.

d. Compare the conditions and draw the conclusion.
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GMvoter

10. (Generalized Voter Model) This exercise is an extension of the
“Voter Model” presented in Example 2.11. We consider an electorate
which is distributed along the ideological spectrum from the left a = 0
and the right a = 1 according to an ideological density function
δ: [0, 1] → IR. This means that the function δ is continuous satisfying
δ(x) > 0 for each 0 ≤ x ≤ 1 and

∫ 1
0 δ(x) dx = 1. We interpret the

integral
∫ b

a δ(x) dx, where 0 ≤ a < b ≤ 1, as the percentage of voters
whose ideological preferences are between a and b. A typical ideological
density function δ is shown in Figure 2.6.

As in Example 2.11, we assume that there are two candidates, say 1
and 2, each voter casts his vote for the candidate who is closest to his
ideological position, and the candidate with the most votes wins.

Figure 2.6. An ideological density function

a. Determine the ideological density function for the voter model
described in Example 2.11.

b. Show that the utility functions of the two candidates are given by

u1(a1, a2) =






∫ a1+a2
2

0 δ(x) dx if a1 < a2

0.50 if a1 = a2∫ 1
a1+a2

2
δ(x) dx if a1 > a2

and

u2(a1, a2) =






∫ 1
a1+a2

2
δ(x) dx if a1 < a2

0.50 if a1 = a2∫ a1+a2
2

0 δ(x) dx if a1 > a2 .

c. Show that there exists a unique s0 ∈ (0, 1) such that
∫ s0

0 δ(x) dx =
1
2 .
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d. Establish that (s0, s0) is the only Nash equilibrium of the strategic
form game with two candidates.

11. The ideological density (see the previous exercise) of the electorate of
the State of Indiana is given by δ(x) = −1.23x2 + 2x + 0.41.

i. Sketch the graph of the density.

ii. Compute the unique real number s0 ∈ (0, 1) such that
∫ s0

0 δ(x) dx =
1
2 . [Answer: s0 ≈ 0.585 ]

iii. In 1988, after many years of Republican governors, Evan Bayh,
a Democrat, was elected governor of the State of Indiana. Can
you guess (and justify) the ideological direction of Evan Bayh’s
political campaign?

Consider the voting model (discussed in Example 2.11) when the num-
ber of candidates is three.

i. Write down the payoff function of candidate i.

ii. Show that there is a strategy combination with distinct ideological
positions that gives each candidate 1

3 of the votes.

iii. Show that there is no Nash equilibrium.

iv. Do the candidates still appeal to the median voter?

2.4. Solving matrix games with mixed strategies
MixStr

We have mentioned before that not every matrix game has an equilib-
rium. This then raises substantive issues about the solution of these
games. The question is important as it relates to a fairly large class of
games. In searching for a solution for games without a Nash equilib-
rium it could be instructive to examine the problem within the context
of an example. If we look at the matrix game

Player 2
Strategy L R

Player T (0,3) (3,0)
1 B (3,0) (0,3)

,

A Game Without a Nash Equilibrium
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then we notice that if player 1 plays T then player 2 will want to
play L, but in that case player 1 will want to play B, in which case
player 2 will want to play R and so on. We, therefore, have this cycle
of players wanting to change strategies. Indeed, if we think about what
player 1 should do, we realize that the player should be very careful
in revealing his strategy to player 2, for if player has any idea of what
strategy player 1 is going to play then player 2’s choice will result in
the worst possible payoff for player 1. For instance, if player 2 knows
that player 1 is going to play T then he will play L and player 1’s payoff
is then 0, the worst possible.

Clearly, player 1 should make every attempt to keep player 2 guess-
ing about whether he intends to play T or B. One way to do this is
by using a randomizing device to choose between the strategies. The
randomizing device in this case could be a coin or some other device
that gives us a random selection of T or B.

Of course, since the situation is similar for player 2, she will want
to do the same. The result is then that both players use some random
scheme to choose their strategies when they play the game. Such ran-
dom schemes that choose between strategies are called mixed strategies
and we discuss them next.

We have seen so far that a matrix game can be described by an
m× n matrix of the form

Player 2
Strategy s2

1 s2
2 · · · s2

n

Player s1
1 (a11, b11) (a12, b12) · · · (a1n, b1n)

1 s1
2 (a21, b21) (a22, b22) · · · (a2n, b2n)
...

...
... . . . ...

s1
m (am1, bm1) (am2, bm2) · · · (amn, bmn)

,

where aij and bij are the payoffs of player 1 and player 2, respectively.
In fact, we can split the above matrix into the two payoff matrices

A =





a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn



 and B =





b11 a12 · · · b1n

b21 b22 · · · b2n
...

... . . . ...
bm1 bm2 · · · bmn



 .
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This shows that a matrix game is completely determined by its pair
of payoff matrices A and B. When we present a matrix game by the
pair (A, B) of its payoff matrices, we shall say that the game is in its
bimatrix form. It is a standard terminology to call player 1 the row
player and player 2 the column player. Consequently, the strategies
of the row player are denoted by the index i (i = 1, . . . , m) and the
strategies of the column player by the index j (j = 1, . . . , n).

With this notation, we can describe a strategy profile as a pair
(i, j) and a Nash equilibrium (or simply an equilibrium) as a strategy
profile (i, j) such that

1. aij is the largest element in column j of the matrix A, that is,
aij = max1≤k≤m akj , and

2. bij is the largest element in row i of the matrix B, that is, bij =
max1≤r≤m air.

A mixed strategy (or a probability profile) for the row player
is simply any vector p = (p1, p2, . . . , pm) such that pi ≥ 0 for each
strategy i and

∑m
i=1 pi = 1. Similarly, a mixed strategy for the column

player is a vector q = (q1, q2, . . . , qn) such that qj ≥ 0 for each strategy
j and

∑n
j=1 qj = 1. A mixed strategy p for the row player is said to be

a pure strategy, if for some strategy i we have pi = 1 and pk = 0 for
k *= i. That is, the pure strategy i for the row player is the strategy
according to which the row player plays her original strategy i with
probability 1 and every other strategy with probability 0. In other
words, the pure strategies of player 1 are the strategies of the form

p = (0, 0, . . . , 0, 1, 0, . . . , 0) ,

where the 1 appears once. Clearly, the row player has exactly m pure
strategies which we usually identify with her original strategies.

Similarly, any strategy of the form

q = (0, 0, . . . , 0, 1, 0, . . . , 0) ,

where the 1 appears once, is called a pure strategy for the column
player. Notice again that the column player has exactly n pure strate-
gies which we identify with his original strategies.

Suppose now that each player (in order to confuse the other player)
chooses his or her strategy according to some probability profile—the
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row player plays according to a mixed strategy p and the column player
according to a mixed strategy q. If this is the case, then each player
has no way of predicting the strategy of the other player and the only
hope he or she has is to maximize his or her expected payoff. How
do we compute the expected payoff of the row player if the players play
according to the mixed strategies p and q?

Notice first that if the column player plays the strategy j, then the
row player, playing with probability profile p, can expect a payoff of∑m

i=1 piaij . Now taking into account the fact that the column player
also plays his strategies according to the probability profile q, it follows
that the row player can expect a payoff of qj

∑m
i=1 piaij from the column

player playing strategy j. This implies that the cumulative expected
payoff of the row player is

π1(p,q) =
m∑

i=1

n∑

j=1

piqjaij .

Similarly, the expected payoff of the column player is

π2(p,q) =
m∑

i=1

n∑

j=1

piqjbij .

We now have a strategic form game in which the strategy sets of
the players have been replaced by the sets of probability profiles over
strategies. Such a game is referred to as the game in mixed strategies.
Does the matrix game have a Nash equilibrium in mixed strategies? The
answer is yes! And this is a celebrated result in game theory. We state
it below as a theorem; for details see [18, Chapter VII].

t:MNEQ

Theorem 2.14. Every matrix game has a Nash equilibrium in mixed
strategies.9

It is not difficult to see that the Nash equilibria in pure strategies
(when they exist) of a matrix game can be identified with the mixed
strategies equilibria (p,q) in which the strategies p and q are of the
form

p = (0, . . . , 0, 1, 0, . . . , 0) and q = (0, . . . , 0, 1, 0, . . . 0) .
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pstr=mstr

Theorem 2.15. A strategy profile (i, j) for a matrix game is a Nash
equilibrium if and only if the pure strategy (i, j) is also a Nash equilib-
rium in mixed strategies.

In other words, the Nash equilibria are also equilibria of the game
in mixed strategies. That is, if Nash equilibria exist, then they are also
(as Theorem 2.15 asserts) equilibria for the mixed strategies form of
the game. However, the big difference is that while the game might
not have an equilibrium in pure strategies, i.e., a Nash equilibrium, it
always has (according to Theorem 2.14) a mixed strategies equilibrium!
We now present some guidelines for finding mixed strategies equilibria.

9A generalized version of this result was proved by John Nash for n-player
games in 1951; see reference [16] in the bibliography.
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Guidelines for Computing Mixed Strategies Equilibria

To compute mixed strategies equilibria in a matrix game we use
the following four steps.

1. Write the matrix game in its bimatrix form A = [aij ], B = [bij ].

2. Compute the two payoff functions

π1(p,q) =
m∑

i=1

n∑

j=1

piqjaij and π2(p,q) =
m∑

i=1

n∑

j=1

piqjbij .

3. Replace pm = 1−
∑m−1

i=1 pi and qn = 1−
∑n−1

j=1 qj in the payoff for-
mulas and express (after the computations) the payoff functions
π1 and π2 as functions of the variables p1, . . . , pm−1, q1, . . . , qn−1.

4. Compute the partial derivatives ∂π1
∂pi

and ∂π2
∂qj

and consider the
system

∂π1

∂pi
= 0 (i = 1, . . . , m− 1) and

∂π2

∂qj
= 0 (j = 1, . . . , n− 1) .

Any solution of the above system p1, . . . , pm−1, q1, . . . , qn−1 with

pi ≥ 0 and qj ≥ 0 for all i and j,
m−1∑

i=1

pi ≤ 1 and
n−1∑

j=1

qj ≤ 1

is a mixed strategies equilibrium.

An equilibrium (p,q) is said to be an interior equilibrium if
pi > 0 and qj > 0 for all i and j. The interior equilibria of the game
correspond precisely to the solutions p1, . . . , pm−1, q1, . . . , qn−1 of the
system

∂π1

∂pi
= 0 (i = 1, . . . , m− 1) and

∂π2

∂qj
= 0 (j = 1, . . . , n− 1)
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with pi > 0 and qj > 0 for all i and j,
∑m−1

i=1 pi < 1 and
∑n−1

j=1 qj < 1.
Let us illustrate the guidelines for finding mixed strategies equilibria

with an example.
ex:Mix-st

Example 2.16. It is easy to see that the matrix game

A =
[

0 3
2 1

]
and B =

[
3 0
1 2

]
,

has no Nash equilibrium in pure strategies. We shall use the guidelines
presented above to compute a mixed strategies equilibrium for this
game.

We start by computing the expected payoff functions of the players.
We have

π1 = 3p1q2 + 2p2q1 + p2q2

= 3p1(1− q1) + 2(1− p1)q1 + (1− p1)(1− q1)
= −4p1q1 + 2p1 + q1 + 1

and

π2 = 3p1q1 + p2q1 + 2p2q2

= 3p1q1 + (1− p1)q1 + 2(1− p1)(1− q1)
= 4p1q1 − q1 − 2p1 + 2 .

Differentiating, we get the system

∂π1

∂p1
= −4q1 + 2 = 0 and

∂π2

∂q1
= 4p1 − 1 = 0 ,

which yields p1 = 1
4 and q1 = 1

2 . This implies p2 = 1 − p1 = 3
4

and q2 = 1 − q1 = 1
2 . Therefore, ((1

4 , 3
4), (1

2 , 1
2)) is a mixed strategies

equilibrium—which is also an interior equilibrium.

Exercises

1. Prove Theorem 2.15.
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2. Verify directly that the probability profile ((1
4 , 3

4 ), ( 1
2 , 1

2 )) is a mixed
strategies Nash equilibrium for the matrix game

A =
[

0 3
2 1

]
and B =

[
3 0
1 2

]
.

3. Consider the matrix game in the bimatrix form

A =
[

3 0
0 1

]
and B =

[
1 0
0 4

]
.

a. Find the Nash equilibria of the game. [Answers: (1st row, 1st column)
and (2nd row, 2nd column) ]

b. Compute the expected payoff functions of the two players.
[Answer: π1 = 4p1q1 − p1 − q1 + 1; π2 = 5p1q1 − 4p1 − 4q1 + 4 ]

c. Find all mixed strategies equilibria of the game.
[Answer: ((1, 0), (1, 0)), ((0, 1), (0, 1)) and ((4

5 , 1
5 ), ( 1

4 , 3
4 )) ]

p:mpen

4. (The Matching Coins Game) Consider the following simple game—
known as the matching coins game—played between two players as
follows. Each player conceals either a penny or a nickel in her hand
without the other player knowing it. The players open their hands
simultaneously and if they hold the same coins, then player 2 receives
one dollar from player 1. If the coins are different, then player 2 pays
one dollar to player 1. This game has the following matrix form.

Player 2
Strategy P N

Player P (−1,1) (1,−1)
1 N (1,−1) (−1,1)

a. Show that this game does not have a Nash equilibrium.

b. Compute the expected payoff functions of the players.
[Answer: π1 = −4p1q1 +2p1 +2q1−1; π2 = 4p1q1−2p1−2q1 +1 ]

c. Find the mixed strategies Nash equilibria of the game.
[Answer: (( 1

2 , 1
2 ), ( 1

2 , 1
2 ) ]

d. What is the highest expected payoff of each player?
[Answer: The highest expected payoff of each player is zero! ]
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5. Consider the Prisoner’s Dilemma game (as presented in Example 2.2)
in its bimatrix form

A =
[
−1 −10
0 −5

]
and B =

[
−1 0
−10 −5

]
.

a. Show that the game has a unique Nash equilibrium.
b. Compute the expected payoff functions of the two players.

[Answer: π1 = 4p1q1− 5p1 + 5q1− 5; π2 = 4p1q1− 5q1 + 5p1− 5 ]
c. Show that the pure strategy (2nd row, 2nd column) is the only

mixed strategies equilibrium of the game.



Chapter 3

Sequential Decisions

Chap3

In all that we have seen so far, decisions had to be taken once, and the
decision-makers then received the rewards. In many contexts, however,
decisions have to be taken sequentially and the rewards are received
only after an entire sequence of decisions has been taken. For instance,
in manufacturing, the product usually has to go through a sequence
of steps before it is finished and at each step the manufacturer has to
decide which of several alternative processes to use. Before becoming
established in one’s career or profession an individual has to take a
sequence of decisions which leads to a final outcome. Similarly, financial
planning over a lifetime is done via a sequence of decisions taken at
various points of an individual’s life span.

By now we have a fairly good grasp of how optimal decisions are
made when a decision has to be made once. Sequential decision making
is different because the decision making process is more involved. A
choice made initially has an impact on what choices can be made later.
For instance, in choosing a career, if an individual decided not to go to
school then the choice of a career is limited to those which require only
a high school education. Similarly, if one chooses not to save very much
in the early years of his life, then the choice of how much to accumulate
for retirement in the later years is much more constrained. This fact,
that choices made in the intial stages, affect the alternatives available
in the later stages, is an element of decision making that is central to
sequential decision making.

In this chapter, we start by laying the analytical foundation to
sequential decisions by discussing graphs and trees. We then discuss
sequential decisions under certainty as well as under uncertainty. In
the section in which we discuss decision making under uncertainty, we
introduce the technique of using Bayes’ theorem as a method of using
information in updating beliefs.
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3.1. Graphs and trees

Sequential decisions are better understood in terms of “graph dia-
grams.” For this reason, the notion of a graph will play an essential
role in our study and will be discussed in this section. We start with
the definition of a directed graph.

d:dirgr

Definition 3.1. A directed graph is a pair G = (V, E), where V is
a finite set of points (called the nodes or the vertices of the graph)
and E is a set of pairs of V (called the edges of the graph).

A directed graph is easily illustrated by its diagram. The diagram
of a directed graph consists of its vertices (drawn as points of a
plane) together with several oriented line segments corresponding to
the pairs of the edges. For instance, if (u, v) is an edge, then in the
diagram of the directed graph we draw the line segment -uv with an
arrowhead at the point v. The diagram shown in Figure 3.1(a) is the
diagram of the directed graph with vertices

V = {u, v, w, x, y}

and edges

E = {(u, v), (v, u), (v, w), (v, x), (w, y), (y, x)} .

F31

Figure 3.1.

On the other hand, the directed graph with vertices {1, 2, 3, 4, 5, 6} and
edges {(1, 2), (6, 2), (6, 3), (3, 6), (3, 4), (4, 5)} is shown in Figure 3.1(b).
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It is customary (and very instructive) to identify a directed graph with
its diagram.

If (u, v) is an edge of a directed graph, then we usually say that u
is a predeccessor of v or that v is a successor of u. For instance, in
the directed graph shown in Figure 3.1(a), v is a predeccessor of x and
w and in the directed graph shown in Figure 3.1(b), the nodes 2 and 3
are both successors of the node 6.

We shall say that in a graph there is a path from a node u to
another node v if there exist nodes w1, w2, . . . , wk such that the pairs

(u, w1), (w1, w2), (w2, w3), . . . , (wk−1, wk), (wk, v) ($)

are all edges of the directed graph. The collection of edges in ($) is also
called a path of the graph from the node u to the node v. In other
words, a path from a vertex u to another vertex v describes how the
node v can reached from u following the edges of the directed graph.
If there is a path from u to v, it is common to say that we can join u
with v. The length of a path is the number of its edges. The path in
($) will also be denoted by

u → w1 → w2 → w3 → · · ·→ wk−1 → wk → v .

For instance, in Figure 3.1(b) there exists a path from vertex 6 to
vertex 5 (the path 6 → 3 → 4 → 5) but not a path from vertex 3 to
vertex 1. In the directed graph of Figure 3.1(a) there are two paths
from vertex u to vertex x.

A terminal node for a directed graph is a node with no edge
starting from it. For instance, in the directed graph of Figure 3.1(a)
the node x is a terminal node. In Figure 3.1(b), the nodes 2 and 5 are
the only terminal nodes of the directed graph.

With every directed graph G = (V, E) there is another natural
directed graph associated with it—called the backward graph of
G. It is the directed graph whose nodes are the nodes of G and
its edge is an edge of G with the opposite orientation. That is, the
backward graph (V, E′) of G is the graph with nodes V and edges
E′ = {(u, v): (v, u) ∈ E}. It is important to notice that the paths
of the backward graph are precisely the paths of the original directed
graph oriented in the opposite direction. The directed graphs in Fig-
ure 3.1 and their backward graphs (drawn with dotted edges) are shown
in Figure 3.2 below.
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Figure 3.2.

Now we come to the important notion of a tree.
df:tree

Definition 3.2. A directed graph T is said to be a tree if

1. there exists a distinguished node R (called the root of the tree)
which has no edges going into it, and

2. for every other node v of the graph there exists exactly one path
from the root R to u.

It is easy to see that the directed graphs in Figure 3.2 are not trees.
An example of a tree is shown in Figure 3.3. F32

There is a certain terminology about trees that is very convenient
and easy to adopt.

• If (u, v) is an edge of a tree, then u is called the parent of the
node v and node v is referred to as a child of u.

• If there is a path from node u to node v, then u is called an
ancestor of v and node v is known as a descendant of u.

With the above terminology in place, the root R is an ancestor of
every node and every node is a descendant of the root R.

Here are some other basic properties of trees; we leave the verifica-
tion of these properties as an exercise for the reader.
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Figure 3.3.

tree-prop

Theorem 3.3. In any tree,

1. there is at most one path from a node u to another node v,

2. if there is a path from u to v, then there is no path from v to u,

3. every node other than the root has a unique parent, and

4. every non-terminal node has at least one terminal descendant
node.

F33

Figure 3.4.
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The unique path joining a node u to another node v in a tree will
be denoted by P (u, v). For instance, in the tree of Figure 3.3, we have
P (u, 4) = u → 1 → 3 → 4. Notice that the path P (u, v) is itself a tree
having root u and terminal node v.

A branch of a tree T is a directed graph having nodes starting at a
node u and containing all of its descendants together with their original
edges. We shall denote by Tu the branch starting at u. It should not
be difficult to see that Tu is itself a tree whose root is u. The branch
Tu using the directed graph of Figure 3.3 is shown in Figure 3.4.

We close our discussion with the definition of a subtree.
d:subtree

Definition 3.4. A tree S is called a subtree of a tree T if:

1. the nodes of S form a subset of the nodes of T ,

2. the edges between the nodes of S are precisely the same edges
joining the nodes when considered as nodes of the tree T ,

3. the terminal nodes of S form a subset of the terminal nodes of T ,
and

4. the root of S is the same as the root of the tree T .

In Figure 3.4, the directed graph having nodes {R, v, w,β, ε, ζ,π,κ}
together with their original edges is a subtree.

Exercises

1. Consider the tree shown in Figure 3.3.

i. Describe the branches Tu and Tv.
ii. Find the terminal nodes of the tree.
iii. Describe the paths P (R,κ) and P (R, 5).
iv. Draw the backward graph of this tree.

2. Consider the directed graph shown in Figure 3.5.

a. Describe the directed graph in set notation.
b. Find the paths (and their lengths) from vertex 1 to 6.
c. Find the paths from vertex 3 to vertex 4.
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Figure 3.5.

d. Draw the backward graph.
F331

3. Verify the properties listed in Theorem 3.3.

4. Show that any path P (u, v) of a tree is itself a tree with root u and
terminal node v. In particular, show that every path from the root of
a tree to a terminal node is a subtree.

5. Verify that every branch Tu of a tree is itself a tree having root u.

6. Verify that the remaining part of a tree T after removing all the de-
scendants of a node is a subtree of T .

7. Determine all subtrees of the tree in Figure 3.3.

8. Show that if a tree has n edges and k vertices, then n = k − 1.

3.2. Single-person decisions
secSPD

A decision-maker may often face a situation in which a series of deci-
sions have to be made in a sequential manner—one after the other. For
instance, a firm which produces a certain product starts by choosing
the initial process and then has to choose among several intermediate
processes before the final stage is reached. Many decisions of a very
personal nature also involve sequential decision-making.

One of the best ways to describe sequential decision processes is
by means of some special directed graphs. These directed graphs are
called decision graphs and they are defined as follows.

decigraph

Definition 3.5. A decision graph is any directed graph having a
unique root R, in the sense that:



R
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1. R is the only node with no edge ending into it,

2. for every node N other than R there is at least one path from R
to N ,

3. there is at least one terminal node, and

4. from every non-terminal node N there is at least one path from
N to a terminal node.

Every tree is a decision graph but a decision graph need not be a
tree. An example of a decision graph is shown in Figure 3.6. F34A

Figure 3.6. A Decision Graph

A decision graph is interpreted as describing a sequential decision
process in the following manner. The root R represents the beginning
of the sequential decision process taken by an individual, the nodes
represent the various stages of the decision process, and the edges rep-
resent the decisions taken by the individual. The terminal nodes are
the terminal stages of the decision process and they are usually ac-
companied with their payoffs. That is, the payoff at any particular
terminal node is the “reward” (which might appear in many forms) re-
ceived by the individual after his sequence of decisions led him to that
particular terminal node. In other words, a single person decision
process consists of a decision graph together with an assignment of
payoff values at each terminal node of the decision graph.

Let us illustrate the single person decision process with an example.
highScg

Example 3.6. A high school graduate after leaving school has to de-
cide whether to go to college. If the choice is “not to go to college,”
then should she go to a technical school to learn a trade or should she
start to work? The consequences in terms of lifetime earnings will be
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different in the two cases. If, however, the decision is to go to col-
lege then after graduation (provided she graduates), she has to decide
whether to earn a professional degree, to go to graduate school or to
enter the labor market and find a job. Notice that each decision in-
volves different costs and benefits. The sequential decision problem
that we have just outlined can be represented by a decision tree. In
Figure 3.7 we have written down the payoffs for a hypothetical high
school graduate. The payoffs for different decisions will be differentF34

Figure 3.7. The Career Decision Tree

across high school graduates and as a result we will see a variety of
decisions none of which can be summarily dismissed as irrational.

The problem that is now a central issue in the decision process is to
choose an optimal decision path. An optimal decision path is—as
its name suggests—a decision path that leads the decision maker to a
terminal node with the “best” possible payoff. If we have a decision
tree, then there is usually one optimal decision path—unless there are
two or more terminal nodes with the same best possible payoff. It is
not difficult to see that A → B1 → C3 is the optimal decision path for
the high school graduate, with the decision tree shown in Figure 3.7.

Instead of listing the payoffs at each terminal node of a decision
graph, it is common practice to list the payoffs of individual decisions
along the edges of the graph. In this case, the payoff of a given path
N → N1 → N2 → · · · → Nk−1 → Nk (from the node N to the node
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Nk) is simply the sum of the payoffs of the edges

NN1, N1N2, . . . , Nk−1Nk .

A method of finding the optimal paths in a decision tree that has
been extensively used in applications is the so-called Backward Induc-
tion Method . It is based upon the following simple property.

th:Bim

Theorem 3.7. If in a decision graph a path

N1 → N2 → · · ·→ Nk → Nk+1 → · · ·→ N% → · · ·→ Nm

is optimal, then the path Nk → Nk+1 → · · · → N% is also an optimal
path from Nk to N%.

Here we describe the Backward Induction Method for decision
trees1 in great detail. The method consists of going backward by steps
starting from the terminal nodes of the decision tree and proceeding a
step at a time until we reach the root. The precise procedure of the
“backward steps” is described as follows.

In the first step, we select all predecessors of the terminal nodes
whose children are all terminal nodes (i.e., all nodes whose edges end
at terminal nodes); let us call these nodes the nodes of Step 1. We
then assign to each node of Step 1 the payoff that can be obtained by
reaching the best possible terminal node from the given node. (We
remark here that since we work with a decision tree rather than a
general decision graph, there always exist nodes whose children are
all terminal nodes. The latter is false for general decision graphs; see
Exercise 4 at the end of the section.) Next, we delete the children of
the nodes of Step 1 and obtain the truncated tree of Step 1.

The second step repeats this process by looking at the predecessors
of the nodes of Step 1 whose children are all terminal nodes of the
truncated tree of Step 1. That is, the nodes of Step 2 are all nodes
having all of their edges ending at the terminal nodes of the truncated
tree of Step 1. We shall call these nodes the nodes of Step 2. In each
node N of Step 2, we find an edge that leads to a node of Step 1 with
the highest possible total payoff and we assign this total payoff to the
node N . (Clearly, this represents the best payoff that an individual can

1For general decision graphs the Method of Backward Induction is not
always applicable; see Exercise 4 at the end of the section.
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get starting from node N and ending at a terminal node.) We delete
from the truncated tree the children of the nodes of Step 2 and obtain
the truncated tree of Step 2.

The predecessors of the nodes in Step 2 having all of their edges
ending at the nodes of the truncated tree of Step 2 are now the nodes
of Step 3. As before, at each node N of Step 3, we find an edge that
leads to a node of Step 2 with the highest possible total payoff and we
assign this total payoff to node N . (Again, this payoff represents the
best payoff an individual can get starting from N and ending at some
terminal node.) The truncated tree of Step 3 is obtained by deleting
from the truncated tree of Step 2 the children of the nodes of Step 3.

We continue this backward process until we arrive at a stage where
all predecessors of the nodes of that step consist precisely of the root
R. A path from the root R to a node of that step that yields the best
total payoff is the beginning of an optimal decision path that can be
traced out now in the opposite direction.F35

Figure 3.8. The Truncated Decision Tree

Let us illustrate the Backward Induction Method using the deci-
sion graph of Example 3.6 shown in Figure 3.7. We start by observing
that the collection of terminal nodes of the decision graph shown in
Figure 3.7 is the set {C1, C2, C3, C4, C5}. According to the backward
induction method, in the first step of the process we select all pre-
decessors of the set of terminal nodes whose children are all terminal
nodes; here it is the set of nodes {B1, B2}. At each node B1 and B2,
we assign the best payoff the high school graduate can get by reaching
the terminal nodes. We see that the best payoff at B1 is $ 40, 000 and
the best payoff at B2 is $ 25, 000. This is indicated in the “truncated
decision tree” of Figure 3.8. In the truncated version of the original
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decision tree the optimal edge is the one that leads to the node B1.
The optimal decision path in this case is, A → B1 → C3; that is, to go
to college and then to enter the labor market.

Here is another example illustrating the Backward Induction Method.
ex:BIMH

Example 3.8. Consider the single person decision tree shown in Fig-
ure 3.9. The numbers along the edges represent cost. So, the optimal
path is the one which minimizes the cost. F36A

Figure 3.9. The Backward Induction Method

At Spep 1, we find the nodes having all their edges ending at ter-
minal nodes. An inspection shows that this set is {D, T, G}. The best
edge going from D to the terminal nodes is DL at the minimum cost
of 1; we keep this edge and delete the other one and indicate this min-
imum cost at node D by writing D(1). Similarly, we have the edges
TN and GS; see Figure 3.9.

Next, we find the nodes of Step 2. They are precisely the nodes
having all their edges ending at the terminal nodes of the trancated
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tree of Step 1. An easy inspection shows that this is the set {A, B, C};
see Figure 3.9. At node A we find the edge with the minimum cost
to the terminal nodes and we do the same thing for the other nodes
B and C. The new truncated tree is shown in Figure 3.9 (Step 2).
Notice that the numbers in parentheses indicate the minimum cost for
reaching the terminal nodes of the original decision tree from that node.
For instance, C(3) indicates the fact that from the node C we can reach
the terminal nodes of the original decision tree with the minimum cost
of 3.

The nodes of Step 3 now consist of the root R alone. Clearly, the
edge which gives the mimimum cost from R to the nodes A, B, and C
is RC. This completes the backward induction and yields the optimal
path R → C → G → S.

Let us illustrate the Backward Induction Method once more by
looking at another example of a sequential decision tree.

ex:manuf

Example 3.9. Suppose a manufacturer produces a product that goes
through four separate steps; from an initial step A to its final step
D. In going from one step to another the manufacturer has a choice
of several different processes. In going from step A to step B, the
manufacturer has the option of four separate processes. In going from
step B to step C, the choice of processes depends on the choice made
earlier and, similarly, for going from step C to the final step D. The
manufacturer would obviously want to use a combination of processes
that would produce the product at the least possible cost.

The problem is one which involves making sequential decisions, as at
every step a process has to be chosen conditioned on what choices were
made in the earlier steps. We can describe the problem best by drawing
the decision graph which is shown in Figure 3.10. The objective is to
find the path that gives the smallest total cost. The graph shows the
cost per unit of using each process. For instance, if the manufacturer
uses process A → B1, then the cost per unit of production is $ 7 for
going from step (node) A to step (node) B1. Next, we shall determine
the optimal decision path by backward induction—shown graphically
in Figure 3.11.

From the terminal node D we go backwards and select all nodes N
whose edges (starting from N) terminate at D; here, we have only the
edge ND. The collection of these nodes form the set of nodes of Step 1;
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clearly {C1, C2, C3, C4}. The minimum cost for reaching D from a node
Ci is shown on the top diagram of Figure 3.11. This completes the first
step of backward induction. F37

Figure 3.10.

For the second step of the induction process we look at the set of
nodes whose edges terminate at the nodes {C1, C2, C3, C4}. These are
the nodes of the set {B1, B2, B3, B4}. At each node Bi we add (in
a parenthesis) the total minimum cost needed to reach the nodes of
Step 1 from Bi. This is shown on the second from the top diagram of
Figure 3.11. The next step brings us to the root A. We see that the
edge AB1 will yield the total minimum cost from A to any node among
B1, B2, B3, B4.

Therefore, the path

D → C1 → B1 → A

is the backward optimizer. Reversing the direction of this path yields
the optimal decision path A → B1 → C1 → D; see Figure 3.11.

F38
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Figure 3.11. The Backward Induction Method of Example 3.9
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Exercises

1. Prove Theorem 3.7.
p322

2. Show that every tree has at least one terminal node N such that the
children of the parent M of N (i.e., N ’s “brothers” and “sisters”) are
all terminal nodes. (This conclusion is essential for the applicability of
the Backward Induction Method.)

3. Show that every single person decision process has an optimal path.
ex:binap

4. This exercise shows that (in general) the Backward Induction Method
cannot be applied to find the optimal decision path when the decision
process is described by a decision graph which is not a tree. Consider the
decision process described by the decision graph shown in Figure 3.12.

F35A

Figure 3.12.

a. Find the optimal decision path.
[Answer: R → B → C → E → A → D → G ]

b. Show that the Backward Induction Method (as described in this
section) is not applicable in this case.

5. The graph in Figure 3.13 describes a sequential decision. The numbers
along the edges represent the cost of taking the corresponding decision.
The decision process starts at R and ends in one of the terminal nodes
L, M, N, P, Q, S. F39

a. Show that the decision graph is not a tree.
b. Verify that in this case the Backward Induction Method is applica-

ble and use it to find the optimal path and the minimum cost from
R to the terminal nodes. [Answers: R → C → E → H → K → S
and R → C → F → H → K → S. ]
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Figure 3.13.

6. The American Airlines pilots struck work on February 17, 1997 de-
manding better contract terms.

a. Draw up a decision tree indicating the decision problem faced by
the pilots before their decision to strike.

b. What payoffs in the decision tree are consistent with the decision
to strike.

7. In the career choice decision problem of Example 3.6, the payoffs are
the income stream net of expenditure on training. In the example, the
optimal choice for the individual is to go to college and then enter the
job market.

a. Suppose the individual received a scholarship to go to a profes-
sional school. Would this change the decision?

b. Now consider another individual whose preference for graduate
school implies that he is willing to receive a lower income stream
in order to go to graduate school. How would this change the
payoffs? Indicate this in the decision tree.

8. An investor faces a decision about whether to buy a firm which is up
for a bid. After buying the firm (if he buys the firm) he can break it up
and resell it, or run it under new management. He could then choose
to sell it in the near future or retain it.

i. Construct the decision tree of the investor.

ii. Write down payoffs over the terminal nodes and solve for the op-
timal path. Explain your reasons for the payoffs and the solution.

9. A venture capitalist is thinking of financing two alternative ventures.
One is a proposal to market a generic brand of a drug whose patent
expires shortly. The other project would require investing in developing
a commercial application of a gene splicing technique.
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a. Draw a decision tree for the venture capitalist. [HINT: Notice
that the second project will fetch high returns only in the second
stage if it is marketed. ]

b. What option will the venture capitalist choose? [HINT: Write
down the profits from following each option and analyze the op-
timal path. ]

10. A wine producer has a choice of producing and selling a generic vari-
ety of wine or an exclusive brand. The decision process is sequential
and given by the decision tree shown in Figure 3.14. The decision F39A

Figure 3.14.

tree shows the cost per bottle at every stage of a decision (M means
“Marketing” and A means “Advertising”). The terminal nodes give the
price per bottle.

i. Find the decision path that maximizes the profit per bottle.

ii. Will this decision path provide the wine producer with the optimal
decision? Why or why not? [HINT: The general brand bottles
may sell in larger quantities. ]
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3.3. Uncertainty and single-person decisions

In the previous section, while discussing sequential decision problems,
we glossed over the fact that a choice at any stage may have uncertain
consequences. It is quite possible that in the career choice problem, if
one decides to become an actor after graduating from high school, then
there is a small chance that the individual may end up with a very high
lifetime income and a high probability that the individual will make
a more modest income. Similarly, in the decision problem involving
the manufacturer’s choice of processes, the choice of a process may be
associated with a higher or a lower chance of having a defective product.
In other words, while decisions are made in a sequential process, the
consequences, during the implementation of some of these decisions,
for the success or failure of the final outcome are uncertain.

Uncertainty of this kind is introduced in sequential decision prob-
lems by adding nodes at which nature chooses. The following examples
indicate how uncertainty can be handled in sequential decision prob-
lems.

ex:pharcomp

Example 3.10. A pharmaceutical firm X faces a decision concerning
the introduction of a new drug. Of course, this means that there is an
initial decision about how much to spend on research and development,
the possibility that the drug may fail to be developed on schedule, and
the fact that the drug may not be quite successful in the market. At
each stage of this decision making process, we notice the presence of
uncertainty. A decision tree of this problem is shown in Figure 3.15.F40

At the initial stage firm X has to decide whether to spend a large
amount “Hi” or a small amount “Lo” on research and development.
The result of this investment could either lead to success S or failure F
with the probability p of success being higher in the case of Hi expendi-
ture on research and development. Even when the drug is successfully
produced, the firm may decide not to market it. The uncertainty about
whether the drug can be produced or not is handled here by introduc-
ing the nodes “Nature” at which nature chooses. The edges M and
DM stand for “Market” and “Do not Market” the produced drug.

We can solve this decision problem by using backward induction.
In the present case, with the payoffs as shown in Figure 3.15, the firm
has to decide at the nodes of the First Stage of the backward induction
whether to market (M), or not to market (DM) the drug, the firm
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Figure 3.15.

always chooses to market the drug. But then this leads to the truncated
version of the decision tree shown in Figure 3.16; in which case the
payoffs are expressed in the form of expected payoffs.

The firm now has to compare two lotteries involving a Hi expen-
diture choice and a Lo expenditure choice. If the firm is risk neutral
the choice, of course, is the lottery with the highest expected value,
otherwise, the choice would depend on the von Neumann–Morgenstern
utilitity function of the firm. If the firm is risk neutral and the expected
profits are negative, then the firm will not proceed with the marketing
of the product.

F41

Figure 3.16.

The firm can, however, face a slightly more complex problem if the
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firm is unsure about how successful the drug will be once it is marketed.
Firms will often want to resolve such uncertainty by trying to gather
some information about the marketability of their products, and on the
basis of this information would revise their estimates of how well their
products will do in the market. The processing of such information
into the decision making process is of great importance to any firm. To
illustrate this we go back to our previous example.

nat-pharm

Example 3.11. We consider the same pharmaceutical firm X as in
Example 3.10. However, we now expand the original decision tree so
as to include the event that the drug once marketed may not do very
well. This decision tree is now shown in Figure 3.17.F42

Figure 3.17.

The two added edges G (good) and B (bad) at the nodes where
“Nature” interferes allow for the possibility (with probability s) for the
produced drug to be a real money maker and also for the possibility
(with probability 1–s) to be a complete failure.

The prior probability that the drug will do well in the market is
given by s. It is interesting to observe that after the firm gathers
information about the market, this prior probability is revised to a
posterior probability . This is usually done by using Bayes’ formula
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from probability theory which we describe below.

We now proceed to discuss Bayes’ formula—one of the most famous
and useful formulas in probability theory. The formula provides an
answer to the following important question: If an event B is known to
have occurred what is the probability that another event A will happen?

th:Bayes

Theorem 3.12. (Bayes’ Formula) If A and B are two events in a
probability space (S, P ), then

P (A/B) =
P (B/A)P (A)

P (B/A)P (A) + P (B/Ac)P (Ac)
.2

As usual, the event Ac is the complementary event of A, i.e.,

Ac = X \ A = {x ∈ S: x /∈ A} ,

and so P (Ac) = 1−P (A). The non-negative numbers P (U/V ) appear-
ing in Bayes’ formula are known as conditional probabilities. We say
that P (U/V ) is the conditional probability of the event U given the
event V and define it by

P (U/V ) =
P (U ∩ V )

P (V )
,

provided that P (V ) > 0. Therefore, a useful way to interprete Bayes’
formula is to think of it as the conditional probability of event A given
that event B is observed.

Bayes’ formula is useful whenever agents need to revise or update
their probabilistic beliefs about events. The following example provides
an illustration of Baye’s formula and indicates its usefulness and wide
applicability.

bayesappl

Example 3.13. It is known that a certain disease is fatal 40% of the
time. At present a special radiation treatment is the only method for
curing the disease. Statistical records show that 45% of the people

2The theorem is essentially due to Thomas Bayes (1702–1761), an English
theologian and mathematician. This famous formula which imortalized Bayes
was included in his article Essays Towards Solving a Problem in the Doctrine
of Chances. It was published posthumously in the Philosophical Transactions
of the Royal Society of London 53 (1763), 370–418.
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cured took the radiation treatment and that 20% of the people who
did not survive took the treatment. What is the chance that a per-
son suffering from the disease is cured after undergoing the radiation
treatment?

We set up the problem as follows. First, in the sample space of all
persons suffering from the disease, we consider the two events

A = The person is cured from the disease; and
B = The person is taking the radiation treatment .

Our problem is confined to finding P (A/B).
Notice that Ac = The person did not survive. To apply Bayes’

formula, we need to compute a few probabilities. From the given in-
formation, we have:

P (A) = 0.6,

P (B/A) = 0.45,

P (Ac) = 0.4, and
P (B/Ac) = 0.20 .

Consequently, according to Bayes’ formula, the desired probability is

P (A/B) =
P (B/A)P (A)

P (B/A)P (A) + P (B/Ac)P (Ac)

=
0.45× 0.6

0.45× 0.6 + 0.2× 0.4
= 0.7714 .

In other words, a person having the disease has a 77.14% chance of
being cured after undergoing the radiation treatment.

ex.priorpr

Example 3.14. (Revising the Prior Probability) Going back to
the decision problem of the pharmaceutical firm X (Example 3.11),
the prior probability that the drug will do well in the market (i.e.
the good outcome G occurs) is given by P (G) = s. The firm, in order to
find out more about how the market will receive the drug, may perform
a test I; for instance, study what a sample of potential buyers think
of the drug.

Based on this study the firm may want to revise its probability
P (G). If the test is successful, then the firm infers that the market
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condition is better than originally thought and would want to revise
P (G) accordingly. However, if it is not successful, then the inference
should go the other way. Bayes’ formula provides the tool for revis-
ing this prior probability P (G) conditioned on the new information I
obtained from the test. The posterior probability, as the revised
probability is called, is given by Bayes’ formula

P (G/I) =
P (I/G)P (G)

P (I/G)P (G) + P (I/B)P (B)
,

where P (I/G) is the probability that the test indicates success if indeed
the market situation is G, and P (I/B) is the probability that the test
indicates success when the market situation is B.

It is of interest to note that if the new information is good and
reliable, then the posterior (or revised) probability should predict the
state of the market with a high degree of accuracy, which usually means
that the revised probability would be close to zero or one depending
on the state of the market. Bayes’ formula is, therefore, a nice way of
using relevant information to “update beliefs about events.”

Now suppose that P (I/G) = 0.9 and P (I/B) = 0.2. If s = 0.6
then after a test of the market which gave a positive result, the revised
posterior probability is

P (G/I) =
0.9× 0.6

0.9× 0.6 + 0.2× 0.4
= 0.87 .

This is a lot higher than the prior probability of 0.6. The firm, there-
fore, revises its belief about the state of the market being good after
observing a positive result from the test. The information from the
test is used to revise the probability upwards. In the decision tree this
will have consequences as the expected payoff from marketing the drug
changes drastically.

Exercises

1. You know that one child in a family of two children is a boy. What is
the probability that the other child is a girl? [HINT: The sample space
is {(b, b), (b, g), (g, g), (g, b)}. ]
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2. Find the optimal decision path of the firm in Example 3.10 in terms
of the values of p and q. [Answer: The firm will choose “Hi” if 90p >
101q + 14 and p > 1

6 . ]

3. Consider the decision problem in Example 3.11 assuming that the firm
is risk neutral.

i. Solve the firm’s decision problem.
ii. Express the solution in terms of p, q and s.
iii. What happens if p = 0.9 and q = 0.4?
iv. At what value for s will the firm decide to market the drug? Does

this depend on p and q?

4. Consider Example 3.14 and the values given there for the conditional
probabilities. Assume also that the firm is risk neutral.

a. Solve the firm’s decision problem in terms of p and q.
b. What happens if p = 0.9 and q = 0.5?
c. If the test costs $50, 000, will the firm want to pay for it?
d. What is the maximum amount the firm will pay for the test?

5. Estimates show that 0.3% of the US population is carrying the sexually
transmitted HIV virus—which is known to cause the deadly disease
AIDS. In order to study the spread of the HIV virus in the population,
it was suggested that the US Congress pass a law requiring that couples
applying for a marriage licence should take the blood test for the HIV
virus. The HIV blood test is considered very effective, since:

i. a person with the HIV virus has a 95% chance to test positive,
and

ii. an HIV virus free person has a 4% chance to test positive.

After several lengthy discussions, it was decided that the HIV blood
test was ineffective for determining the spread of the AIDS disease and
its implementation was abandoned.

Can you figure out what argument persuaded the legislators of the
ineffectiveness of the HIV virus test for determining the spread of the
AIDS disease? [HINT: Consider the events “A =a person taking the
HIV virus test has the disease” and “B =the test is positive.” Using
Bayes’ formula determine that P (A/B) ≈ 6.67%! ]

6. Prove Baye’s formula. [HINT: By definition we have P (U/V ) = P (U∩V )
P (V ) ,

provided that P (V ) > 0. Now note that P (V ) = P (V ∩U)+P (V ∩U c). ]
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Sequential Games

Chap4

In the previous chapter we discussed sequential decisions made by a
single individual. In every situation that we encountered, the payoff
to the individual depended on the sequence of decisions made by the
individual. In many other contexts, however, the payoff to the individ-
ual may depend not just on what the individual does but also on the
sequence of decisions made by other individuals.

Thus, we may have a game that is being played by a number of
individuals, but instead of taking decisions simultaneously, the players
may have to play the game sequentially. For instance, if an investor
makes a takeover bid, then the bid has to be made before the man-
agement of the firm can respond to the bid. Such a situation is best
analyzed as a game in which the investor makes his move in the first
stage and the management then responds in the second stage. Ob-
viously, the players in this game are not moving simultaneously, but
rather in two stages. Games which are played in stages are variously
called multistage games, games in extensive form or sequential games.
In our case, we will use the term sequential game for any game in
which moves by more than one player are made in a sequence.

Sequential games provide a rich framework to study situations where
decisions have to be made in a sequence of stages and in which different
individuals have to choose. Sequential games thus have the elements
of both sequential decision making as well as games. As with sequen-
tial decisions, the issue of how much a player knows at the time he or
she has to choose, is an important issue and leads to the fundamental
classification of sequential games into games with perfect information
and games with imperfect information. Also, like sequential decisions,
the idea of sequential rationality plays a crucial role.

In this chapter, we discuss sequential games. In the first section
we introduce the concept of a game tree. We then proceed to define
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information sets, give the formal definition of a sequential or an exten-
sive form game and introduce the concept of a strategy in such games.
In the subsequent sections we discuss games with perfect information
and the concept of an equilibrium. We then illustrate the concepts by
discussing a few applications. Two sections are devoted to discussing
games with imperfect information. In the first one we introduce the
notion of a subgame and in the other we deal with the slightly more
complex question of sequential rationality .

4.1. The structure of sequential games

Sequential games are closely associated with trees. As a matter of fact,
as we shall see, every tree can be viewed as a “game tree” in many
ways. We start by defining an n-player game tree.

d:nplgame

Definition 4.1. A tree T is said to be an n-player (or n-person) game
tree (or a game tree for n-palyers P1, . . . , Pn), if

a. each non-terminal node of the tree is “owned” by exactly one of
the players, and

b. at each terminal node v of the tree an n-dimensional “payoff”
vector

p(v) = (p1(v), p2(v), . . . , pn(v))

is assigned.

We emphasize immediately the following two things regarding game
trees:

1. no terminal node is owned by any player, and

2. there is no guarantee that each player “owns” at least one non-
terminal node of the tree. That is, in an n-person game there
might be players who do not own any non-terminal node!

A node N owned by a player P is also expressed by saying that the node
N belongs to player P . The non-terminal nodes of a game tree are
called decision nodes. A 3-person game tree is shown in Figure 4.1.F50

An n-person game tree represents a sequential process of decisions
made by the players starting from the root of the game tree and ending
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Figure 4.1.

at a terminal node. The game starts as follows. The player who owns
the root starts the game by making a decision (i.e., he or she chooses
an edge) that brings the decision process to another node. If the node
is not terminal, it is owned by a player who in turn chooses his or her
own edge. Again, if the node is not terminal, it is owned by a player
who is next in line to choose an edge. This sequential decision process
is continued until a terminal node is reached.

For instance, in the 3-person game shown in Figure 4.1 the node a
belongs to player 2 who must start the game. Suppose that he chooses
the edge (ad) and so his decision reaches the node d which belongs to
player 1. Player 1 must make the next decision by choosing an edge;
suppose that he or she selects the edge (de), i.e., the decision of player
1 brings the decision process to node e. Node e is owned by player 3
who must make the next decision; suppose that the decision of player 3
is the edge (en). Since n is a terminal node, the game ends at node n.
In this case, the decision path chosen by the players is a→ d → e→ n.
The payoff vector of the terminal node n is (2, 1, 2), which means that
player 1 gets a payoff of 2, player 2 a payoff of 1 and player 3 a payoff
of 2.

Two nodes N1 and N2 of a game tree owned by a player P are said
to be equivalent for player P if

1. there is the same number of edges, say k, starting from N1 and
N2; and
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2. the edges from N1 and N2 given by

{e1
1, e

1
2, . . . , e

1
k} and {e2

1, e
2
2, . . . , e

2
k}

can be rearranged in such a way that for each i the edges e1
i and

e2
i are viewed as identical by the player P ; we shall indicate this

equivalence by e1
i ≈ e2

i .

This leads us naturally to the concept of an information set.
inf-set

Definition 4.2. In a game tree, a set of nodes I = {N1, . . . , N%} is
called an information set for a player P if:

1. all nodes of I are non-terminal and belong to player P ;

2. no node of I is related to any other node of I, i.e., if Ni and Nj

are nodes in I, then Ni is neither an ancestor nor a successor of
Nj; and

3. all nodes of I are equivalent for player P , i.e, there is a rear-
rangement {ei

1, e
i
2, . . . , e

i
k} of the k edges starting from each node

Ni such that ei
r ≈ ej

r for all i, j and r.
F52

Figure 4.2.

The intuition behind the notion of an information set I is the follow-
ing. Assume that at some stage of the decision process in an n-person
game, a player P must make the “next decision.” Suppose also that,
due to his lack of information of the “history” of the game, he knows
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that the place where he must make the decision is a node of an informa-
tion set I but he does not know which one. Moreover, to player P the
same number of choices (say k) at each node of I look identical—that
is at each node of I, player P understands that there are k identical
choices labelled as 1, 2, . . . , k. This forces player P to make a decision
among 1, 2, . . . , k based only on the k choices and not on the actual
location of the node where the decision is taken.

An example of an information set is shown in Figure 4.2. Notice
that the information set I = {N1, N2, N3} belongs to player P2. The
fact that N1, N2 and N3 belong to the same information set is indicated
by joining these nodes by the dotted line. Note also that at each node
of I player P2 has three choices—labelled as 1, 2 and 3.

A sequential game is now defined as follows.

SGame

Definition 4.3. A sequential game or an extensive form game is
an n-player game tree such that the decision nodes have been partitioned
into information sets that belong to the players.

Unlike the case of a game in strategic form, the concept of a strategy
in a sequential game is a little more involved. To understand and define
strategies in sequential games, we need to introduce a few new concepts.

A choice for a player owning a node N in a game tree is simply
an edge starting from the node N . In a game tree, a choice function
for a player owning the set of nodes N is a function f :N → V , where
V denotes the set of nodes of the tree, such that f(N) is a child of
N for each node N of N . Since a child C of a node N is determined
completely by the edge NC, it is also customary to identify f(N) with
an edge of the tree starting at the node N . It is also quite common to
denote a choice function f by a set of edges, where the set f contains
exactly one edge originating from each node of N .

A choice function f of a player P is said to respect an informa-
tion set I of P if f(N1) ≈ f(N2) for each pair of nodes N1, N2 ∈ I.
That is, the choices at the nodes that belong to the same information
set are identical.

Now we define the concept of a strategy.

d:Stratgy

Definition 4.4. Let N denote the set of nodes owned by a player P
in a game tree and assume that N is partitioned into information sets
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for P . Then a choice function s:N → V is a strategy for player P if
it respects each information set.

A strategy in a “sequential” game thus seems to be a fairly subtle
concept. Briefly, a strategy for a player in a sequential game describes
the choices that the player is going to make at each of his informa-
tion sets. Therefore, a strategy for a player in a sequential game is a
complete plan of how to play the game and prescribes his choices at
every information set. In other words, a player’s strategy will indicate
the choices that the player has planned to make a priori (i.e., before
the game starts) in case his information sets are reached during the
course of playing the game. A stategy profile for an n-person se-
quential game is then simply an n-tuple (s1, s2, . . . , sn), where each si

is a strategy for player i.
It is useful to note here that once a strategy profile (s1, . . . , sn) is

given in a sequential game, a terminal node of the game tree will be
reached automatically. In other words, as mentioned before, a sequen-
tial game is understood to be played as follows. The player (say Pj)
who owns the root R chooses a node according to his selected strategy
sj ; here he chooses the node sj(R). Then the player who owns the node
sj(R) chooses according to his strategy and the game continues in this
fashion until a terminal node v is reached and the game ends. Subse-
quently, each player i gets the payoff pi(v). Notice that the strategy
profile (s1, s2, . . . , sn) uniquely determines the terminal node v that is
reached. Hence, the payoff (or utility) of each player is a function ui of
the strategy profile (s1, s2, . . . , sn). That is, we usually write

ui(s1, s2, . . . , sn) = pi(v) .

Thus, in sum, a sequential game is represented by a game tree with
players moving sequentially. At each information set the player who
needs to choose has determined a priori a choice (i.e., an edge) at each
of the nodes in the information set, which is exactly the same for each
node in the same information set. After the players have chosen their
actions at their information sets a terminal node is reached and the
outcome of the game is realized.

Here is an example of a business decision process that can be trans-
lated into a 2-person sequential game.

ex:investor
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Example 4.5. (The Takeover Game) An investor, whom we will
refer to as player I, is considering bidding for a company called Fortune
F . Currently, the shares of F are valued at $100. If I can take over the
company it is known that F would be worth $110 per share under the
new management. The investor I can make a bid of b (> 100) dollars
per share in order to take over the company by buying 50% of the total
shares of F . How much should I offer? After I makes an offer what
should the shareholders of F do?

We have just described a two-player game in which at stage 1 player
I makes a bid for F and at stage 2 player F decides whether to take
the bid or reject it. Schematically, the situation can be described by
the 2-person sequential game shown in Figure 4.3. F51

Figure 4.3.

The payoffs of the game are to be understood as follows. If the
investor makes a bid of b dollars per share, then either fortune F can
accept the bid and sell the shares to the investor at b dollars per share
or reject the bid by buying back its shares at b dollars per share. If it
accepts the bid, fortune F makes a profit of b− 100 dollars per share.
The investor, however, makes 110− b dollars per share after the value
of the shares increase to $110 per share under the new management.
If fortune F rejects the bid, then it has to buy back the shares at b
dollars per share and loses b − 100 dollars per share. The investor in
this case gets zero.
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In the takeover game of Example 4.5, each player knows precisely
the node at which she has to make her choices. Many sequential games
satisfy this condition. In such games each player knows all the relevant
past information necessary to identify the node at which she has to
make her choice. Sequential games with this special feature are called
games of perfect information. Sequential games which do not meet
this condition are called games of imperfect information. Their precise
definition is as follows.

d:SQGPI

Definition 4.6. A sequential game is a game of perfect informa-
tion if every information set is a singleton. Otherwise, it is a game
with imperfect information.

A sequential game of perfect information, therefore, is a sequential
game in which a player knows exactly what choices have been made in
the game at the time she has to make a choice. While this is not going
to be true in every situation, it is true in many situations.

On the other hand, sequential games of imperfect information are
games in which players either cannot observe some of the choices made
in the preceding stages of the game or players who play in the earlier
stages prefer not to reveal the information to players in the succeeding
stages. Games of imperfect information as well as games of perfect in-
formation arise quite naturally in many contexts. We have already seen
an example (Example 4.5) of a sequential game of perfect information.
The next example demonstrates how easy it is for a sequential game
with perfect information to become a sequential game with imperfect
information.

inves

Example 4.7. We modify the takeover game described in Example 4.5.
Fortune F is now known to have a project P under development which
if successful could increase the price of F ’s shares to $125 under cur-
rent management and $140 under I’s management. At the time the
investor I makes his bid b, only F knows whether the project is suc-
cessful. Thus, there is imperfect information as I does not know at the
time he makes his decision the fate of the project. A way to describe
the new situation in the takeover game is by the 3-player sequential
game shown in Figure 4.4.F53

Notice that I’s information set, at the time that I decides on
whether to bid consists of two nodes, depending on what nature N
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Figure 4.4.

decided about the project P . Therefore, player I, given his informa-
tion, is unable to distinguish between the two nodes. Note however, at
the time F decides whether to accept the bid b or reject it, F knows
the outcome of the project. Because I’s information set consists of
more than one node this game is an example of a game with imperfect
information.

In this game, which is an extension of the sequential game shown
in Figure 4.3, if the project succeeds and the investor I makes a bid
of b dollars per share and if fortune F accepts the bid, then fortune F
makes b− 125 dollars per share, whereas the investor I makes 140− b
dollars per share. If fortune F rejects the bid then it has to buy back
the shares at b dollars per share and loses 125−b dollars per share. The
investor in this case makes nothing. If on the other hand, the project
does not succeed, the investor I bids b dollars and fortune F accepts
the bid then fortune gets b − 100 dollars per share. If fortune rejects
the bid, then the investor gets zero and fortune ends up losing b− 100
dollars per share.

F75a
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Figure 4.5.

Sequential games with perfect and imperfect information will be
discussed in detail in the next sections.

We close this section with a remark concerning the classification of
information sets. An information set I of a player P is said to be an
information set with recall if it has the following property:

• Whenever the player P owns a node N which is a predecessor of
all nodes of the information set I, then all nodes in the informa-
tion set I are the descendants of the same child of N .

The distinction between information sets with recall and general in-
formation sets is illustrated in the games shown in Figure 4.5. This
distiction allow us to differentiate between cases in which players re-
member all the moves observed in the past and situations in which
some players forget some past moves.

Exercises

1. Show that in a perfect information sequential game there are as many
strategies for a player as there are choice functions for that player.
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2. Consider the game trees shown in Figure 4.6. F54

Figure 4.6.

a. Verify that the game tree of Figure 4.6(a) describes a perfect in-
formation sequential game and that the game tree of Figure 4.6(b)
describes an imperfect information sequential game.

b. Describe the strategies of the players in each game.

c. Describe the utility functions ui(s1, s2, s3) (i = 1, 2, 3) of the play-
ers in each game.

3. Verify that the Prisoner’s Dilemma game can be expressed as a se-
quential game whose game tree is shown in Figure 4.7. Describe the
strategies of each player. F55

Figure 4.7.

4. Consider the sequential game outlined in Figure 4.8. F56

a. Find the subtrees in the game tree.
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Figure 4.8.

b. Compute the optimal choice of every player in every subtree of
the game.

c. Given the position of the players in the game tree what choice will
player P2 make?

5. Consider the takeover game discussed in Example 4.5. What should be
the smallest and highest values of the bid b that a rational investor
would make to the company Fortune? (Justify your answers.)

6. Consider the takeover game of Example 4.7. Assume that the project
P if successful will increase the price of F ’s shares to $140 under the
current management and $125 under I’s management. Under these
conditions what should be the payoff vectors in the game tree shown in
Figure 4.4?

4.2. Sequential games with perfect information

As defined in the previous section (see Definition 4.6), in the class of
sequential games with perfect information, every player knows exactly
the moves that players have made in the earlier stages of the game.
The takeover game that we discussed in Example 4.5 belongs to this
class of games as player F knows exactly the bid that player I made in
the first stage. The question that arises at this point is about ways of
“solving” sequential games. Before discussing how to solve sequential
games, we need to explain the rationale behind the “solution concept”
for such games.
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Suppose that we have an n-player sequential game. We shall denote
by Si the set of all strategies of player i. As usual, a strategy profile
is an n-tuple (s1, s2, . . . , sn), where si ∈ Si (i.e., each si is a strategy
for the player i). Every strategy profile (s1, s2, . . . , sn) determines a
unique terminal node v (the outcome of the game if each player plays
with the strategy si). At the terminal node v we have the payoff vector
p(v) = (p1(v), . . . , pn(v)). Translating this into the terminology of util-
ity functions, we see that the utility function ui: S1×S2× · · ·×Sn → IR
of player i is defined by

ui(s1, s2, . . . , sn) = pi(v) ,

where again p(v) = (p1(v), . . . , pn(v)) is the payoff vector at the node
v determined (uniquely) by the strategy profile (s1, s2, . . . , sn).

As in the case of strategic form games, a solution of a sequential
game is understood to be a Nash equilibrium, and is defined as follows.

def:NaEQ

Definition 4.8. In an n-player sequential game (with perfect or im-
perfect information) a strategy profile (s∗1, s∗2, . . . , s∗n) is said to be a
Nash equilibrium (or simply an equilibrium) if for each player i,
we have

ui(s∗1, . . . , s
∗
i−1, s

∗
i , s

∗
i+1, . . . , s

∗
n) = max

s∈Si

ui(s∗1, . . . , s
∗
i−1, s, s

∗
i+1, . . . , s

∗
n) .

In other words, as in the previous cases, a Nash equilibrium is
a strategy profile (s∗1, s∗2, . . . , s∗n) such that no player can improve his
payoff by changing his strategy if the other players do not change theirs.

We now procedd to discuss Nash equilibrium strategy profiles for
sequential games. Let us recall that for every terminal node N of a
tree T there exists a unique path starting from the root R and ending
at N . So, if T is also the game tree of a sequential game, then every
strategy profile (s1, s2, . . . , sn) determines a unique path from the root
to some terminal node of the tree. We shall call this unique path the
path supported by the strategy profile (s1, s2, . . . , sn). A path
supported by a Nash equilibrium will be called an equilibrium path.
We remark that:

a. two different strategy profiles can have the same path (see, for
instance, Example 4.9 below), and



A

B

(2,1) (0,3) (4,1) (1,0)

L

L' L"

R

R"R'

D

C

E F G

Equilibrium Path:

A

(4,1)

L"

R

C

F

1
1

2
2

2

128 Chapter 4: Sequential Games

b. every path from the root to a terminal node is supported by at
least one strategy profile.

Let us illustrate the preceding discussion with an example.
ep:seqgame

Example 4.9. Consider the following simple two-person sequential
game with perfect information whose game tree is shown in Figure 4.9.

F60

Figure 4.9.

If player 1 plays L then node B is reached and player 2 will play R′,
in which case player 1 gets zero. If player 1 plays R then node C is
reached and player 2 plays L′′ (and player 1 gets 4). The solution path
is, therefore, A → C → F which leads to the terminal node F at which
the payoff vector is (4, 1).

Now if we think of the strategies that the players use, we find that
player 1 has choices at one node (the node A) at which he can choose
either R or L. Player 2, however, has to choose at the two different
nodes B and C. Player 2’s strategy is, therefore, a function from {B, C}
to {L′, R′, L′′, R′′} with the feasibility restriction that from node B one
can only choose R′ or L′ and a similar restriction on choices from node
C. What strategies are then equilibrium strategies?

The reader should verify that the strategy profiles ({R}, {R′, L′′})
and ({R}, {L′, L′′}) are the only two Nash equilibria of the game. They
both support the equilibrium path A → C → F .

Do sequential games have equilibria? The answer is “Yes” if the
sequential game is of perfect information. This important result was
proved by H. W. Kuhn1.
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vNMorg

Theorem 4.10. (Kuhn) Every sequential game with perfect informa-
tion has a Nash equilibrium.

To prove Theorem 4.10 one can employ our familiar Backward
Induction Method which can be described (as we saw before) by the
following steps.

In the first step, we select all predecessors of the terminal nodes
whose children are all terminal nodes (i.e., all nodes whose edges end
at terminal nodes); let us call these nodes the nodes of Stage 1 or Step 1.
We then assign to each node N of Stage 1 the payoff vector of a terminal
node, say M , that offers the best possible return to the player owning
the node N from N to all possible terminal nodes. Subsequently, we
delete the children of the nodes of Stage 1 and the remaining tree is
the truncated game tree of Stage 1.

The second step repeats this process by looking at the predecessors
of the nodes of Stage 1 whose children are all terminal nodes of the
truncated tree of Stage 1. That is, the nodes of Stage 2 are all nodes
having all of their edges ending at the terminal nodes of the truncated
tree of Stage 1. We shall call these nodes the nodes of Stage 2. In
each node N of Stage 2, we associate a child of N , say Q, with the
best payoff for the player owning the node N from N to all possible
terminal nodes. We then assign the payoff vector of node Q to node
N . (Clearly, if the node N is owned by the kth player, then the kth
coordinate of this payoff vector represents the best payoff that player k
can get starting from node N and ending at any terminal node of the
original tree.) We delete from the truncated tree the children of the
nodes of Stage 2 and obtain the truncated tree of Stage 2.

The predecessors of the nodes in Stage 2 having all of their edges
ending at the terminal nodes of the truncated tree of Stage 2 are now
the nodes of Stage 3. As before, at each node N of Stage 3, we find an
edge that leads to a node of Stage 2, say S, with the highest possible
payoff for the player owning N , and we assign the payoff vector of the
node S to the node N . (Again, if node N belongs to the kth player, then
the kth coordinate of this payoff vector represents the best payoff that
player k can get starting from N and ending at the terminal nodes of
the original tree.) The truncated tree of Stage 3 is obtained by deleting

1Harold W. Kuhn is Professor Emeritus of Mathematical Economics at
Princeton University. He made many contributions to Game Theory.
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from the truncated tree of Stage 2 the children of the nodes of Stage 3.
We continue this backward process until we arrive at a stage where

the predecessors of the nodes of that step consist precisely of the root
R. A path from the root R to a node of that step that yields the
best total payoff for the player owning the root is the beginning of
an optimal decision path that can be traced out now in the opposite
direction.F61

Figure 4.10. The Backward Induction Method

The Backward Induction Method is illustrated in the sequential
game shown in Figure 4.10. Notice that the Backward Induction Method
gives the path B → T → R. Reversing it, we see that a solution path
is R → T → B. This guarantees, for instance, that the strategy

({LN, SC}, {RT}, {TB, NI})

is a Nash equilibium supporting the equilibrium path R → T → B.
We would like to emphasize the following fact regarding the Back-

ward Induction Method.

• While the Backward Induction Method when applicable in a given
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sequential game always produces an equilibrium path, it need not
give us all the equilibrium paths!

For an example illustrating this, see Exercise 4 at the end of this section.
Let us now go back to the takeover game of Example 4.5 and find a

Nash equilibrium by using the Backward Induction Method which we
have just outlined.

In the takeover game player I knows that if the bid b is less than
100 dollars per share than player F will reject the bid as player F
knows that she can do better. Knowing this, if player I is serious
about the bid, he should bid at least 100 dollars per share. In this case
it is not in player F ’s interest to reject the bid. If player I has bid b
dollars per share and b is greater than 100 then player F accepts the
bid and player I realizes a net profit of 110 − b per share. It is clear
that player I will bid at least b dollars per share, but how much is b?
Player I in order to maximize his profit will bid exactly 100 per share
in which case he makes a profit of 10. We have just found a solution
to the takeover game. Player I bids a little bit over 100 per share
and player F accepts. Under this condition, the Backward Induction
Method applied to the game tree of Figure 4.3 yields the following Nash
equilibrium: (Bid, Accepts Bid)

It is worth analyzing the method we used to solve the takeover
game. We noted that when player I made his bid he thought seriously
about how player F will react to the bid. Taking player F ’s possible
reactions to bids into account, player I bid what he thought was optimal
for player I. A slightly different way of doing this is to find out player
F ’s optimal response for each bid that player I could make and take
that as the consequence of the bid that player I makes. Then find out
what is optimal for player I for this modified decision problem.

We now present a few other examples of sequential games with
perfect information.

NucDet

Example 4.11. (Nuclear Deterrence) Two nuclear powers are en-
gaged in an arms race in which each power stockpiles nuclear weapons.
At issue is the rationality of such a strategy on the part of both powers.

Let us examine the question by looking at a stylized version of the
game that the two powers are engaged in. Country 1 moves in the first
stage and may choose between nuclear weapons N or non proliferation
(NP ). Country 2 in stage 2 of the game observes the choice that
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country 1 has made and chooses between N and NP . A representative
game tree of the situation is shown in Figure 4.11.F62

Figure 4.11.

According to the payoffs shown in Figure 4.11, country 2 likes the
option N whether country 1 chooses NP or N . If country 1 chooses
NP , then country 2 by choosing N guarantees for itself a very powerful
position vis-a-vis country 1. If country 1 chooses N , then country 2
would like to choose N as this allows it a credible deterrence against a
possible nuclear attack by country 1.

Knowing country 2’s thinking on this issue country 1 knows that
it is optimal for it to choose N . It is easy to see that the backward
induction solution of this game is the following.

• Country 2 chooses N irrespective of whether country 1 choose N
or NP .

• Country 1 chooses N .

In other words, the path a→ c → d is the only Nash equilibrium path
of the game.

While the example is quite clearly highly stylized, it brings to fore
the incentives that countries have in engaging in arms races. In the
game, it is clearly rational for the two countries to build up their nuclear
arsenal. And left to themselves the countries would do exactly what
the model predicts.

It is also clear that both countries would be better off without
having to spend on an arms race, but the equilibrium solution predicts
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differently. This is precisely why arms races are so prevalent and why it
is so difficult to dissuade countries from pursuing other strategies.2

The next example is very well known in economics. We revisit the
scenario of the duopoly game of Example 2.10, but instead of having
the firms move simultaneously, we now have one firm making its move
before the other firm. That is, one of the firm sets its quantity before
the other firm. This, of course, changes the entire game. The game has
now become a sequential game with perfect information as the quantity
choice of the firm that sets its quantity first is known to the second firm
when the second firm decides what quantity to produce. This duopoly
model was first analyzed by von Stackelberg.

StDM

Example 4.12. (The Stackelberg Duopoly Model) The Stackel-
berg duopoly game is played as follows. There are two firms producing
identical products; firm 1 and firm 2. Firm 1 chooses a quantity q1 ≥ 0
and firm 2 observes q1 and then chooses q2. The resulting payoff or
profit of firm i is

πi(q1, q2) = qi[ p(q)− ci ] ,

where q = q1 + q2, p(q) = A− q is the market clearing price when the
total output in the market is q, and ci is the marginal cost of production
of the product by firm i. That is, the profit of each firm i is

πi(q1, q2) = qi(A− q1 − q2 − ci) .

Note that the game is a two-person sequential game with two stages
and with perfect information. If we use the Backward Induction Method
to solve the game, we must first find the reaction of firm 2 to every
output choice of firm 1. Hence, we must find the output q∗2 of firm 2
that maximizes firm 2’s profit given the output q1 of firm 1. That is,
q∗2 = q∗2(q1) solves

π2(q1, q
∗
2) = max

q2≥0
π2(q1, q2)

= max
q2≥0

q2(A− q1 − q2 − c2) .

2This example was written a year prior to the nuclear explosions in India
and Pakistan!
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Since π2(q1, q2) = −(q2)2 + (A − q1 − c2)q2, taking the first and
second derivatives with respect to q2, we get

∂π2

∂q2
= −2q2 + A− q1 − c2 and

∂2π2

∂q2
2

= −2 < 0 .

So, according to the First- and Second-Order Tests, the maximizer q∗2
is the solution of the equation ∂π2

∂q2
= −2q2 + A− q1 − c2 = 0. Solving

for q2, we get

q∗2 = q∗2(q1) =
A− q1 − c2

2
, ($)

provided q1 < A− c2.
Firm 1 should now anticipate that firm 2 will choose q∗2 if firm 1

chooses q1. Therefore, firm 1 will want to choose q1 to maximize the
function

π1(q1, q
∗
2) = q1(A− q1 − q∗2 − c1)

= q1

(
A− q1 −

A− q1 − c2

2
− c1

)

= 1
2 [−(q1)2 + (A + c2 − 2c1)q1]

subject to q1 ≥ 0. Using again the First- and Second-Order Tests, we
get

∂π(q1, q∗2)
∂q1

= −q1 +
A + c2 − 2c1

2
and

∂2π(q1, q∗2)
∂q2

1

= −1 < 0 .

Therefore, the maximizer of π(q1, q∗2) is q∗1 = A+c2−2c1
2 . Substituting

this value in ($), we get q∗2 = A+2c1−3c2
4 .

This is the Backward Induction solution of the Stackelberg game.
The equilibrium strategy of firm 1 is q∗1 = A+c2−2c1

2 while the equilib-
rium strategy of firm 2 is q∗2 = A+2c1−3c2

4 .

One should compare this with the results obtained for the Cournot
duopoly game of Example 2.10, which is the simultaneous move version
of the duopoly game. In doing so, one will notice that the profit of
firm 1 is greater in the Stackelberg duopoly game than in the Cournot
duopoly game, whereas the profit of firm 2 is lower in the Stackelberg
duopoly game than in the Cournot duopoly game; see Exercise 8 at the
end of the section.



1354.2: Sequential games with perfect information

From the point of view of playing strategically, it would seem that
moving first gives firm 1 a certain advantage. This is a fact that often
holds in sequential games and has been dubbed the first mover ad-
vantage. The intuition behind the phenomenon could be that firm 2
reacts to a commitment that firm 1 makes and firm 1, by moving first,
commits to a strategy that is the most advantageous to itself, thereby,
giving itself an edge. We will see more of this power of commitment in
other situations.

ParGm

Example 4.13. (A Partnership Game) Two partners are inter-
ested in financing a project. If the project is financed, then each receives
W dollars, otherwise each receives zero. The total cost of financing
the project is A dollars and the two partners must come up with this
total. Partner 1 makes the first move by committing c1 dollars to the
project. Partner 2 then decides whether he would want to make up
the difference by contributing c2 dollars to the project. If c1 + c2 = A,
then the project is completed otherwise each partner receives zero.

The opportunity cost of contributing c dollars to the project is c2

dollars to each partner.3 Partner 1 who makes the initial contribution
in period one, discounts the payoff in the second period (the period
when partner 2 makes his contribution) by the discount factor δ. Now,
it should be clear that the utility functions of the partners are

u1(c1, c2) = δ(W − c2
1) and u2(c1, c2) = W − c2

2 .
F83

The situation we have just described can immediately be recognized
as a two stage game of perfect information. Partner 1 makes his con-
tribution first and partner 2 then responds with his share of the cost.
If we solve this game using the Backward Induction Method, we must
first solve the decision problem of partner 2 given the contribution c1

of the first partner. Partner 2 will contribute c2 = A− c1 as long as

A− c1 ≥ 0 and W − c2
2 = W − (A− c1)2 ≥ 0 , ($)

otherwise c2 = 0. Solving ($) for c1, we get

A−
√

W ≤ c1 ≤ A . ($$)
3Recall that in economics the opportunity cost of a particular action is

the gain that one could get from the next best alternative source of investment.
Thus, the cost to a partner may grow by more than the actual dollar amount.
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Figure 4.12.

Now, partner 1 knowing this should decide to contribute an amount
c1 such that A −

√
W ≤ c1 ≤ A. However, this might not be always

profitable for partner 1. To be profitable for partner 1, we must also
have W − c2

1 ≥ 0 or c1 ≤
√

W . In this case, the parameters A and W
must satisfy A −

√
W ≤

√
W or A ≤ 2

√
W . Therefore, the profit of

partner 1 depends upon the parameters A and W which in turn can be
considered determined by Nature N . The game tree of this sequential
game is shown in Figure 4.12.

In case A <
√

W , we see that c1 = 0 and c2 = A. But in this case,
the second partner can finance the entire project on his own and would
want to discontinue the partnership. Notice also that the payoff of the
second partner in this case is 2W −A.

Note here again that the partner who moves first has a decided
advantage. By making the first move and, thereby committing himself
to the move, he lets the second partner make up the difference in the
amount of the contribution. As in the Stackelberg duopoly game, we
see that the first mover has a certain advantage. In committing himself
to the amount he is willing to contribute, he forces the second partner
to come up with the difference as long as it is profitable for the second
partner to do so. But in deciding the amount that he wants to commit
to the project, the first partner makes an optimal decision. The com-
mitment that we, therefore, see in the backward induction solution is
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an optimal commitment .
E:opCnt

Example 4.14. (Optimal Contracts: The Perfect Information
Case) This example is at the heart of the literature on moral hazard in
economics. In the way we formulate it here there is no moral hazard,
but we can use a version of the same model to illustrate the basic results
in that literature.4

This is a two player sequential game in which the Principal P is
considering the possibility of contracting out some work to an Agent
A. The agent has a choice of either accepting the contract offered or
rejecting it. If the agent accepts the contract, then the agent can either
work hard (H) or be lazy (L); we assume that H and L are measured
in dollars. If the agent works hard the project is worth $100 to the
principal with a probability of 0.9 or worth just $10 with a probability
of 0.1. If the agent is lazy the principal receives the high value of $100
with a probabiltity of 0.1 and the low value of $10 with a probability
of 0.9. In this game, we assume that the principal can observe whether
the agent works hard or is lazy. Thus, the game is a game with perfect
information.

The principal can offer a contract that is conditioned on whether
the agent works hard or is lazy, so we denote the contract that is offered
by the wage function W (·), where this function takes two values, W (H)
and W (L). The resulting Principal-Agent game is shown in Figure 4.13.
The payoff to the principal, in case the worker works hard and the F82

high value occurs, is $100 −W (H) and the agent receives W (H)−H.
We will assume here that

H > L .

Clearly, the payoffs to the principal and the agent depend on the con-
tract that the principal offers. The principal knows this and will offer
a contract that he knows the worker will take. The principal, however,
has to offer a contract that will either induce the worker to work hard
or be lazy.

If the principal wants the worker to work hard, then the contract
must satisfy the following conditions:

W (H)−H ≥ W (L)− L and W (H)−H ≥ 0 .

4The literature on moral hazard in economics deals with issues in which
there is the possibility that agents might take actions that are undesirable.
For instance, a worker may choose to be lazy or shirk rather than work hard.
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Figure 4.13.

The condition W (H)−H ≥W (L)−L guarantees that the worker will
choose to work hard as he derives a higher payoff from doing so.5 The
other condition makes certain that the worker is better off accepting
the contract. One contract that does this is the following:

W (H) > H, W (H) ∼= H and W (L) = L ,

where the symbol W (H) ∼= H means that W (H) is very close to being
equal to H.

The contract just described is actually a contract that induces the
agent to work hard. One can compute the (approximate) expected
payoff of the principal as

0.9× [100−W (H)] + 0.1× [10−W (H)] = 91−W (H) . ($)

The agent in this case gets a small amount—which is almost equal to
zero. This contract induces the agent to work hard and the principal
gets the maximum conditioned on the fact that the agent works hard.

The other contract of interest is the one where the principal can
induce the worker to be lazy. In this case the contract must satisfy the
conditions

W (L)− L ≥ W (H)−H and W (L)− L ≥ 0 .

5Note that if W (H)−H = W (L)− L occurs, then the agent is indifferent
between working hard and being lazy. In this case, one might guess that the
agent will prefer to be lazy but the possibility of working hard cannot be
exluded!
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As before these conditions guarantee that the worker gets a higher
payoff by being lazy and will choose to accept the contract. A contract
that does this is the contract W (H) = H and W (L) = L. The expected
payoff of the principal is

0.1× [100−W (L)] + 0.9× [10−W (L)] = 19−W (L) . ($$)

This is the maximum that the principal can anticipate in getting if the
worker is lazy. Thus, the principal prefers the agent to work hard if
91−H > 19− L, or

H − L < 72 .

Otherwise, the principal will want the worker to be lazy.
Thus, assuming 0 < H − L < 72, the Backward Induction Method

to this sequential game yields the following solution:

1. the principal offers the contract W (H) > H, W (H) ∼= H, and
W (L) = L, and

2. the agent “accepts and works hard.”

In case H − L > 72 and L = W (L) < 19, the principal will offer the
contract W (H) = H and W (L) = L in which case the worker accepts
the contract and he is lazy.

Exercises

1. Show that in a sequential game any path from the root to a terminal
node is supported by at least one strategy profile. Give an example of a
sequential game and two different strategies supporting the same path.

2. Show that the strategy profiles ({R}, {R′, L′′}) and ({R}, {L′, L′′}) are
the only Nash equilibria of the sequential game of Example 4.9. Also,
show that they both support the unique equilibrium path A → C → F .

3. Verify that the path a → c → d is the only Nash equilibrium path of
the game in Example 4.11. Also, find all the Nash equilibrium strategy
profiles which support the path a→ c→ d.

NOpath

4. Consider the two-person sequential game shown in Figure 4.14. F64
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Figure 4.14.

a. Show that the only equilibrium path given by the Backward In-
duction Method is the path A → B → D.

b. Show that the path A → C → F is an equilibrium path supported
by the Nash equilibrium ({AC}, {CF, BE}).

5. Consider the Partnership Game of Example 4.13. Assume now that the
partners choose c1 and c2 simultaneously, i.e., we consider the game in
its strategic form. Find the Nash equilibria of the game.

6. Consider an n-player extensive form game having terminal nodes v1, . . . , vk

and payoff vector at each vi given by

p(vi) = (p1(vi), p2(vi), . . . , pn(vi)) .

Assume that at some terminal node v! we have pi(v!) = max1≤r≤k pi(vr)
for each 1 ≤ i ≤ n. That is, assume that the largest payoff that can be
obtained by each player i is at the node v!.

Show that the (unique) path from the root to v! is the path of a
Nash equilibrium.

7. Describe all the Nash equilibria that can be obtained using the Back-
ward Induction Method in the sequential game shown in Figure 4.15.F63

Sprfirms

8. This exercise illustrates the first mover advantage for the Cournot and
Stackelberg duopoly models as described in Examples 2.10 and 4.12,
respectively.

a. Compute the profits πs
1 and πs

2 of the firms in the Stackelberg
Duopoly Model for the Nash equilibrium (q∗1 , q∗2) obtained in Ex-
ample 4.12. [Answer:

πs
1 =

(A + c2 − 2c1)2

8
and πs

2 =
(A + 2c1 − 3c2)2

16
. ]
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Figure 4.15.

b. If πc
1 and πc

2 are the profits of the firms at the Nash equilibrium
in the Cournot Duopoly Model obtained in Example 2.10, then
show that

πs
1 ≥ πc

1 and πs
2 ≤ πc

2 .

[HINT: Invoke the values of πc
1 and πc

2 from Exercise 3 of Sec-
tion 2.3. ]

9. Verify that the equilibrium paths of the partnership game described in
Example 4.13 are as shown in Figure 4.12.

10. Consider the game described in Example 4.14 with the parameters H
and L satisfying H − L > 72 and L < 19. Show that the principal will
offer the contract W (H) = H and W (L) = L in which case the worker
accepts the contract and he is lazy.

11. Establish that the Backward Induction Method can be used to prove
Theorem 4.10. That is, show that in a sequential game with perfect in-
formation every equilibrium path obtained by the Backward Induction
Method is always a Nash equilibrium path.

4.3. Sequential games with imperfect information
sec43

We have seen quite a few examples of games with perfect informa-
tion. The analysis of sequential games with imperfect information runs
along similar lines. However, there are a few differences. Recall that
a sequential game with imperfect information is a game in which the
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information set of at least one player has more than one node. To study
games with imperfect information, we need to introduce the notion of
a subgame. Subgames can be understood in terms of the concept of a
branch6 of the tree. A subgame of a sequential game is an extensive
form game whose game tree is a branch of the original game tree with
the same information sets and the same payoff vectors as the original
game. Here is its formal definition.

d:subgame

Definition 4.15. A subgame of an n-player extensive form game is
another extensive form n-player game such that:

1. its game tree is a branch of the original game tree,

2. the information sets in the branch coincide with the information
sets of the original game and cannot include nodes that are out-
side of the branch, and

3. the payoff vectors of the terminal nodes of the branch are pre-
cisely the same as the payoff vectors of the original game at these
terminal nodes.

Note that Condition 2 of the definition implies that the information
sets of a subgame cannot intersect information sets of the original game
not included in the branch. In particular, the root of a subgame (i.e.,
the root of the branch defining the subgame) must be a node of the
original tree which is the only node in its information set. Since every
tree can itself be considered as a branch, every extensive form game is
automatically a subgame—called the trivial subgame.F70

The game shown in Figure 4.16 is an extensive form game with
imperfect information as nodes C and D form an information set for
player 1. It is not difficult to see that this sequential game has two
(proper) subgames. The first having its branch starting at A and the
second having its branch starting at B; see again Figure 4.16.

Recall that a strategy for a player is a function defined on the nodes
owned by the player, to the children of these nodes, which respects the
information sets. Since a subgame is itself a sequential game, a strategy
in a subgame is also a function defined on the nodes owned by a player,

6Recall that a branch Tu of a tree T is the directed graph having nodes
starting at the node u and including all of its descendants together with their
original edges. Clearly, Tu is itself a tree having u as its root.
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Figure 4.16.

to the children of these nodes, which respects the information sets in the
subgame. Since the information sets in a subgame are also information
sets of the original game, it is easy to see that every strategy profile
of a sequential game gives rise automatically to a strategy profile for
any subgame. Conversely, it should be easy to see (from the definition
of the subgame again) that every strategy profile of a subgame can be
extended to a strategy profile of the game. In other words, we have the
following important property.

• The strategy profiles of a subgame are precisely the restrictions of
the strategy profiles of the game to the subgame.

And now we come to the concept of a subgame perfect equilibrium.
It was introduced by R. Selten.7

def:sbgm

7Reinhard Selten is Professor of economics at the University of Bonn, Ger-
many. Together with John Nash and John C. Harsanyi he shared the 1994
Nobel prize in economics. He was the first to recognize the importance of
subgame perfection and developed the concept in his seminal work “Reex-
amination of the Perfectness Concept for Equilibrium Points in Extensive
Games” (International Journal of Game Theory 4 (1975), 25–55).
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Definition 4.16. (Selten) A strategy profile of a sequential game is
a subgame perfect equilibrium if it is a Nash equilibrium for every
subgame of the original game.

We emphasize immediately that, since every game can be consid-
ered as a subgame, a subgame perfect equilibrium is automatically a
Nash equilibrium of the original game. In other words, a strategy profile
is a subgame perfect equilibrium if, besides being a Nash equilibrium,
it is in addition a Nash equilibrium on every subgame.

Let us illustrate the concept of subgame perfect equilibrium with
an example.

e:sbgpeq

Example 4.17. We consider the extensive form game shown in Fig-
ure 4.16. A direct verification shows that this sequential game with
imperfect information has two equilibrium paths. Namely,

O → B → D → H and O → A → N .

The equilibrium path O → B → D → H is supported by the Nash
equilibrium strategy profile ({R, L′′}, {L∗, L′}). That is,

i. player 1 plays R at O and L′′ at C or D, and

ii. player 2 plays L∗ at A and L′ at B.

We claim that the strategy profile ({R, L′′}, {L∗, L′}) is a subgame
perfect equilibrium. Indeed, on one hand, on the subgame starting
at A, this strategy profile reduces to L∗, which is obviously a Nash
equilibrium for the subgame starting at A (a subgame in which player 1
is inactive). On the other hand, the strategy profile ({R, L′′}, {L∗, L′})
for the subgame starting at B reduces to the strategy profile (L′′, L′),
which is also a Nash equilibrium (why?).

Now the equilibrium path O → A → N is supported by the Nash
equilibrium strategy profile ({L, R′′}, {L∗, R′}). That is,

i. player 1 plays L at O and R′′ at C or D, and

ii. player 2 plays L∗ at A and R′ at B.

We claim that the strategy profile ({L, R′′}, {L∗, R′}) is not a sub-
game perfect equilibrium. Indeed, this strategy profile restricted to
the branch starting at node B reduces to (R′′, R′), which as easily
seen, is not a Nash equilibrium for this subgame.
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The subgame perfect equilibrium concept is, therefore, a refinement
of the concept of a Nash equilibrium. By imposing the condition that
a Nash equilibrium must also be an equilibrium on every subgame one
rules out equilibria that often behave very “strangely” or “unreson-
ably” on certain subgames, namely on the subgames that are not in
the “path” of the strategy profile.

Let us see this in the context of Example 4.17 which we have just an-
alyzed. Notice that the Nash equilibrium strategy profile ({L, R′′}, {L∗, R′})
(whose path is O → A → N) restricted to the subgame starting at B, is
the strategy profile (R′′, R′). However, this is not “self-enforcing” or a
Nash equilibrium. Indeed, if player 2 changes his play from R′ to L′ at
B while player 1 keeps playing R′′ at his information set, then player 2
improves himself. This means that player 2’s choice to play R′ at B
is not rational or (by employing modern game theoretic terminology)
non-credible.

A Nash equilibrium which fails to be subgame perfect is also known
as a Nash equilibrium supported by non-credible behavior. The
issue then is, why does such non-credible behavior happen in a Nash
equilibrium? The answer is, of course, that the part of the game tree
for which the non-credible behavior is specified, is never reached while
playing the Nash equilibrium! F71

Figure 4.17.
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The standard method of finding subgame perfect equilibrium strate-
gies in sequential games is by using the Backward Induction Method
on the subgames of the original games. This was exactly what was
done in Example 4.17. The first equilibrium strategy was found by
first looking at the equilibrium strategies of the smallest subgame at
the end of the tree and then we worked backwards. Starting at node B
the Nash equilibrium strategy profile of the subgame starting at node
B is (L′, L′′), with the payoff vector (2, 2). Assuming, therefore, that
if node B is reached the players will play an equilibrium, the original
game may be viewed as the game shown in Figure 4.17. We now have
a game in which the Nash equilibrium strategy profile requires that

1. player 1 plays R at O and,

2. player 2 plays L∗ or R∗ at A.

This strategy combination, together with the equilibrium strategy pro-
file already obtained in the subgame, constitutes the subgame perfect
equilibrium of the game.

Not all sequential games have subgames. For instance, in the game
shown in Figure 4.16 (or in Figure 4.17), the branch starting at B does
not have any (non-trivial) subgames. The game shown in Figure 4.18
also does not have any subgame, since every branch of the game tree
will violate condition 2 of the definition of a subgame.F72

Figure 4.18.

For sequential games which do not have (non-trivial) subgames, the
concept of subgame perfect equilibrium has no “bite,” as every Nash
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equilibrium is also subgame perfect by default. When a sequential game
has a subgame, the concept of subgame perfect equilibrium can give us
reasonable answers ruling out the more unreasonable Nash equilibria.
Let us how we can do this by means of the following example.

worker

Example 4.18. An employer has hired a worker who has been given
a certain task to complete. The employer can choose to monitor the
worker, or choose not to do so. We will assume that monitoring is costly
and that the worker knows whether or not he is being monitored.

The worker can choose to put in high effort in completing the task
or be lazy. In case the employer monitors the worker, the effort level of
the worker is observed by the employer, otherwise, the employer does
not observe the effort level. The employer then pays a high wage or
a low wage when the worker reports that the task is complete. The
situation that we have just described can be cast as a sequential game
with imperfect information, which is shown in Figure 4.19.

In stage 1, the employer (player 1) chooses whether to monitor or
not to monitor. In stage 2, the employee (player 2) chooses whether
to work hard (h) or be lazy (z). In the following stage, player 1 (the
employer) decides whether to pay a high wage (wh) or a low wage (wz). F73

Figure 4.19.

We denote by m the cost of monitoring to the employer and by e the
cost of the effort put in by the employee. We assume that 20 < m < 30
and 0 < e < 10.

Then the equilibrium in the subgame starting at node A is (wz, z)
and the equilibrium in the subgame starting at node B is h′, that is,
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work hard. The subgame perfect equilibrium of this game is

({Don’t Monitor, wz}, {z, h′}) .

The path of the subgame perfect equilibrium is thus

R → A → E → K .

Notice, though, that the strategy profile ({Monitor, wh}, {h, h′}) is a
Nash equilibrium, this Nash equilbrium fails to be an equilibrium when
restricted to the subgame starting at node A. This is so as it would
be unreasonable to expect player 2 to work hard and player 1 to pay
a high wage as player 2 is clearly better off being lazy and player 1 is
clearly better off paying the low wage. The requirement that a Nash
equilibrium satisfy the condition that it be subgame perfect rules out
this second unreasonable Nash equilibrium.

We now go back to the game on optimal contracts introduced in
Example 4.14. In that example, a principal P and an agent A played
a game in which the principal was able to observe whether the worker
worked hard or was lazy. In any real world situation, this is either too
costly to do, or it may simply be impossible to observe the effort level.
Consequently, the contract that the principal is willing to offer must be
conditioned on what the principal observes. The details are included
in the next example.

E:opCntI

Example 4.19. (Optimal Contracts: The Imperfect Informa-
tion Case) We consider again the general setting of the game in Ex-
ample 4.14. Here, we will assume that the principal is able to observe
the outcome only and not the effort level of the agent. The game that
is now played by the principal and the agent is a game of imperfect
information. Its game tree is shown in Figure 4.20.

In this case, since the principal cannot observe the effort level of the
agent, the wage contract W (·) depends on the level of output observed
by the principal. Therefore, W (·) is now a function of the level of
output rather than the level of effort. We let

w1 = W (high output) and w2 = W (low output) ,

and note that a wage contract offered by the principal is simply a pair
(w1, w2) with w1 ≥ 0 and w2 ≥ 0.F84
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Figure 4.20.

In this game a strategy of the principal consists of making a wage
offer (w1, w2), and a strategy of the agent consists of a plan of action
of whether to accept the wage contract or to reject it at node x, and
whether to work hard or be lazy, when the contract has been acccepted
at node y. It is important to note that the node x which is reached after
a wage offer (w0

1, w
0
2), is different from the node x that is reached after

a wage offer (w1
1, w

1
2) *= (w0

1, w
0
2). Therefore, we denote the node that

is reached after a wage offer of (w1, w2) as x(w1, w2). This means that
(unlike all games discussed so far) we have infinitely many possibilities
for the node x. The set of alternatives for the node x is shown in
Figure 4.20 by means of the points on the half-line OM . In other
words, once the node x = x(w1, w2) is reached, then the rest of the
game (starting at x) is as shown in Figure 4.20

We now recall that a strategy of a player in a sequential game is
a function from the nodes that belong to a player to the children of
those nodes. Hence, a strategy of the agent is a function s(w1, w2) =
(X(w1, w2), Y (w1, w2)), where X(w1, w2) is the choice of the agent at
node x(w1, w2) and Y (w1, w2) is her choice at node y(w1, w2). Clearly,
X(w1, w2) is either A (Accepts) or R (Rejects) and Y (w1, w2) is either
H or L. Computing the expected payoffs πp and πa for the principal
and the agent, we get:

πp((w1, w2), s) =






91− 0.1(9w1 + w2) if s(w1, w2) = (A, H)
19− 0.1(w1 + 9w2) if s(w1, w2) = (A, L)

0 if s(w1, w2) = (R, †)
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and

πa((w1, w2), s) =






0.1(9w1 + w2 − 10H) if s(w1, w2) = (A, H)
0.1(w1 + 9w2 − 10L) if s(w1, w2) = (A, L)

0 if s(w1, w2) = (R, †) .

The symbol † represents an arbitrary choice of the agent at the node
y. So, a Nash equilibrium in this game is a pair of strategy profiles
((w∗

1, w
∗
2), s∗) such that

πp((w1, w2), s∗) ≤ πp((w∗
1, w

∗
2), s

∗)

for all wage offers (w1, w2) and

πa((w∗
1, w

∗
2), s) ≤ πa((w∗

1, w
∗
2), s

∗)

for all strategies s of the agent. Recall also that a subgame perfect
equilibrium is a Nash equilibrium strategy profile which is a Nash equi-
librium on every subgame.

Once the contract (w1, w2) has been offered, i.e, when node x is
reached, the agent (who is assumed to be rational) will choose a strat-
egy s(w1, w2) so that she achieves her maximum expected payoff

max{0.1(9w1 + w2 − 10H), 0.1(w1 + 9w2 − 10L), 0} .

Let s∗ = s∗(w1, w2) be a best choice of the agent given the contract
(w1, w2). That is, s∗ satisfies

πa((w1, w2), s∗) = max{0.1(9w1 + w2 − 10), 0.1(w1 + 9w2 − 10L), 0}

=






0.1(9w1 + w2 − 10H) if 9w1 + w2 − 10H ≥ max{w1 + 9w2 − 10L, 0}
0.1(w1 + 9w2 − 10L) if w1 + 9w2 − 10L > max{9w1 + w2 − 10H, 0}

0 if max{9w1 + w2 − 10H, w1 + 9w2 − 10L} < 0 .
FX1

In other words, we have

s∗(w1, w2) =






(A, H) if 9w1 + w2 − 10H ≥ max{w1 + 9w2 − 10L, 0}
(A, L) if w1 + 9w2 − 10L > max{9w1 + w2 − 10H, 0}
(R, †) if max{9w1 + w2 − 10H, w1 + 9w2 − 10L} < 0 .

To make the problem more tractable, from now on we shall assume
that the parameters H and L satisfy the following inequalities:

H > L and 9L ≥ H .



9w1+w2-10H > max{w1+9w2-10L, 0}

Agent Chooses:  (A,H)

w1

w2

w 1 =
 w 2 

+1.2
5(H

-L)

10H

10H/91.25(H-L) (9H-L)/8

(9L-H)/8

9w1 +w2 =10H

Region  R1:  w1 > 0;   w2 > 0;
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Figure 4.21.

Given these inequalities, the reader should verify that the wage of-
fers for which the agent chooses (A, H) and (A, L) are shown in the
darkened regions of Figures 4.21 and 4.22, respectively. That is, the
agent will choose (A, H) if the offer (w1, w2) lies in the region R1 of
Figure 4.21 defined by the inequalities:

w1 − w2 ≥ 1.25(H − L), 9w1 + w2 ≥ 10H, w1 ≥ 0, and w2 ≥ 0 .

Similarly, the agent will choose (A, L) if the offer (w1, w2) lies in the
region R2 of Figure 4.22 defined by the inequalities:

w2 − w1 ≥ 1.25(H − L), w1 + 9w2 ≥ 10L, w1 ≥ 0, and w2 ≥ 0 .

The principal, being also rational, will choose a contract (w1, w2)
to maximize his expected payoff. In order for the principal to induce
the agent to choose (A, H), he must solve the following maximization
problem:

Maximize : 91− 0.9w1 − 0.1w2 such that (w1, w2) ∈ R1 ,

or

Maximize : 91− 0.9w1 − 0.1w2 = 91− 0.1(9w1 + w2)
Subject to : w1 − w2 ≥ 1.25(H − L) ,

9w1 + w2 ≥ 10H, w1 ≥ 0, and w2 ≥ 0 .



w1+9w2-10L > max{9w1+w2-10H, 0}

Agent Chooses:  (A,L)

w1

w2

w 1 =
 w 2 

+1.2
5(H

-L)

10L

10L/9

1.25(H-L) (9H-L)/8

(9L-H)/8 w
1 +9w
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Region  R2:  w1 > 0;   w2 > 0;
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Figure 4.22.

Notice that the principal in deciding on the optimal wage offers has to
consider the response of the agent. He does this by including the two
constraints in his optimization problem. The first constraint guarantees
that the agent (given that she decides to accept the offer) makes the
right choice between H and L. In the literature, this constraint is called
the incentive constraint. The second constraint, which is called the
individual rationality constraint, guarantees that the agent will
choose the contract. It should be clear that in this case, the expected
payoff of the principal will achieve its maximum value 91 − H when
the contract (w1, w2) satisfies 9w1 + w2 = 10H and 0 ≤ w1 ≤ 9H−L

8 .
Similarly, from Figure 4.22, we see that if the principal wants to

induce the agent to choose (A, L), then he must make her an offer
(w1, w2) such that w1 + 9w2 = 10L, where 0 ≤ w1 ≤ 9H−L

8 . In this
case, the expected payoff of the principal is 19− L.

Now, the principal in deciding between these two wage contracts
compares 91 − H and 19 − L. If 91 − H ≥ 19 − L, then he chooses
the first wage contract, otherwise he chooses the second. That is, the
optimal wage contract (w∗

1, w
∗
2) is described as follows:

• If 72 + L ≥ H, then 0 ≤ w∗
1 ≤ 9H−L

8 and 9w∗
1 + w∗

2 = 10H (in
which case the agent’s strategy is s∗(w∗

1, w
∗
2) = (A, H))
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• If 72 + L < H, then 0 ≤ w∗
1 ≤ 9H−L

8 and w∗
1 + 9w∗

2 = 10L (in
which case the agent’s strategy is s∗(w∗

1, w
∗
2) = (A, L)).

It is important to note that the above wage contract (w∗
1, w

∗
2), of-

fered by the principal, is such that in each case the wage offer maximizes
the principal’s expected payoff given the strategy of the agent. Simi-
larly, given the wage offer, the strategy chosen by the agent maximizes
her expected payoff. This means that the strategy profile ((w∗

1, w
∗
2), s∗(w∗

1, w
∗
2))

is a Nash equilibrium of this game. It should be also noticed, that
once the wage offer (w∗

1, w
∗
2) has been made, the agent selects her op-

timal strategy on the two possible subgames with origins at the nodes
x(w∗

1, w
∗
2) and y(w∗

1, w
∗
2). Hence, the optimal wage contract is a sub-

game perfect equilibrium of the game. This is true of each of the
optimal wage contracts described above. It is also worth noting at this
point that the best response of the agent to a wage contract w1 = 0
and w2 = 0 is to choose s(w1, w2) = (R, L). Therefore, a wage offer of
w1 = 0 and w2 = 0 is a Nash equilibrium of the game which leads to a
payoff of zero for both the principal and the agent. But this is a Nash
equilibrium of the game that the principal will choose not to play for
the obvious reasons.

Exercises

1. Verify that the strategies of a player P in a subgame are precisely the
restrictions of the strategies of the player P on the whole game.

2. Find all the Nash equilibria strategy profiles that support the two equi-
librium paths

O → B → D → H and O → A → N

of the sequential game with imperfect information shown in Figure 4.16.

3. Consider the extensive form game shown in Figure 4.16. Show in detail
that the Nash equilibrium ({R, L′′}, {L∗, L′}) is a subgame perfect equi-
librium while the Nash equilibrium ({L, R′′}, {L∗, R′}) is not a subgame
perfect equilibrium.

4. Consider the game of Example 4.18 shown in Figure 4.19. Verify that:
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a. the strategy profile ({Don’t Monitor, wz}, {z, h′}) is a subgame
perfect equilibrium, and

b. the strategy profile ({Monitor, wh}, {h, h′}) is a Nash equilibrium
but not a subgame perfect equilibrium.

5. Consider the game of Example 4.18. If the cost of monitoring is zero
(i.e., m = 0) and the cost of putting in effort e satisfies 20 < e < 30,
then find all Nash and subgame perfect equilibria.

6. Again consider the game of Example 4.18. Assume now that the worker
does not know whether or not he is being monitored. Describe the
sequential game and find its Nash equilibria.

7. Consider the extensive form games shown in Figure 4.23.F74

Figure 4.23.

a. Show that the strategy profile ({π, ε}, {α, δ}) is a subgame perfect
equilibrium for the game shown in Figure 4.23(a).

b. Show that the strategy profile ({σ, ε}, {β, δ}) is a Nash equilibrium
for the game shown in Figure 4.23(a) but not a subgame perfect
equilibrium.

c. Find the Nash and subgame perfect equilibria of the game shown
in Figure 4.23(b).

8. Consider the game described in Example 4.19. Assume that the prin-
cipal offers a contract (w1, w2) to the agent satisfying w1 − w2 <
1.25(H − L). Make a thorough analysis (in terms of the parameters
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H and L) of the Nash equilibria and describe the expected payoffs of
the players.

9. In the game of Example 4.19, the utility function of the agent was given
by u(w, e) = w−e, where w is the wage received and e is the effort level
of the agent. Now, suppose the utility function of the agent is given by

u(w, e) = ln(w
e ).

Assume as in Example 4.19 that the principal does not observe the
effort level and that the parameters, and the contracts satisfy 0 < 2L =
H < 85 and w1 ≥ 21.25w2.

a. Draw the game tree with the new utility function of the agent.
b. What is the optimizing problem that the principal now needs to

solve?
c. Solve the problem of the principal that you described in (b).
d. What is the optimal contract offered by the principal?

10. Find the optimal wage contract in Example 4.19 when the parameters
satisfy the inequality 9L < H.



Chapter 5

Sequential Rationality

Chap5

The concept of subgame perfection that we discussed in the previous
chapter is a concept that surfaces specifically in the context of sequen-
tial games. One way to think of subgame perfection is to view it as a
Nash equilibrium which satisfies a criterion for sequential rationality.
That is, as a sequential game is played, subgame perfection ensures
that the players continue to play rationally as the game progresses.

Subgame perfection, however, does not give us any clue about se-
quential rationality in sequential games which do not have subgames.
This is a fairly major problem as many important classes of sequen-
tial games do not have subgames. For instance, it is very common for
sequential games arising from situations in which the players have dif-
ferential information not to have any subgames. Thus, there arises the
issue of what we understand by sequential rationality in such cases.

The issue is important because unlike a Nash equilibrium strategy
profile in a strategic form game, not every Nash equilibrium of a se-
quential game provides a convincing solution of the game. We observed
this to be true in the case of sequential games with subgames. And this
observation then raises the same concerns about Nash equilibrium in
sequential games without subgames. The subgame perfect Nash equi-
librium seems to be a reasonable solution, as it satisfies the condition
that while the game is played, given the node of the game tree that
has been reached, it remains a solution for the remainder of the game.
We can thus say that a subgame perfect equilibrium strategy profile
satisfies sequential rationality , since as play progresses, it is rational to
keep playing the subgame perfect equilibrium strategy profile. But this
now begs the question about what it would mean for a Nash equilib-
rium to be sequentially rational in sequential games which do not have
subgames. In this chapter we provide an answer to this question by
discussing Sequential Equilibrium, and, in the process, describing one
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way in which a Nash equilibrium may be sequentially rational.
We start with the example of the market for lemons as a way of

motivating the rest of the chapter as this is a sequential game which
does not have a proper subgame. We then discuss strategies and beliefs,
consistency of beliefs, expected payoffs, and finally define sequential
equilibrium. We end the chapter with several applications of sequential
equilibrium.

5.1. The market for lemons
lemons

This is an example of a two player game in which one of the players
has more information than the other. The example is a highly stylized
version of the market for lemons.1 In this market there are two types of
cars: good quality cars and bad quality cars which are found in equal
proportions. In such a market the seller usually has a reservation
price ph for a good quality car (the lowest price he is willing to accept
for a high quality car), and a reservation price p% for a low quality
car (the lowest price he is willing to accept for a low quality car). On
the other hand, the buyer has his own reservation prices: a reservation
price of H dollars for a high quality car (the highest price he is willing
to pay for a high quality car) and a reservation price of L dollars for a
low quality car (the highest price he is willing to pay for a low quality
car). For the viability of market transactions, we shall assume that
H > ph and L > p%. We also assume that the reservation prices H, L,
ph, and p% are known to all players; it is also assumed that p% < ph

and L < H. In this market the seller of a used car typically has more
information than the buyer.

Now let us look at the sequential game that results when a seller
puts a used car in the market. Nature reveals the quality of the car
(G for good and B for bad) to the seller (player 1) who then decides
whether he should ask a high price ph, or a low price p%, for the used
car. The buyer (player 2) does not know the quality of the car, but
sees the price p announced by the seller. Player 2 then has to decide
whether to buy the car. This sequential process is described in the
game shown in Figure 5.1. F76

1The lemons game is a version of the lemons market analyzed by George
Akerlof in his seminal piece: The Market for Lemons: Quality Uncertainty and
the Market Mechanism, Quarterly Journal of Economics 89 (1970), 488–500.
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Figure 5.1.

Clearly, this sequential game with imperfect information does not
have any subgames, so that any Nash equilibrium would at first seem to
be sequentially rational. However, once an information set of player 2
is reached, it is unclear what player 2 will do (or what is rational for
player 2 to do), as he does not know whether the car is of good quality
or bad quality. If player 2 has beliefs about the quality of the car, then
the player will decide what to do on the basis of these beliefs. The
question that arises now is: what beliefs should a rational player have
at player 2’s information sets?

Whatever beliefs player 2 has at the information sets, the beliefs
should be “rational.” One way to examine whether the players’ beliefs
are rational is to check whether the beliefs are consistent with the
choices that the players would make. In the lemons game it may “seem”
sensible to believe that:

• if player 2 (the buyer) observes the listed price p to be close to
ph, then he should believe that the car is of high quality, and

• if he observes the price p to be close to p%, then he should believe
that the car is of low quality.

But if player 1 knows this, should player 1 (the seller) charge a high
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price for a high quality car and a low price for a low quality car? The
answer is, of course, to charge a high price for every car! We see that
the beliefs of player 2 are not consistent with the choices that player 1
would make given player’s 2 beliefs.

Moreover, some careful thinking reveals that seeing a high price
should not lead player 2 to believe that the seller only offers the high
quality car at the high price. Hence, player 2 should believe that the car
offered at the high price is equally likely to be of high or of low quality.
In such a case, the buyer (acting rationally), would buy a car only if the
expected value of buying a car exceeds the expected value of not buying.
That is, the buyer will buy the car only if 1

2(H − p) + 1
2(L− p) ≥ 0, or

p ≤ 1
2(H + L).

If the seller sets the price p any higher, the (rational) buyer who
believes that the car is equally likely to be worth H or L will not buy
the car. Thus, in this sequential game, if the price p is such that p ≥ ph,
then the buyer believes that the car can be worth H with probability
1
2 and L with probability 1

2 , as both high and low quality cars will be
offered at this price. That is, the buyer (player 2) believes that he is
at node X with probability 1

2 and at node Y with probability 1
2 ; see

Figure 5.1. In this case, “sensible beliefs” by player 2 are given by

P ({X}) = P ({Y }) = 1
2

at the nodes that belong to the information set I1 = {X, Y }.
If, however, ph > p ≥ p%, then the buyer knows that the high quality

cars are not offered for sale, and only the low quality cars are in the
market. Thus, when the buyer sees a price p less than ph, he should
believe that he is at node N with certainty. In this case, the sensible
beliefs of player 2 are given by

P ({M}) = 0 and P ({N}) = 1

at the nodes that belong to the information set I2 = {M, N}.
We now note that two cases can arise.

Case 1: 1
2(H + L) ≥ ph.

In this case, since the price p = 1
2(H + L) is greater than or equal

to the reservation price ph of the seller for the high quality car, the
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seller would offer both types of cars at this price. The buyer would
believe that both types of cars were offered and both types of cars are
then offered and purchased at the price p; the buyer’s expected value.
Since, in this case, the expected payoff of the buyer is zero, the buyer
will buy the car at this price.
Case 2: ph > 1

2(H + L).
In this case, if p = 1

2(H + L) is proposed as a price, the seller with
the high quality cars will not offer those cars for sale. Thus, only the
low quality cars are offered for sale. Here, the buyer knows that node N
has been reached, and thus offers to pay at most L dollars. Therefore,
in this case only the low quality cars are bought and sold and the price
settles somewhere between p% and L.

In the preceding sequential game, we saw that the beliefs of the
players play a critical role. It is also important to note that the beliefs
somehow have to make sense. In other words, given the price p,

1. the beliefs of the buyer are consistent with the incentives the
seller has, and

2. the strategy of the buyer is optimal given his beliefs about the
seller’s optimal strategy.

We thus seem to have ended up, in each case, with an “equilibrium”
that is driven by a system of consistent beliefs—beliefs that are con-
sistent with the optimal strategies of the buyer and seller. In fact, we
have just given a heuristic description of the concept of a sequential
equilibrium for the lemons game. In the next sections, we shall fully
describe this concept.

We now proceed to demonstrate that the intuitive equilibrium de-
scribed above is indeed a Nash equilibrium for the lemons game.

e:Lmng

Example 5.1. (The Lemons Game) If we want to verify that the
above process leads to a Nash equilibrium, we must redraw the game
tree of the lemons game. As a matter of fact, since the price p ≥ 0
can take an infinite number of non-negative values (0 ≤ p < ∞), this
game tree has in actuality infinitely many nodes. To see this, notice
again that the game starts with nature revealing the quality of the car
to the seller (player 1); B (for bad) and G (for good). Once this is
done, the seller sets up the price p for the car. In case the car is good,
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then this bring the game to node X, and to node Y in case the car is
bad. This game tree is shown in Figure 5.2. Thus, the set {X, Y } is an
information set for player 2. Clearly, the nodes X and Y have infinitely
many possibilities—the points of the half-lines OX and O′Y . CAR

Figure 5.2.

We now discuss the strategies of each player. A strategy for the
seller is simply any price p ≥ 0 (the listed price for the car). A strategy
s for the buyer is a function on the nodes X and Y which takes the
values b (buy) or nb (not buy). Since the nodes X and Y are completely
determined by the price p, we can also think of the strategy s as a
function s: [0,∞) → {n, nb}. As before, we distinguish two cases.
Case 1: 1

2(H + L) ≥ ph.
It is easy to see that the payoff functions of the players are given

by

u1(p, s) =






p− ph if s(X) = b
p− p% if s(Y ) = b

0 if s(X) = nb
0 if s(Y ) = nb , and

u2(p, s) =
{

1
2(H + L)− p if s = b

0 if s = nb .
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In this case, the strategy profile (p∗, s∗) defined by

p∗ = 1
2(H + L) and s∗(p) =

{
b if 1

2(H + L) ≥ p
nb if 1

2(H + L) < p ,

is a Nash equilibrium.
Case 2: ph > 1

2(H + L).
Here the seller knows that the buyer will never buy a car at a price

greater than 1
2(H + L), and so only the low quality cars will be in

the market. This means that the players have the following payoff
functions:

u1(p, s) =
{

p− p% if s = b
0 if s = nb

and u2(p, s) =
{

1
2(H + L)− p if s = b

0 if s = nb .

In this case, the strategy profile (p∗, s∗) defined by

p∗ = L and s∗(p) =
{

b if L ≥ p
nb if L < p ,

is a Nash equilibrium.
We leave it as an exercise for the reader to verify that the above

strategy profiles are indeed Nash equilibria for the lemons game.

The Lemons Example is instructive in at least two ways. First, it is
an example of a sequential game which does not have proper subgames.
Second, in arriving at an equilibrium solution the role of beliefs was
critical. Both issues are important for games with imperfect informa-
tion, and it is important that we explicitly take these facts into account
when solving for equilibria. Of course, it should be clear that not ev-
ery belief can be justified. For instance, the belief that a seller with
a low quality car will announce this fact to a buyer is hardly credible.
The concept of a sequential equilibrium is designed to handle just such
issues.

Exercises

1. Does the game shown in Figure 5.1 have any subgames?

2. Verify that the strategy profiles described in Example 5.1 are indeed
Nash equilibria for the lemons game.
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3. Find an equilibrium in the lemons game when two-thirds of the cars in
the market are of bad quality.

4. In the lemons game if players could get sellers to certify the quality of
the cars, how would you modify the game?

5.2. Beliefs and strategies
BAS

In the preceding section we saw that beliefs played a very important
role in finding solutions. We also noted that reasonable beliefs have to
be consistent with the way the game is to be played. In this section, we
develop a rigorous method of describing a system of beliefs. Later, we
will see that such systems of beliefs play a crucial role in the definition
of sequential equilbrium. F86

Figure 5.3.

• A system of beliefs µ for a player P is a function that assigns
a probability distribution to the nodes in the information sets
of the player. That is, if I = {N1, . . . , Nk} is an information
set for the player P , then µ assigns a probability distribution
µI : I → [0, 1] (which means, of course, that

∑k
i=1 µI(Ni) = 1).

The number µI(Ni) is interpreted as the belief (probability) of
the player that node Ni has been reached. In Figure 5.3(A) a
system of beliefs is shown for a player owning the information set
{N1, N2, N3}.
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A belief system for a game with imperfect information is
an n-tuple µ = (µ1, . . . , µn), where µi is a system of beliefs for
player i.

The next concept is that of a behavior strategy of a player which
extends the concept of a strategy profile to the framework of sequential
games.

• A behavior strategy π for a player P is a function that assigns
a probability distribution at the edges of every node owned by
the player P that respects his information sets. That is, if I =
{N1, . . . , Nk} is an information set of the player P , and the set
of edges at each node Ni of I can be identified with the set
E = {1, 2, . . . , m}, then π assigns the probability distribution
πE : E → [0, 1]. The number πE(i) is the probability that player
P will choose the edge i when he or she reaches the information
set I. In Figure 5.3(B) the reader will find two examples of
behavior strategies for the players P1 and P2.

A behavior strategy profile is an n-tuple π = (π1, . . . ,πn)
where πi is the behavior strategy for player i.

• A behavior strategy profile π is said to be completely mixed if
every choice at every node is taken with positive probability.

Assume now that a behavior strategy profile π = (π1, . . . ,πn) for an
n-player game has been determined, and let NkN% be an edge owned
by a player i. For ease of notation, we shall denote the probability of
moving from Nk to N% by π(NkN%) instead of by πi(NkN%), though that
is the probability assigned by player i to the edge NkN% in the behavior
strategy π. Similarly, we define the probability of moving from a node
N1 to another node Nm by

π(N1Nm) = π(N1N2)π(N2N3) · · ·π(NkNm) ,

where N1 → N2 → N3 → · · · → Nk → Nm is the unique path joining
N1 with Nm. If there is no path joining N1 to Nm, then π(N1Nm) = 0.

If N is an arbitrary node, we shall denote π(RN), where R is the
root of the game tree, by π(N), i.e., π(N) = π(RN). The number
π(N) represents the probability of reaching the node N starting
from the root.
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With the assignments of these probabilities, the alert reader will
notice that once a completely mixed strategy profile is known to the
players, it automatically leads to the creation of a system of beliefs in
a natural way. We show this in the example below. F75r

Figure 5.4.

e:Baconex

Example 5.2. Consider the sequential game shown in Figure 5.4. In
this game a completely mixed strategy profile π is given by:

1. player 1 plays a with probability 0.1 and b with probability 0.9,

2. player 2 makes the following choices at his information set: T
with probability 0.1 and B with probability 0.9, and

3. and finally player 1 on reaching his information set plays L and
L′ with probability 0.1 and R and R′ with probability 0.9.

If this is the behavior strategy profile, then the question is: what be-
liefs should rational players have about which nodes have been reached
at their information sets? Clearly, player 2 should believe that the
probability is 0.1 that he is at the top node X in his information set.
What should player 1’s belief be once he reaches his information sets
after player 2 has chosen? In particular, what should player 1’s beliefs
be at the information sets I1 = {E, F} and I2 = {G, H}.

If player 1 reaches his information set I1, then it must have been
the case that he chose a at the initial node. The information that he is
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at the information set I1 must then be used to form beliefs about which
node has been reached. One way of doing this is to use the familiar
Bayes’ formula in the way we used it in studying sequential decisions.

Therefore, if π(E) is the probability that node E is reached starting
from the root, and π(E/I1) is the conditional probability that node E
is reached given that the information set I1 is reached, then this prob-
ability according to Bayes’ formula is:

π(E/I1) =
π(I1/E)π(E)

π(I1/E)π(E) + π(I1/F )π(F )

=
π(E)

π(E) + π(F )
.

Thus, in this case,

π(E/I1) =
1× 0.01

1× 0.01 + 1× 0.09
= 0.1 .

In other words, player 1, after updating his beliefs from the information
provided by the behavior strategy π, now finds that the probability of
being at node E is 0.1, though at the start of the game the probability
of reaching node E at the information set I1 is 0.01.

Player 1 has thus used the new information about what has hap-
pened in the game to revise the original probabilities. This is expressed
by saying that player 1 is updating beliefs in a sequentially rational
way. If player 1 does this for every node in his information sets, then
his beliefs are:

π(E/I1) = 0.1, π(F/I1) = 0.9,

π(G/I2) = 0.1, π(H/I2) = 0.9 .

Clearly, these beliefs are the only ones that are consistent with the
behavior strategy profile π and thus the only ones that seem reasonable
given the behavior strategy profile.

Assume now that π is a completely mixed strategy profile for an
n-person sequential game and that I = {N1, N2, . . . , Nk} is an infor-
mation set. Then, it is easy to see that

P (Nj/I) =
π(Nj)∑k
i=1 π(Ni)
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holds true for each j = 1, . . . , k. Moreover, the formula

µπ(Nj) = P (Nj/I) =
π(Nj)∑k
i=1 π(Ni)

defines a belief system, which is called the belief system generated
by π. F75d

Figure 5.5.

Exercises

1. Verify that if π is a behavior strategy profile for an n-person sequential
game and I = {N1, N2, . . . , Nk} is an information set, then

P (Nj/I) =
π(Nj)∑k
i=1 π(Ni)

holds true for each j = 1, . . . , k.

2. Consider the game shown in Figure 5.5. Show that the belief at the
information set {E, F} is determined only by the behavior strategy of
player 2 at the information set {X}. What determines the belief at the
information set {G, H}.

3. Consider the sequential game shown in Figure 5.6.
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a. Compute the probabilities π(F ), π(D), π(A), and π(XB).
b. If I1 = {X, Y } and I2 = {E, F, G, H}, compute P (X/I1), P (E/I2),

and P (G/I2).
F75C

Figure 5.6.

4. Consider the Lemons Game of Figure 5.1. Suppose that player 1 chooses
ph with probability 0.9 if G is chosen by nature, and ph with probability
0.1 if B is chosen by nature. Assuming that G and B have equal
chance to be chosen by nature, describe the values of the belief system
generated by this completely mixed behavior strategy profile at the
nodes of the information sets.

5. Verify that every behavior strategy profile restricted to any subgame is
a behavior strategy profile for the subgame. Verify a similar claim for
a belief system.

6. Let π be a behavior strategy profile for an n-person sequential game.
If X1, X2, . . . , Xk are the terminal nodes of the game tree, then show
that

π(X1) + π(X2) + · · · + π(Xk) = 1 .

[HINT: Use Exercise 2 of Section 3.2. ]

5.3. Consistency of beliefs

In this section, we provide a precise definition of reasonable beliefs
which will play a crucial role in formalizing the notion of sequential
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rationality. We start with the following definition.
d:Bayescon

Definition 5.3. A system of beliefs µ is said to be Bayes’ consistent
with respect to a completely mixed behavior strategy profile π if µ is
generated by π, i.e., if µ = µπ.

Suppose that in Example 5.2 the completely mixed behavior strat-
egy profile is changed in a sequential manner so that the probability
of 0.1 is made smaller and smaller and consequently the choices made
with probability 0.9 are made with probabilities that get closer and
closer to 1. The system of beliefs consistent with this sequence of com-
pletely mixed behavior strategy profiles will also change at each step
of the sequence and the question then is: what happens at the limit?

It is not difficult to see that the “limiting belief system” µ for each
player is described as follows.

i. At player 1’s information sets: µ(E/I1) = µ(G/I2) = 0 and
µ(F/I1) = µ(H/I2) = 1, and

ii. At player 2’s information set: µ(X) = 0 and µ(Y ) = 1.

This system of beliefs—which cannot be directly obtained by using
Bayes’ formula from the strategy profile—yields the path

O → Y → H → (4, 3)

that can be supported by the strategy profile ({b, R, R′}, B). What
makes the system of beliefs and the strategy profile consistent is the fact
that they are the limit of a sequence of Bayes’ consistent belief systems
and strategy profiles. This defining characteristic of “consistency” is
formalized as follows.

df:cons

Definition 5.4. A strategy profile π and a belief system µ are said
to be consistent, if there is a sequence of completely mixed behavior
strategy profiles {πn} such that the sequence (πn, µπn), where each µπn

is the system of beliefs that is Bayes’ consistent with {πn}, converges
to the pair (π, µ) in the sense that:

1. πn(NiNj) → π(NiNj) for each edge NiNj, and

2. µπn(N) → µ(N) for each node N .
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It should be clear now that any equilibrium notion for a sequen-
tial game with imperfect information should incorporate the notion of
consistent beliefs and strategy profiles, as this concept seems to be an
essential feature for any reasonable formulation of “sequential ratio-
nality.” Unfortunately, as the following example shows, although the
consistency notion seems to be an important ingredient for any concept
of sequentially rationality, it is not enough to characterize it.

e:seqeQ

Example 5.5. Consider the sequential game shown in Figure 5.7. In
examining this game we find that there are two Nash equilibria in the
game, namely (a, R) and (b, L). The issue now is which of the two
seems to be most reasonable.F81

Figure 5.7.

Clearly, we cannot use the criterion of subgame perfection to delete
one or the other equilibrium, as the game has no (proper) subgames.
One can argue in this case that the Nash equilibrium in which the
first player has the greater payoff will prevail, as he has the first move
and can dictate the play of the game. An even more compelling argu-
ment for deleting the Nash equilibrium (a, R) is the observation that
if player 2’s information set is ever reached, then there is no reason to
suppose that player 2 will choose R, as irrespective of what player 2’s
assessment about where he is, player 2 is better off playing L. More-
over, it can be checked that the strategy profile (b, L) is consistent with
the belief system µ, defined by µ(C) = 0 and µ(B) = 1.

For the other Nash equilibrium (a, R), it can be checked that any
belief system is consistent with the strategy profile (a, R); see Exercise 2
at the end of this section. However, no matter what beliefs player 2
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has at the information set {B, C}, he should never play R if play ever
reaches this information set. This is because he gets a higher payoff if he
plays L, no matter what he believes about which node has been reached.
This Nash equilibrium is thus quite hard to defend as a “reasonable”
solution of the game. The only acceptable equilibrium in this game
seems to be the strategy profile (b, L).

The example we have just discussed teaches us a couple of important
lessons. First, a consistent system of beliefs seems to be only one step
towards a reasonable solution of a sequential game. Second, a Nash
equilibrium strategy profile does not necessarily include the optimal
action at every information set. The choice of R at the information
set {B, C} is clearly not optimal. One would hope that given the
system of beliefs, choosing the optimal action would be a requirement
of a solution of a sequential game. In the next two sections we shall
examine exactly how we go about finding an equilibrium with precisely
these properties.

Exercises

1. Describe the system of beliefs µ which is Bayes’ consistent with the
completely mixed behavior strategy profile shown on the game tree of
the sequential game of Figure 5.6.

p532

2. Consider the sequential game shown in Figure 5.7.

a. Show that the strategy profiles (b, L) and (a, R) are both Nash
equilibria.

b. The Nash equilibrium (a, R) is supported by the strategy profile
π = (π1,π2) given by

π(t) = π(b) = π(L) = 0 and π(a) = π(R) = 1 .

Show that every belief system µ is consistent with the strategy
profile π. [HINT: If µ(C) = p and µ(B) = 1−p, where 0 < p < 1,
consider the sequence {πn} of strategy profiles given by

πn(t) = p
2n , πn(b) = 1−p

2n , πn(a) = 1− 1
2n ,

πn(R) = 1− 1
2n , and πn(L) = 1

2n .
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When µ(C) = 1 and µ(B) = 0, consider the sequence {πn} of
strategy profiles given by

πn(t) = 1
2n , πn(b) = 1

4n2 , πn(a) = 1− 1
2n −

1
4n2 ,

πn(R) = 1− 1
2n , and πn(L) = 1

2n .
]

c. Show that the strategy profile π that supports the Nash equilib-
rium (b, L), given by

π(a) = π(t) = π(R) = 0 and π(b) = π(L) = 1 ,

is consistent with the belief system µ given by µ(B) = 1 and
µ(C) = 0.

5.4. Expected payoff
sec54

In this section, we describe how to compute the payoff of a player
starting from an information set. We do this by first discussing how to
compute the payoffs that the players receive from playing a behavior
strategy profile. A behavior strategy combination can be either pure
or mixed. Recall that a strategy profile which selects edges with a
probability of zero or one is called a pure strategy profile. Analo-
gous to the concept of mixed strategies that we already encountered
in Section 2.4, a strategy profile that chooses edges with probabilities
other than zero or one is called a mixed strategy profile. Accord-
ingly, from now on, a strategy profile which is an equilibrium will be
understood to be in mixed strategies. If a behavior strategy combi-
nation is pure, then the play will lead to a specific terminal node of
the game. Otherwise, terminal nodes will be reached with the some
positive probability, not necessarily one. For these cases we need to
describe the resulting payoffs.

Consider an n-person sequential game having terminal nodes X1, . . . , Xk

with the n-dimensional payoff vectors

u(Xi) = (u1(Xi), u2(Xi), . . . , un(Xi))

at these terminal nodes. Also, suppose that a behavior strategy profile
π and a belief system µ have been assigned to this n-person game. If
N is a node of this game tree, then the expected payoff (or utility)
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of the game starting at node N is the n-dimensional vector defined by

E(N,π) =
k∑

i=1

π(NXi)u(Xi) .

In particular, the expected utility of player j starting at node N is
given by

Ej(N,π) =
k∑

i=1

π(NXi)uj(Xi) .

If now I = {N1, . . . , Nm} is an information set for the n-person game,
then the expected payoff of I relative to the pair (π, µ) is the n-
dimensional vector defined by

E(I,π, µ) =
m∑

r=1

µ(Nr)E(Nr,π) =
m∑

r=1

µ(Nr)
k∑

i=1

π(NrXi)u(Xi) .

This means that the expected payoff of a player j, given that the in-
formation set I has been reached, is given by

Ej(I,π, µ) =
m∑

r=1

µ(Nr)Ej(Nr,π) =
m∑

r=1

µ(Nr)
k∑

i=1

π(NrXi)uj(Xi) .

We illustrate the various expected utility concepts with the next
example.

e:ExUt

Example 5.6. Consider the 2-person game shown in Figure 5.8. The
behavior strategy profile π is also described in Figure 5.8. F75b

Notice that

E(N,π) = 0.6(4, 2) + 0.4(0, 3) = (2.4, 2.4) ,

E(F,π) = 0.6(1, 7) + 0.4(2, 6) = (1.4, 6.6) ,

E(G,π) = 0.9(3, 0) + 0.1(2, 4) = (2.9, 0.4) ,

E(H,π) = 0.9(3, 5) + 0.1(4, 3) = (3.1, 4.8) ,

E(X,π) = 0.3E(N,π) + 0.7E(F,π) = (1.7, 5.34) ,

E(Y,π) = 0.3E(G,π) + 0.7E(H,π) = (3.04, 3.48) , and
E(O,π) = 0.5E(X,π) + 0.5E(Y,π) = (2.37, 4.41) .
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Figure 5.8.

Now assume that the following belief system µ has been assigned:
µ(X) = µ(Y ) = 0.5, µ(E) = 0.2, µ(F ) = 0.8, µ(G) = 0.15 and
µ(H) = 0.85.

If I1 = {X, Y }, I2 = {E, F}, and I3 = {G, H}, then note that

E(I1,π, µ) = µ(X)E(X,π) + µ(Y )E(Y,π)
= 0.5(1.7, 5.34) + 0.5(3.04, 3.48) = (2.37, 4.41) ,

E(I2,π, µ) = µ(E)E(N,π) + µ(F )E(F,π)
= 0.2(2.4, 2.4) + 0.8(1.4, 6.6) = (1.6, 5.76) , and

E(I3,π, µ) = µ(G)E(G,π) + µ(H)E(H,π)
= 0.15(2.9, 0.4) + 0.85(3.1, 4.8) = (3.07, 4.14) .

This completes the computation of the expected utilities.

Exercises

1. Consider the sequential game with imperfect information shown in Fig-
ure 5.7. Assume that the following behavior strategy profile π and
system of beliefs µ have been assigned:

π(t) = π(b) = 0.25, π(a) = 0.5, π(R) = 0.3 and π(L) = 0.7,
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µ(C) = 0.8 and µ(B) = 0.2 .

Compute the expected payoff at every information set of the game.

2. Consider the sequential game with imperfect information shown in Fig-
ure 5.6. The set I1 = {X, Y } is an information set for player 2 and
I2 = {E, F, G, H} for player 3. If π denotes the strategy profile shown
on the game tree, and µ is the system of beliefs which is Bayes’ consis-
tent with π, compute the expected payoffs E(I1,π, µ) and E(I2,π, µ).

p543

3. Consider the sequential game shown in Figure 5.7 and let π = (π1,π2)
be the strategy profile given by

π(a) = π(t) = 0, π(b) = 1, π(R) = q and π(L) = 1− q .

Also, consider the system of beliefs µ = (µ1, µ2) given by µ(C) = p
and µ(B) = 1− p.

a. Compute the expected payoff vector E(A,π).

b. If I = {B, C}, compute the expected payoff vector E(I,π, µ).
[Answer: E(I,π, µ) = (6− 3p− 5q + 3pq, 2− q − pq) ]

c. Show that if 0 < q ≤ 1, then player 2 can increase his expected
payoff by changing his behavior strategy.

d. Establish that the maximum expected payoff for player 2 is when
q = 0, i.e., when player 2 plays R with probability 0 and L with
probability 1.

5.5. Sequential equilibrium

Now assume that an n-person sequential game is played according to a
given behavior strategy profile π = (π1,π2, . . . ,πn). With this knowl-
edge at hand, the only meaningful information for a player about the
outcome of the game is his expected payoff. As a matter of fact, as we
have just seen, at any node N of the game, each player j knows exactly
his or her expected payoff

Ej(N,π) = Ej(N,π1,π2, . . . ,πn) .

Since the objective of each player is to maximize his or her expected
payoff, it is to the benefit of a player to change his behavior strategy at
some node, if that change (given that the other players do not change
theirs) results in a higher expected payoff. We shall say that a player
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can gain during the play of the game if by changing his behavior strat-
egy at some of his information sets he can improve his expected payoff,
provided that no other player changes his behavior strategy.

It now seems natural to say that “rational” players will play a
behavior strategy profile π = (π1,π2, . . . ,πn) such that no player can
improve his expected payoff at any information set, by changing his
behavior strategy at that information set, when the other players still
play π everywhere else. Notice that this is our old concept of Nash
equilibrium modified to fit the framework of a sequential game. We
now, finally, introduce the notion of a sequential equilibrium.

df:seqeq

Definition 5.7. A sequential equilibrium for an n-person sequen-
tial game is a pair (π, µ), where π is a behavior strategy profile and µ
is a system of beliefs consistent with π, such that no player can gain by
deviating from π at any of her information set.

Thus, a behavior strategy profile and a belief system is a sequen-
tial equilibrium of a sequential game, if starting from any information
set of the game, the strategy profile continues to be an equilibrium
strategy profile given the system of beliefs with which it is consistent.
A sequential equilibrium, therefore, is a solution which embodies in it
a strong concept of sequential rationality. We can now say that the
players in a sequential game are sequentially rational if they play a
sequential equilibrium.

Since beliefs in a sequential equilibrium are consistent with the
strategy profile, beliefs are consistently updated as the game is played.
Given these updated beliefs and the strategy profile, the behavior
strategies used by a player maximizes her expected payoff at each of
her information sets. Thus, as the game is played, a player has no
incentive to deviate from her strategy at any of her information sets.
This should immediately remind one of the definition of a subgame
perfect equilibrium as one can think of a subgame perfect equilibrium
as having a similar property, but only for the singleton information
sets that are the initial starting nodes of subgames. Indeed, one should
notice that the concept of sequential equilibrium generalizes the notion
of subgame perfection to general sequential games which do not have
proper subgames.

It is interesting to note that sequential equilibria are always sub-
game perfect equilibria. This is an important result.
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t:ssubperf
Theorem 5.8. Every sequential equilibrium is a subgame perfect se-
quential equilibrium.

Do sequential equilibria exist? The answer is yes and this is due to
D. Kreps and R. Wilson.2.

krepWil

Theorem 5.9. (Kreps–Wilson) Every sequential game with imper-
fect information has a sequential equilibrium.

In the example that follows, we illustrate Theorem 5.9 by presenting
a sequential equilibrium of the game shown in Figure 5.9 which neither
has any proper subsgames nor any Nash equilibria in pure strategies.

NoNasEQ

Example 5.10. Consider the sequential game with imperfect infor-
mation shown in Figure 5.9. F75

Figure 5.9.

The reader should verify that this game does not have a Nash equilib-
rium in pure strategies; see Exercise 1 at the end of the section. We
now find a Nash equilibrium in mixed strategies which we will show to
be also a sequential equilibrium.

2The result is to be found in the work of D. Kreps and R. Wilson “Se-
quential Equilibrium” (Econometrica 50 (1982), 863–894), in which they also
define for the first time the concept of sequential equilibrium and discuss its
properties.
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We consider the behavior strategy profile π = (π1,π2) given by

π1(b) = 1, π1(a) = 0, π1(L) = 1, π1(R) = 0, π1(L′) = 1
6 , π1(R′) = 5

6 ,

and
π2(T ) = π2(B) = 1

2 .

We first claim that the belief system µ which is consistent with this
strategy profile is given by

µ2(X) = 0, µ2(Y ) = 1 at the information set {X, Y },
µ1(G) = 1

2 , µ1(H) = 1
2 at the information set {G, H}, and

µ1(E) = 1
2 , µ1(F ) = 1

2 at the information set {E, F} .

This can be checked by observing that if we take the sequence of
completely mixed behavior strategy profiles {πn} = {(πn

1 ,πn
2 )}, given

by

πn
1 (b) = 1− 1

2n , πn
1 (a) = 1

2n

πn
1 (L′) = 1

6 , πn
1 (R′) = 5

6

πn
1 (L) = 1− 1

2n , πn
1 (R) = 1

2n

πn
2 (T ) = 1

2 −
1
2n , πn

2 (B) = 1
2 + 1

2n ,

then this converges to the strategy profile π = (π1,π2). Moreover, a
direct computation shows that the beliefs {µπn} that are Bayes’ con-
sistent with πn are:

µπn
2 (Y ) = 1− 1

2n , µπn
2 (X) = 1

2n ,

µπn
1 (G) = 1

2 −
1
2n , µπn

1 (H) = 1
2 + 1

2n ,

µπn
1 (E) = 1

2 −
1
2n , µπn

1 (F ) = 1
2 + 1

2n .

Since these sequences also converge to the belief system µ, we have
shown that µ is consistent with π.

We now claim that the pair (π, µ) is a sequential equilibrium of the
game. We shall do this by checking that at each information set the
behavior strategy π maximizes the expected payoff of the players given
the belief system µ.

• STEP I: We consider the information set I = {G, H}.
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Clearly, I is owned by player 1 and we have µ1(G) = µ1(H) = 1
2 . At

this information set, the arbitrary behavior strategy P is of the form
P (L′) = p and P (R′) = 1 − p, where 0 ≤ p ≤ 1. The expected payoff
of player 1 for this behavior strategy is given by the formula

E(p, I) = 1
2 [3p + 2(1− p)] + 1

2 [3p + 4(1− p)]
= 1

2 [(3p + 2− 2p) + (3p + 4− 4p)] = 3 ,

which is independent of p. This shows that player 1 has nothing to
gain by playing a behavior strategy other than

π1(L′) = 1
6 and π1(R′) = 5

6 .

• STEP II: We consider the information set I1 = {E, F}.

At the information set I1 we have µ1(E) = µ1(F ) = 1
2 . So, the expected

payoff of player 1 for the arbitrary behavior strategy P (L) = p and
P (R) = 1− p, where 0 ≤ p ≤ 1, is given by

E(p, I1) = 1
2 [4p + 0 · (1− p)] + 1

2 [p + (2(1− p)] = 1 + 3
2p ≤ 2.5 .

The behavior strategy that then maximizes player 1’s payoff is to play
L with a probability of 1 and R with a probability of 0, as this gives
the highest expected payoff of 2.5.

• STEP III: We consider the information set I2 = {X, Y }.

Clearly, the information set I2 belongs to player 2. Since µ2(Y ) = 1,
the expected payoff of player 2 is determined by how the game is played
starting from the node Y . The arbitrary behavior strategy P of player 2
at Y is P (T ) = p and P (B) = 1− p, where 0 ≤ p ≤ 1. Computing the
expected payoff of player 2 at the information set I2, we get

E(p, I2) = 1
2 [p · 1

6 · 0 + p · 5
6 · 4 + (1− p)1

6 · 5 + (1− p)5
6 · 3] = 5

3 .

Again, this value is independent of p and so player 2 will gain nothing
by deviating from π2(T ) = π2(B) = 1

2 .

• STEP IV: We consider the information set consisting of the root
alone.
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In this case, if player 1 plays p and a and 1 − p at b, then an easy
computation shows that his expected payoff is

E(p, O) = 5
2 · p + 3(1− p) = 3− p

2 .

This is maximized when p = 0, which means that player 1 must play a
with probability zero and b with probability 1. Thus, it is optimal for
player 1 to play b at the root.

Therefore, we have verified that none of the players can gain at
any of their information sets by deviating form π. Thus the claim
that (π, µ) is a sequential equilibrium is true as the pair is sequentially
rational.

In Theorem 5.8 we stated that a sequential equilibrium is always
subgame perfect. This immediately raises the question whether a sub-
game perfect equilibrium is necessarily a sequential equilibrium. The
next example demonstrates that this is not the case.

ex:Kreps

Example 5.11. Consider the sequential game with imperfect informa-
tion shown in Figure 5.10. Notice that this game has only one proper
subgame; the one starting at the node X. It should be easy to ver-
ify that the strategy profiles ({b}, {T, L}) and ({a}, {T, R}) are both
subgame perfect equilibria.F81a

Figure 5.10.

We claim the following.

1. The subgame perfect equilibrium ({b}, {T, L}) is supported by
the strategy profile π = (π1,π2) given by

π1(b) = 1 and π1(a) = π1(c) = 0 ,



1815.5: Sequential equilibrium

and

π2(T ) = 1, π2(B) = 0, π2(R) = 0, and π2(L) = 1 .

The belief system µ = (µ1, µ2) at the information set {Y, Z}
given by

µ2(Y ) = 0 and µ2(Z) = 1 ,

is consistent with the strategy profile π, and the pair (π, µ) is a
sequential equilibrium.

2. The subgame perfect equilibrium ({a}, {T, R}) is not a sequen-
tial equilibrium.

We verify these claims separately. First, we show that the pair
(π, µ) is a sequential equilibrium. Consider the sequence of completely
mixed strategy profiles {πn = (πn

1 ,πn
2 )} defined by

πn
1 (b) = 1− 1

n and πn
1 (a) = πn

1 (c) = 1
2n ,

and

πn
2 (T ) = 1− 1

n , πn
2 (B) = 1

n , πn
2 (R) = 1

n , and πn
2 (L) = 1− 1

n .

Clearly, πn → π.
A direct computation of the system of beliefs µπn = (µπn

1 , µπn
2 ) that

is Bayes’ consistent with πn shows that at the information set {Y, Z}
we have

µπn
2 (Y ) =

πn
1 (c)

πn
1 (c) + πn

1 (b)
=

1
2n

1− 1
2n

−→ 0 = µ2(Y ) ,

and

µπn
2 (Z) =

πn
1 (b)

πn
1 (c) + πn

1 (b)
=

1− 1
n

1− 1
2n

−→ 1 = µ2(Z) .

These show that the belief system µ is consistent with the strategy
profile π. Next, we check that the pair (π, µ) satisfies the expected
payoff maximization condition.

If player 2 plays R with probability p and L with probability 1− p,
then his expected payoff at the information set {Y, Z} is

E(Y, Z) = p · 1 + (1− p) · 2 = 2− p .
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This is clearly maximized when p = 0. This means that player 2 cannot
gain by deviating from his strategy profile π2 at the information set
{Y, Z}.

Assume now that player 1 at node X plays c with probability p1,
b with probability p1 and a with probability 1 − p1 − p2. Then the
expected payoff for player 1 starting from X is

E(X) = p1 · 3 + p2 · 6 + (1− p1 − p2) · 2 = 2 + p1 + 4p2 .

Taking into account that p1 ≥ 0, p2 ≥ 0, and p1 + p2 ≤ 1, we see that
E(X) is maximized when p1 = 0 and p2 = 1. This shows that player 1
cannot gain by changing his behavior strategy at node X.

Next, assume that player 2 starting at O plays T with probability
q and B with probability 1− q. Then, his expected payoff starting at
O is

E(O) = q · 1 · 1(2) = 2q .

This is clearly maximized when q = 1 and so player 2 cannot gain by
changing his strategy at O. We have thus proven that ({b}, {T, L}) is
a sequential equilibrium.

We now show that the subgame perfect equilibrium ({a}, {T, R})
cannot be a sequential equilibrium. To see this, let P be an arbitrary
probability distribution on the information set {Y, Z}; we assume that
P (Y ) = s and P (Z) = 1− s. Also, assume that player 2 by playing R
with probability p and L with probability 1−p maximizes his expected
payoff at the information set {Y, Z}. This expected payoff is given by

E∗(Y, Z) = s[p · 0 + (1− p) · 2] + (1− s)[p · 1 + (1− p) · 2]
= 2− (1 + s)p .

Clearly, E∗(Y, Z) is maximized when p = 0 so that player 2 by deviating
from his strategy (π1(R) = 1 and π2(L) = 0) profile can improve
his expected payoff. This shows that the subgame perfect equilibrium
({a}, {T, R}) cannot be a sequential equilibrium, as player 2 at the
information set {Y, Z} can gain by playing a different strategy.

Exercises
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ex:441

1. Verify that the extensive form game with imperfect information shown
in Figure 5.9 has no pure strategy Nash equilibria.

2. Consider the sequential game with imperfect information shown in Fig-
ure 5.10. Verify that the strategy profiles ({b}, {T, L}) and ({a}, {T, R})
are both subgame perfect equilibria. Show also that these are the only
pure strategy Nash equilibria.

3. Consider the sequential game shown in Figure 5.7. Verify that the pair
(π, µ), where

π(a) = π(t) = π(R) = 0 , π(b) = π(L) = 1 ,

and
µ(B) = 1 and µ(C) = 0 ,

is a sequential equilibrium.

4. Consider the game shown in Figure 5.11. FF75

Figure 5.11.

Show that the pair (π, µ), where the behavior strategy profile π is given
by

π(a) = π(T ) = π(R) = π(R′) = 0 and π(b) = π(B) = π(L) = π(L′) = 1 ,

and the system of beliefs µ satisfies

µ(X) = µ(E) = µ(G) = 0 and µ(Y ) = µ(F ) = µ(H) = 1 ,

is a sequential equilibrium.
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5. Consider the sequential game version of the game of matching pennies
shown in Figure 5.12.

a. Show that the strategy profiles (N, D′) and (D, D′) are the only
pure strategy Nash equilibria of this game.

b. Assume that player 1 plays N with probability α and player 2
plays N ′ with probality β; so every behavior strategy profile for
this game is a pair (α,β). Also, let µ be the system of beliefs for
the information set I = {b, c} induced by (α,β), i.e., µ(c) = α
and µ(b) = 1 − α. Show that the pairs

(
(α, 0), µ

)
are the only

sequential equilibria for this game.
FF75a

Figure 5.12.

6. Consider the “truth telling” game shown in Figure 5.13. Show that
the strategy profile

(
G, T, {b, d′}

)
is a Nash equilibrium and that it

generates a sequential equilibrium.FF75b

7. Go back to the game shown in Figure 5.13. Suppose that player 2 can
find out at low cost whether player 1 is telling the truth. Does this
change the nature of the equilibrium? Analyze in detail. [HINT: The
game now is a sequential game with perfect information. ]

8. Prove Theorem 5.8. That is, show that every sequential equilibrium is
a subgame perfect equilibrium in the sense that when restricted to any
subgame it is also a sequential equilibrium for the subgame.

5.6. Applications: signaling games

It should have become clear from our discussion so far, that the con-
cept of sequential equilibrium is useful in solving sequential games when
these games do not have subgames. An important class of sequential
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Figure 5.13.

games, called signaling games, usually do not have subgames, and
thus solving them involves some ideas of sequential rationality of the
kind that sequential equilibrium uses. There are two players in a sig-
naling game; we will call them player 1 and player 2. Nature moves
first and chooses among a number of different options. This choice is
then revealed to player 1 who then has to send a signal to player 2
about the information he has received. Player 2 then has to make a
decision based on this information.

Signaling games are important because they can be used to depict
many real life situations. For instance, when you walk into a used-
car lot, you are involved in a signaling game with the seller. Nature
reveals the type of the car to the dealer, who then sends a signal to
the buyer; the price asked for the car. The buyer, who is player 2 then
decides whether or not to buy the car. The health insurance market is
also an example of a signaling game. You as a buyer of insurance has
information about your health that the insurance company does not
have. The insurance company can receive a signal about the status of
your health by taking a quick medical examination and then deciding
on that basis whether to sell you insurance. Here we look at some
examples of signaling games.

e:ventcap

Example 5.12. (Financing a Project) An entrepreneur E is seek-
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ing financing for a certain venture which he cannot finance with his
own funds. The project is widely known to be viable, but only the en-
trepreneur knows precisely the value of the project. The entrepreneur
knows that the project can either be worth H or L after an investment
of I dollars. Since the entrepreneur does not have funds to finance the
project he needs to get a venture capitalist to fund it. In return for
investing in the project the entrepreneur can offer the capitalist an
equity stake of e, where 0 ≤ e ≤ 1.

We assume that this is a two period operation. The investment
takes place in period 1 and the return is realized in the second period.
The rate of return i on the investment can be thought of as the current
rate of interest or as the opportunity cost of capital.

The venture capitalist whom we will call player C, can either accept
the offer of equity e or reject it. At the time the offer is made, player C
knows only that the project is worth H dollars with probability p and
L dollars with probability 1−p. The number p is nature’s choice and is
treated by the players as a parameter. Therefore, the venture capitalist
makes his decision of whether or not to accept the offer on the basis of
the offer e and his knowledge of the chances of success of the project.
Thus, the game that the two players are engaged in is a signaling game
in which the entrepreneur (the sender of the signal) sends the signal
e, and the venture capitalist (the receiver of the signal) reacts on the
basis of the signal.F85

Figure 5.14.

The signaling game, which is a game of imperfect information with
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no subgames, is shown in Figure 5.14. If

H − I > L− I > (1 + i)I,

then the venture capitalist, player C, who knows that the project is
worth H with probability p and L with probability 1 − p, will accept
an offer e only if

p(eH − I) + (1− p)(eL− I) ≥ (1 + i)I . ($)

That is, once player C has to choose at his information set, he realizes
that he is at node X with probability p and at node Y with probability
1 − p. Given this belief, it is rational for player C to accept the offer
only if e satisfies ($). Further, given the information that player C
has, the beliefs are sequentially rational. Knowing this, player E, the
entrepreneur, then offers player C an e that satisfies ($). This leads to
a sequential equilibrium in which:

1. player C has beliefs given by p and 1 − p at the nodes in his
information set,

2. player E offers an equity stake e which is a little more than the
smallest equity state e∗ < 1 that makes ($) an equality indepen-
dently of whether he observes H or L (here e∗ = (2+i)I

pH+(1−p)L),
and

3. player C accepts the offer e since it is sequentially rational; see
Exercise 1 at the end of the section.

Therefore, in case e∗ = (2+i)I
pH+(1−p)L < 1, the project is financed

and the venture capitalist gets an equity stake e which is a little more
than e∗.

In the solution that we have just obtained, the signal e fails to send
any information about whether the project is going to be worth H
or L. The equity e offered by the entrepreneur, therefore, has to be
higher than what the venture capitalist would accept if he knew that
the project is worth H. This is so because, if the venture capitalist
knew that the project is worth H, then he would be willing to accept
an equity share eh satisfying

ehH − I ≥ (1 + i)I,
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and an equity share e% satisfying

e%L− I ≥ (1 + i)I

if he knew that the project is only worth L. Since the entrepreneur
has an incentive to offer the lowest possible equity stake to the venture
capitalist, the entrepreneur would always want to tell the capitalist
that the project is worth H. The venture capitalist knows this and
disbelieves any message sent by the entrepreneur about the worth of
the project.

e:eee

Example 5.13. In Example 5.12, we saw that the project would be
financed provided that the parameters satisfy certain conditions. How-
ever, in case

H − I > (1 + i)I > L− I

and
p(eH − I) + (1− p)(eL− I) < (1 + i)I ($$)

then the solution in Example 5.12 does not work, as player C will be
better off rejecting any offers. This is unfortunate as the project is not
financed, even though it ought to be financed if it is worth H. Thus,
in this case, it can be checked (see Exercise 3 at the end of the section)
that the sequential equilibrium in the signaling game is:

1. player C believes that the project is worth H with probability p.

2. player C rejects every offer of an equity stake e that satisfies ($$),

3. player E will offer e satisfying,

a. e(H − I) ≥ I(1 + i) if the project is worth H dollars, and
b. e = 0 if the project is worth L dollars.

The only way in which the project can be financed in this case is, if
the entrepreneur offers to borrow I dollars from the capitalist, when he
knows that the project is worth H, and has to return α(H − I) dollars
where α(H − I) satisfies:

α(H − I) ≥ (1 + i)I .

Since the capitalist in this case knows that the entrepreneur will make
such an offer only if he knows that the project is worth H, the capitalist
will take the offer.
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We now turn our attention to another example of a signaling game.
e:jobmar

Example 5.14. (Job Market Signaling) The game that we present
here is motivated by the work of Spence3. In this game, nature reveals
the type of the individual to the individual, who then knows whether
she is a high ability type H or a low ability type L. A firm F (player 1),
which is deciding what wage to offer an individual, does not know the
type of the individual and only observes the level of education e. The
firm thus has to offer the wage w(e) based on the level of education
e. The individual (player 2), then picks a level of education e, and
enters the labor market. It is commonly known that one-half of the
individuals is of type H and the other half is of type L.

In the analysis that follows we concern ourselves only with linear
wage contracts. In particular, we suppose that the wage functions are
of the form w(e) = me + 0.1, where m is a non-negative real number.
The value 0.1 can be thought of as the wage of an individual with zero
level of education.

We assume that for any given level of education e, the individual
who is of type H is more productive than the individual who is of type
L. Specifically, we assume that the high ability individual is worth 2e
to the firm if she acquires the education level e, and is worth only e if
she is of low ability. The profit of the firm is then given by 2e − w(e)
if the individual is of high ability, and by e − w(e) if the individual is
of low ability.

The utility (or payoff) of the individual depends on both the wage
she receives as well as the cost of acquiring education. The utility of
the high ability individual when she acquires the education level e is

uH(e) = w(e)− 1
2e2

and the utility of the low ability individual is

uL(e) = w(e)− 3
4e2 .

Clearly, this means that the low ability individual finds it more costly to
acquire education. It is a sequential game with imperfect information
which is played as follows.

3A. M. Spence, Job market signaling, Quarterly Journal of Economics
87 (1973), 355–374.
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• The firm, player 1, makes a wage offer w(·). The wage offer gives
the wage as a function of the level of education e. As mentioned
before, we assume that the wage function is of the form w(e) =
me + 0.1, where m is a non-negative real number.

• Nature reveals the type of the individual to the individual.

• The individual, player 2, then sends the signal e about her type
which is her chosen level of education. The signal e may or may
not reveal the type of the individual to the firm.

• The firm then offers w(e) to the individual.

• In turn, the individual either accepts or rejects the offer, and both
receive the payoffs shown in Figure 5.15.

The tree of the signaling game that the firm and the individual play
is shown in Figure 5.15. Since there are infinitely many values for m
(m ≥ 0), there are actually infinitely many possibilities for the node N
(Nature). The possible nodes of N are the points of the half-line OP .
Once the node N is reached, nature reveals the type of the individual
to the individual; so that either node B or C is reached. Clearly, there
are infinitely many possibilities for the nodes B and C; in Figure 5.15
they are the points of the half-lines O′P ′ and O′′P ′′, respectively. From
node B or C, the individual sends the signal e by choosing the level of
education, and reaches either node X or Y . Again, since e can be any
non-negative number, there are infinitely many possible nodes for X
and Y . These possible nodes are the points of the half-lines EQ and
TK, respectively, shown in Figure 5.15. Obviously, the set {X, Y } is
an information set for player 1. At his information set {X, Y }, player 1
makes the offer w(e), which brings the game either to node V or to
node W . From there the final decision of player 2 will terminate the
game.F90

In this signaling game, player 2 (the individual) sends the signal,
namely her level of education e. Player 1 (the firm) is the receiver and
responds to the signal e by offering the wage w(e). In such a signaling
game, the solution depends on the wage function w(·). We now proceed
to solve this game.

We first describe precisely the payoff functions and the strategies
of the palyers in this game. We shall use the abbreviations A for
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Figure 5.15.

“accepts,” and R for “rejects.” Clearly, the strategy of player 1 is
the function w(·), which in this case is completely determined by the
number m; that is, a strategy for player 1 (the firm) is simply a real
number m ≥ 0. A strategy of player 2 (the individual) is now a pair
({eL, eH}, s) such that:

a. s is a function on the nodes V and W of the half-lines FG and
SM , respectively, which chooses A or R.

b. eH is a function from the nodes B of the half-line O′P ′ to the
nodes X of the half-line EQ. Since the node B on the half-line
O′P ′ is completely determined by the node N (i.e., the number
m), eH is a real-valued function, i.e., eH = eH(m) or eH : [0,∞) →
[0,∞).

c. Similarly, eL is a function from the nodes C of the half-line O′′P ′′

to the nodes Y of the half-line TK. Again, eL = eL(m) or
eL: [0,∞) → [0,∞).

In terms of this notation, the payoffs of the players are

u1(m, ({eL, eH}, s))
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=






1
2 [2eH(m)-meH(m)-0.1] + 1

2 [eL(m)-meL(m)-0.1] if s(V ) = s(W ) = A
1
2 [2eH(m) − meH(m) − 0.1] if s(V ) = A, s(W ) = R
1
2 [eL(m) − meL(m) − 0.1] if s(V ) = R, s(W ) = A

0 if s(V ) = R, s(W ) = R ,

uL
2 (m, ({eL, eH}, s)) =

{
meL(m)− 3

4eL(m)2 + 0.1 if s(W ) = A

0 if s(W ) = R ,
and

uH
2 (m, ({eL, eH}, s)) =

{
meH(m)− 1

2eH(m)2 + 0.1 if s(V ) = A

0 if s(V ) = R .

The two formulas above for the payoff of player 2 reflect the two types
of individuals. The payoff of the firm is, of course, its expected payoff.

As mentioned before, the game starts with player 1 offering the wage
contract (function) w(·) given by w(e) = me+0.1. Player 2 responds to
this offer by choosing a level of education e that maximizes her utility.
If the individual (player 2) is of high ability, then she will choose a level
of education e to maximize

uH(e) = w(e)− 1
2e2 = me− e2

2 + 0.1 .

It can be checked that this payoff function is maximized when u′
H(e) =

m − e = 0. This gives the optimal strategy of player 2 when she is of
type H, which is

e∗H(m) = m .

The maximum value of uH(e) now is uH(m) = m2

2 + 0.1 > 0, which
implies that player 2’s strategy s∗ at the node V must be A, i.e.,
s∗(V ) = A.

In case the individual is of low ability, then she maximizes

uL(e) = w(e)− 3
4e2 = me− 3

4e2 + 0.1 .

Again, it can be checked that this payoff function is maximized when
u′

L(e) = m− 3
2e = 0. So, in this case, the optimal strategy of player 2

when she is of type H, is

e∗L(m) = 2
3m .

The maximum value of uL(e) now is uL(2
3m) = m2

3 + 0.1 > 0, which
implies that player 2’s strategy s∗ at the node W must also be A, i.e.,
s∗(W ) = A.
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Now the firm (player 1) anticipates player 2’s choices of education
levels. However, since player 1 is uncertain about the type of player 2,
he must choose an m that maximizes his expected payoff. Since one-half
of the individuals is of type H and the other half is of type L, player 1
believes that he is at node X (see Figure 5.15) with probability 1

2 and
at node Y with probability 1

2 . Thus, the expected payoff of the firm at
his information set {X, Y } is

E(m) = 1
2 [2e∗H(m)−me∗H(m)− 0.1] + 1

2 [e∗L(m)−me∗L(m)− 0.1]

Since the firm knows that e∗H(m) = m and e∗L(m) = 2
3m, the expected

payoff of the firm can be written as:

E(m) = 1
2(2m−m2 − 0.1) + 1

2(2
3m− 2

3m2 − 0.1)
= 1

2(8
3m− 5

3m2 − 0.2) .

Clearly, this function is maximized when E′(m) = 8
3 −

10
3 m = 0, or

when m∗ = 4
5 = 0.8.

So, the “solution” of the game is the profile (m∗, ({e∗L(m), e∗H(m)}, s∗)
given by

m∗ = 0.8, e∗L(m) = 2
3m, e∗H(m) = m , and

s∗(V ) =
{

A if w(e)− 1
2e2 ≥ 0

R if w(e)− 1
2e2 < 0

and s∗(W ) =
{

A if w(e)− 3
4e2 ≥ 0

R if w(e)− 3
4e2 < 0

.

This strategy profile translates to: Player 1 offers the wage function
w(e) = 0.8e + 0.1, and player 2 accepts the offer and acquires the level
of education eH = 0.8 if she is of type H and the level eL = 2

3 · 0.8 =
1.6
3 = 0.533 if she is of type L. Moreover,

1. player 1’s expected payoff is E(0.8) = 0.433, and

2. player 2’s payoff is uH(0.8) = 0.42 if she is of type H and uL(1.6
3 ) =

0.313 if she is of type L.

Clearly, by construction (m∗, ({e∗L(m), e∗H(m)}, s∗) is a Nash equi-
librium. We leave it as an exercise for the reader to verify that this
strategy profile is in addition a sequential equilibrium for this game.

In the preceding example, the solution we have obtained separated
the two types of individuals in the sense that

eL = 2
3 · 0.8 = 0.533 < eH = 0.8 .



e

w

w

e

194 Chapter 5: Sequential Rationality

So, by looking at the choice of educational levels, the firm is capable
of distinguishing between the two types. For this reason, this kind
of sequential equilibrium in signaling games is called a separating
equilibrium.

In the next example, we shall obtain an equilibrium where the two
types choose exactly the same level of education. In such a case, the
equilibrium is called a pooling equilibrium.

e:jobmar1

Example 5.15. (Job Market Signaling Revisited) We go back to
the job market signaling game shown in Figure 5.15. The difference now
is that the wage contract is no longer of the linear form w(e) = me+0.1.
Instead, the wage contract is a two-step wage offer of the form

w(e) =
{

0 if e < ê
w if e ≥ ê .

That is, the wage offer has a “trigger” at the educational level ê > 0
as illustrated in Figure 5.16. The firm needs to determine the trigger
ê as well as the wage w > 0.F91

Figure 5.16. The Wage Function

In this game, we assume that the profit of the firm is 1.5e−w(e) if
the individual is of high ability, and e−w(e) if the individual is of low
ability. It is also common knowledge that one-fourth of the individuals
is of type H and the other three-fourths are of type L. The utility
functions of the high and low ability types are now given by

uH(e) = w(e)− 3
4e2 and uL(e) = w(e)− e2.

As in the preceding example, the game starts with the wage offer
(wage function) w(·). Player 2, the individual, after observing her
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type responds by choosing an education level e. The firm then offers
the individual the wage w(e), and subsequently, the individual decides
whether to accept or reject the offer. If the individual observes that she
is a high ability type, she chooses e to maximize her utility function

uH(e) = w(e)− 3
4e2.

She chooses e = ê if w − 3
4 ê2 > 0 and accepts the wage offer, and

chooses e = 0 otherwise.
If the individual finds that she is of low ability, then she chooses e

to maximize her utility function

uL(e) = w(e)− e2.

She chooses e = ê if w− ê2 > 0 and accepts the wage offer, and chooses
e = 0 otherwise and rejects the wage offer.

The firm knowing all these, offers a wage function that maximizes
his expected payoff. The expected payoff of the firm at the information
set {X, Y } is

E(w) = 1
4 [1.5e− w(e)] + 3

4 [e− w(e)] .

Since the wage function either gives a wage of zero or some fixed positive
wage w, in order to maximize profits, the firm either sets w / 3

4e2

(that is, sets the wage w just a little above 3
4e2), or w / e2. We now

distinguish two cases.
Case I: w / 3

4e2.

This implies e = 2
3

√
3w. Since e2 > 3

4e2 / w(e), we have uL(e) =
w(e)− e < 0 and so the low ability type will decline the offer. Conse-
quently, in this case, the expected payoff of the firm is:

E(w) = 1
4(3

2 · 2
3

√
3w − w) = 1

4(
√

3w − w) .

Differentiating, we get E′(w) = 1
4(

√
3

2
√

w
− 1). Solving the equation

E′(w) = 0 we get the expected utility maximizer value w = 3
4 = 0.75.

This implies e = 1. The expected profit of the firm for such a wage
offer is thus:

E(w) = 1
4(3

2 · 1− 3
4) = 0.1875 . ($)

Case II: w / e2.
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In this case, e /
√

w and since e2 > 3
4e2 the individual irrespective

of type will accept the offer. So, in this case, the expected profit of the
firm is:

E(w) = 1
4(3

2

√
w − w) + 3

4(
√

w − w) = 9
8

√
w − w .

Differentiating, we get E′(w) = 9
16

√
w
− 1. It is now easy to check

that the firm maximizes expected profit when E′(w) = 0. Solving
this equation yields

√
w = 9

16 , and so w = 81
256 = 0.3164. This gives

e ≥ ê = 9
16 and the expected profit

E(w) = 9
8 · 9

16 − ( 9
16)2 = 81

256 = 0.3164 .

Since this expected profit is higher than the one given in ($), the firm
will offer the contract w = 81

256 = 0.3164. This implies ê = 9
16 = 0.5625

and, moreover, the individual by choosing e = 0.5625 maximizes her
utility irrespective of her type.

We have therefore arrived at the following equilibrium.

• Player 1, the firm, offers the wage function

w(e) /
{

0 if e < 0.5625
0.3164 if e ≥ 0.5625 .

• The individual irrespective of her type accepts the offer and
chooses e = 0.5625.

• The firm, at the information set {X, Y }, offers the wage w /
0.3164.

• The individual irrespective of her type accepts the offer.

It can be verified that this gives us a sequential equilibrium with
the belief system µ given by µ(X) = 1

4 and µ(Y ) = 3
4 .

In this example the two types end up choosing exactly the same level
of education. Thus, the equilibrium here is a pooling equilibrium as
the signal (which is the level of education) does not reveal the type of
the individual. It is also worth noting that the firm finds it profitable
to employ both types of workers at the same wage. This raises the
following very intriguing question: Is there anything to be gained by
having high ability?
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Exercises
EVC

1. Consider the game of Example 5.12 shown in Figure 5.14. Assume that
the share equity e satisfies the inequality

[
p(eH − I) + (1− p)(eL− I)

]
≥ (1 + i)I .

Then, show that the strategy “accepts” at the information set {X, Y }
is sequentially rational. [HINT: If C plays “accepts” with propability q
and “rejects” with probability 1−q, then q = 1 maximizes the expected
payoff of player of C. ]

2. In the game of Example 5.12 shown in Figure 5.14, what is the smallest
share equity e that the entrepreneur can offer to the venture capitalist so
that the venture capitalist accepts the offer? [HINT: e = (2+i)I

pH+(1−p)L . ]
p561

3. Verify that if the parameters of Example 5.12 shown in Figure 5.14
satisfy the inequality

(2 + i)I > e
[
pH + (1− p)L

]
,

then the project is not financed.

4. Consider the signaling game of Example 5.14 whose game tree is shown
in Figure 5.15. Show that the Nash equilibrium

(
m∗, ({e∗L(m), e∗H(m)}, s∗)

)

obtained there is a sequential equilibrium with the system of beliefs µ
at the information set {X, Y } given by

µ(X) = 1, µ(Y ) = 0 if e = m and µ(X) = 0, µ(Y ) = 1 if e = 2
3m .

5. Consider the job market signaling game of Example 5.14 with the fol-
lowing parameters:

w(e) = 1
4e2 + me + 0.1 ,

uH(e) = w(e)− 1
2e2 , and

uL(e) = w(e)− 3
4e2 .

Asssume that the profit of the firm is given by 3e−w(e) if the individual
is of high ability and e−w(e) if she is of low ability. Find the separating
equilibrium of the game. What is the expected profit of the firm?
[Answers: m = 14

17 , eH = 2m, eL = m; the expected profit of the firm
is 1.34 ]

6. Again consider the signaling game of Example 5.14 with the same util-
ity and profit functions but with a two step-wage function as in Exam-
ple 5.15. Does this signaling game have a pooling equilibrium?
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7. One can argue that when the wage offer is linear in a job market sig-
naling game, there is a separating equilibrium because the high ability
worker is more productive. Suppose that for a given level of education
both types of workers are equally productive, but the high ability type
can acquire education at lower cost. What would be the nature of the
sequential equilibrium? [HINT: Change the payoffs in the game of Fig-
ure 5.15 when the high ability worker accepts to (e−w(e), w(e)− 1

2e2). ]

8. What would be the wage offer if in a job market signaling game the
firm uses a two-step wage offer in the game of the previous exercise?
[HINT: Observe that E(w) = e− w. ]

9. In the signaling games of the previous two exercises will the firm use a
two-step wage offer or a linear wage offer?

10. Does an individual derive any benefits from being the high ability type
in a pooling equilibrium? Explain your answer.



Chapter 6

Auctions

Chap6

Auctions have been used to sell and buy goods since prehistory and
even today auctions are used quite frequently. Sotheby’s of London,
with branches in most of the wealthy metropolitan centers of the world,
is in the business of auctioning rare art and antiques to wealthy buyers.
Local municipalities use some form of auctioning to hire contractors for
specific projects. Offshore oil leases are regularly auctioned to the ma-
jor oil companies as well as independent wildcatters. One of the largest
auctions, with billions of dollars changing hands, took place quite re-
cently (July 1994). The United States government “auctioned licenses
to use the electromagnetic spectrum for personal communications ser-
vices: mobile telephones, two-way paging, portable fax machines and
wireless computer networks.1” As we see, auctions are used in many
different contexts.

Auctions, as we briefly discussed them in Chapter 2, can be written
as games. There, we analyzed an auction in which bids were made
simultaneously for a single good by bidders who knew the worth of the
good. But this is only one kind of an auction. There are auctions in
which only a single unit of an indivisible good is sold, and there are
auctions in which a single seller sells n different goods. The airwaves
auction was of the latter kind. Auctions can also be classified according
to whether the winner pays the winning bid or the second highest bid.
In some auctions the bidders know what the value of the item is worth
to the individual, whereas in other auctions there is a great deal of
uncertainty about it. In auctions of offshore drilling rights, the bidders
have only some estimate of the true value of the lease.

An auction can take many different forms. The bidders can make
their bids simultaneously and put them in sealed envelopes, or they

1R. P. McAfee and J. McMillan, Analyzing the Airwaves Auction, Journal
of Economic Perspectives 10 (1996), 159–175.



200 Chapter 6: Auctions

may bid sequentially , with the auctioneer calling out the successive
bids. An auction may also be a first price auction in which the winner
pays the highest bid, or it might very well be a second price auction
where the winner pays only the second highest bid.

In this chapter, we use the tools of game theory to analyze auctions
by classifying them according to the amount of information bidders
have about the value of the object being auctioned, and about each
others valuation of the object. We first look at auctions with complete
information, in which the bidders know each others valuation of the
object. We then analyze individual private value auctions in which a
bidder knows only her own valuation. And, finally, we look at common-
value auctions in which a bidder only receives a noisy signal about the
value of the object.

6.1. Auctions with complete information
sec61

An auction is a gathering of n persons (called bidders or players
numbered from 1 to n) for the sole purpose of buying an object (or
good). The winner of the object is decided according to certain rules
that have been declared in advance. We assume that the good for
sale in an auction is worth vi to the ith bidder. Without any loss of
generality, we can suppose that

v1 ≥ v2 ≥ · · · ≥ vn .

Auctions are classified according to their rules as well as according
to the information the bidders have about the value vector (v1, v2, . . . , vn).
An auction in which every bidder knows the vector v = (v1, v2, . . . , vn)
is called an auction with complete information, otherwise it is an
auction with incomplete information. In this section, we shall dis-
cuss the first-price sealed-bid and the second-price sealed-bid auctions.

We first look at a first-price sealed-bid auction. As the name
suggests, the rules for this auction are the following. Each bidder i
makes a bid bi, i.e., she chooses a number bi ∈ [0,∞), and places it in a
sealed envelope. After the envelopes are collected, the person in charge
of the auction (the auctioneer) opens the envelopes and reveals the
bids to everyone. The winner is declared to be the player with the
highest bid who can then get the object by paying the auctioneer her
bid. In case there are r players with the highest bid, we assume that the
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winner is declared by some random draw among the r highest bidders—
so that each player among the r highest bidders (the finalists) has a
probability 1

r of getting the object.
In a first-price sealed-bid auction, bidder i’s utility (or payoff) func-

tion is given by

ui(b1, . . . , bn) =
{

0 if bi < m
1
r (vi − bi) if i is among the r finalists ,

where b = (b1, . . . , bn) is the vector of bids made by the n bidders and
m = max{b1, . . . , bn}. Thus, if player i is the winner with the highest
bid, then player i pays the highest bid and ends up with the difference
between her valuation of the good and the amount she pays. If she does
not have the highest bid then her payoff is zero. It should be noted
that if there are more than one finalists, then the payoffs of the bidders
are expected payoffs. Notice that a bidder gets a positive payoff only
if she wins and pays less than her valuation of the good. Given this,
what should she bid? The claims in the next result provide the answer.

t:611

Theorem 6.1. In a first-price sealed-bid auction every player i bids

bi ≤ vi .

Moreover, for a complete information first-price sealed-bid auction we
have the following.

1. If v1 > v2 (i.e., if player 1 is the only player with the highest
valuation), then player 1 wins by bidding an amount b1 such that
v2 < b1 < v1. (In order to get a large payoff player 1, of course,
bids b1 close to v2.)

2. If there are two or more players with the highest valuation, then
every finalist bids bi = v1.

Proof : If bi > vi and player i wins, then ui = 1
r (vi − bi) < 0. If

player i does not win, then ui = 0. Note, in contrast, that player i
can guarantee at least ui = 0 if she bids bi ≤ vi. Thus, every bidder i
should bid bi ≤ vi.

From the observation above we know that for each i ≥ 2 we have
bi ≤ v2. Thus, player 1 wins by bidding v2 < b1 < v1.
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If the bid bi of a finalist i satisfies bi < vi = v1, then she will lose if
another bidder j with the high valuation bids bj such that bi < bj ≤ v1.
Therefore, the bid of every finalist must equal v1, the highest valuation
of the object.

In other words, the preceding theorem informs us that:
In a first-price sealed-bid auction with complete information, player 1

(the player with the highest valuation) is always a finalist and if v1 > v2,
then she wins by making a bid greater than (but sufficiently close to)
the second highest valuation.

It is clear that one can consider an auction as a strategic form game
with n players. The strategy set Si of player i is [0,∞); the set of all
possible bids bi. The payoff function of player i is the utility function
just described. Now let us examine whether this game has a Nash
equilibrium, and if so, what is the relationship of a Nash equilibrium
to the solutions described in Theorem 6.1. As before, we distinguish
two separate cases.
CASE 1. There is only one bidder with the highest valuation, i.e.,
v1 > v2.

In this case, we claim that the game does not have a Nash equi-
librium simply because bidder 1 can always keep improving her payoff
by bidding b1 closer and closer to v2. However, notice that she should
never bid b1 ≤ v2.

In addition, observe that bidder 1 always receives a payoff less than
v1 − v2, but she can win and receive a payoff that is arbitrarily close
to v1 − v2. That is, for any ε > 0, no matter how small, by bidding b1

so that v2 < b1 < v2 + ε she gets a payoff that is within ε of v1 − v2.
Whenever players in a game can come arbitrarily close to their highest
payoffs by choosing appropriate strategy combinations, we say that
the game has ε-Nash equilibria or approximate Nash equilibria.
Thus, in this case, the game does not have a Nash equilibrium but it
does have an approximate Nash equilibrium.
CASE 2. There are at least two bidders with the highest valuation.

In this case, it can be checked that the vector of bids (v1, v2, . . . , vn)
is a Nash equilibrium. It should also be clear that this is not the only
Nash equilibrium of the game.

We now go on to see what happens in a second-price sealed-
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bid auction2 with complete information. One needs to recall that,
according to the rules, in a second-price auction the winner is declared
to be again the one with the highest bid but in this case she pays the
second highest bid. We assume again that if there are r finalists (where
1 < r ≤ n) with the highest bid, then the winner is determined by some
random draw and pays the highest bid .

Now let b = (b1, b2, . . . , bn) be a vector of bids. For each player i,
we let

m−i = max{bj : j *= i} .

With this notation in place, bidder i’s utility (or payoff) function in a
second-price sealed-bid auction is now given by

ui(b1, . . . , bn) =






0 if bi < m−i
1
r (vi −m−i) if bi = m−i and we have r finalists
vi −m−i if bi > m−i .

In this case, we have the following facts.
t:612

Theorem 6.2. In a second-price sealed-bid auction every player i bids

bi ≤ vi .

Moreover, for a second-price sealed-bid auction with complete informa-
tion:

1. if v1 > v2 (i.e., if player 1 is the only player with the highest
valuation), then player 1 wins by bidding any amount b1 such
that v2 < b1 < v1, and

2. if there are more that one finalists, then the vector of bids (v1, v2, . . . , vn)
is a Nash equilibrium.

Proof : Assume that bi > vi. We distinguish four cases.
(a) m−i > bi.

In this case some other bidder has the highest bid. So, bidder i gets
a payoff of zero, which she can also get by bidding vi.
(b) m−i = bi.

2These auctions are often called Vickrey auctions after Richard Vickrey
one of the winners of the 1996 Nobel Prize in economics.
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In this case the bidder is one among r > 1 bidders with the highest
bid and she recieves a payoff of 1

r (vi −m−i) < 0. However, the bidder
i can receive the higher payoff of zero by bidding vi.
(c) vi ≤ m−i < bi.

In this case bidder i wins, pays the second highest bid m−i and gets
a payoff of vi −m−i ≤ 0. However, if she had bid vi, then she would
have either lost (in which case she would have got a payoff of zero),
or she would be among the r > 1 winners (in which case her expected
payoff is zero). In either case, by bidding vi she gets a payoff that is
at least as high as the payoff she received by bidding bi.
(d) m−i < vi.

In this case player i wins and gets the payoff of vi−m−i. Note that
the player can get the same payoff by bidding vi.
(1) Repeat the arguments of the proof of Theorem 6.1.
(2) We shall prove that (v1, v2, . . . , vn) is a Nash equilibrium when we
have two finalists. The general case can be proved in a similar manner
and is left for the reader. So, assume v1 = v2. We first show that
bidder 1 cannot improve her payoff by bidding b1 *= v1.

From the first part, we know that b1 ≤ v1. Now consider b1 <
v1.Then b2 = v2 = v1 > b1, and so bidder 1 is a loser and gets a payoff
of zero, the same payoff he gets by bidding v1. This shows that bidder 1
cannot gain by deviating from v1. An identical argument can be made
for bidder 2.

Since again from the first part we know that bi ≤ vi < v1 for
3 ≤ i ≤ n, we see that she gets a payoff of zero which cannot be
improved by biddings other than the vi.

In comparing the outcomes of the first-price and the second-price
auction, we noticed that in case there is only one bidder with the highest
valuation, then in both kinds of auctions the auctioneer is guaranteed
to receive something close to the second highest value v2. In case
there are more than one bidder with the highest valuation, the first-
price auction guarantees a payoff to the auctioneer which is equal to
the highest valuation. As we saw, this also happens to be true in the
second-price auction. Therefore, from the auctioneer’s point of view
the two types of auctions give him almost the same payoffs.

In the second-price auction, however, the Nash equilibrium in the



2056.1: Auctions with complete information

bidding game at which bidder 1 bids close to v2 is rather unstable, as
bidder 2 may deviate without any cost to him to bidding lower than v2.
The auctioneer in this case may end up with a lower than anticipated
second highest bid thus causing a loss of profit. This may be a reason
as to why second price auctions are very rarely used in practice. There
is a possibility that auctioneers may make less in a second-price auction
than they do in a first-price auction.

In all that we have said so far, the bidding is done simultaneously.
In many practical auctions, however, the bidding is done sequentially
with the auctioneer starting the bidding by quoting a price. In the
complete information case the sequential bidding may end quickly if
player 1 bids v2. Once this happens none of the other bidders would
up the ante as they get a negative payoff with certainty. The resulting
outcome then is exactly the same as the one in the first-price sealed-bid
auction.

Exercises

1. Consider a first-price sealed-bid auction and view it as a strategic form
game with n players, where the strategy set Si of player i is [0,∞); the
set of all possible bids bi. If v1 = v2, then verify that the valuation
vector (v1, v2, . . . , vn) is a Nash equilibrium.

2. Show that if in a complete information first-price sealed-bid auction
there are at least two bidders with the highest possible valuation of
the object, then at the Nash equilibrium (v1, . . . , vn) the payoff of each
player is zero.

3. Consider a second-price sealed-bid auction and view it as a strategic
form game with n players, where the strategy set Si of player i is [0,∞);
the set of all possible bids bi. Assume that v1 > v2 > v3 ≥ v4 ≥ · · · ≥
vn. Show that any vector of bids (v2, b2, b3, . . . , bn), where v2 > b2 ≥ v3

and vi ≥ bi for 3 ≤ i ≤ n, is a Nash equilibrium.

4. A local municipality is floating a tender for the construction of a park.
There are five local contractors who want to bid for the contract. The
bidder who makes the lowest bid gets the contract. Write down the
strategic form game for this and explain how the contractors will bid if
they know each others cost for constructing the park.

5. A rare fossil has been discovered in West Africa. It has been decided
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that the fossil will be auctioned. It is known to the auctioneer that two
museums attach the same value of $ 5 million to this fossil while the
next possible buyer values it at $ 4 million. Should the auctioneer use
a first-price sealed-bid auction or a second-price auction? What does
the auctioneer expect to get?

6. If in the preceding exercise it is known that one museum values the
fossil at $ 5 million another at $ 4.5 million and the rest no more than
$ 4 million each, how would your answer change?

7. Suppose that the valuation of potential bidders in an auction are not
known. Do you think that if bidders are asked to bid sequentially then
the bidders would bid up to their true valuation? Explain your answer.

8. Let us introduce some notation for an n-bidder auction. If b = (b1, b2, . . . , bn)
is a vector of bids, then we let m = max{b1, . . . , bn}. If A = {i: bi = m},
then the second highest bid ms is given by

ms = max{bi: i /∈ A} ,

provided that A *= {1, 2, . . . , n}. If A = {1, 2, . . . , n}, then we let
ms = m, the common value of the bi.

Consider a second-price sealed-bid type of auction with complete
information which is played as follows. The highest bidder wins and
pays the second highest bid ms. That is, bidder i’s utility (or payoff)
function is given by

ui(b1, . . . , bn) =






0 if bi < m
1
r (vi −ms) if bi = m and A has r < n finalists
1
n (vi −m) if bi = m for each i .

Is (v1, v2, . . . , vn) a Nash equilibrium for this auction game?

9. Consider a first-price sealed-bid auction and view it as a strategic form
game with n players, where the strategy set Si of player i is [0,∞); the
set of all possible bids bi. If v1 = v2 > v3 ≥ v4 ≥ · · · ≥ vn, find all Nash
equilibria of this auction game.

6.2. Individual private value auctions

An individual private value auction is an auction in which the
bidders only know their own valuation of the item, though they may
have some idea about the valuation of the other bidders. For instance,
when you are at an auction of a rare piece of art, you know how much
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you are willing to pay for it, but you have only a vague idea about how
much the others value it.

In this section, we study in detail an auction with two bidders
who use “linear rules” as their bidding strategies. In this first-price
sealed-bid individual private value auction, each bidder i has her own
valuation vi of the object, and the bidder with the highest bid wins.
In case both bid the same amount, the winner is decided by a draw.
So, as before, the payoff functions of the players are given by

u1(b1, b2) =






v1 − b1 if b1 > b2
v1−b1

2 if b1 = b2

0 if b1 < b2

and

u2(b1, b2) =






v2 − b2 if b2 > b1
v2−b2

2 if b2 = b1

0 if b2 < b1 .

Here, as mentioned above, we are assuming that if the bidders make
the same bid, then the winner is decided by the toss of a coin so that
the probability of winning is 1

2 . Thus, the utility in this case is the
expected payoff from winning the auction.

Unlike the bidders in the auctions of Section 6.1, here the bidders do
not know the true valuation of the object by the other bidder. Though
each player is uncertain (due to lack of information) about the true
valuation of the other players, each player has a belief (or an estimate)
of the true valuation of the others. Since player i does not know player
j’s true valuation vj of the object, she must treat the value vj as a
random variable. This means that the belief of player i about the true
value of vj is expressed by means of a distribution function Fi. That
is, player i considers vj to be a random variable with a distribution
function Fi. Thus, player i believes that the event vj ≤ v will happen
with probability

Pi(vj ≤ v) = Fi(v) .

(See Section 1.5 for the definition of a distribution.)
We note from the outset that since this is a game, each bidder can

arrive at an optimal bid only after guessing the bidding behavior of
the other players. Naturally, the bids b1 and b2 of the players must be
functions of the two valuations v1 and v2. In other words, b1 = b1(v1)
and b2 = b2(v2).
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Given the lack of information on the part of the players, the best
that any player can do is to choose a bid that maximizes her expected
payoff. Notice that the expected payoff of the players are given by

E1(b1, b2) = P1(b1 > b2)u1(b1, b2) + P1(b1 = b2)u1(b1, b2) + P1(b1 < b2)u1(b1, b2)

= (v1 − b1)P1(b1 > b2) + 1
2 (v1 − b1)P1(b1 = b2) ,

and

E2(b1, b2) = (v2 − b2)P2(b2 > b1) + 1
2(v2 − b2)P2(b2 = b1) .

Observe that the first term in the formula E1(b1, b2) describes the pos-
sibility that bidder 1 wins and receives the payoff v1 − b1, and the
second term gives the payoff when there is a tie, in which case bid-
der 1’s expected payoff is 1

2(v1 − b1).
So, in this auction, the strategy of a bidder, say of bidder 1, is

simply her bidding function b1(v1) and her objective is to maximize her
expected payoff given the bidding function b2 = b2(v2) of the second
bidder. Thus, the expected payoff functions can be written as

Eu1(b1|b2) = (v1 − b1)P1(b1 > b2) + 1
2(v1 − b1)P1(b1 = b2)

and

Eu2(b2|b1) = (v2 − b2)P2(b2 > b1) + 1
2(v2 − b2)P2(b2 = b1) .

This now naturally leads to our old concept of a Nash equilibrium. A
pair of bidding functions (b∗1(v1), b∗2(v2)) is said to be a Nash equi-
librium for the individual private value auction if for every bidding
function b1(v1) of player 1 we have

Eu1(b1|b∗2) ≤ Eu1(b∗1|b∗2) ,

and for each bidding function b2(v2) of player 2 we have

Eu2(b2|b∗1) ≤ Eu2(b∗2|b∗1) .

We now work out the details in a specific case. Assume that both
players know that the valuation of the object lies between a lower value
v ≥ 0 and an upper value v > v. Assume further that each bidder
knows that the valuation of the other bidder is uniformly distributed on
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the interval [v, v]. That is, bidder i knows only that the true valuation
vj of bidder j is a random variable whose density function fi(v) is given
by

fi(v) =
{ 1

v−v if v < v < v

0 otherwise .

In other words, player i believes that the likelihood of vj having at
most the value v is given by

Pi(vj ≤ v) =
∫ v

−∞
fi(t) dt =






0 if v < v
v−v
v−v if v ≤ v ≤ v

1 if v < v .

(See Example 1.15 for a discussion of the uniform distribution.) It
should be clear that the following two “rationality” conditions must be
satisfied:

v ≤ b2(v) ≤ v and v ≤ b1(v) ≤ v .

As both bidders have symmetric information about each other’s
valuation, each should use essentially the same reasoning to choose an
optimal strategy. We, therefore, have the following result.

Bidding Rules in the 2-bidder Case

• Assume that in a 2-bidder individual private value auction the
valuations of the bidders are independent random variables uni-
formly distributed over an interval [v, v]. Then the linear bid-
ding rules

b1(v1) = 1
2v + 1

2v1 and b2(v2) = 1
2v + 1

2v2

form a symmetric Nash equilibrium.

The graph of a linear rule is shown in Figure 6.1. F92

We now proceed to verify that the pair of linear bidding rules

b∗1(v1) = 1
2v + 1

2v1 and b∗2(v2) = 1
2v + 1

2v2
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Figure 6.1. The linear bidding rule

is a symmetric3 Nash equilibrium of the individual private value auc-
tion. Because of the symmetry of the situation, it suffices to work the
details for bidder 1. We start by computing the probability of winning
for player 1. As far as bidder 1 is concerned, v2 is a random variable
which is uniformly distributed over the interval [v, v]. Therefore,

P1(b1 > b∗2) = P1({v2: b1 > 1
2v + 1

2v2})
= P1({v2: v2 < 2b1 − v})
= P1({v2: v2 ≤ 2b1 − v})
= P1(v2 ≤ 2b1 − v)

=






0 if b1 < v
2(b1−v)

v−v if v ≤ b1 ≤ 1
2 (v + v)

1 if b1 > 1
2 (v + v) .

The graph of this function is shown in Figure 6.2(a).
Also, because v2 has a uniform distribution (which is a continuous

distribution), we have P1(b1 = b2) = P1({v2: b1 = 1
2v + 1

2v2}) =
P1({v2: v2 = 2b1 − v}) = 0. This implies

Eu1(b1|b∗2) = P1(b1 > b∗2)(v1 − b1)
3In the language of game theory an equilibrium is known as a symmetric

Nash equilibrium if each player uses the same strategy.
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=






0 if b1 < v
2(b1−v)(v1−b1)

v−v if v ≤ b1 ≤ 1
2 (v + v)

v1 − b1 if b1 > 1
2 (v + v) .

The graph of this function is shown in Figure 6.2(b). F94

Figure 6.2.

Now it is easy to see that the maximum of the expected payoff func-
tion Eu1(b1|b∗2) takes place in the closed interval [v, 1

2(v + v)]. Clearly,
the maximizer satisfies the equation

Eu′
1(b1|b∗2) = 2

v−v (v1 − 2b1 + v) = 0 ,

or b1 = 1
2v + 1

2v1. This shows that the pair of linear bidding rules
(b∗1(v2), b∗2(v2)) is a Nash equilibrium for the individual private value
auction.

We add a note of caution here. Though we have found explicit
solutions for Nash equilibrium bidding rules, the reason we were able
to do so is because we made the assumption that the distribution of the
valuations were uniform. Thus, the linear bidding rules we obtained
above may not be equilibrium bidding rules if the distribution is other
than uniform.

Let us now see how these linear bidding rules work out in a simple
example.

e:paintbid

Example 6.3. Suppose two bidders are bidding for a painting that
each knows is worth between $100,000 and $500,000, and that each bid-
der’s valuation of the painting is uniformly distributed over the interval
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[100,000, 500,000]. Thus, in this case v = 100, 000 and v = 500, 000.
The equilibrium bidding rules in this case are:

bi(vi) = 1
2vi + 50, 000, i = 1, 2 .

If bidder 1’s true valuation is $200,000 then she bids b1 = $150, 000,
and if bidder 2’s true valuation is $250,000, then bidder 2 bids b2 =
$175, 000. The auctioneer in this case collects $175,000 and bidder 2
gets the painting for $175,000.

The analysis that we have done so far has been restricted to the case
of two bidders. Since auctions usually have more than two bidders, it
is important to understand auctions with many players. We illustrate
the arguments for the general case by looking at an individual private
value auction in which there are three bidders. The case for n bidders
can be argued in exactly the same way, and we leave the details as an
exercise for the reader.

As before, each bidder i views the valuations of the other players
as random variables which are commonly known to be uniformly dis-
tributed on the interval [v, v]. Of course, each individual bidder knows
her own true valuation. Since this is a first-price sealed-bid auction,
given a vector of bids (b1, b2, b3), the payoff function of bidder i is given
by

ui(b1, b2, b3) =






vi − bi if bi > bj for all j *= i
1
r (vi − bi) if i is among the r finalists

0 otherwise .

The expected payoff of player i is given by

Ei(b1, b2, b3) = Pi(bi > bj : for all j *= i) ui(b1, b2, b3) .

Again, since the random variables vj for j *= i are all uniformly dis-
tributed, the probability that any two bids are equal is zero, and thus
the expected utility is unaffected by having ties. Because of the sym-
metry of the situation, it is reasonable to expect that bidders use the
same optimal bidding rules. As in the two-bidder case, we have the
following analogous result.
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Bidding Rules in the 3-bidder Case

• Assume that in a 3-bidder individual private value auction the
valuations of the bidders are independent random variables uni-
formly distributed over an interval [v, v]. Then the linear bid-
ding rules

bi(vi) = 1
3v + 2

3vi , i = 1, 2, 3 ,

form a symmetric Nash equilibrium.

To verify that the linear bidding rules

b∗i (vi) = 1
3v + 2

3vi , i = 1, 2, 3 ,

form a Nash equilibrium, we proceed as in the two-bidder case. Again,
because of the symmetry of the situation, it suffices to verify the Nash
equilibrium behavior for bidder 1. We assume that each bidder bids
independently, a reasonable assumption in the case of a sealed-bid auc-
tion. In probability theory, this is expressed by saying that the random
variables are independent which means that

P1(b1 > b2 and b1 > b3) = P1(b1 > b2)P1(b1 > b3) .

Consequently, we have

P1(b1 > b∗2 and b1 > b∗3)
= P1(b1 > b∗2)P1(b1 > b∗3)
= P1({v2: b1 > 1

3v + 2
3v2})P1({v3: b1 > 1

3v + 2
3v3})

=






0 if b1 < v
2(b1−v)

v−v if v ≤ b1 ≤ 1
3v + 2

3v

1 if b1 > 1
3v + 2

3v .

Therefore, given that players 2 and 3 use the rules b∗2 and b∗3, the
expected payoff of player 1 is given by

Eu1(b1|b∗2, b∗3) = P1(b1 > b∗2 and b1 > b∗3)(v1 − b1)
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= P1(b1 > b∗2)P1(b1 > b∗3)(v1 − b1)

=






0 if b1 < v
9(b1−v)2(v1−b1)

4(v−v)2 if v ≤ b1 ≤ 1
3v + 2

3v

v1 − b1 if b1 > 1
3v + 2

3v .

For v < v1 < 1
3v + 2

3v its graph is shown Figure 6.3.F93

Figure 6.3. The graph of the expected payoff function Eu1

Clearly, this function attains its maximum inside the closed interval
[v, 1

3v + 2
3v]. Differentiating, we get

Eu′
1(b1|b∗2, b∗3) = 9(b1−v)(−3b1+v+2v1)

4(v−v)2 , and

Eu′′
1(b1|b∗2, b∗3) = 9(−3b1+2v+v1)

2(v−v)2 .

Solving Eu′
1(b1|b∗2, b∗3) = 0 for b1, yields b∗1 = 1

3v + 2
3v1, which means

that the function Eu1(· |b∗2, b∗3) has only one critical point in the interval
(v, 1

3v + 2
3v). Since the second derivative satisfies

Eu′′
1(b∗1|b∗2, b∗3) = 9

2(v−v)2 (v − v1) < 0 ,

we conclude that Eu1(· |b∗2, b∗3) is maximized at b∗1. This establishes
that the triplet of linear bidding rules

b∗i (vi) = 1
3v + 2

3vi , i = 1, 2, 3 ,

is a Nash equilibrium.
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Let us now go back to the second-price sealed-bid auction. Since
the highest bidder who wins the auction pays only the second highest
bid, the payoff function in a second-price auction is given by

ui(b1, . . . , bn) =






0 if bi < m−i
1
r (vi −m−i) if bi = m−i and we have r finalists
vi −m−i if bi > m−i ,

where b = (b1, b2, . . . , bn) is an arbitrary vector of bids and (as usual)
m−i = max{bj : j *= i}.

In the case of the first-price auction, the bidding behavior in the
individual private value case is quite different from the bidding in the
complete information case. However, in contrast, the bidding in a
second-price seal-bid auction is identical for both cases. Indeed, as in
the complete information case, the players will also always bid their
true valuation in the case of individual private values. This remarkable
result is stated and discussed below.

t:613

Theorem 6.4. Let v = (v1, v2, . . . , vn) be the vector of valuations. If
the auction is a second-price sealed-bid auction, then bidder i’s optimal
bid is vi.

Proof : We start by introducing some standard notation. Let b =
(b1, b2, . . . , bn) be a vector of bids and let us isolate a player i. If b−i

is the (n–1)-dimensional vector of bids obtained from b by deleting the
bid bi of player i, then we shall denote the utility function ui(b1, . . . , bn)
by ui(bi, b−i). That is, for simplicity, we let

ui(b1, b2, . . . , bn) = ui(bi, b−i) .

We shall show that bi = vi gives bidder i the highest payoff by estab-
lishing the following claims.
STEP I: bi ≤ vi.

If bi > vi, then

ui(bi, b−i) =






vi −m−i if m−i ≤ vi

vi −m−i < 0 if vi < m−i < bi
vi−m−i

r < 0 if m−i = bi and we have r finalists
0 if m−i > bi ,
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whereas if she bids vi, then

ui(vi, b−i) =
{

vi −m−i if m−i < vi

0 if m−i ≥ vi .

Thus, comparing the above payoffs, we see that whenever bi > vi, we
have ui(vi, b−i) ≥ ui(bi, b−i).
STEP II: bi = vi.

From Step I, we know that bi ≤ vi. Now assume by way of contra-
diction that bi < vi. Then,

ui(bi, b−i) =






vi −m−i if m−i < bi
vi−m−i

r if m−i = bi and we have r finalists
0 if m−i > bi .

Again, comparing these payoffs, we see that bi < vi implies ui(vi, b−i) ≥
ui(bi, b−i). Therefore, we have established that the optimal bid for
player i is vi.

If we examine the preceding arguments closely, we will notice that
the optimal bid of player i is vi, irrespective of how the valuations
of the other bidders are distributed. Thus, a Nash equilibrium of a
second-price sealed-bid auction with individual private values is the
vector v = (v1, v2, . . . , vn).

In comparing the first-price sealed-bid auction with the second-
price sealed-bid auction, we find that the two types of auctions lead to
quite distinct outcomes in the case of individual private values. This
is in contrast with the complete information case. We saw in that
case that the first-price sealed-bid auction generates as much revenue
for the auctioneer as the second-price sealed-bid auction. In the case
of individual private values, the second-price sealed-bid auctions can
generate more revenue as the following example demonstrates.

e:subirauc

Example 6.5. Consider the auction of Example 6.3. In that example,
if the painting was auctioned in a second-price sealed-bid auction, then
player 1 would bid $200,000 and player 2 would bid $250,000. Thus,
the painting would fetch $200,000, a considerably larger sum of money
than the $175,000 that would be collected in a first-price auction.

Note, however, that if the valuation of bidder 2 is $350,000, then
the highest bid in the first-price auction would be $225,000 and the
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auctioneer would collect $225,000. If a second-price auction is used,
then it would again fetch $200,000. Consequently, it is difficult to
determine which type of auction would generate the greater revenue in
the case of individual private values.

Exercises

1. Consider the auction described in Example 6.3. Now suppose that a
third bidder enters the auction with a valuation v3 = $ 125, 000. Will
the bidding change? Does the auctioneer prefer the new biddings to
the old ones?

2. Consider an individual private value auction with two bidders. Each
player knows that the valuation of the other player is a uniformly dis-
tributed random variable on an interval [v, v]. Bidder 1 also knows that
bidder 2’s bidding function is given by

b2(v2) = (v2 − v)2 + v ,

but bidder 2 does not know the bidding function of player 1. Find
the best response bidding function b1(v1) of player 1. [Answer: b1 =
2
3v + 1

3v1 ]

3. Suppose that two bidders are bidding for a piece of art that each knows
is worth between $300, 000 and $800, 000, and that the other bidder’s
valuation of the piece of art is uniformly distributed over the interval
[300, 000, 800, 000]. Player 2 knows that player 1’s bidding function is
given by

b1(v1) = 1
400,000 (v1 − 300, 000)2 + 300, 000 ,

but player 1 does not know the bidding function of player 2. If the true
valuations of the players are v1 = $ 500, 000 and v2 = $ 600, 000, find
the bids of the players. [Answer: b1 = b2 = $ 400, 000 ]

4. Consider an auction with two bidders in which player 1 knows that
player 2’s valuation is a random variable which is uniformly distributed
on the interval [v, v] and player 2 knows that player 1’s valuation is also
a random variable which uniformly distributed on the interval [v∗, v∗].
Assume that v∗ < v < v∗ < v. Find the equilibrium linear bidding
rules of the players in this auction. [Answers: b1(v1) = 1

6v∗ + 1
3v + 1

2v1

and b2(v2) = 1
6v + 1

3v∗ + 1
2v2 ]
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5. Verify that the graph of the expected payoff function of player 1

Eu1

(
b1|b∗2, b∗3

)
=






0 if b1 < v
9(b1−v)2(v1−b1)

4(v−v)2 if v ≤ b1 ≤ 1
3v + 2

3v

v1 − b1 if b1 > 1
3v + 2

3v .

is as shown in Figure 6.3. Also, determine the highest expected payoff of
player 1. [Answer: The highest expected payoff of player 1 is (v1−v)3

3(v−v)2 .]

6. Assume that in an individual private value auction with n bidders each
bidder knows that the valuation of the others are independent random
variables uniformly distributed on the interval [v, v]. Show that the
vector of bids

(
1
nv + n−1

n v1,
1
nv + n−1

n v2, . . . ,
1
nv + n−1

n vn

)

is a symmetric Nash equilibrium for the auction. What is the expected
payoff of each bidder at this Nash equilibrium? Also, what happens to
this Nash equilibrium and the expected payoffs as n →∞?

6.3. English auctions

One of the most popular type of auctions is the one in which the auc-
tioneer uses a sequential bidding procedure. There are quite a few
variants of sequential bid auctions. The most widely used is a vari-
ant of the English auction in which the auctioneer calls successively
higher bids and a bidder then indicates whether she is willing to make
that bid. The bidder who makes the last bid in this sequence of bids
then wins the auction and pays that bid. In Japan a slightly differ-
ent form of the English auction is used. The price is posted using an
electronic display and the price is raised continuously. A bidder who
wishes to be active at the current price depresses a button. When she
releases the button she has withdrawn from the auction. The Dutch
often use a sequential bidding procedure to auction Tulips and Tulip
bulbs. The auction, however, starts with a high price and the price
is continuously lowered until a bidder agrees to pay the bid. These
auctions are called Dutch auctions and are obviously quite different
from the English auctions. Here we analyse the standard version of the
English auction. Such an auction is again a gathering of n persons for
the sole purpose of buying an object under the following rules.
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1. The auctioneer (the person in charge of the auction) starts the
bidding by announcing a price b0 for the object. This is round
(or stage) zero of the auction. The quoted price b0 is the floor
price of the object at round zero. We assume that b0 > 0.

2. Once the price b0 is announced by the auctioneer, the players
start bidding in a sequential fashion, i.e., in succession one after
the other. Successive bids must be higher than the prevailing
floor price. Thus, the first person who announces a price b1 > b0

brings the auction to round 1 and the price b1 is now the floor
price of round 1. The next player who bids a price b2 > b1 brings
the auction to round 2 and to the floor price b2, and so on. At
each stage of the auction every player has the right to bid again,
even if she had bid in earlier rounds.4 Consequently, the floor
price bk at stage k is the result of the successive bids

0 < b0 < b1 < b2 < · · · < bk .

3. If at some round k no one bids higher, then the player with the
last bid bk is declared to be the winner and the auction ends. The
player with the last bid then pays the amount bk to the auctioneer
and gets the object.

Since the process of bidding in an English auction is drastically
different from a sealed-bid auction, it is, of course, quite natural to
wonder whether the final bid would be different from the sealed-bid
auction. Again, we start discussing English auctions by assuming that
each bidder i has a true valuation vi of the item. As before, without
loss of generality, we may assume that the valuations are ranked in the
order

v1 ≥ v2 ≥ · · · ≥ vn .

Since an English auction is still an individual private value auction, the
bidders do not know the valuations of the others and know only their
own valuations of the item. We shall see that one of the advantages
of an English auction is that the bidders do not really need to know

4It is understood here that rational bidders will not make two consecutive
bids since by doing so they simply lower their expected payoffs of winning the
auction. Two successive bids by the same player is tantamount to bidding
against himself!
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the distribution of possible valuations to bid optimally. We go on to
examine the nature of an optimal strategy in an English bid auction.

Claim 1: No bidder will bid more than her valuation.

In order to justify this claim, we must interpret it in the framework
of expected payoffs. Assume that a bidder i bids bk > vi at the kth

round of bidding. Then her belief about her chances of winning the
auction is expressed by a number 0 ≤ p ≤ 1, where

p = the probability that bk is the highest bid ,

and, of course, 1− p is the probability that some other bidder will bid
a higher price at the (k+1)th round. So, player i, by bidding bk > vi

at the kth round expects a payoff of

p(vi − bk) + (1− p) · 0 = p(vi − bk) ≤ 0 ,

which is negative if p is not zero. However, notice that she can have
an expected payoff which is at least as high, by bidding no more than
her evaluation vi.

Claim 2: Bidder i will bid as long as the last bid is below vi.

To establish this claim, there are two cases to consider. First, if
bidder i made the last bid bk, then bidder i will not bid as long as
there are no further bids, in which case bidder i wins and receives the
payoff vi− bk. However, if bk > vi, then this payoff is negative and she
would have been better off at the kth round, either by not bidding at
all, or, in case bk−1 < vi, by bidding bk such that bk−1 < bk ≤ vi.

If the floor price after k rounds of bidding is bk < vi, and bidder i
did not make the last bid, then bidder i will bid an amount bk+1 on the
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(k+1)th round such that bk < bk+1 ≤ vi as the expected payoff from
bidding at the (k+1)th round is:

p(vi − bk+1) + (1− p) · 0 = p(vi − bk+1) ≥ 0 .

This expected payoff is positive if bidder i thinks that there is a positive
probability p that bk+1 is the highest bid. In this case, the expected
payoff from not bidding is zero, irrespective of the beliefs of player i.

We can now use the preceding two claims to determine the winning
bid in an English auction. Clearly, the bidding stops as soon as the
floor price bt at the tth round of bidding exceeds or is equal to v2, the
second highest bid. Since the second highest bidder has no incentive
to bid bt > v2, the bid must have been made by bidder 1, and hence,
bt ≤ v1. Therefore, in an English auction, the winning bid b∗ must
always satisfy v2 ≤ b∗ ≤ v1. We emphasize here that the winning bid is
independent of the information or beliefs that players have about each
others valuations. The final bid is simply a consequence of the true
valuations of the bidders.

One needs to compare the preceding conclusion with the outcome in
a sealed-bid auction. Recall that in a sealed-bid auction the bid made
by the bidders is not independent of their beliefs about the valuations
of the others. One thus faces the following intriguing question: Given
a choice of the two forms of auctions which one of the two would an
auctioneer choose?

The answer, as we shall see below, depends on the valuations of the
players as well as on their beliefs about each others true valuations.

e:seqbidder

Example 6.6. Let us go back to Example 6.3 in which there are two
bidders with valuations v1 = $250, 000 and v2 = $200, 000. If the
auction is an English auction the bidding would stop as soon as the
bid went over $200,000. Thus, the auctioneer will net a little over
$200,000 for the item. In the case of the sealed-bid auction, where the
beliefs of the bidders about the valuations of the others are uniformly
distributed between $100,000 and $500,000, the winning bid is only
$175,000. Thus, in this case, the English auction generates significantly
more revenue for the auctioneer than the sealed-bid auction.

In contrast, if we now change the parameters to

v = $200, 000 , v1 = $300, 000 and v2 = $200, 000 ,
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then the sealed-bid auction would get a winning bid of $250,000 and
the English auction could get a winning bid of only $200,000. Thus, in
this case the sealed-bid auction generates substantially more revenue
than the English auction.

From the example above it should be clear that a sealed-bid auction
may outperform an English auction in some cases, whereas it may go
the other way in some other cases. It is, therefore, no wonder that we
see both kinds of auctions used frequently, as the type of auction that
is better from the auctioneer’s point of view depends on the expected
group of bidders and their valuations of the item. In other words, the
amount an auctioneer nets from an auction depends on the way the
auction is designed.

Let us examine the following variant on a sequential bid auction.5

The item being auctioned is a dollar and is being auctioned under the
following rules.

a. The highest bidder gets the dollar.

b. The highest bidder as well as the second highest bidder must both
pay their bids.

Notice that the difference between this auction and the usual sequential
bid auction is that both the highest bidder as well as the second highest
bidder must pay their bids but only the highest bidder wins the object.

This auction has one Nash equilibrium. Namely: The bidder who
makes the first bid makes a bid of a dollar and the rest then bid nothing.
We verify this by way of the following assertions.

• No player bids more than a dollar in a Nash equilibrium.

If you are the first bid and you bid b > 1, then your payoff is given
by

u(b) =






1− b < 0 if you win
−b < 0 if you are the second highest bid

0 otherwise .

Clearly, you are better off by bidding zero for the dollar, as your payoff
in that case is always zero. Thus, the payoff of bidding more than one
dollar is not higher than the payoff of bidding zero.

5The auction was first used by Professor Martin Shubik at Yale University.
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• A bid that is less than a dollar cannot be a winning bid in a Nash
equilibrium.

To see this, let b1 < b2 < · · · < bk−1 < bk be the successive bids
in the auction which form a Nash equilibrium. If k = 1, then bk = 1.
Otherwise, any bidder j different from i can bid b such that bk < b < 1
and win the auction and get a positive payoff.

When k > 1, then again bk = 1. Otherwise, if bk < 1, then the
bidder j with the bid bk−1, can have a winning bid b such that bk−1 <
b < 1 and avoid the penalty bk−1.

Thus, the only candidates for an equilibrium is the outcomes in
which the first bidder bids one dollar and no one else makes a bid.

In case the first bidder bids one dollar, any bidder who wants to
win will have to bid more than a dollar. But from our first claim this
strategy is dominated by bidding zero. Hence, it is an optimal strategy
for every bidder other than the one who bid one dollar, to abstain from
bidding. Our second claim then guarantees that this is the only Nash
equilibrium of the auction.

While this auction has a single Nash equilibrium, it is an auction
which has a rather fascinating characteristic. If the first bid happens
to be less than a dollar then the bidding can unravel dramatically in
such a way so that the bid that finally wins the dollar is well above a
dollar. Suppose for instance, the first bid is 50 cents. A second bidder
then has a chance of winning by making a bid of say 75 cents. But
once this second bid has been made, the bidder who made the first bid
at 50 cents has to bid higher as, otherwise, he loses 50 cents since if the
bidding stops his bid is the second highest bid. This bidder then bids
between 75 cents and a dollar. The bidder with the bid of 75 cents
now is at the risk of becoming the one with the second highest bid
and thus will want to make a higher bid. But will the bidding process
stop once it reaches one dollar? The answer is no if there is a bidder
who has already made a second bid. If the second highest bid is 90
cents then the bidder with this bid will want to beat the highest bid
(say $1) by quoting $1.05, since if he wins then he loses only 5 cents,
whereas if he does not bid his loss is 90 cents. But then the bidder with
the bid of $1 will now bid higher, say $1.10. This apparently perverse
(but seemingly rational) bidding will continue until the bidding reaches
very high and possibly absurd levels, whose only constraint is the size
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of each bidder’s budget. This phenomenon has been observed in many
auctions of this type around the world. For instance, for how much do
you think you can auction a twenty dollar bill? Quite predictably, in
some cases the bidding reached as high as $15,000!6

Exercises

1. We have seen that the final bid in an English auction is b∗ ≥ v2, where
v2 is the valuation of the second highest bidder. How does this compare
to the winning bid in a second-price sealed-bid auction?

2. Recall that in a Dutch auction the bidding starts with a high price which
is continuously lowered until a bidder agrees to pay the bid. How would
the winning bid in a Dutch auction compare to the winning bid in an
English auction? Explain fully.

3. As an auctioneer you know that among the bidders there is one bidder
with a very high valuation and you also know that none of the bidders
knows this. What auction would you choose?

4. Consider an auction where the auctioneer knows that there are two
bidders with very high valuations for the object and none of the bidders
knows this. What form of an auction would the auctioneer choose?

5. A failed S & L is often auctioned to private bidders by the Resolution
Trust Commission (RTC). Before bidding, a bidder can get all the
necessary information to determine its value to him. The auctions have
been first-price sealed-bid auctions. Do you think that this form of
auction generates the maximum revenue for the RTC? If not, what
type of auction should the RTC have used?

6.4. Common-value auctions

A common-value auction is a first-price sealed-bid auction in which,

• the underlying true value of the object is the same for all bidders
(hence the name common-value auction), and

• the bidders receive information about the true value of the object
by means of “signals.”

6The Indianapolis Star , Business Monday, Week of April 14, 1997.
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In a common-value auction, the bidders have the least amount of infor-
mation. In addition to not knowing the valuations of the others, they
are also uncertain about their own valuations. In such auctions, each
bidder receives a “noisy” signal about the true value of the object and
on the basis of this signal she forms an estimate of its value. Conse-
quently, in a common-value auction, the valuation of bidder i is viewed
as a random variable not only by the other bidders but also by bidder
i herself.

Typical examples of common-value auctions are auctions of offshore
oil leases. In these auctions, the bidders, who are typically the big oil
producing firms and some independent wild catters, do not have a pre-
cise idea of the value of the leases. They form an estimate of the value
of the lease on the basis of some signal they observe. The U.S. govern-
ment which auctions these tracts of ocean, provides a legal description
of the location of the area being leased. The bidders are responsible for
gathering whatever information they can about the tract. In this case,
the information provided by geologists and seismologists is usually the
noisy signal observed by the bidders.

From now on we shall use v to denote the random value of the object
and ωi to indicate the signal received by bidder i. The value v of the
object is correlated with the arbitrary signal ω via a joint density
function f(v,ω) which every bidder knows. The density function
f(v,ω) represents the probability of observing v and ω simultaneously.7

We illustrate the concept of the joint density function by considering
the following simple example. Assume that v can take two possible
values, say v1 and v2, and a bidder can receive one of three possible
signals, ω1, ω2 and ω3. The following table gives the joint density
function f(v,ω) at these points.8

v/ω v1 v2

ω1 0.1 0.2
ω2 0.2 0.2
ω3 0.2 0.1

A Joint Density Function
7In probability terminology the density function f(v,ω) satisfies f(v,ω) ≥

0 for all v and ω and
∫ ∞
−∞

∫ ∞
−∞f(v,ω) dvdω = 1.

8The reader should notice at once that the “discrete” joint density function
satisfies the property

∑2
i=1

∑3
j=1 f(vi,ωj) = 1.
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Suppose now that a bidder observes the signal ω2. Then what can she
conclude about the value v of the object? She should observe that with
this information she can update the probabilities of the possible values
v1 and v2. These new probabilities—which are called the conditional
probabilities—can be computed (as we did in Chapter 3) by the formula

P (v1|ω2) =
P (v = v1 & ω = ω2)

P (ω = ω2)
=

0.2
0.4

= 0.5 ,

where P (ω = ω2) was computed from the formula

P (ω = ω2) = P (v = v1 &ω = ω2) + P (v = v2 &ω = ω2)
= 0.2 + 0.2 = 0.4 .

Similarly, we get
P (v2|ω2) = 0.5 .

The conditional expected value, which is given by

E(v|ω2) = v1P (v1|ω2) + v2P (v2|ω2) = 0.5v1 + 0.5v2 ,

provides the answer to the question posed above.
Note further that given the signal ω = ω2, a bidder now has a condi-

tional distribution over the values v1 and v2 which she uses to calculate
the conditional expected value of the object. This new distribution on
the values of v is called the conditional distribution of v given ω.

Now let us return to our discussion of the common-value auction.
As we saw, each bidder bids after observing a signal which conveys to
her some information about the value of the object. After observing a
signal ω, the bidder will re-evaluate her expected value of the object
conditioned on the signal. This revised expected value—called the
conditional expected value—is written as E(v|ω). If v takes a finite
number of values, say v1, . . . , vk, then

E(v|ωj) =
k∑

i=1

viP (vi|ωj) ,

where
P (vi|ω) =

P (v = vi & ω = ωj)
P (ω = ωj)

,
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and

P (ω = ωj) =
k∑

i=1

P (v = vi &ω = ωj) .

In case v is a continuous random variable, then the sums are replaced
by integrals.9

Hence, when bidder 1 receives the signal ω1 and the vector of bids
is (b1, . . . , bn), her expected payoff is

E1(b1, . . . , bn) =
{

1
r [E(v|ω1)− b1] if bidder 1 is among r finalists

0, otherwise .

In general, the expected payoff of bidder i is

Ei(b1, . . . , bn) =
{

1
r [E(v|ωi)− bi] if bidder i is among r finalists

0 otherwise .

Since a bidder cannot observe the signals of the others, she conditions
her bid on the signal ωi alone. Thus, in general, the bid of a player is
a function of the signal that she observes. That is, the bid of player 1
is a function b1(ω1), and the bid of player i is bi(ωi).

As in the case of individual private value auctions, we study the
bidding behavior in common-value auctions by analyzing the case of
two bidders. From now on, in order to make our model as simple as
possible, we shall assume the following.

• The bidders observe signals that are independent realizations of
random variables that are uniformly distributed on the interval
[0, 1].

• The object that is being auctioned is known to take only two pos-
sible values; a high value vh and a low value v%.

• The joint density function of the random value v of the object and
the signal ω is given by

f(v,ω) =
{

ω if v = vh

1− ω if v = v! .

9Here we have E(v|ω) =
∫ ∞
−∞ sP (s|ω) ds, where P (s|ω) = f(s,ω)∫ ∞

−∞ f(t,ω) dt
.



228 Chapter 6: Auctions

From this joint density function, we see that the likelihood that the
value is high increases with the signal. Thus, when ω = 1

2 , the condi-
tional probability that the value is high is

P (vh|ω) =
f(vh, 1

2)
f(v%, 1

2) + f(vh, 1
2)

=
1
2

.

Similarly, when the signal is ω = 3
4 , the conditional probability is

P (vh|ω = 3
4) = 3

4 . Therefore, we see that the signals observed by
the bidders are useful in pinning down the probable true value of the
object. As the signals ω are uniformly distributed over [0, 1], before
the bidders receive a signal, the prior probability that the value is high
is given by

P (v = vh) =
∫ 1

0
f(vh,ω) dω =

∫ 1

0
ω dω =

1
2

.

After they receive the signal ω = k, the conditional probability that
v = vh is given by

P (vh|k) = f(vh,k)
f(vh,k)+f(v",k) = k

k+(1−k) = k .

The conditional expected value when a bidder observes the signal
ω = k is thus

E(v|ω = k) = P (vh|k)vh + [1− P (vh|k)]v%
= kvh + (1− k)v% .

In the present case, as the signal is a number in [0, 1], it would be
reasonable to ask whether the bidders can find an “optimal” strategy
that is “linear” in the observed signals. Before pursuing the “linear
bidding rules” further, let us discuss the objective of each bidder. As-
sume, in the general case that b1 = b1(ω1) and b2 = b2(ω2). Let us
look at the objective of player 1 given that bidder 2 uses a bidding rule
b2(ω2). She will win the auction if b1 > b2, she looses if b1 < b2 and
has a 50% chance of winning it when b1 = b2. Thus, her probability of
winning is

P1(b1 ≥ b2) = P1({ω2: b1 ≥ b2(ω2)}) .

Therefore, when bidder 1 observes the signal ω1 and bidder 2 uses the
bidding rule b2(ω2), the expected payoff of bidder 1 from bidding b1 is

Eu1(b1|b2(ω2)) = P1(b1 ≥ b2)[ E(v|ω1)− b1 ] + P1(b1 < b2) · 0
= P1({ω2: b1 ≥ b2(ω2)})[ω1vh + (1− ω1)v% − b1 ] .
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Similarly, when bidder 2 observes the signal ω2 and bidder 1 uses the
bidding rule b1(ω1), the expected payoff of bidder 2 from bidding b2 is

Eu2(b2|b1(ω1)) = P2({ω1: b2 ≥ b1(ω1)})[ω2vh + (1− ω2)v% − b2 ] .

As before, we say that a pair of bidding rules (b∗1(ω1), b∗2(ω2)) of a
common-value auction is a Nash equilibrium, if

Eu1(b1|b∗2(ω2) ≤ Eu1(b∗1|b∗2(ω2))

holds true for each bidding rule b1(ω1) of bidder 1, and

Eu2(b2|b∗1(ω1) ≤ Eu2(b∗2|b∗1(ω1))

for each bidding rule b2(ω2) of player 2.
We now have the following important result regarding Nash equi-

libria in our common-value auction.

Bidding Rules in 2-Bidder Common-Value Auction

• If the bidders observe signals ω1 and ω2 that are uniformly dis-
tributed over the interval [0, 1], then the pair of linear bidding
rules

b1 = v% + 1
2(vh − v%)ω1 and b2 = v% + 1

2(vh − v%)ω2 ,

is a symmetric Nash equilibrium of the common-value auction.

To see this, let

b∗1(ω1) = v% + 1
2(vh − v%)ω1 and b∗2(ω2) = v% + 1

2(vh − v%)ω2 ,

The graph of b∗1(ω1) is shown in Figure 6.4(a). F100

In order to show that the pair of bidding rules (b∗1(ω1), b∗2(ω2)) is a
Nash equilibrium, it suffices to show that

Eu1(b1|b∗2(ω2) ≤ Eu1(b∗1|b∗2(ω2))
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Figure 6.4.

for any bidding rule b1(ω1). We start by observing that

P1(b1 ≥ b∗2(ω2)) = P1({ω2: b1 ≥ v% + 1
2(vh − v%)ω2})

= P1

(
{ω2: ω2 ≤ 2(b1−v")

vh−v"
}
)

= P1

(
ω2 ≤ 2(b1−v")

vh−v"

)

=






0 if b1 < v!
2(b1−v")
vh−v"

if v! ≤ b1 ≤ 1
2 (v! + vh)

1 if b1 > 1
2 (v! + vh) ,

where the second line in the last equation follows from the fact that ω2 is
a random variable which is uniformly distributed on [0, 1]. Figure 6.4(b)
illustrates the graph of this probability function. Hence, the expected
payoff of bidder 1 is

E1(b1) = Eu1(b1|b∗2(ω2))
= P1(b1 ≥ b∗2(ω2))(c− b1)

=






0 if b1 < v!
2(b1−v")
vh−v"

(c− b1) if v! ≤ b1 ≤ 1
2 (v! + vh)

c− b1 if b1 > 1
2 (v! + vh) ,

where c = ω1vh + (1−ω1)v%. The graph of the function E1(·) is shown
in Figure 6.5.F101
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Figure 6.5.

It should be clear that the maximum of E1(·) takes place inside the
interval [v%, v"+vh

2 ]. Thus, the function E1(·) attains its maximum when

E′
1(b1) = 2(c−b1−b1+v")

vh−v"
= 2[2v"+(vh−v")ω1−2b1]

vh−v"
= 0 .

This implies 2v% + (vh − v%)ω1 − 2b1 = 0, or b1 = v% + 1
2(vh − v%)ω1.

We have thus established that the rule b∗1(ω1) maximizes bidder 1’s
expected payoff. By the symmetry of the situation, a similar bidding
rule is valid for bidder 2. In other words, the pair of bidding rules
(b∗1(ω1), b∗2(ω2)) is indeed a Nash equilibrium of the common-value auc-
tion.

We now examine the outcome in a common-value auction when the
bidders use such optimal bidding rules.

e:painRn

Example 6.7. A painting, which is claimed to be a genuine Renoir, is
being auctioned. There is some doubt about its authenticity and even
experts are divided on the issue. If it is authentic, then the painting
is worth one million, otherwise, the painting is simply a good copy
and would sell for only $100,000. There are two individuals who are
interested in the painting and have asked for permission to test whether
the painting is genuine. They test the painting independently. The
two potential buyers then will offer a bid on the basis of the signal
they receive from the test. The signals are randomly distributed over
[0, 1] in a uniform way and the joint density function of the value of
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the painting and the signal is given by

f(v,ω) =
{

ω if v = 1, 000, 000
1− ω if v = 100, 000 .

After the two bidders conducted their tests, bidder 1 received the
signal ω1 = 1

2 and bidder 2 received the signal ω2 = 3
4 . If the bidders

use their Nash equilbrium bidding rules, then bidder 1 will bid

b1 = v% + 1
2(v% + vh)ω1 = $100, 000 + $225, 000 = $325, 000 .

Bidder 2 will bid b2 = $100, 000+$337, 500 = $437, 500. Bidder 2 then
wins the auction and pays $437,500.

Notice that the amount that the auctioneer gets depends on the
signal that the winner receives.

We now go on to discuss the general case of n bidders all of whom
bid independently after receiving their own private signals about the
value of the object. As in the two-bidder case, we assume that it is
commonly known that the the object takes two values, v% and vh. Let
(b1, . . . , bn) be the vector of bids. As before, we let

m−i = max{bj : j *= i} .

Also, recall that the expected payoff of bidder i is

Ei(b1, . . . , bn) =
{

1
r [E(v|ωi)− bi] if bidder i is among r finalists

0 otherwise .

As before, the symmetry of the situation suggests that it might be
possible to find a symmetric Nash equilibrium. It turns out that one
can establish the following basic equilibrium property of common-value
auctions.
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Bidding Rules in an n-Bidder Common-Value Auction

• Assume that in an n-bidder common-value auction the bidders
observe signals that are independent random variables that are
uniformly distributed over the interval [0, 1]. Then the linear
bidding rules

bi = v% + n−1
n (vh − v%)ωi , i = 1, . . . , n ,

is a symmetric Nash equilibrium for the common-value auction.

Exercises

1. Consider an n-bidder common-value auction in which the bidders ob-
serve signals that are independent random variables uniformly dis-
tributed over the interval [0, 1]. Assume that each bidder i uses the
linear bidding rule bi = v! + n−1

n (vh − v!)ωi.

a. Show that the probability of bidder i winning the auction is

Pi(bi > m−i) =






0 if bi < v"

( n
n−1 )n−1 (bi−v!)

n−1

(vh−v!)n−1 if v" ≤ bi ≤ v" + n−1
n (vh − v")

1 if bi > v" + n−1
n (vh − v") ,

where m−i = max{bj : j *= i}.
b. Show that the expected payoff of bidder i from bidding bi is given

by

Ei(bi|m−i) =






0 if bi < v"

( n
n−1 )n−1 (bi−v!)

n−1(ci−bi)
(vh−v!)n−1 if v" ≤ bi ≤ v" + n−1

n (vh − v")

ci − bi if bi > v" + n−1
n (vh − v") ,

where ci = vhωi + (1− ωi)v!.
c. Sketch the graphs of the functions Pi(bi > m−i) and Ei(bi|m−i).

2. Assume that in an n-bidder common-value auction the bidders observe
signals that are independent random variables uniformly distributed
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over the interval [0, 1]. Show that the symmetric linear bidding rules

bi = v! + n−1
n (vh − v!)ωi , i = 1, . . . , n ,

form a Nash equilibrium for the common-value auction.

3. Consider a common-value auction with two bidders and an object which
is known to take only two possible values, v! and vh. Bidders observe
signals that are independent realizations of random variables that are
uniformly distributed on the interval [0, 1], and bidder 2 uses a linear
rule b2(ω2) = a2 + m2ω2, where v! ≤ a2, m2 > 0, and a2 + m2 ≤ vh.
What should be the bidding rule b1(ω1) of bidder 1 that is the best
response to b2(ω2)?

4. Consider a two bidder common-value auction in which the joint density
function is given by

f(v,ω) =
{

2
π e−v(1+ω2) if v ≥ 0 and ω ≥ 0

0 otherwise .

a. Compute the conditional expected value E(v|ω). [Answer: E(v|ω) =
(1 + ω2)−3 ]

b. Assume that player 2 uses the rule b2 = ω2 and player 1 knows
that ω2 is a random variable that is uniformly distributed on the
interval [0, 1]. Compute the expected payoff of player 1 and sketch
its graph. [Answer:

Eu1(b1|b2) =






0 if b1 < 0
b1[(1 + ω2

1)−3 − b1] if 0 ≤ b1 ≤ 1
(1 + ω2

1)−3 − b1 if b1 > 1 .

c. What is the best response bidding rule of player 1 under the as-
sumptions of part (b)? [Answer: b1(ω1) = 1

2 (1 + ω2
1)−3 ]



Chapter 7

Bargaining

Chap7

In the last chapter we used game-theoretic arguments to understand
auctions of various kinds. We saw that auctions are special types of
markets in which buyers bid for an object. However, there are many
other forms of markets in which, instead of buyers simply bidding for
the good, buyers and sellers actually make offers and counter-offers.
To analyse and understand such markets, we need a different approach
from the one used in the last chapter. In this chapter, we discuss
theories of bargaining and trade. The housing market as well as the
market for automobiles are good examples of markets in which the good
is traded only after the buyer and the seller have reached an agreement
on the price. In these cases, the agreement is reached only after a
certain amount of bargaining.

When one enters the housing market, say as a buyer, the individual
looks at houses that are for sale at some listed price. The buyer then
makes a decision about which of these houses is the most desirable and
within the individual’s budget. Once the decision is made, the buyer
makes an offer to the seller, usually at a price lower than the listed
price. The seller then either accepts the offer, or makes a counter-
offer that is somewhere between the original list price and the offer
of the buyer. The buyer either accepts the counter-offer or makes
another counter-offer or possibly terminates the bargaining process.
Another example of a market which uses such a bargaining process is
the automobile market, which also starts the bargaining process with a
list price quoted by the seller. Clearly, such markets are quite different
from auctions and, as we shall see, can be sequential games. Theories
of bargaining, however, are much more broadly used and applied, not
just to understand the housing and the automobile markets, but also to
solve problems such as division of a pie, sharing of common resources,
and allocating costs.
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We start by discussing the Axiomatic Theories of bargaining. These
theories are developed on the presumption that the bargaining outcome
must satisfy certain reasonable properties. Typically, these theories
are used to divide an amount of money or resource among competing
interests, or to allocate costs among individuals, where the allocating
mechanism needs to satisfy certain notions of equity and efficiency.

In section 1, we discuss Nash’s bargaining solution. In section 2, we
study monotonicity in bargaining and the Kalai–Smorodinsky Solution.
In sections 3 and 4, we investigate the Core and the Shapley Value,
both of which can be viewed as concepts that use elements of bargaining
among coalitions or groups. Finally, in section 5, we discuss bargaining
in which the strategic element is fundamental. Since such bargaining
processes are sequential, we call them Sequential Bargaining .

7.1. The Nash solution
sec71

Here we discuss and present a solution of the following classic problem:

• How should a number of individuals divide a pie?

Stated in this way, the problem seems to be fairly narrowly defined.
However, understanding how to solve it provides valuable insights into
how to solve more complex bargaining problems.

We start with a discussion of Nash’s solution to a two-person bar-
gaining problem. Such a bargaining problem arises in many contexts.
When a buyer and a seller negotiate the price of a house they are faced
with a bargaining problem. Similarly, two trading countries bargaining
over the terms of trade, a basketball player discussing his contract with
the owners of a team, or two corporations arguing over the details of a
joint venture, are all examples of such two-person bargaining.

In all these bargaining situations, there is usually a set S of alter-
native outcomes and the two sides have to agree on some element of
this set. Once an agreement has been reached, the bargaining is over,
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and the two sides then receive their respective payoffs. In case they
cannot agree, the result is usually the status-quo, and we say there
is disagreement. It is quite clear that the two sides will not engage
in bargaining, unless there are outcomes in S which give both sides a
higher payoff than the payoffs they receive from the status-quo. Thus,
if (d1, d2) are the payoffs from the disagreement point, then the inter-
esting part of S consists of those outcomes which give both sides higher
payoffs than the disagreement payoffs. We can thus define a bargaining
problem as follows.

df:71

Definition 7.1. A two-person bargaining problem (or game) con-
sists of two persons (or players) 1 and 2, a set S of feasible alterna-
tives (or bargaining outcomes or simply outcomes), and a utility
function ui on S for each player i, such that

1. u1(s) ≥ d1 and u2(s) ≥ d2 for every s ∈ S, and

2. at least for one s ∈ S we have u1(s) > d1 and u2(s) > d2.

Notice that condition (2) guarantees that there is a feasible alterna-
tive which makes both players strictly better-off relative to the disagree-
ment point. This condition makes the bargaining problem non-trivial.
Formally, we can write a bargaining problem as a triplet

B = (S, (u1, d1), (u2, d2)) ,

where S, u1 and u2 satisfy properties (1) and (2) of Definition 7.1.
Now notice that to every alternative s ∈ S there corresponds a

pair of utilities (u1(s), u2(s)). Such a pair will be called a utility
allocation. Thus, with every bargaining game, we can associate its
set of utility allocations

U = {(u1(s), u2(s)): s ∈ S} .

In case we need to designate to which game U belongs, we shall write
US instead of U . Clearly, U is a subset of the u1u2-plane. The set U
will play an important role in our discussion in this section.

As with any game, here too, we are interested in finding a satisfac-
tory “solution” to the bargaining game. We formally define a solution
for a bargaining problem to be a rule (i.e., a function) that assigns to
each bargaining game B a subset s(B) of the set of its outcomes S. We
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can think of the set s(B) as the collection of all mutually satisfactory
agreements of the bargaining game B or, simply, as the solutions of
the bargaining game. Obviously, any such rule ought to satisfy certain
reasonable conditions. We discuss below some of these conditions.

We first look at the concept of Pareto efficiency.

• Pareto Optimality or Efficiency: An outcome s∗ ∈ S is said
to be Pareto optimal (or Pareto efficient) if there is no other
outcome s ∈ S satisfying

1. u1(s) ≥ u1(s∗) and u2(s) ≥ u2(s∗), and
2. ui(s) > ui(s∗) for at least one player i.

A bargaining outcome which is Pareto efficient guarantees that
there is no further possibility of strictly improving the utility of one
of the players, while leaving the other at least as well off as she was be-
fore. In other words, when the bargaining outcome is Pareto efficient,
in order to give one player more, we have to give the other player less.

df:sLPO

Definition 7.2. A solution rule s(·) is said to be Pareto optimal if
for every game B the set s(B) consists of Pareto optimal outcomes.

Another property that a bargaining solution rule ought to have is
the independence of irrelevant alternatives.

• Independence of Irrelevant Alternatives: A solution rule
s(·) is said to be independent of irrelevant alternatives if
for every bargaining game B = (S, (u1, d1), (u2, d2)) and for every
subset T of S satisfying (d1, d2) ∈ UT and s(B) ⊆ T , we have

s(BT ) = s(B) ,

where BT is the bargaining game

BT = (T, (u1, d1), (u2, d2)) .

This condition captures the intuition that any acceptable bargain-
ing solution rule should remain acceptable if we throw away alternatives
that have already been considered to be less desirable by both players.

It can also be argued that the bargaining solution should be inde-
pendent of changes in the scale of the utility functions. This then leads
us to the following property.
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• Independence of Linear Transformations: A bargaining so-
lution s(·) is said to be independent of linear transforma-
tions if for any bargaining game

B = (S, (u1, d1), (u2, d2)) ,

and any linear utility functions of the form vi = ai + biui, where
the ai and bi are constants with bi > 0 for each i, the bargaining
game

B∗ = (S, (v1, b1d1 + a1), (v2, b2d2 + a2))

satisfies s(B∗) = s(B).

This guarantees that the bargaining solution rule will not be affected
by changing the scale or units in which we measure utility. In other
words, the solution should not be sensitive to linear transformations of
the utiltity functions.

We now proceed to describe a solution rule which satisfies all these
conditions. We start by associating to each bargaining game B =
(S, (u1, d1), (u2, d2)) the function gB: S → IR defined by

gB(s) = [u1(s)− d1 ] [ u2(s)− d2 ] ,

and let σ(B) be the set of all maximizers of the function gB, i.e.,

σ(B) = {s ∈ S: gB(s) = max
t∈S

gB(t) } .

Note here that when gB does not have any maximizer over the set S,
then σ(B) = *©, the empty set.

• We shall call σ(·) the Nash solution rule and for any bargaining
game B we shall refer to the members (if there are any) of σ(B)
as the Nash solutions of B.

A nice mathematical property of U that guarantees that σ(B) is
non-empty is that of compactness. The set of utility allocations U
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is said to be compact if it is bounded (i.e., it is contained inside a
circle or a box) and closed (i.e., it contains its boundary points). Some
examples of the set U are shown in Figure 7.1. The compactness
assumption guarantees that continuous functions on U always attain
their maxima and minima. We formally state this important property
here.

• If f : X → IR is a continuous function on a compact set X, then
there exist x1, x2 ∈ X such that

f(x1) ≤ f(x) ≤ f(x2)

holds for all x ∈ X.
FC71

Figure 7.1.

So, if the set of utility allocations U = {(u1(s), u2(s)): s ∈ S} of
a bargaining game B is a compact set, then the continuous function
g:U → IR, defined by

g(u1, u2) = (u1 − d1)(u2 − d2) ,

has at least one maximizer. That is, there exists some (u∗
1, u

∗
2) ∈ U

satisfying
g(u1, u2) ≤ g(u∗

1, u
∗
2)

for all (u1, u2) ∈ U . Now notice that any s∗ ∈ S such that u1(s∗) = u∗
1

and u2(s∗) = u∗
2 satisfies s∗ ∈ σ(B). This implies that σ(B) is non-

empty which means that any bargaining game B with a compact set
of utility allocations has at least one Nash solution.
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We are now ready to state the first part of the central result of this
section which is due to J. Nash.1 It describes the basic properties of
the Nash solution rule.

thm:NSub

Theorem 7.3. (Nash) On the class of bargaining games with com-
pact sets of utility allocations, the Nash rule σ(·) is Pareto optimal,
independent of irrelevant alternatives, and independent of linear trans-
formations

Proof : Assume that B is a bargaining game having a compact set of
utility allocations U and let

M = max{gB(s): s ∈ S } ,

where gB(s) = [u1(s)− d1][u2(s)− d2]. Let s∗ ∈ σ(B), i.e, gB(s∗) = M .
The geometry of the situation can be seen in Figure 7.2. FC72

Figure 7.2.

To see that s∗ is Pareto optimal suppose by way of contradiction
that there exists some s ∈ S such that u1(s) > u1(s∗) and u2(s) ≥
u2(s∗). Since there is a feasible alternative t ∈ S satisfying u1(t) > d1

and u2(t) > d2, it follows that gB(s∗) ≥ gB(t) > 0. Therefore,

u1(s) > u1(s∗) > d1 and u2(s) ≥ u2(s∗) > d2 .

Consequently,

gB(s) = [u1(s)− d1][u2(s)− d2]
1The Bargaining Problem, Econometrica 18 (1950), 155–162.
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> [u1(s∗)− d1][u2(s∗)− d2]
= gB(s∗) ,

contradicting the fact that s∗ is a maximizer of gB. Hence, s∗ is Pareto
optimal. Therefore, every outcome in σ(B) is Pareto optimal.

To verify that σ(·) is independent of irrelevant alternatives, we ob-
serve that if σ(B) consists of all maximizers of gB over S, then certainly
this set will not change if we consider the set of all maximizers of gB
over a subset T of S satisfying (d1, d2) ∈ UT and σ(B) ⊆ T .

For the independence of linear transformations, for each i let vi(s) =
biui(s)+ai be an arbitrary linear transformation of ui with bi > 0. Let
B∗ = (S, (v1, b1d1 + a1), (v2, b2d2 + a2)) and

gB∗(s) = [v1(s)− b1d1 − a1 ] [v2(s)− b2d2 − a2 ] .

Then,

gB∗(s) = [v1(s)− b1d1 − a1] [v2(s)− b2d2 − a2 ]
= [b1u1(s) + a1 − b1d1 − a1 ] [b2u2(s) + a2 − b2d2 − a2 ]
= b1b2[u1(s)− d1] [u2(s)− d2 ]
= b1b2gB(s) .

Thus, an outcome s∗ ∈ S maximizes gB if and only if it maximizes gB∗ .
This implies σ(B∗) = σ(B).

FC73

Figure 7.3.

To obtain further properties of the Nash solution rule, we need the
notions of convexity and symmetry.
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d:smty

Definition 7.4. The set of utility allocations U of a bargaining game
is said to be:

a. convex, if it contains every point on the line segment joining any
two of its points, and

b. symmetric, if (u1, u2) ∈ U implies (u2, u1) ∈ U .

Geometrically, symmetry means that the set U is symmetric with
respect to the bisector line u1 = u2. These properties are illustrated
in the sets shown in Figure 7.3.

In order to introduce a fourth condition on the solution rules, we
need the following definition.

df:symgam

Definition 7.5. A bargaining game B is said to be:

1. convex, if its set of utility allocations is convex and compact.

2. symmetric, if d1 = d2 and its set of utility allocations is sym-
metric and compact.

We can now state the fourth condition.

• Symmetry: A solution rule s(·) is said to be symmetric if for
every symmetric bargaining game B we have u1(s) = u2(s) for
each s ∈ s(B).

That is, a bargaining solution rule is symmetric, provided that at each
symmetric bargaining game it treats both players equally in the sense,
that, if the players receive the same disagreement payoff, then they
should receive equal payoffs at any agreement point.

The second part of Nash’s theorem is stated below.
thm:NSub1

Theorem 7.6. (Nash) If B is a convex bargaining game, then there
exists exactly one utility allocation (u∗

1, u
∗
2) such that

σ(B) = {s ∈ S: u1(s) = u∗
1 and u2(s) = u∗

2 } .

If B is also symmetric, then u∗
1 = u∗

2.
In particular, the Nash solution rule σ(·) on the class of convex and

symmetric bargaining games, besides being Pareto optimal, independent
of irrelevant alternatives and independent of linear transformations, is
also symmetric.
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Proof : Let B be a convex bargaining game and consider the continuous
function g:U → IR defined by

g(u1, u2) = (u1 − d1)(u2 − d2) .

Since U is compact and g is continuous there exists a maximizer of g,
say (u∗

1, u
∗
2). Now assume that there exists another maximizer (u1, u2)

of g different than (u∗
1, u

∗
2). The convexity of the set of utility allo-

cations U implies (1
2(u∗

1 + u1), 1
2(u∗

2 + u2)) is also a utility allocation
which satisfies g(1

2(u∗
1 + u1), 1

2(u∗
2 + u2)) > g(u∗

1, u
∗
2), which is a contra-

diction. For details of the last argument see Exercise 11 at the end of
this section.FC74

Figure 7.4.

For the last part, assume that the convex bargaining game B is also
symmetric. Since the Nash solution rule is independent of linear trans-
formations, we can normalize the utility function so that d1 = d2 = 0.
Thus, gB(s) = u1(s)u2(s). This means that in order to maximize
this function it suffices to maximize the function f(x, y) = xy over
the compact, convex and symmetric set U . The mathematical no-
tions of compactness and continuity guarantee that there is a maxi-
mizer (x0, y0) ∈ U . We claim that (x0, y0) is uniquely determined and
x0 = y0.

To see this, notice first that the symmetry of U implies that (y0, x0)
is a also a utility allocation. From the convexity of U , it follows that

1
2(x0, y0) + 1

2(y0, x0) = (1
2(x0 + y0), 1

2(x0 + y0))
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belongs to U . Therefore,
1
2(x0 + y0) · 1

2(x0 + y0) ≤ x0y0 .

Working the algebra, we get x2
0 + 2x0y0 + y2

0 ≤ 4x0y0. This implies

(x0 − y0)2 = x2
0 − 2x0y0 + y2

0 ≤ 0 ,

and consequently (x0 − y0)2 = 0. Hence, x0 = y0.
We have just shown that there exists a unique utility allocation of

the form (x0, x0) that maximizes the function f(x, y) = xy over B.
Now it is easy to see that σ(B) = {s ∈ S: u1(s) = u2(s) = x0}.

The geometric interpretation of the conclusions of this theorem can
be seen in Figure 7.4. Let us use a simple example to examine the
nature of the Nash solution rule.

exm:Nsub

Example 7.7. Suppose two individuals are bargaining over a sum of
money; say $100. If they cannot agree on how to divide the money, none
of them gets any money. The bargaining set S in this case consists of all
pairs (m1, m2) of non-negative real numbers such that m1 +m2 ≤ 100,
where mi denotes the amount of money that player i receives. That is,

S = {(m1, m2): m1 ≥ 0, m2 ≥ 0, and m1 + m2 ≤ 100} .
FC75

Figure 7.5.

The utility that any individual gets is measured by the amount of
money she receives. Therefore, the utility functions of the players are

u1(m1, m2) = m1 and u2(m1, m2) = m2 .
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Notice that if there is disagreement, the players get d1 = d2 = 0. It
is clear from this that the bargaining game is convex and symmetric.
Also, notice that for this bargaining game, we have

g(m1, m2) = u1(m1, m2)u2(m1, m2) = m1m2 .

By Theorem 7.6, there exists a unique maximizer of g which is the
only Nash solution of the bargaining game. This solution is Pareto
optimal, independent of irrelevant alternatives, independent of linear
transformations and symmetric. This unique maximizer of g is m∗

1 =
m∗

2 = 50. Thus, the Nash solution of the bargaining game is to give
$50 to each; see Figure 7.5.

The power of Theorem 7.6 lies in its assertion that every symmet-
ric convex bargaining game has a solution that satisfies all the desired
conditions. This is best seen by going back to Example 7.7. In that
example any division (m1, m2) of the $100 that satisfies m1 +m2 = 100
is Pareto optimal, independent of irrelevant alternatives and invariant
to linear transformations. However, the only pair that would also sat-
isfy symmetry is m1 = m2 = $50. This brings to focus very sharply
the message of Nash’s theorem, which asserts that the Nash solution
rule provides a unique symmetric solution to every convex and sym-
metric bargaining game. Moreover, one can establish the remarkable
fact that Nash’s solution rule is the one and only solution rule with
this property; see Exercise 12 at the end of this section.

Let us look at another example of a bargaining problem.
em:house

Example 7.8. An individual has listed her house at $120,000. Her
reservation price for the house is $100,000. She knows that at any
price less than $100,000 she is better off by not selling the house. A
potential buyer looks at the house and is willing to buy it at the price
of $120,000, which also happens to coincide with his reservation price.
However the buyer would, of course, be better off by getting the house
at less than $120,000.

We clearly have a bargaining problem. In this case there are two
individuals who can make a potential net gain of $20,000 and so the
question is how should the two divide this among themselves. If the
payoffs of the individuals are simply the money they receive, then (ac-
cording to Nash’s solution) the two individuals would agree to divide
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the amount $20,000 equally and complete the transaction at a price of
$110,000.

Thus, Nash’s bargaining solution provides an intuitively satisfac-
tory and sharp answer to a pricing problem in the housing market.

In the example that we just saw, there is a unique Nash solution
to the bargaining problem that satisfies the conditions of Pareto effi-
ciency, independence of irrelevant alternatives, independence from lin-
ear transformations and symmetry. Indeed, in the above example, the
Nash solution gives us exactly what we think the solution ought to
be. In many cases, however, this approach to the bargaining problem
fails to provide a satisfactory solution. The following example shows
why this may happen. The example also highlights the importance of
convexity in Theorem 7.6.

em:brg

Example 7.9. Suppose a couple is trying to decide whether they should
go to a football game or to a broadway show. The set of outcomes is
thus given by

S = {Go to football, Go to broadway, Disagreement} .

In case they go to the broadway show, the utility of individual A is
uA = 4, and the utility of individual B is uB = 1. If they go to the
football game, their utilities are reversed and uA = 1 and uB = 4. In
case they disagree the payoffs are uA = uB = 0.

Clearly, when we use the approach of Theorem 7.3 to find the so-
lution to the bargaining problem, we end up with two answers:

1. either both go to the broadway show, or

2. both go to the football game.

This is all we can say if we use Theorem 7.3. But, in this case
one can argue that the two individuals should really toss a coin to
determine where they should go. But then, should the coin be a fair
coin? That is, should they decide to go to one or the other place with
a probability of one-half?

If the coin chooses the alternative of going to the broadway show
with a probability p, and the alternative of going to the football game
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with a probability of 1− p, then the expected payoffs of the two indi-
vidual are given by

EuA = 4p + (1− p) = 3p + 1 and EuB = p + 4(1− p) = 4− 3p .

Now if we choose p to maximize (EuA−0)(EuB−0), then p maximizes
the function

g(p) = (3p + 1)(4− 3p) = −9p2 + 9p + 4 .

The maximum is obtained when p satisfies the first-order condition

g′(p) = −18p + 9 = 0 ,

which gives p = 1
2 . Thus, we find that the individuals should indeed

choose a fair coin. This seems to be a reasonable way of solving the
bargaining problem, and we find that allowing individuals to extend the
set of alternatives to include joint randomization or correlation leads
to a more satisfactory solution to the bargaining problem.

The notion of correlation that we introduced in the last example is
closely associated with the convexity of the set of utility allocations

U = {(u1(s), u2(s)): s ∈ S} .

Recall that a probability distribution over a collection of outcomes
{s1, s2, . . . , sk} is any vector (p1, p2, . . . , pk), where pi ≥ 0 for each i
and

∑k
i=1 pi = 1. We now formally define the notion of correlation.

d:corl

Definition 7.10. A correlated utility allocation over a set of out-
comes {s1, s2, . . . , sk} with probability distribution (p1, p2, . . . , pk) is the
two-dimensional vector given by

( k∑

i=1

piu1(si),
k∑

i=1

piu2(si)
)

.

The set of all correlated utility allocations will be denoted by C(U).

Notice that the probability distribution (p1, p2, . . . , pk) jointly ran-
domizes over the alternatives (s1, s2, . . . , sk). In mathematical termi-
nology, the set of all correlated utility allocations C(U) is known as
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the convex hull of U , and is the smallest convex set that contains U .
That is, if individuals are allowed to correlate over alternatives, then
the set U of feasible utility allocations becomes a convex set.

We can see this quite clearly in the case of Example 7.9. The set
of utility allocations is

U = {(0, 0), (1, 4), (4, 1)} ,

which is shown in Figure 7.6(a). FC76

Figure 7.6.

The set of all feasible payoffs when we allow for correlation consists
of all pairs (u1, u2) which lie inside or on the edges of the triangle with
vertices (0, 0), (1, 4), and (4, 1). This set is the shaded triangle shown
in Figure 7.6(b), which is clearly a convex set.

Every point in the triangle can be obtained by properly correlating
over the set U . For instance, the correlated utility allocation when
(1, 4) is chosen with probability 1

3 , (4, 1) is chosen with probability 1
3

and (0, 0) is chosen with probability 1
3 , is a point in the interior of the

triangle. Thus, the set of correlated utility allocations C(U), shown in
the shaded triangle of Figure 7.6, can be written algebraically as

C(U) =
{

p(0, 0) + q(4, 1) + (1− p− q)(1, 4): p ≥ 0, q ≥ 0, and p + q ≤ 1
}

= {(1− p + 3q, 4− 4p− 3q): p ≥ 0, q ≥ 0, and p + q ≤ 1} .

The notion of correlation extends to general sets of utility alloca-
tions. As in the case of Example 7.9, when we use correlation, the
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payoffs become expected payoffs to which we apply a solution rule (for
instance, Nash’s solution rule). The solution is then a probability dis-
tribution. For an application see Exercise 9 at the end of the section.

The Nash bargaining solution that we have discussed so far works
well under the condition of symmetry. However, many bargaining
games are essentially asymmetric either because of differing attitude
towards risk between the players or because of the difference in pay-
offs in case of a disagreement, or even because of some asymmetry
in the set of utility allocations U . In the case of differing attitudes
towards risk or difference in the disagreement payoffs, the Nash so-
lution rule still works quite well. Recall that the Nash solution set
σ(B) of a bargaining game B consists of all maximizers of the function
gB(s) = [u1(s)− d1][u2(s)− d2], i.e.,

σ(B) = {s ∈ S: gB(s) = max
t∈S

gB(t) } .

So, a change in risk aversion will be reflected in the utility functions
and, thus, it will change the Nash solution accordingly. Similarly, a
difference in the payoffs from a disagreement will change the di and,
hence, it will change the function gB which in turn will affect the Nash
solution. Indeed, it can be checked that when d1 increases (due, for
instance, to an outside option), then the Nash solution would increase
the amount that player 1 gets. In the case of both types of asymmetries
the Nash solution contnues to provide a reasonable and intuitive answer
to asymmetries, because they either modify the utility function or the
disagreement payoffs.

The Nash solution, however, will give unsatisfactory anwsers in case
the set of utility allocations of the bargaining game is asymmetric. In
the next section we look in detail at this weakness of the Nash solution
rule and discuss an alternative solution to bargaining games which
performs better when the bargaining game has an asymmetric set of
utility allocations.

Exercises

1. Show that every Pareto optimal bargaining outcome is independent of
linear transformations.

2. Consider the function g(m1, m2) = m1m2 of Example 7.7. Show that
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on the set of feasible alternatives

S =
{
(m1, m2): m1 ≥ 0, m2 ≥ 0, and m1 + m2 ≤ 100

}

the function g attains its maximum value only at the pair (m∗
1, m

∗
2) =

(50, 50).

3. Consider the bargaining problem of Example 7.7. Show that each bar-
gaining outcome in the set

T =
{
(m1, m2): m1 ≥ 0, m2 ≥ 0, and m1 + m2 = 100

}

is Pareto optimal.

4. Consider the bargaining problem with set of alternatives S = (0, 1)
(the open interval from 0 to 1), and utility functions u1(s) = 1− s and
u2(s) = − ln(1− s).

a. Sketch the graphs of the utility functions.

b. Show that every outcome is Pareto optimal.

c. Prove that this bargaining problem has exactly one Pareto optimal
and symmetric outcome. [HINT: If t = − ln t, then t ≈ 0.567 . ]

5. Consider the bargaining problem B of the preceding exercise.

a. Sketch the set U of all utility allocations and show that U is
closed but fails to be bounded, convex and symmetric.

b. Sketch the graph of the function g(s) = −(1− s) ln(1− s).

c. Find the Nash solution set σ(B).

6. Two persons are bargaining over a real estate property with the set of
feasible alternatives given by

S =
{
(s1, s2): s1 ≥ 0, s2 ≥ 0, and s1 + s2 ≤ 1

}
.

Their utility functions are

u1(s1, s2) = s1 + s2 and u2(s1, s2) = s1 +
√

s2 .

What should be the bargaining outcome if both players are looking for
a Pareto efficient solution? Also, compute the payoffs of the players at
this solution outcome.



252 Chapter 7: Bargaining

7. If you examine the bargaining game of Example 7.7 carefully you will
notice that the players are risk neutral. Why? Suppose instead that
player 1 is risk averse and has the utility function

u1(m1, m2) =
√

m1 .

Find the Nash solution for this bargaining game. Discuss the implica-
tions for the Nash solution rule.

8. Suppose you are bargaining over the price of a Toyota Camry. The
list price of the version that you want is $20,000. The invoice price is
$18,000.

a. Assuming that the utility functions are proportional to the money
received, set up the bargaining game and find its Nash solution.

b. Now suppose that a dealer located 60 miles away has agreed to
sell the car at $18,500. Reformulate the bargaining game with
this outside option and find its Nash solution.

ex:corl

9. Suppose an entrepreneur is engaged in negotiations with a venture cap-
italist on alternative strategies to follow. The alternatives are to: (1)
invest in the business for the next five years before marketing the prod-
uct, (2) develop a slightly different product within three years and mar-
ket it, and (3) to invest only for the next year and sell the business to a
big rival firm. Consider the entrepreneur to be player 1 and the venture
capitalist to be player 2. The normalized payoffs of the players from
the three alternatives are (4, 1), (3, 3), and (2, 5), respectively. In case
of a disagreement there is no investment and the payoff is (0, 0).

a. Describe the sets U and C(U).
b. Discuss the conditions of Nash’s Theorem 7.6 in this case.
c. What is the solution to the bargaining game if we apply Nash’s

solution rule to the set U?
d. What is the solution if we apply the Nash solution rule to the set

C(U)?

10. For a given bargaining game B =
(
S, (u1, d1), (u2, d2)

)
we associate the

function hB: S → IR defined by

hB(s) = [u1(s)− d1 ] + [u2(s)− d2 ] ,

and consider the set

σ1(B) = {s ∈ S: hB(s) = max
t∈S

hB(t) } .

Show that σ1(·) is a solution rule for the class of all bargaining games.
What properties does σ1(·) satisfy?
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ex:UnNh

11. Complete the details of the first part of Theorem 7.6. That is, establish
the following uniqueness property of the Nash solution rule. If B is a
convex bargaining game, then there exists a unique utility allocation
(u∗

1, u
∗
2) such that

σ(B) = {s ∈ S: u1(s) = u∗
1 and u2(s) = u∗

2 } .

[HINT: Consider the function g(u1, u2) = (u1 − d1)(u2 − d2) defined
on U , and suppose that (u∗

1, u
∗
2) and (u1, u2) are two maximizers of g.

That is, g(u∗
1, u

∗
2 = g(u1, u2) = M , where M is the maximum of g over

U . Now note that the point
(u∗

1+u1
2 , u∗

2+u2
2

)
belongs to U and satisfies

g
(u∗

1+u1
2 , u∗

2+u2
2

)
= 1

2

[
(u∗

1 − d1)(u∗
2 − d2) + (u1 − d2)(u2 − d2)

]

+ 1
4 (u∗

2 − u2)(u1 − u∗
1)

= M + 1
4 (u∗

2 − u2)(u1 − u∗
1)

> M ,

which is a contradiction. ]
ex:UnNsh

12. Show that Nash’s solution rule is uniquely determined in the sense that:
if another solution rule s(·) is Pareto optimal and symmetric, and B
is a symmetric and convex bargaining game, then

s(B) ⊆ σ(B) ,

which means that s(B) and σ(B) both give rise to the same unique
utility allocation (u∗, u∗).

7.2. Monotonicity in bargaining
sec712

In the previous section we discussed the Nash solution rule to bar-
gaining games. We saw there that the Nash solution rule provided an
intuitively appealing solution to symmetric bargaining games. We also
mentioned that the Nash solution rule works quite well for bargain-
ing games with asymmetries in risk aversion and disagreement points.
However, it may fail to provide a satisfactory solution to bargaining
games when the set of utility allocations is asymmetric. In some of
these cases the Nash solution rule seems quite unreasonable. The most
common situation in which the Nash solution rule fails to provide a
satisfactory result is one in which the “pie” either contracts or expands
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in a way that makes the set of utility allocations asymmetric. A classic
example is the amount received by creditors in a bankruptcy case.

In such cases, as long as the business is solvent, the creditors can
expect to get their loans repaid in proportion to the size of the loan.
However, when the business becomes insolvent, the Nash solution rule
prescribes an equal division of the remaining assets among the credi-
tors. This division rule, however, makes little sense when the size of
the outstanding loans are different. It makes a lot of sense in these
cases to argue that the assets ought to be divided in proportion to the
size of the loans.

In this section, we study an alternative solution rule for bargaining
games which does not satisfy the condition of symmetry but satisfies
a monotonicity condition. We shall see that this solution rule for bar-
gaining games is much more appealing as a solution rule to bargaining
games with asymmetries. The next example illustrates what happens
to the Nash solution rule in the case of a bankruptcy.

e:Bgm

Example 7.11. (A Bankruptcy Game) Bankruptcy cases arise usu-
ally when the assets of a firm become worth less than its liabilities.
Thus, for instance, bankruptcy cases may arise when Savings & Loans
make loans that are backed by collaterals that have depreciated in
value, when the value of the real estate company owned by a developer
falls below that of the total amount of the developer’s debts, or when
the assets of a firm become worth less than the total debts of the firm.
In all these cases, if K denotes the value of the assets, and Di the debt
owed by the firm to creditor i, then bankruptcy occurs when

K <
∑

i

Di .

Because the value of the assets is now less than the amount that is
owed to the creditors, the firm cannot fulfill its financial obligations
and declares bankruptcy. The problem that now arises is about the
fraction of K each creditor is given.

Assume that there are two creditors and the bankruptcy condition
K < D1 + D2 is satisfied. The resulting bargaining game has the
following characteristics. Its bargaining set is

S = {(c1, c2): c1 + c2 ≤ K} .
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If the creditors are risk neutral, then we may represent their utilities
as

u1(c1, c2) = c1 and u2(c1, c2) = c2 ,

that is, as functions of the amount of money they get. In this case, the
disagreement point is (−D1,−D2), in which the creditors receive none
of the assets and are left with loans that are never repaid. Since the
Nash solution is invariant to linear transformations, we can shift the
disagreement point to (0, 0). The problem is then reduced to a bar-
gaining problem of sharing K dollars between two risk neutral players
with the constraint that creditor 1 cannot receive more than D1 and
creditor 2 cannot receive more than D2. We can assume that D1 > D2

and distinguish two cases.
CASE I: D2 > K

2

In this case, the Nash solution rule gives each player K
2 dollars; see

Figure 7.7(a).
CASE I: D2 ≤ K

2

Since D1 + D2 > K, it easily follows that we have the bargaining
game shown in Figure 7.7(b). Observe that creditor 2 is paid off fully
and creditor 1 gets K −D2. FC76a

Figure 7.7.

The resolution of the bankruptcy problem that is prescribed by
Nash’s solution is more than a little discomforting as it treats both
creditors absolutely equally, even though one may be owed a much
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larger sum. However, if D1 > D2, then it can be argued that creditor 1
should get a larger share of the assets K than creditor 2. Indeed, one
may argue that the amount of the assets K of the firm should be divided
among the two creditors in proportion to the claims of the creditors.
That is, the division (c∗1, c∗2) of the assets K should satisfy

D1
D2

= c∗1
c∗2

and c∗1 + c∗2 = K .

Solving this system gives c∗1 = D1
D1+D2

K and c∗2 = D2
D1+D2

K.
In other words, K is divided among the two creditors in proportion

to the debt that the creditors are owed. For instance, if K = $1
million, D1 = $1 million, and D2 = $500, 000, then the rule described
above would give $666,667 to creditor 1 and $333,333 to creditor 2. In
contrast to this, Nash’s bargaining solution will give $500,000 to each
of the two creditors. Obviously, Nash’s solution here does not seem to
be quite acceptable.

If one examines Nash’s solution to the bankruptcy problem care-
fully, it becomes clear that when the bargaining problem is fundamen-
tally asymmetric, as is the case in the example above, then the Nash
solution will often provide unreasonable answers. The condition that
causes this difficulty with the Nash solution is symmetry. It is possible
to replace the condition of symmetry with an alternate condition. One
of the more interesting among these alternative conditions is that of
monotonicity. This property requires a bargaining solution to give at
least as much utility to a player when the set of bargaining alternatives
expands as she is given in the original bargaining game. Formally, we
can state this condition as follows.

• Monotonicity: A solution rule s(·) is said to be monotone if
for any bargaining game B = (S, (u1, d1), (u2, d2)) and any subset
T of S the solution set s(B) dominates the solution set s(BT ) of
the bargaining game BT = (T, (u1, d1), (u2, d2)) in the following
sense: for each s ∈ T there exists some s′ ∈ S satisfying

u1(s′) ≥ u1(s) and u2(s′) ≥ u2(s) .

We first show that Nash’s solution rule does not satisfy mono-
tonicity. Examine the bargaining games shown in Figure 7.8. In Fig-
ure 7.8(a) the bargaining game is symmetric and the Nash solution rule



u1

u2    The Nash solution

U

4

4

(1,4)

u1

u2

u 1 
= u 2

4

4

(2,2)UT

   The Nash solution

(a) (b)

2577.2: Monotonicity in bargaining

leads to the payoff pair (2, 2). In Figure 7.8(b), the bargaining game
is not symmetric and the Nash solution rule leads to the payoff pair
(1, 4). This shows that even though the set of utility allocations UT of
the game in Figure 7.8(a) is a strict subset of the set of utility alloca-
tions U of the game in Figure 7.8(b), player 1 gets less under the Nash
solution rule in that game. Thus, in situations with asymmetries, as
found in bargaining games of the type shown in Figure 7.8(b), we need
to use a slightly different set of criteria. A solution rule that performs
well under asymmetries was introduced by E. Kalai and M. Smorodin-
sky.2 This solution rule is the subject of the discussion that follows. FC77

Figure 7.8.

In order to understand this rule, we need some preliminary discus-
sion. For simplicity, we shall assume that the sets of utility allocations
of our bargaining games lie in the positive orthant of the u1u2-plane.

Given a bargaining game B = (S, (u1, d1), (u2, d2)), let

µ1 = max
s∈S

u1(s) and µ2 = max
s∈S

u2(s) ,

whenever the maxima exist. (If the set of utility allocations of B is
compact, then it should be clear that µ1 and µ2 are well-defined.) The
Kalai–Smorodinsky line (or the KS-line) of the bargaining game

2Other solutions to Nash’s bargaining problem, Econometrica 43 (1975),
513–518.
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B is the line in the u1u2-plane passing through the origin and having
slope k = µ2

µ1
. That is, the equation of the KS-line is given by

u2 = ku1 .

If (d1, d2) *= (0, 0), then the KS-line is, of course, the line of the u1u2-
plane passing through the points (d1, d2) and (µ1, µ2). In this case
the KS-line has slope k = µ2−d2

µ1−d1
and its equation is given by

u2 − d2 = k(u1 − d1) .
FC78

Figure 7.9.

The Kalai–Smorodinsky utility allocation (or the KS-utility
allocation) of the bargaining game B is the “furthest north-east point
(u1, u2) on the KS-line that lies in the set of utility allocations U .”
Formally, if we consider the set K = {s ∈ S: (u1(s), ku2(s)) ∈ U },
then

u1 = max
s∈K

u1(s) and u2 = ku1 .

Its geometric meaning is shown in Figure 7.9. If K = *© (the empty
set), then the bargaining game does not have a KS-utility allocation.
It should also be clear that a bargaining game can have at most one
KS-utility allocation. That is, a bargaining game B either has exactly
one KS-utility allocation or else it has none. If a bargaining game has
a compact set of utility allocations U , then (given that (d1, d2) ∈ U)
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it easily follows that it has a KS-utility allocation. In other words, a
bargaining game with a compact set of utility allocations has exactly
one KS-utility allocation.

We now define the Kalai–Smorodinsky solution rule (or simply
the KS-solution rule) κ(·) by

κ(B) = {s ∈ S: u1(s) = u1 and u2(s) = u2 } .

If the bargaining game B does not have a KS-utility allocation, then
κ(B) = *©.

Below we list the basic properties of the Kalai–Smorodinsky solu-
tion rule.

• The Kalai–Smorodinsky solution rule is independent of linear trans-
formations but fails to be independent of irrelevant alternatives.

• Every convex bargaining game B has a KS-utility allocation and
the Kalai–Smorodinsky solution set κ(B) is nonempty, and con-
sists of Pareto optimal bargaining outcomes.

• If B is a convex and symmetric bargaining game, then the Kalai–
Smorodinsky and Nash solutions of B coincide, i.e.,

κ(B) = σ(B) .

The bargaining game shown in Figure 7.10 demonstrates that the
Kalai–Smorodinsky solution rule is not independent of irrelevant alter-
natives. FC79

To see that the Kalai–Smorodinsky solution rule is independent of
linear transformations let B = (S, (u1, d1), (u2, d2)) be a bargaining
game. The KS-line of this bargaining game B has slope k = µ2−d2

µ1−d1
,

and so the KS-solution is

κ(B) = {s ∈ S: u1(s) = u1 and u2(s)− d2 = k(u1 − d1) } .

Now let B∗ denote the bargaining game obtained by an arbitrary linear
transformation v1 = b1u1 + a1 and v2 = b2u2 + a2 with b1 > 0 and
b2 > 0. For this bargaining game B∗ the disagreement point (d∗1, d∗2)
is given by

d∗1 = b1d1 + a1 and d∗2 = b2d2 + a2 ,
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Figure 7.10.

and the slope of its KS-line is

k∗ =
µ∗

2 − d∗2
µ∗

1 − d∗1
=

b2µ2 + a2 − (b2d2 + a2)
b1µ1 + a1 − (b1d1 + a1)

=
b2(µ2 − d2)
b1(µ1 − d1)

=
b2

b1
k .

Now assume that an alternative s ∈ S satisfies v1(s) = v1 and v2(s)−
d∗2 = k∗(v1 − d∗1). Then, we have

v1(s) = b1u1(s) + a1 = v1 = b1u1 + a1

if and only if u1(s) = u1. Moreover, v2(s)− d∗2 = k∗(v1 − d∗1) means

[b2u2(s) + a2]− (b2d2 + a2) = k∗[b1u1 + a1 − (b1d1 + a1)] ,

or b2[u2(s) − d2] = b2
b1

k(u1 − d1), which is equivalent to u2(s) − d2 =
k(u1 − d1). Thus,

κ(B∗) = {s ∈ S: v1(s) = v1 and v2(s)− d∗2 = k∗(v1 − d1) }
= {s ∈ S: u1(s) = u1 and u2(s)− d2 = k(u1 − d1) }
= κ(B) .
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This shows that the Kalai–Smorodinsky solution rule is independent of
linear transformations.

Let us examine the nature of the KS-solution rule by seeing how it
works in a bargaining problem. The example that follows is the classic
bargaining game between labor and management.

ex:WBRG

Example 7.12. (A Wage Bargaining Game) The labor union and
the management of a firm often bargain over the wage. We can write
down a simple form of this bargaining game. Let Wm be the wage that
the workers can get if the bargaining process breaks down. Let L be
the size of the union membership. The firm can sell its output at a
fixed price p. That is, the firm sells in a perfectly competitive product
market. The output of the firm is a function f(·) of the amount of
labor employed. Thus, if the firm employs L workers, the output of the
firm is f(L) and the revenue R = pf(L). If the firm then pays a wage
W , then the profit of the firm is given by

pf(L)− LW = R− LW .

As usual, the management pays a certain divident D to the shareholders
out of the profit of the firm.

The union and the management bargain over the wage W . In case
of disagreement, the profit of the firm is zero and the workers get the
wage Wm. Otherwise, the union gets LW and the firm gets R−LW−D.
We designate player 1 to be the firm and player 2 to be the union. The
bargaining game is thus given by d1 = 0, d2 = LWm and

u1(W, D) = R− LW −D and u2(W ) = LW ,

where Wm ≤W ≤ R
L and 0 ≤ D ≤ R−LW together with (0, 0) define

the set S of bargaining outcomes. The set S is shown in Figure 7.11(a).
It can be checked that the set of utility allocations of this bargaining
game is the darkened convex and compact set shown in Figure 7.11(b).
Notice however that the same figure shows that, although the bargain-
ing game is convex, it fails to be symmetric. FC710

The slope of the KS-line is given by

k =
R− LWm

R− LWm
= 1 .
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Figure 7.11.

Therefore, the KS-line is given by

u2 = u1 + LWm .

Letting u2 = R−u1, we get R−u1 = u1 +LWm. Solving for u1 yields

u1 =
R− LWm

2
and u2 =

R + LWm

2
.

Since u2 = LW ∗, we see that the wage settlement W ∗ for the KS-
solution is given by

W ∗ =
R + LWm

2L
. ($)

Notice further that in the KS-solution D∗ = R− LW ∗ = R−LWm
2 .

Let us see what this means in a very specific example. Assume
that f(L) = 10

√
L, L = 25, p = 10 and Wm = 10. In this case,

R = 100
√

25 = 500, and so substituting into the formula ($) yields
W ∗ = 15. This value of W ∗ is well above the reservation wage of $10,
but well below the maximum wage of R

L = $20.

We stated before that the KS-solution rule satisfies a monotonicity
property and argued that it provides a much more intuitively plausible
solution to bargaining games when there are asymmetries. The next
result shows precisely why the KS-solution rule satisfies a monotonicity
condition.

Kal-rule
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Theorem 7.13. Let B = (S, (u1, d1), (u2, d2)) be a bargaining game,
and let T be a subset of S such that UT contains the disagreement point
(d1, d2). Further, let

(u1(S), u2(S)) and (u1(T ), u2(T )) .

be the Kalai–Smorodinsky utility allocations of the bargaining games B
and BT = (T, (u1, d1), (u2, d2)). If the slope of the KS-line of B is
equal to the slope of the KS-line of BT , then

u1(S) ≥ u1(T ) and u2(S) ≥ u2(T ) .

Proof : Let k be the slope of the common Kalai–Smorodinsky line of
the two bargaining games. Put KT = {s ∈ T : (u1(s), ku2(s)) ∈ UT }
and K = {s ∈ S: (u1(s), ku2(s)) ∈ U }. Clearly, KT ⊆ K, and so

u1(T ) = max
s∈L

u1(s) ≤ max
s∈K

u1(s) = u1(S) .

This implies, u2(T ) = ku1(T ) ≤ ku1(S) = u2(S).

The Kalai–Smorodinsky solution rule as well as the Nash solution
rule provide us with solutions which satisfy certain normative proper-
ties. However, in some bargaining games, one set of conditions seem to
make more sense than another, whereas in other bargaining problems
quite a different set of conditions seem to be more appropriate. So far
we have restricted our discussion to bargaining between two individ-
uals. Frequently, the distribution of the surplus occurs between more
than two individuals. This is especially true of markets. In situations
where the surplus is generated by an exchange of goods or services be-
tween individuals, the distribution of the surplus also has features of
bargaining, but the bargaining process is a little different from what we
have seen thus far. In many bargaining problems individuals try to get
the best offer they can get by using other options or alternatives. The
next section looks at how n different individuals arrive at agreements
which satisfy a “group rationality condition.”

Exercises
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1. The set of utility allocations U of a bargaining game is the closed
triangle with vertices (0, 0), (1, 2) and (2, 0), where (0, 0) is also the
point of disagreement. Draw a picture of U and find the Nash and
Kalai–Smorodinsky utility allocations of the bargaining game.

2. Consider the banruptcy game of Example 7.11. Show that if K = $1
million, D1 = $1 million, and D2 = $500, 000, then the KS-solution
rule gives $666,667 to creditor 1 and $333,333 to creditor 2.

3. Again consider the banruptcy game of Example 7.11. If K = $800, 000,
what are the amounts the KS-solution rule give to each creditor? What
happens if K = $1.2 million? Is the KS-solution rule monotonic in this
case?

4. We found the KS-solution rule for the wage bargaining game of Exam-
ple 7.12. What is the Nash solution rule for this wage bargaining game?
Are the Nash and KS solution rules giving different answers? Which of
the two solution rules do you think would be more appropriate?

5. Show that every convex bargaining game always has a Kalai–Smorodin-
sky utility allocation.

6. If B is a convex and symmetric bargaining game, then show that the
Kalai–Smorodinsky and Nash solutions of B coincide, i.e., κ(B) = σ(B).

7. Show that if B is a convex bargaining game, then the Kalai–Smorodin-
sky solution κ(B) is nonempty and consists of Pareto optimal bargain-
ing outcomes.

8. Let B =
(
S, (u1, d1), (u2, d2)

)
be a convex bargaining game. Assume

that the set of utility allocations is symmetric with respect to the KS-
line and that the KS-line has slope one. Show that κ(B) = σ(B), i.e.,
show that in this case the Kalai–Smorodinsky and the Nash solutions
coincide.

9. Consider Theorem 7.13. Show that if the bargaining games B and BT

have different KS-lines then the KS-utility allocations need not satisfy
monotonicity.

7.3. The core of a bargaining game
sec73

In the last two sections we discussed bargaining games with two players.
Quite frequently, however, bargaining problems involve more than two
individuals. This is especially true in markets where individuals trade



2657.3: The core of a bargaining game

their endowments. Such trading processes usually involve more than
two players. Multi-person bargaining games also arise in the context
of decision making by teams. Quite often, members of a team have
conflicting interests. In such cases, the team must make a proposal
that all members of the team would find acceptable.

The purpose of this section is to attempt to address tese issues.
Thus, we analyze multi-person bargaining games by introducing the
concept of the core. The idea of the core was introduced by F. Edgeworth3

and describes the minimal requirements that any reasonable agreement
should possess.

We start by describing the basic model of a multi-person bargaining
game. As in the case of the bargaining problem with two players, there
is a set S of alternatives, a utility function for each individual and a
disagreement point that describes the status-quo.

mbargprb

Definition 7.14. An n-person bargaining game (or problem) con-
sists of a set N = {1, 2, . . . , n} of n persons (or players), a set S of fea-
sible alternatives (or bargaining outcomes or simply outcomes),
a utility function ui: S → IR for each player i, and a disagreement point
(d1, . . . , dn) such that:

1. ui(s) ≥ di holds for all s ∈ S and each i = 1, . . . , n, and

2. there is at least one s in S for which ui(s) > di for every i.

At first glance, the bargaining problem just described seems to be
a straightforward generalization of the two-person bargaining problem.
There is, however, a fundamental difference. In an n-person bargaining
game it is possible for some group of players to get together and form
what is called a coalition. Such a coalition of players can agree on
the alternatives that its members can implement and, conceivably, it
can guarantee higher payoffs to its members than they would otherwise
receive as members of the grand coalition, the coalition N of all n-
players. Therefore, when the grand coalition proposes an alternative,
the proposal must give every player as much satisfaction as she could
expect to receive as a member of any other coalition. Consequently,
in discussing any reasonable alternative in the bargaining problem, we
need to describe the payoffs that players would receive as members of
an arbitrary coalition.

3F. Y. Edgeworth, Mathematical Psychics, Kegan Paul, London, 1881.
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We assume that for each coalition C there exists a specific non-
empty set SC ⊆ S which represents the bargaining outcomes available
to the coalition C. Thus, given an n-person bargaining game there
exists a function (called an effectivity function) that assigns to each
coalition C a subset SC of S. The set SC , which can be empty, is the
set of alternatives that can be implemented by just the members in the
coalition C. Since the grand coalition N can implement every alterna-
tive in S, it should be clear that SN = S. The set of feasible bargaining
outcomes SC for a coalition C gives rise to the set v(C) of all payoffs
that the members of C can get from using only the alternatives in SC .
In general, the set v(C) consists of all vectors (v1, . . . , vn) ∈ IRn for
which there exists some s ∈ SC satisfying vi = ui(s) for all i ∈ C.

From the above discussion, it should be apparent that every n-
person bargaining game has an effectivity function assigned to it, which
explicitly describes the alternatives available to every coalition. This
then leads to the notion of the characteristic function, which is defined
as follows.

d:char

Definition 7.15. The characteristic (or the coalition) function of
an n-person bargaining game with effectivity function C 0→ SC is the
function

v:N → P(IRn) ,

where N is the set of all subsets of N excluding the empty set (i.e., the
set of all coalitions), and P(IRn) is the set of all subsets of IRn.

In contrast to the effectivity function which describes the alterna-
tives SC that are feasible for a coalition C, the characteristic function
describes the payoffs or the utilities that the members of a coalition C
can get from the alternatives in SC . Thus, for each coalition C the set
v(C) is a subset of IRn, and the interpretation is that v(C) describes
the set of all utility allocations that the coalition C can get for its mem-
bers. Since an element of v(C) is an n-dimensional vector (u1, . . . , un),
only the coordinates of the vector that correspond to the players in the
coalition C have any meaning, as the other coordinates can either be
set at zero or allowed to vary as one wishes. It should be noticed that
v(C) is not necessarily a subset of v(N).

It is customary to relegate the effectivity function C 0→ SC to
the background and consider only the characteristic function of the
bargaining game. As a matter of fact, once the characteristic function
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v:N → P(IRn) has been specified, the utility functions play a minimal
role. For this reason, an n-person bargaining game is quite often defined
by many people as simply a group of n-players {1, 2, . . . , n} together
with its characteristic function v:N → P(IRn).

Now let us see with an example how an n-person bargaining game
can be written in its characteristic function form.

ex:JV

Example 7.16. (Joint Venture) Consider the case of three power
companies located in adjacent geographical areas. Each has a well de-
fined jurisdiction to which it is the sole distributor of power. However,
the location and vintage of the plants are such that if the power com-
panies agree to trade power supplies within their jurisdictions, they
would be able to supply power more cheaply. One way of describing
what happens, under the various scenarios, is by writing down the
bargaining game in its characteristic function form.

In this case the values of the characteristic function for coalitions
of size 1 are given by

v({1}) = {(0, x2, x3): x2, x3 ∈ IR} ,

v({2}) = {(x1, 0, x3): x1, x3 ∈ IR} ,

v({3}) = {(x1, x2, 0): x1, x2 ∈ IR} .

For instance, the set v({1}) indicates that the profit of the first com-
pany, without being in a partnership, has been normalized down to
zero, while the profits of the other two companies are designated by
x2, x3 (which as unknowns can take any values). Here, a profit of zero
simply means that the company earns only a normal profit, indicating
that it only makes an average rate of return on its capital.

For coalitions of size 2, we have

v({1, 2}) = {(0.5, 0.5, x3): x3 ∈ IR} ,

v({2, 3}) = {(x1, 0.5, 0.5): x1 ∈ IR} ,

v({1, 3}) = {(0.6, x2, 0.4): x2 ∈ IR} ,

and finally, for the grand coalition we get

v({1, 2, 3}) = {(0.8, 1, 0.5)} .

As mentioned before, the convention is to ignore the payoffs of the
members not in the coalition. Thus, a coordinate associated with a
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player i not in the coalition is designated by an unknown variable xi,
which can be thought of as taking any arbitrary value.

In the discussion that follows, we also use the convention adopted
in the literature, and simply write the characteristic function without
mentioning the payoffs of those not in the coalition. For instance, we
will write v({1}) = {0} instead of the set of vectors {(0, x2, x3): x2, x3 ∈
IR} and for the coalition {1, 2}, we write v({1, 2}) = {(0.5, 0.5)}.

Here is another example of a bargaining game written in its char-
acteristic function form.

e:TRDG

Example 7.17. (A Trading Game) Consider an economy with three
goods, labelled by the variables x, y, and z. There are three individuals
in the economy each of whom is endowed with some amounts of these
goods. The individuals all have the same utility function given by

u(x, y, z) =
√

xyz , x ≥ 0, y ≥ 0, z ≥ 0 .

The first individual, player 1, has the endowment e1 = (1, 0, 1), the sec-
ond individual (player 2) has the endowment e2 = (0, 1, 1) and player 3
has the endowment e3 = (1

2 , 1
2 , 1

2).FC711

Figure 7.12.

In this trading game, the coalitions can essentially allow all trades
which can be formed by the aggregate endowment of the coalition.
Thus, a coalition of size 1 can only allow the consumer to consume up
to her endowment, while in a coalition of size 2 an individual can trade
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with the other player in the coalition. This means that for coalitions
of size 2 the effectivity function is given by

S{1,2} =
{(

(x1, y1, z1), (x2, y2, z2)
)
: x1 + x2 ≤ 1, y1 + y2 ≤ 1, z1 + z2 ≤ 2

}
,

S{1,3} =
{(

x1, y1, z1), (x3, y3, z3)
)
: x1 + x3 ≤ 1.5, y1 + y3 ≤ 0.5, z1 + z3 ≤ 1.5

}
,

S{2,3} =
{(

(x2, y2, z2), (x3, y3, z3)
)
: x2 + x3 ≤ 0.5, y2 + y3 ≤ 1.5, z2 + z3 ≤ 1.5

}
.

The set S{1,2} is shown in Figure 7.12. The point A (x1, y1, z1) in the
the solid box shown in Figure 7.12 is an arbitrary bundle given by the
coalition {1, 2} to individual 1. Notice that every point in the solid
corresponds to an alternative in S{1,2}.

We now describe the characteristic functions of the coalitions. If C
is a coalition, then v(C) consists of all vectors (v1, v2, v3) ∈ IR3 such
that there exist non-negative vectors {(xi, yi, zi): i ∈ C} satisfying

∑

i∈C

(xi, yi, zi) ≤
∑

i∈C

ei and vi ≤
√

xiyizi for each i ∈ C .

Notice that the values vi for i /∈ C are free. For instance, we have

v({1}) = {(v1, v2, v3): v1 ≤ 0, v2, v3 ∈ IR} ,

v({2}) = {(v1, v2, v3): v2 ≤ 0, v1, v3 ∈ IR} ,

v({3}) = {(v1, v2, v3): v3 ≤ 1
8 = 0.3536, v1, v2 ∈ IR} ,

v({1, 2}) = {(v1, v2, v3): ∃ (x1, y1, z1) ≥ 0, (x2, y2, z2) ≥ 0 satisfying
x1 + x2 ≤ 1, y1 + y2 ≤ 1, z1 + z2 ≤ 2 and
v1 ≤

√
x1y1z1, v2 ≤

√
x2y2z2 } ,

v({1, 2, 3}) = {(v1, v2, v3): ∃ (x1, y1, z1) ≥ 0, (x2, y2, z2) ≥ 0, (x3, y3, z3) ≥ 0

with x1 + x2 + x3 ≤ 1.5, y1 + y2 + y3 ≤ 1.5, z1 + z2 + z3 ≤ 2.5

and v1 ≤
√

x1y1z1, v2 ≤
√

x2y2z2, v3 ≤
√

x3y3z3 } .

The set v({1, 2}) is shown in Figure 7.13. FC712

If the entire endowment of the grand coalition is given to one in-
dividual then the individual’s utility is 2.37, whereas the others get
zero utility. However, if the endowment is divided equally among the
three, then the consumption bundle of each is (0.5, 0.5, 0.8333). The
corresponding utilities are (0.46, 0.46, 0.46). Thus, the utility alloca-
tions (2.37, 0, 0), (0, 2.37, 0), (0, 0, 2.37) and (0.46, 0.46, 0.46) all belong
to the set v({1, 2, 3}).
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Figure 7.13.

One of the central features of n-person bargaining situations is that
coalitions can often offer their members better payoffs than the grand
coalition. In such cases, a coalition that can guarantee higher payoff
to its members will, of course, want to exit from the grand coalition.
In these situations, we say that the coalition blocks the proposal of the
grand coalition. Formally, an outcome s ∈ S is said to be blocked by
a coalition C if there exists some (v1, . . . , vn) ∈ v(C) satisfying

vi > ui(s) for all i ∈ C .

The fact that some proposals by the grand coalition can be blocked,
guarantees that the only proposals by the grand coalition that have a
realistic chance of acceptance are the alternatives to which no coalition
can object. This idea is the central feature of the notion of a core
outcome which we define below.

core

Definition 7.18. Any outcome of an n-person bargaining game that
cannot be blocked by any coalition is called a core outcome. The set
of all core outcomes is called the core.

A utility allocation of the form (u1(s∗), u2(s∗), . . . , un(s∗)), where
s∗ is a core outcome, is called a core utility allocation. The set of all
core utility allocations of a bargaining game with characteristic function
v is denoted by Core(v). Clearly, Core(v) is a subset of v(N). Observe
that a utility allocation (u1, . . . , un) ∈ v(N) belongs to Core(v) if and
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only if there is no coalition C and some (v1, . . . , vn) ∈ v(C) satisfying
vi > ui for all i ∈ C.

It should be now evident that any “solution” to any n-person bar-
gaining game should belong to the core. As otherwise, some coalition
will object to the proposed solution. It is also worth noting at this
point that every core outcome satisfies the following efficiency condi-
tion: If s∗ is a core oucome, then there is no other outcome s satisfying
ui(s) > ui(s∗) for each player i. (If there is an outcome s satisfying
ui(s) > ui(s∗) for each player i, then the grand coalition N blocks s∗.)

An important issue that needs to be addressed for an n-person
bargaining game is whether its has a non-empty core. Obviously, this
is of immediate interest since a game with an empty core has no chance
of offering an acceptable alternative to which every coalition agrees. A
condition for an n-person game (together with some other standard
assumptions) which guarantees that the core is non-empty is called
balancedness, and it will be discussed below.

Recall that the symbol χC denotes the indicator function of C,
i.e., the function χC : N → IR defined by χC(k) = 1 if k ∈ C and
χC(k) = 0 if k /∈ C.

bondar

Definition 7.19. A family C of coalitions is said to be balanced
whenever we can find non-negative weights {wC : C ∈ C} (called a
family of balancing weights) such that

∑

C∈C
wCχC = χN .

Equivalently, a family C of coalitions is balanced whenever there
exist non-negative scalars {wC : C ∈ C} (the balancing weights) such
that if we let Ci = {C ∈ C: i ∈ C} (i.e., Ci consists of all coalitions of
C to which player i belongs), then

∑

C∈Ci

wC = 1

holds for each i = 1, 2, . . . , n. Unfortunately, it is not easy to check
whether or not a given family of coalitions is balanced. For instance,
if N = {1, 2, 3}, then the families

C1 = {{1}, {2}, {3}} and C2 = {{1, 2}, {2, 3}, {1, 3}}
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are both balanced—for C1 take balancing weights {1, 1, 1} and for
C2 take {1

2 , 1
2 , 1

2}—while the family C3 = {{1}, {1, 2}, {1, 3}} is not
balanced.

d:bondar

Definition 7.20. (Bondareva) An n-person bargaining game is said
to be balanced4 whenever every balanced family C of coalitions satis-
fies ⋂

C∈C
v(C) ⊆ v(N) .

Another property of sets needed for our discussion is that of com-
prehensiveness. A subset A of a Euclidean space IRn is said to be
comprehensive whenever (u1, . . . , un) ∈ A implies (v1, . . . , vn) ∈ A
for all vectors (v1, . . . , vn) ∈ IRn that satisfy vi ≤ ui for all i. A two-
dimensional comprehensive set is shown in Figure 7.14.FC713

Figure 7.14.

We now state one of the fundamental results in the literature, due
to H. E. Scarf, concerning the existence of core allocations.

t:Scarf

Theorem 7.21. (Scarf) Assume that the characteristic function v
of an n-person bargaining game satisfies the following properties.

4The important notion of balancedness was introduced to game theory by
the Russian economist Olga Bondareva in: Kernel theory in n-person games,
Vestnik Leningrad Univ. Math. 17 (1962), 141–142.
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1. Each v(C) is closed.

2. Each v(C) is comprehensive.

3. If u ∈ v(C) and w ∈ IRn satisfy ui = wi for all i ∈ C, then
w ∈ v(C).

4. Each v(C) is bounded from above in IRC , i.e., for each coalition
C there exists some MC > 0 such that ui ≤ MC for all u ∈
v(C) and all i ∈ C.

If the bargaining game is balanced, then its has a core outcome.

This important theorem was proved in 1967 by H. E. Scarf [19].
Since then many attempts have been made to present a simple proof
of this result. The simplest proof so far seems to be the one presented
by L. Shapley and R. Vohra [22]; see also [1, p. 45].

The balancedness condition which is central in guaranteeing that
the core is non-empty, at first sight looks fairly technical. One way to
understand this condition is to note that the weights that each player
is given for belonging to different coalitions in a balanced collection
sums to 1. Thus, if the balanced collection consists of two coalitions,
then the weight that a player gets in each of the two coalitions must
sum to one. In essence, the weights in a balanced collection indicate a
player’s presence and “importance” in the coalitions. In other words,
the balancedness condition indicates that a player gets at least as much
utility for being a member of the grand coalition, as she gets from
belonging to a balanced family of coalitions. Even though the condition
of balancedness seems a little awkward, it has proven to be the most
useful of the conditions that guarantee the non-emptiness of the core.

In many bargaining games, the payoff of an individual is simply the
amount of money that he or she receives. In such cases, one may add
up the payoffs of all individuals in a coalition and represent the sum
or the total payoff by a number rather than a set of vectors. In these
situations, we simply denote this real number by v(C) and interpret
it as the characteristic function of the bargaining game. The number
v(C) is also known as the worth of the coalition C. Since v(C) is now
a number representing the total sum of the payoffs of the members of
C, v(C) can be divided among the members of the coalition C in any
way they choose, so that if ui is the amount that individual i receives,
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then ∑

i∈C

ui = v(C) .

The reason that v(C) can be interpreted as the characteristic function
of the coalition is that v(C) can also be identified with the following
closed and comprehensive subset of IRn:

{
(u1, . . . , un) ∈ IRn:

∑

i∈C

ui ≤ v(C)
}

.

We shall use v(C) to designate both the sum of the total payoff of
the members of the coalition C as well as the set described above;
the meaning of v(C) will be clear from the context. In Figure 7.15
the number v(C) and the set v(C) are illustrated for the coalition
C = {1, 2}.FC714

Figure 7.15.

Since the payoff of a member of a coalition can be increased or de-
creased by giving the individual less or more money, that is, by making
side payments, such bargaining games are often called sidepayment
games; they are also known as transferable utility games. Bargain-
ing games which do not allow sidepayments are known in the literature
as non-sidepayment games. The trading game that we discussed
earlier in Example 7.17 is an example of a non-sidepayment game,
whereas the bargaining game of Example 7.24 (that will be discussed
below), is an example of a sidepayment game.

The core of sidepayement games is characterized as follows.
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t:sdcore

Theorem 7.22. In a sidepayment n-person bargaining game v, a vec-
tor (u1, . . . , un) ∈ v(N) belongs to the core if and only if

∑

i∈C

ui ≥ v(C)

holds for each coalition C.

For a sidepayment game we have the following characterization of
the non-emptiness of the core.

th:BOND

Theorem 7.23. (Bondareva) An n-person sidepayment bargaining
game has a non-empty core if and only if for each balanced collection
C of coalitions there exist balancing weights {wC : C ∈ C} such that

∑

C∈C
wCv(C) ≤ v(N) .

For a proof and a discussion concerning this theorem see [7, Sc-
tion 5.2]. In the next example we look at a bargaining game which is
a sidepayment game and examine its core. In this bargaining game we
shall use direct arguments to establish that the core is non-empty.

MIG

Example 7.24. (Markets for Indivisible Goods) In many markets
the buyers and sellers enter into transactions in which they exchange
a commodity which is indivisible. Examples of such markets are the
housing markets, the used car markets or even the markets for medi-
cal interns. In these markets there is a set {1, . . . , I} of buyers and a
set {1, . . . , J} of sellers. Each seller has a unit of the indivisible good.
Seller j values its unit at bj . Buyer i values seller j′s unit of the good
at aij . Thus, in this market if seller j meets buyer i, then the total
profit of the buyer and the seller from entering a market transaction
is max{aij − bj , 0}. We can, in fact, think of the buyer and the seller
forming a coalition. The characteristic function of this coalition is

v(i, j) = max{aij − bj , 0} =
{

aij − bj if aij > bj

0 if aij ≤ bj .

While it is easy to define the characteristic function of a coalition
of a buyer and a seller, we can also define the characteristic function
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for every coalition. For instance, if a coalition C is a subset of either
the set of buyers or sellers then there is no profitable transactions and,
so, in this case

v(C) = 0 .

For a coalition C that contains both buyers and sellers, assume
without loss of generality that the number of buyers is less than or
equal to the number of sellers in C. In this case, let

k: {1, . . . , I} ∩ C → {1, . . . , J} ∩ C

be an assignment map that assigns buyers to sellers within the coali-
tion C in one-to-one fashion. For each such assignment k, we define
the total profit of the coalition as the sum of the profits generated by
each pair. Thus, for an assignment k the total profit is

π(k) =
∑

i∈{1,...,I}∩C

v(i, k(i)) .

Now if K denotes all assignment maps that match buyers to sellers
within C, then the characteristic function of the coalition C is defined
by

v(C) = max
k∈K

π(k) .

Let yi ≥ 0 be the payoff of the buyer i, and let zj ≥ 0 be the payoff
of the seller j. We then solve the following optimization problem:

Minimize :
I∑

i=1

yi +
J∑

j=1

zj

such that
yi + zj ≥ v(i, j) for all i and j .

Let y∗ = (y∗1, . . . , y∗I ) and z∗ = (z∗1 , . . . , z∗J) be a solution of this prob-
lem. We claim that

I∑

i=1

y∗i +
J∑

j=1

z∗j = v(N) ,

where now N is the set of all sellers and buyers together. Now standard
linear programming techniques (which are too technical to be repro-
duced here) guarantee that

∑I
i=1 y∗i +

∑J
j=1 z∗j = v(N); for details,

see [18, pp. 153–155].
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Next, we claim that (y∗, z∗) is a profit allocation to the buyers and
the sellers that is in the core of the game. To see this, let C be a coali-
tion. Pick an assignment k: {1, . . . , I}→ {1, . . . , J} that assigns buyers
to sellers within the coalition C such that π(k) =

∑
i∈{1,...,I}∩C v(i, k(i)) =

v(C). Then, according to the preceding minimization problem, we have
∑

i∈{1,...,I}∩C

y∗i +
∑

j∈{1,...,J}∩C

z∗j ≥
∑

i∈{1,...,I}∩C

v(i, k(i)) = v(C) .

This shows that the profit allocation (y∗, z∗) cannot be blocked by any
coalition. Therefore, it is a payoff allocation in the core.

Exercises

1. Consider the 3-person bargaining game whose characteristic function v
is given by

v({1}) = v({1, 2}) = {(x, y, z) ∈ IR3: x ≤ 1} ,

v({2}) = v({2, 3}) = {(x, y, z) ∈ IR3: y ≤ 1} ,

v({3}) = v({1, 3}) = {(x, y, z) ∈ IR3: z ≤ 1} , and
v({1, 2, 3}) = {(x, y, z) ∈ IR3: x2 + y2 + z2 ≤ 3} .

Find Core(v). [Answer: Core(v) = {(1, 1, 1)} ]

2. Consider the 2-person bargaining game having the characteristic func-
tion defined by

v({1}) = {(x, y) ∈ IR2: x ≤ 1} ,

v({2}) = {(x, y) ∈ IR2: y ≤ 1
2} , and

v({1, 2}) =
{
(x, y) ∈ IR2: x < 4 and y ≤ x−3

x−4

}
.

a. Show that the bargaining game is balanced and satisfies the hy-
potheses of Scarf’s Theorem 7.21 (and hence its core is non-
empty).

b. Determine Core(v). [Answer: Core(v) = {(x, x−3
x−4 ): 1 ≤ x ≤ 2} ]

3. Consider a bargaining game with three players, i.e., N = {1, 2, 3}. Show
that the family of coalitions C =

{
{1}, {1, 2}, {1, 3}

}
is not balanced.
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4. Show that if C is a balanced collection of coalitions, then every player
must belong to at least one coalition of C.

5. Prove Theorem 7.22.

6. If an n-person sidepayment bargaining game v has a non-empty core,
then show that

v(C) + v(N \ C) ≤ v(N)

holds for each coalition C.

7. Assume that in a sidepayment bargaining game we have v(C) ≤ v(N)
for each coalition C. If C is a balanced collection of coalitions with
balancing weights {wC : C ∈ C}, is then

∑

C∈C
wCv(C) ≤ v(N)

true?

8. Describe the core outcomes of Example 7.16.

9. Consider the game described in Example 7.17 with three goods and n
players. Show that the game is balanced.

10. Consider a market with two buyers and three sellers where each seller
has one unit of an indivisible good to sell. Assume that:

a11 = 4, a12 = 2, a13 = 7,

a21 = 3, a22 = 5, a23 = 7, and
b1 = 3, b2 = 4, b3 = 5 .

Find a profit maximizing assignment for this market. Is this assignment
unique?

11. If in an n-person bargaining game the set v(N) is a closed subset of
IRn, then show that the core is a closed subset of IRn. If the core of a
bargaining game is closed, is v(N) necessarily a closed set?

7.4. Allocation Rules: The Shapley Value

In the last section we discussed the core of a bargaining game. While
the core clearly has the desirable property of being stable against block-
ing by coalitions, in many cases of interest, the outcomes in the core



2797.4: Allocation Rules: The Shapley Value

are not unique and confusingly large. In some instances, as in the ma-
jority voting game (see Exercise 5 at the end of the section), the core
might be empty. If one examines a bankruptcy game or a bargaining
game in which a sum of money is divided between n individuals, then
one finds that (since intermediate coalitions cannot divide the money
by themselves) the core coincides with the set of all Pareto optimal
outcomes. In such cases one would like to find another rule that would
assign a unique payoff vector to the players in the game. Of course,
the payoff vector that one should designate as the solution should be
intuitively plausible and reasonable.

The Shapley value of a sidepayment game, introduced by L. S.
Shapley5 in 1953, provides an appealing method of deciding the share
of each individual in an n-person game. The Shapley value has been
used as an allocation rule in a wide variety of contexts. It has been used
to analyze problems in areas as diverse as the management of water
resources, allocation of taxes, public utility pricing, internal pricing of
long distance telephone calls in a large organization, airport landing
fees, etc.

In this section, we investigate the nature of the solution provided by
the Shapley value for an n-person sidepayment bargaining game. So,
let v:N → IR be a sidepayment game in characteristic function form.
We shall say that a player i is a dummy player if v(C ∪ {i}) = v(C)
holds for each coalition. That is, a player is a dummy if he contributes
nothing to any coalition by being a member of that coalition.

A permutation π of the players is simply a one-to-one function
π: N → N . That is, a permutation is a rearrangement of the players
in a game. As usual, if C is a coalition of players, we define the two
coalitions π(C) and π−1(C) by

π(C) = {π(i): i ∈ C} and π−1(C) = {i ∈ N : π(i) ∈ C} .

Now for each permutation π we define a new game πv:N → IR by

πv(C) = v(π−1(C)) or πv(π(C)) = v(C) .

5A value for n-person games, in: H. W. Kuhn and A. W. Tucker Eds.,
Contributions to the Theory of Games II (Annals of Mathematical Studies,
Princeton University Press, Princeton, New Jersey, 1953), Volume 28, pp.
307–312.
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In other words, the game πv is the same as the game v, with the
roles of the players interchanged by the permutation π. It should be
emphasized, however, that the amount πv(C) that a coalition C gets
in the game πv is the same as the amount that the coalition π−1(C) =
{i ∈ N : π(i) ∈ C} gets in the game v. We can now introduce the
concept of a Shapley value.

d:SV

Definition 7.25. A Shapley value (or simply a value) is a rule φ
that assigns to each n-person sidepayment game v an n-dimensional
vector φ(v) = (φ1(v),φ2(v), . . . ,φn(v)) satisfying the following proper-
ties.

1. Efficiency:
∑n

i=1 φi(v) = v(N).

2. Symmetry: For any permutation π of v and each player i we
have φπ(i)(πv) = φi(v). This means that the value φi(v) does
not depend on the labelling of the player i but rather than on its
position in the game relative to the characteristic function v.

3. Linearity: If u and v are any two n-person sidepayement games
and α and β are scalars, then

φ(αu + βv) = αφ(u) + βφ(v) ,

where αu + βv denotes the n-person sidepayment game defined
by (αu + βv)(C) = αu(C) + βv(C).

4. Irrelevance of Dummy Players: If i is a dummy player, then
φi(v) = 0.

Recall that for any integer n the factorial n! is defined by

n! = 1 · 2 · 3 · · · (n-1) · n ,

with 0! = 1. The number n! coincides with the number of all possible
permutations of a set with n elements. As usual, |C| designates the
number of players in the coalition C. We also adhere to the convention
that for any n-person bargaining game v we let v(*©) = 0.

In 1953, L. S. Shapley also established the following remarkable
result.
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th:SHP

Theorem 7.26. (Shapley) The class of all sidepayment games has a
unique Shapley value. Moreover, for any n-person sidepayment game
v, the components of the Shapley value φ(v) = (φ1(v),φ2(v), . . . ,φn(v)
are given by the formulas

φi(v) =
∑

C⊆N\{i}

|C|!(|N |−|C|−1)!
|N |! [v(C ∪ {i})− v(C)] ,

for each i = 1, 2, . . . , n.

The amount v(C ∪ {i}) − v(C) appearing in the above formula is
called the marginal worth of player i when she joins the coalition
C.

If we examine the formula for the Shapley value, we will notice that
the amount given to a player i is actually the expected marginal worth
of player i. The number of coalitions that a player i can join is, of
course, the same as the number of coalitions that can be formed by
the set of players N \ {i}. For each coalition C which does not contain
player i there are |C|!(|N | − |C| − 1)! ways of ordering the players in
the game such that the players in C are just ahead of i in the ordering,
and the players in N \(C∪{i}) are just behind player i. Since there are
|N |! ways of ordering the |N | players, the probability that the members
of the coalition C are just ahead of i in an ordering is

|C|!(|N |−|C|−1)!
|N |! .

Thus, |C|!(|N |−|C|−1)!
|N |! can be interpreted as the probability of the coali-

tion C forming ahead of player i and then i joining C. It can be shown
that

∑
C⊆N\{i}

|C|!(|N |−|C|−1)!
|N |! = 1; see Exercise 3 at the end of this sec-

tion. Therefore, the expected marginal worth of player i in the game
is

φi(v) =
∑

C⊆N\{i}

|C|!(|N |−|C|−1)!
|N |! [v(C ∪ {i})− v(C)] ,

which is precisely the amount indicated by the Shapley value.
Hence, the Shapley value of a game gives each player the average

of the marginal worth that a player adds by joining a coalition which
is just ahead of her in some ordering of the players. An alternative
interpretation of the Shapley value is that it indicates the “expected
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power” of an individual in a game. Thus, the Shapley value has at least
two different interpretations. The description of the Shapley value that
is the most appropriate depends on the context in which it is used. In
bargaining games the Shapley value is best thought of as an allocation
rule that gives every player their average or expected marginal worth.

It is of some interest at this point to examine what the Shapley
value allocates to each player in the simplest possible bargaining game,
a game in which two individuals have to divide a sum of money among
themselves. The characteristic function of this game can be written as

v({1}) = v({2}) = 0 and v({1, 2}) = M .

Note that player 1 can only join the coalition {2} and his marginal
worth in this case is v({1, 2}) − v({1}) = M . Since there is only one
way in which the coalition {2} can be placed ahead of 1, we see that

φ1(v) = 0!1!
2! [v({1})− v(*©)] + 1!0!

2! [v({1, 2})− v({2})]
= 0!1!

2! · 0 + 1!0!
2! M = M

2 .

A similar argument shows that φ2(v) = M
2 . In this case the Shapley

value provides a perfectly reasonable solution to the game. In the
example that follows we use the Shapley value to allocate the cost of
running an airport.

ex:airp

Example 7.27. (Setting Landing Fees) The cost of building and
running an airport consists of two types of expenses; a fixed capital
cost of building the airport, and a variable cost that depends on the
types of planes that use the airport. The operating or the variable cost
of each landing can be attributed directly to the landing. The capital
cost of building the airport, however, needs to be divided in some way
among each user of the facility. Usually, the capital cost of building
the airport depends most directly on the “type” of airplane that needs
the largest runway. In this example, we will abstract from the question
of the frequency of landings and the need for multiple runways and
focus on the issue of building a single runway for T different types of
airplanes.

Let Kt denote the cost of a runway that is adequate for a plane of
type t, where t = 1, . . . , T . We will assume that

0 < K1 < K2 < · · · < KT ,
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i.e, the larger the type the larger the cost of using the runway. We now
describe the sidepayment game that we will use to allocate the cost of
the runway among the different users. Let n be the estimated total
number of landings over the life of the runway.

A coalition C in this bargaining game is a subset of N = {1, 2, . . . , n}.
Let Nt denote the (estimated) set of landings by an airplane of type t.
Clearly, N =

⋃T
t=1 Nt and Nt ∩ Ns = *© for t *= s. For each coalition

C, let
t(C) = max{t ∈ {1, 2, . . . , T}: C ∩Nt *= *©} ,

i.e., t(C) is the largest type of airplane having landings in the coalition
C. The characteristic function v of the game is now defined by

v(C) = −Kt(C) .

That is, the value of a coalition is the capital cost needed for building
the runway for the most expensive type of plane in the coalition. We
should note that v(N) = −KT , so that the entire cost of building the
airport is covered by the fees collected from the entire set of landings.
We will use K0 = 0 to denote the value of v(*©). That is, v(*©) = −K0.

In this bargaining game, if i ∈ N1, then

v(C ∪ {i})− v(C) =
{

K0 −K1 if C = *©
0 otherwise .

Similarly, if i ∈ N2, then

v(C ∪ {i})− v(C) =






K0 −K2 if C = *©
K1 −K2 if C ⊆ N1

0 otherwise .

In general, if i ∈ Nt, then

v(C ∪ {i})− v(C) =
{

Kt(C) −Kt if t(C) < t

0 if t(C) ≥ t .

Therefore, if i ∈ Nt, then the Shapley value φi(v) satisfies

φi(v) =
∑

C⊆N1∪N2∪···∪Nt−1

|C|!(|N |−|C|−1)!
|N |! [v(C ∪ {i})− v(C)] .
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This expression for the Shapley value of the game is, however, not
very useful as it is computationally complex. We shall use a different
approach to compute the Shapley value. Let us define the set

A% =
T⋃

t=%

Nt .

We now define T n-player sidepayment games with characteristic func-
tions v1, . . . , vT given by

v%(C) =
{

0 if C ∩A! = *©
K%−1 −K% if C ∩A! *= *© .

We claim that

v(C) =
T∑

%=1

v%(C)

for every coalition C. To see this, note that if 1 ≤ t(C), then C∩A% *= *©,
while if 1 > t(C), then C ∩A% = *©. Thus,

T∑

%=1

v%(C) =
t(C)∑

%=1

(K%−1 −K%) = K0 − CKt(C) = v(C) .

Therefore, by the additivity property of the Shapley value, we have

φ(v) =
T∑

%=1

φ(v%) . ($)

Next, we shall compute φi(v%) for each i. Note first that from the
definition of v% it follows that

v%(C ∪ {i})− v%(C) =
{

K%−1 −K% if C ∩A! = *© and i ∈ A!

0 otherwise .

Therefore, for each i ∈ A%, the Shapley value is given by

φi(v%) =
∑

C⊆N\A"

|C|!(|N |−|C|−1)!
|N |! (K%−1 −K%) .
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In particular, we have φi(v%) = φj(v%) for all i, j ∈ A%. For i *∈ A%, we
have φi(v%) = 0. This then gives

( T∑

t=%

|Nt|
)
φi(v%) =

∑

i∈A"

φi(v%) = v%(N) = K%−1 −K% .

Consequently,

φi(v%) =
K%−1 −K%∑T

t=% |Nt|
.

Hence, the Shapley value for the game v% satisfies

φi(v%) =

{
0 if i *∈ A!

K"−1−K"∑T
t=" |Nt|

if i ∈ A!

for each i and 1. Now recalling from ($) that φi(v) =
∑T

%=1 φi(v%) and
that i ∈ Nk implies i ∈ A% for 1 ≤ k, we obtain

φi(v) =
k∑

%=1

K%−1 −K%∑T
t=% |Nt|

, i ∈ Nk , k = 1, 2, . . . , T . ($$)

This is the expression for the Shapley value of the game.

Let us see what kind of landing fees the Shapley value gives us
in a numerical example. Suppose a runway, that can accomodate five
different types of airplanes, can be built at a cost of $10 million. The
capital cost of the runway must be recovered in ten years. It has been
estimated that there will be a total of 10,000 landings over the next
ten years.

The costs of building the runway for the five different types of air-
planes are:

K1 = $1, 000, 000 , K2 = $2, 000, 000 , K3 = $3, 500, 000 ,

K4 = $7, 500, 000 , K5 = $10, 000, 000 .

Of the five different types of airplanes, it is expected that type 1 will
land 5, 000 times so that N1 = 5, 000. Similarly, N2 = 2, 000, N3 =
1, 000, N4 = 1, 000, and N5 = 1, 000. If we now compute the Shapley
value of this game using the expression ($$) derived before, we get

φi(v) =
K0 −K1

N1 + N2 + N3 + N4 + N5
=
−1, 000, 000

10, 000
= −100
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for all i ∈ N1. For i ∈ N2 we have

φi(v) =
2∑

%=1

K%−1 −K%∑5
t=% |Nt|

= K0−K1
N1+N2+N3+N4+N5

+ K1−K2
N2+N3+N4+N5

= −300 .

For i ∈ N3, we have φi(v) = −800, for i ∈ N4, φi(v) = −2, 800 and
finally, for i ∈ N5, we have φi(v) = −5, 300. Thus, the schedule of
landing fees is given by:

$100 for type 1 , $300 for type 2 , $800 for type 3 ,

$2, 800 for type 4 , $5, 300 for type 5 .

What we notice here is that the landing fees reflect the increment
in cost, due to the different types and the frequency of the landings.
Thus, type 5 has the largest landing fee, since to accomodate this
type of airplane, the increment in the cost of building the runway is
$2, 500, 000 while the expected number of landings for this type is only
1, 000. The fee structure that we, therefore, obtained by using the
Shapley value seems to be both intuitive and reasonable.

We now present another application of the Shapley value in a slightly
different context. We consider the problem of determining the tax that
each household in a community should pay towards a public project,
say for building a bridge. The tax assessed on each household should
satisfy certain minimal conditions. The tax should ideally reflect the
benefit that each household would derive from the project, and the rev-
enue from the tax should be enough to finance the project. The next
example shows how the Shapley value can be used to determine these
taxes.

Tax

Example 7.28. (Allocating the Tax Burden) We consider the prob-
lem of taxing for the purpose of making available a public good, for
example, a bridge. There are n potential users of the bridge designated
as players 1, . . . , n. Here we have two possibilities; either the bridge is
built (B) or else it is not built (NB). If the bridge is built, individual
i derives utility ui(B) > 0, otherwise the utility is zero. The utility
ui(B) will be interpreted as the maximum amount that individual i
would be willing to pay for the bridge. Each individual i has a net
worth of Wi and we assume that the cost K of building the bridge is
such that

∑n
i=1 Wi > K. That is, if the community wants to build the
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bridge, then there are sufficient resources in the community to do so.
We will further assume that the community as a whole would derive
benefit from building the bridge. That is,

∑n
i=1 ui(B) > K.

The building of the bridge is going to be financed by taxing each
household in an appropriate manner. Notice that the surplus (net
benefit) that the community derives from building the bridge is

n∑

i=1

ui(B)−K .

The surplus that each individual derives is given by

ui(B)− ti ,

where ti is the tax paid by individual i. The total revenue from the
taxes should cover the cost of building the bridge, i.e.,

∑n
i=1 ti = K.

Therefore, we have the following important fact.

• The total surplus of the community is the sum of the surpluses
derived by the individuals in the community.

Because of this fact, in order to determine a fair tax system, it seems
appropriate to use the Shapley value to determine the share of the
surplus that goes to each individual.

We now describe the characteristic function of the sidepayment
game that represents the problem of taxation outlined above. For any
coalition C we let

v(C) =





max{

∑

i∈C

ui(B)−K, 0} if
∑

i∈S Wi > K

0 otherwise .

Thus, the value of a coalition is the total surplus of the individuals in
the coalition if the coalition has enough wealth to build the bridge. In
this case, the marginal worth of an individual i is given by

v(C∪{i})−v(C) =






ui(B) if v(C) > 0∑

j∈C∪{i}

uj(B)−K if v(C) = 0 and v(C ∪ {i}) > 0

0 if v(C) = v(C ∪ {i}) = 0 .

This formula has the following interpretation. The marginal worth of
player i is simply the amount the player is willing to pay (namely ui(B))
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if coalition C can build the bridge by itself (that is, when v(C) > 0).
When coalition C cannot build the bridge by itself, and by adding
player i it can do so, then the marginal worth of player i is the entire
surplus of the coalition C ∪ {i}. If none of the above occur, then the
narginal worth of player i is zero.

The Shapley value of this game is now given by

φi(v) =
∑

{C⊆N\{i}: v(C)>0}

|C|!(|N |−|C|−1)!
|N |! ui(B) +

∑

{S⊆N\{i}: v(C∪{i})>0, v(C)=0}

|C|!(|N |−|C|−1)!
|N |!

[ ∑

j∈C∪{i}

uj(B)−K
]
.

The taxes (t∗1, . . . , t∗n) which allocate the surplus in a fair manner among
the individuals must satisfy

φi(v) = ui(B)− t∗i ,

for i = 1, . . . , n. In other words, according to the Shapley value al-
location rule, each individual i must pay the amount of tax t∗i =
φi(v)− ui(B).

Let us see what the tax rule that we have obtained above gives
us by taking a look at a numerical example. Suppose there are four
households who plan to construct a swimming pool that they can share.
The cost of constructing the swimming pool is $10,000. The wealth of
the households are:

W1 = $50, 000, W2 = $75, 000, W3 = $100, 000, W4 = $200, 000 .

The housholds are willing to pay the following amounts:

u1 = $5, 000, u2 = $4, 000, u3 = $6, 000, u4 = $8, 000 .

Thus, none of the household is willing to spend enough to build a
pool that costs $10,000. The only way the pool will be built, is if
the households pool their resources, and contribute a certain amount
towards the construction of the pool. But in order to do this, the
households must decide how to allocate the cost among themselves.
Clearly, they are willing to build the pool as the joint surplus is $13,000.
We can use the Shapley value as in the preceding example to find the
fair share of the cost for each household.
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The characteristic function of the game that represents the situation
just described, is as follows:

v({1}) = v({2}) = v({3}) = v({4}) = 0,

v({1, 2}) = v({3, 2}) = 0, v({1, 3}) = 1, 000, v({3, 4}) = 4, 000,

v({2, 4}) = 2, 000, v({1, 4}) = 3, 000,

and

v({1, 2, 3}) = 5, 000, v({1, 3, 4}) = 9, 000, v({2, 3, 4}) = 8, 000,

v({1, 2, 4}) = 7, 000, v({1, 2, 3, 4}) = 13, 000 .

Thus,

φ1(v) = 1!2!
4! {[v({1, 3})− v({3})] + [v({1, 4})− v({4})] } +

2!1!
4! {[v({1, 2, 3})− v({2, 3})]} +

2!1!
4! {[v({1, 3, 4})− v({3, 4})] + [v({1, 2, 4})− v({2, 4})]} +

3!0!
4! [v({1, 2, 3, 4})− v({2, 3, 4})]

= 2
24 × 4, 000 + 2

24 × [5, 000 + 5, 000 + 5000] + 6
24 × 5, 000

= 34,000
12 = 2, 833.33 .

Consequently, applying the conclusion of Example 7.28, we get

t∗1 = u1 − φ1(v) = 5, 000− 2, 833.33 = 2, 166.67 .

Similarly, we have

φ2(v) = 1
12 × 2000 + 1

12 × [4000 + 4000 + 4000] + 1
4 × 4000

= 26,000
12 = 2, 166.67 ,

so that
t∗2 = 4, 000− 2, 166.67 = 1, 833.33 .

For player 3, we have

φ3(v) = 1
12 × 5000 + 1

12 × [5000 + 6000 + 6000] + 1
4 × 6000

= 40,000
12 = 3333.33 .
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Hence,
t∗3 = 6, 000− 3, 333.33 = 2, 666.67 .

Finally,

φ4(v) = 1
12 · (3, 000 + 2, 000 + 4, 000) + 1

12 · (7, 000 + 8, 000 + 8, 000) + 1
4 · 8, 000

= 56,000
12 = 4, 666.67 ,

so that
t∗4 = 8, 000− 4, 666.67 = 3, 333.33 .

Therefore, the share of the cost (or the tax) for each household is

t∗1 = 2, 166.67, t∗2 = 1, 833.33, t∗3 = 2, 666.67, and t∗4 = 3, 333.33 .

Since, as expected, t∗1+t∗2+t∗3+t∗4 = 10, 000, we have found a normative
way of allocating the cost of building the swimming pool among the four
households. Notice that the distribution of cost across the households
is determined by the amount each household is willing to pay for the
swimming pool. The wealth of the households play no role, except in
determining the feasibility of households to generate enough resources
to build the pool.

We have seen that the Shapley value is a useful allocation rule that
can be used in a wide variety of situations. A particularly meaning-
ful way of thinking about this allocation rule is to view it as a rule
that distributes the surplus generated in bargaining games according
to the expected marginal worth of the participants. If an individual
is expected to add little to a partnership or a group, then the amount
allocated by the Shapley value is going to be small. Whereas, if the
amount that an individual adds to different groups is large, then the
Shapley value gives a larger share of the surplus to this individual.
Thus, the Shapley value can be viewed as a rule that divides the sur-
plus fairly between the participants, where the concept of fairness is
not that of equity, but rather one in which the amount an individual
receives is determined by his contribution.

The Shapley value can, therefore, be viewed as providing a norma-
tive solution to a bargaining game. In many instances, such normative
rules may not work and the solution to a bargaining game is then
determined by the strategic choices made by the players. In many bar-
gaining games the method of dividing the surplus takes the form of
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making offers and counteroffers, and usually, in such situations there is
a sequence of moves made by the players. In the section that follows,
we discuss bargaining games in which the solution is determined by
such strategic interactions among the participants.

Exercises

1. In Example 7.27 of setting the landing for each i ∈ Nt, we used the
formula

v(C ∪ {i})− v(C) =
{

Kt(C) −Kt if t(C) < t
0 if t(C) ≥ t .

Verify this formula.

2. Verify that the Shapley value satisfies the properties of efficiency, sym-
metry, linearity and irrelevance of dummy players as defined in Defini-
tion 7.25.

exer:743

3. Show that for each i we have
∑

C⊆N\{i}
|C|!(|N |−|C|−1)!

|N |! = 1.

4. The n-person sidepayment game in characteristic function form that
is described below is called the majority voting game. We assume
that in this sidepayment game the number of players |N | = n is an odd
number. The characteristic function is

v(C) =
{

1 if |C|
n ≥ 1

2
0 otherwise .

That is, a coalition has a value of 1 if it is the majority and a value of
0 if it is a minority. Find the Shapley value of this game.

exr:745

5. Show that the majority voting game with 2n + 1 players described in
the previous exercise has an empty core.

6. Suppose we need to construct an airport in which ten different types
of airplanes can land. The airport can be constructed at a cost of
$1 billion. The capital cost of constructing the airport needs to be
recovered over 20 years. Over this period we expect to have 100, 000
landings by the different types of airplanes. Let Ni denote the number
of landings by planes of type i. Then the expected number of landings
by the different types of airplanes is given as follows:

N1 = 20, 000 , N2 = 10, 000 , N3 = 10, 000 , N4 = 15, 000 ,

N5 = 5, 000 , N6 = 6, 000 , N7 = 7, 000 , N8 = 7, 000 ,

N9 = 15, 000 , N10 = 5, 000 .
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The cost of building the runway for first five types is:

K1 = K2 = K3 = K4 = K5 = $500, 000, 000 .

The costs for building an airport that can accomodate the other types
are:

K6 = K7 = $750, 000, 000 , K8 = K9 = $900, 000, 000 ,

and
K10 = $1, 000, 000, 000 .

Compute the optimal landing fees for the different types of planes.

7. Suppose an irrigation canal can be built at a cost of $100 million that
can serve 5 different categories of farmlands. The five different types of
farmlands are at different distances from the source of the canal and, as
such, the costs of extending the canal to serve the different categories
of farmlands are different. The costs, which are incremental, are given
by

K1 = $10, 000, 000 , K2 = $30, 000, 000 , K3 = $50, 000, 000,

K4 = $70, 000, 000 , K5 = $100, 000, 000 .

There are a 1, 000 farmlands of each type.

a. Describe a method for setting fees for use of the irrigation canal.
Explain why you chose this method.

b. Find the fee that each type of farm pays according to the method
you described.

8. Suppose a bridge needs to be built for a community of 10, 000. The
bridge will cost $1,000,000.

a. If each individual in the community is willing to pay the same
amount for the bridge, what should be the share of each individual
in the cost of building the bridge? Explain your answer.

b. If half the individuals in the community value the bridge at twice
that of the value of the bridge to the other half of the community,
how would your allocation of the cost change? Are you using the
same allocation rule in both parts?

9. An n-person sidepayment game v is said to be convex if for every pair
of coalitions C and T we have

v(C ∪ T ) + v(C ∩ T ) ≥ v(C) + v(T ) .

Let v be a convex sidepayment game.
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a. Show that if C ⊆ T , then for any i *∈ T

v(T ∪ {i})− v(T ) ≥ v(C ∪ {i})− v(C) .

b. For any coalition C, define the sidepayment game vC with players
the members of the coalition C, via the formula vC(T ) = v(T )
for all coalitions T of C (i.e., T ⊆ C). Show that if S ⊆ T , then
for any player i ∈ S we have

φi(vC) ≤ φi(vT ) .

c. Using the results in (a) and (b) show that the Shapley value of
a convex sidepayment game v is a core allocation—and conclude
from this that every convex sidepayement game has a non-empty
core.

10. Consider a firm which has 100, 000 shareholders. Of this, three share-
holders own significant fractions of the shares. Shareholder 1 holds
25 percent of the shares, shareholder 2 owns 30 percent of the shares
and the third major shareholder owns 35 percent of the shares. The
remainder of the shares are held by the smaller shareholders with no
one holding more than 1 percent of the total. Any decision in the firm
is settled by the approval of stockholders who own a majority of the
shares.

a. Describe the majority voting game v for this problem. That is,
describe the characteristic function of the game that assigns a
value of 1 to the winning coalitions and zero to the others.

b. Find the Shapley value of this game.

c. Give an interpretation of the Shapley value.

11. Suppose three firms 1, 2, 3 are looking into a joint venture that is ex-
pected to increase the value of the firms. The estimated market value
of the various joint venture possibilites among the firms is given by

v(1) = v(2) = v(3) = $1000, 000, 000 ,

v(1, 2) = v(2, 3) = v(1, 3) = $3, 000, 000 ,

v(1, 2, 3) = $5, 000, 000, 000 ,

where v(i) denotes the market value of firm i when it has not entered
into any joint ventures, v(i, j) denotes the market value of the joint
venture when firm i enters into an agreement with firm j, and v(1, 2, 3)
denotes the market value of the joint venture of the three firms.
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a. Describe a method of finding the expected increase in the value
of the firms when they enter into the joint venture.

b. Using this method find the expected increase in the value of each
firm when they enter into the joint venture.

c. Do you think it is in the interest of the firms to enter into the
joint venture?

7.5. Two-Person Sequential Bargaining
sec75

We have studied the bargaining game in some detail in the preceding
sections. Our focus was principally on the question of how to divide the
surplus so that the allocation rules satisfy certain normative properties.
The Nash bargaining solution, the KS solution and the Shapley value
were all solutions to the bargaining game that belong to this genre.
Even the core has features that gives it the flavor of being a normative
solution concept.

In this section we proceed to discuss bargaining games from a posi-
tivist’s perspective. That is, instead of worrying about what properties
a solution ought to satisfy, we concern ourselves with trying to predict
what will actually happen when the bargaining process is sequential.
In particular, we will be concerned with understanding what will hap-
pen in a bargaining game when the bargaining process actually takes
the form of a series of offers and counter-offers. In these cases, the bar-
gaining process becomes a sequential game and strategic play becomes
important.

A typical two-person sequential bargaining game takes place when
a potential buyer and the seller of a house make bids and counter-bids.
The game starts with a list price announced by the seller when she
puts the house up for a bid. A potential buyer will usually make a
bid that is somewhat lower than the list price, but above what the
buyer believes the seller is likely to accept. The seller, of course, has
the option to reject. And she will do so if she believes that there is a
buyer who would be willing to bid higher. This bargaining process can
be described by a two-person sequential game in which the first move
is made by the seller, followed by a move of the buyer after which the
seller moves again, and so on.

In chapters 4 and 5 we studied how to solve sequential games with
perfect and imperfect information. Here, we will make use of that
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knowledge to understand sequential bargaining. The basic model that
we shall analyze in this section is the bargaining game described in
Definition 7.1. We will simplify that model by assuming symmetry
and normalizing the size of the total surplus to one. The utilities of
the two players are given by the fraction of the surplus received by the
player. In case there is disagreement, the utilities of both players are
taken to be zero. Therefore, the set S of bargaining alternatives of this
game is

S = {(s1, s2): s1 ≥ 0, s2 ≥ 0, and s1 + s2 ≤ 1} .

The utility functions of the players are

u1(s1, s2) = s1 and u2(s1, s2) = s2 .

Therefore, the set of utility allocations of the bargaining game is

U = {(s1, s2): (s1, s2) ∈ S} .

The bargaining set S and its set of utility allocations U in this case
coincide and they are shown in Figure 7.16. CH78

Figure 7.16.

However, as the bargaining game is now played strategically, the
utilities achieved by the players depend on the equilibrium of the game
played between the players. Since the bargaining procedure is one of
making alternating offers, the bargaining game is a sequential game,
and the most likely agreement is one that is given by an “equilibrium”
of the game.
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The game of alternating offers is played over time periods t =
1, 2, . . . . We shall indicate the share of the pie received by player i
in period t by st,i, and the utility of player i by ui(st,1, st,2) = st,i. The
game starts with player 1 making an offer in period t = 1 of taking
s1,1 so that player 2 gets s1,2 = 1− s1,1. Player 2 can either accept or
reject the offer. If the offer is accepted, the game ends. If the offer is
rejected, the game proceeds to period t = 2. Player 2 now must make
an offer s2,1 to player 1 so that player 2 gets s2,2 = 1 − s2,1. Player 1
can now either accept or reject. If player 1 accepts, then the game
ends, otherwise, the play proceeds to period t = 3 where player 1 must
make a counter-offer. The game (whose graph is shown in Figure 7.17)
continues in this fashion and conceivably could continue for an indef-
initely long period. The reader should keep in mind that here offers
and counter-offers are always quoted as the share of the pie that goes
to player 1.CH79

Figure 7.17.

Since the sequential game is played over time, if a player prefers
to have his share of the pie earlier rather than later, there is a cost to
waiting. This preference for consumption in the present over the future
is indicated by a positive rate of time preference. The rate of time
preference is the amount of a unit of consumption that an individual
is willing to give up in order to be able to consume today, rather than
in the next period. Thus, if the rate of time preference is r, then the
individual is indifferent between consuming c units today or (1 + r)c
units tomorrow. Equivalently, c units tomorrow are the same as 1

1+r c

units today. As usual, we let δ = 1
1+r and call it the discount rate;

clearly 0 < δ < 1. Thus, if the bargaining process settles after t periods
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with an agreement given by (st,1, 1− st,1), then the utilities of the two
players with discount rates δ1 and δ2, respectively, are given by

u1(st,1, 1− st,1) = δt−1
1 st,1 and u2(st,1, 1− st,1) = δt−1

2 (1− st,1) .

With these “discounted” utilities, we can explicitly compute the cost
of delay in bargaining, which is simply the cost of waiting until the
next period. For player 1 the cost of delay in period t for the share s
in next period t+1 is given by

δt1s− δt−1
1 s = δt−1

1 (1− δ1)s ,

which is the difference in the payoff that is solely due to having waited
for a period starting in period t. Note that the cost of delay in this
case is not a constant as it depends on the share of pie that goes to the
player.

Since the game is a sequential game with perfect information, it
is natural to look for a subgame perfect equilibrium. We start by
examining a three-period finite-horizon version of the bargaining game.
This game is shown in Figure 7.18. CH80

Figure 7.18.

We solve the game by using backward induction. We note that in
the final stage of period 3, player 2 will accept if 0 ≤ s3,1 < 1 and
will be indifferent if s3,1 = 1. Thus, player 1, at the beginning of time
period 3, knowing that player 2 will not reject, offers s3,1 < 1 but very
close to 1 (i.e. s3,1 ≈ 1), in which case player 2 gets zero. Player 1 in
this case gets δ21 .
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Therefore, at the beginning of period 2, player 2 must make an offer
s2,1 to player 1 such that

δ1s2,1 ≥ δ21 or s2,1 ≥ δ1 ,

as otherwise player 1 rejects and the play proceeds to period 3, where
player 2 ends up getting zero. Since under the constraint s2,1 ≥ δ1, the
value s∗2,1 = δ1 maximizes the payoff δ2s2,2 = δ2(1 − s2,1) of player 2
in period 2, player 2 must make the offer of s∗2,1 = δ1 to player 1 at
the beginning of period 2. In particular, if player 2 makes the offer
s∗2,1 = δ1 at the beginning of period 2, then player 1 accepts and gets
the payoff δ21 and player 2 receives the payoff δ2(1− δ1).

At the beginning of period 1, player 1 anticipates that player 2 will
make the offer s∗2,1 = δ1 if the play proceeds to period 2. This means
that player 2 will reject unless the offer s1,1 is such that 1 − s1,1 ≥
δ2(1 − δ1) or s1,1 ≤ 1 − δ2(1 − δ1). This implies that player 1 will
maximize his payoff by offering

s∗1,1 = 1− δ2(1− δ1) .

When player 1 makes this offer, he compares the payoff of 1−δ2(1−δ1)
to the payoff he gets if he waits until period 2, when he expects to be
offered s∗2,1 = δ1. Since 1 − δ2(1 − δ1) ≥ δ21 is trivially true, player 1
(who plays optimally) must offer s∗1,1 = 1− δ2(1− δ1).

We have thus obtained the following subgame perfect equilibrium
strategy combination of the game.

th:3PBG

Theorem 7.29. If in a 3-period bargaining game player 1’s strategy is

• Period 1: offer s1,1 = 1− δ2(1− δ1)

• Period 2: accept if s2,1 ≥ δ1 and reject otherwise

• Period 3: offer s3,1 = 1 (or s3,1 < 1 and s3,1 very close to 1),

and player 2’s strategy is

• Period 1: accept if s1,1 ≤ 1− δ2(1− δ1) and reject otherwise

• Period 2: offer s2,1 = δ1

• Period 3: accept ,
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then the resulting strategy combination is a subgame perfect equilibrium
which yields the bargaining agreement

s∗1,1 = 1− δ2(1− δ1) and s∗1,2 = δ2(1− δ1) . ($)

In general, the bargaining agreement given in ($) will not be the
same as the (1

2 , 1
2) solution that would be obtained by using the nor-

mative solution concepts of the previous sections.
While we have been able to get a clear answer to the 3-period

bargaining game that we have just analyzed, the 3-period bargaining
game raises significant questions about whether a 3-period game really
captures the essence of sequential bargaining. Indeed, it is very likely
that players actually can make offers and counter-offers for any number
of periods. A situation in which a player can always make a counter-
offer cannot be written as a “finite-horizon game.” This then leads
us to investigate what happens in an “infinite-horizon” version of the
bargaining game. While it is true that no bargaining process goes on for
ever, the reasoning that leads to an agreement is often best described
using an infinite horizon game.

To analyze an infinite horizon game it is useful to study the equi-
librium of a finite horizon game in which the payoffs in the terminal
period of the game are “continuation payoffs.” A continuation pay-
off is a payoff that a player expects to get if the game is allowed to
continue rather than terminate. Thus, instead of a payoff of (0, 0), the
payoff that the players receive when player 2 rejects player 1’s offer in
period 3 is shown in Figure 7.18. They get a payoff of (δ21x, δ22(1−x)),
where now x is the agreement expected between the players if play
continues.

In other words, (x, 1 − x) is the expected agreement in case the
bargaining continues. Thus, player 1 at the beginning of period 3
knows that player 2 will accept an offer s3,1 only if

δ22(1− s3,1) ≥ δ22(1− x) or s3,1 ≤ x .

Therefore, player 1 makes the offer s∗3,1 = x. In this case, player 1 gets
δ21x. Hence, at the beginning of period 2, player 2 has to make an offer
s2,1 such that

δ1s2,1 ≥ δ21x or s2,1 ≥ δ1x ,
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as, otherwise, player 1 rejects, and the play proceeds to period 3. There-
fore, at the beginning of period 2, player 2 makes the offer s∗2,1 = δ1x.
In that case, player 2’s payoff is δ2(1− δ1x) which exceeds δ22(1− x).

If player 1 anticipates this at the beginning of period 1, then player 1
will make an offer s1,1 such that

1− s1,1 ≥ δ2(1− δ1x) or s1,1 ≤ 1− δ2(1− δ1x) .

Thus s∗1,1 = 1−δ2(1−δ1x) and player 2’s payoff is δ2(1−δ1x). Player 1’s
payoff here is larger than δ1x as 1− δ1x > δ2(1− δ1x).

Note that the preceding equilibrium agreement depends on the con-
tinuation payoff x. This brings us to the following important question:
what is the proper value for x? Clearly, x should take a value that is
consistent with playing an equilibrium in the game. But if that is so,
then x should also be the offer at the beginning of period 1, since the
bargaining process that takes place at the beginning of period 3 is an
exact replica of the bargaining process that takes place starting from
period 1. Consequently, the equilibrium x∗ should satisfy the equation
x∗ = 1− δ2(1− δ1x∗), or

x∗ = 1−δ2
1−δ1δ2

.

Thus, we have established the following important result.
th:3PBG1

Theorem 7.30. Assume that in a bargaining game the two players
have discount rates δ1 and δ2, respectively. If players can make any
number of offers (so that the bargaining game can be viewed as an
infinite-horizon game), then the equilibrium solution to the bargaining
game is given by

(x∗, 1− x∗) =
(

1−δ2
1−δ1δ2

, δ2(1−δ1)
1−δ1δ2

)
. ($$)

If we examine the agreement ($$) obtained in the preceding theo-
rem carefully, we will notice that the equilibrium bargaining agreement
depends on the discount rates δ1 and δ2. If δ1 = δ2 = δ, then player 1
(the player who makes the first offer) gets 1

1+δ , and player 2 gets δ
1+δ . If

δ < 1, then δ
1+δ < 1

1+δ . Thus, even if the players have exactly the same
time preference, player 1 gets a larger share of the pie than player 2 in
the strategic bargaining game. It should be noted at this point that



3017.5: Two-Person Sequential Bargaining

the smaller the discount rate (that is, the more impatient the players
are), the smaller is the share of the pie that player 2 receives.

The next example illustrates Theorem 7.30.
e:AUtPur

Example 7.31. (An Automobile Purchase) An individual has de-
cided that he wants to buy a Ford Explorer. This sport utility vehicle is
usually listed at $30,865.00 and has an invoice price of $27,786.00. The
buyer knows that the seller may accept a price somewhere between the
list price and the invoice price, but will most likely refuse to sell when
the offer made is below the invoice price. The buyer is fairly patient
with a discount rate of δ1 = 0.95 over a seven day period. The seller
would like to sell the car at a reasonable price, but has a discount rate
of δ2 = 0.9 over the same seven day period. The bargaining process
starts with the buyer, who is player 1, making the first move by offer-
ing a price for the car. The seller, who is player 2, has the option of
accepting the offer or rejecting it and making a counter-offer.

The bargaining process described above can be viewed as a sequen-
tial bargaining game in which the buyer makes the first offer by quoting
a price that is somewhere between the list price and the invoice price.
The seller then responds by either accepting the offer or by making a
counter-offer. It is not unreasonable to assume that it takes around a
week for each of the respondents to make up their mind about serious
offers and counter-offers. Here we ignore casual talk which can take
place over a very short span of time but is not decisive. Since, con-
ceivably an unlimited number of offers and counter-offers can be made,
this sequential bargaining game is an infinite-horizon bargaining game
of the type that we have just analyzed. So, according to Theorem 7.30,
the solution to this bargaining process is given by

(x∗, 1− x∗) =
(

1−0.9
1−0.95×0.9 , 0.9(1−0.95)

1−0.95×0.9

)
= (0.6897, 0.3103) ,

where x∗ is the share of the pie that goes to the buyer and 1 − x∗ is
the share of the pie that goes to the seller. The size of the pie in this
case is 30, 865.00− 27, 786.00 = $3, 079. Since x∗ = 0.6897, the buyer
will get

0.6897× 3, 079 = $2123.59

of the total pie and the seller gets the rest. The price that the buyer
thus offers the seller is

p∗ = $30, 865− $2123.59 = $28, 741.41 .
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This is a price that the seller would most likely accept in which case
the bargaining ends quickly with the car being sold for approximately
$28,700.

Clearly, in the case of strategic bargaining, the rate of time prefer-
ence plays a crucial role in determining the nature of the agreement.
This observation about the time preference raises an important ques-
tion. What happens when the rates of time preferences are not known
by the players?

Next, we shall examine a bargaining game in which the discount
rate of player 2 can take one of two values: δh with probability ph and
δ% with probability 1− ph. We assume that

0 < δ% < δ1 < δh < 1 .

This bargaining game will be referred to (for simplicity) as the se-
quential bargaining game with imperfect information. We first
look at the sequential game with imperfect information that terminates
after three periods with the payoff of (0, 0) if there is no agreement.
The graph of this bargaining game is shown in Figure 7.19.CH81

Figure 7.19.

We now proceed to find an equilibrium of the game. As before,
in period 3, player 2 whether he is of type h or 1 will accept an offer
s∗3,1 < 1 but very close to 1 (i.e., s∗3,1 ≈ 1), as a rejection leads to a
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payoff of zero. Thus, in period 3, player 1 proposes s∗3,1 = 1 (in fact,
makes an offer s∗3,1 which is less but very close to 1) and both types
accept. In this case, player 1’s payoff is δ21 and player 2 gets zero.

Given this offer in period 3, in period 2, player 2 (h or 1) will
propose (as in the perfect information case) s∗2,1 = δ1 and player 2 will
accept and get:

δh(1− δ1) if player 2 is type of h, and
δ%(1− δ1) if player 2 is of type 1.

In period 1, if player 1 knew that player 2 is of type h, then player 1
would offer s1,1 = 1 − δh(1 − δ1), otherwise he would offer s1,1 =
1− δ%(1− δ1). We now analyze two cases.
CASE I: s1,1 = 1− δ%(1− δ1).

In this case we claim that:

• If player 2 is of type 1, then player 2 accepts this offer .

Indeed, if player 2 rejects the offer and makes the counter-offer s∗2,1 = δ1
in period 2, then player 1 accepts. The payoff of player 2 in this case is
δ%(1− δ1), which is exactly what he gets from the offer s1,1 in period 1.
Thus, if player 2 is of type 1, then he gains nothing from rejecting the
offer made to him in period 1.

Next, we also claim that:

• If player 2 is of type h, then player 2 will reject the offer .

Indeed, if player 2 rejects the offer then, as before, the offer in period 2
is δ1. Player 2 then gets a payoff of δh(1 − δ1) > δ%(1 − δ1), which
implies that player 2 gains by rejecting the offer if he is of type h.
CASE II: s1,1 = 1− δh(1− δ1).

In this case, since

δhs1,2 = δh(1−s1,1) = δ2h(1−δ1) > 0 and δ%s1,2 = δ%δh(1−δ1) > 0 ,

player 2 will accept the offer regardless of his type.
Player 1 now has to decide what to offer in period 1. His decision

is based upon the following arguments. First of all, from CASE II he
knows that if he offers s1,1 = 1− δh(1 − δ1), then player 2 will take it
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regardless of his type. He also knows (from CASE I) that if player 2 is
of type 1, then he will accept the offer s1,1 = 1− δ%(1− δ1), but he will
reject this offer if he is of type h. If this offer is rejected, then the offer
from player 2 in period 2 is δ1. Thus, player 1’s payoff in the case of
rejection by player 2 in period 2 is δ21 . This means that player 1 must
offer s1,1 = 1− δ%(1− δ1), only if his expected payoff from making this
offer

phδ
2
1 + (1− ph)[1− δ%(1− δ1)]

exceeds the payoff from making the offer s1,1 = 1− δh(1− δ1). In other
words, the following strategy summarizes player 1’s choice in period 1:

• player 1 offers s1,1 = 1− δ%(1− δ1) if

phδ
2
1 + (1− ph)[1− δ%(1− δ1)] > 1− δh(1− δ1) ,

otherwise he offers s1,1 = 1− δh(1− δ1).

The preceding discussion shows that we have established the fol-
lowing result.

th:3PG2

Theorem 7.32. In a sequential 3-period bargaining game with imper-
fect information there is an equilibrium which is described as follows.

a. In period 1, player 1 offers s∗1,1 = 1− δ%(1− δ1) if

phδ
2
1 + (1− ph)[1− δ%(1− δ1)] > 1− δh(1− δ1)

holds, otherwise offers 1 − δh(1 − δ1). Player 2 rejects s∗1,1 if he
is of type h and accepts otherwise.

b. In period 2, player 2 offers s∗2,1 = δ1 regardless of his type.
Player 1 accepts.

c. In period 3, player 1 believes that player 2 is of type h if his offer
in period 1 was

s∗1,1 = 1− δ%(1− δ1)

and player 2 rejected the offer, otherwise his beliefs are unchanged
from period 1.
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If a bargaining game, in which the type of one of the players is
known only to the player, is a game that allows for infinitely many
rounds of offers and counter-offers, then the bargaining game is known
as an infinite-horizon sequential game with imperfect informa-
tion.

In the rest of the section, we analyze this version of our sequential
bargaining game using arguments that are similar to the ones we used
to solve the infinite-horizon game in the perfect information case. As
before, the infinite-horizon game can be understood by using a finite-
horizon game in which the payoffs in the terminal period are continu-
ation payoffs. FCH82

Figure 7.20.

In the game of Figure 7.20, the continuation payoffs are (xh, 1−xh)
if player 2 is of type h and (x%, 1−x%) if player 2 is of type 1. If player 1
has not learned anything about the type of player 2 by period 3, player 1
has no way of knowing whether the continuation payoff is xh or x%.
However, if player 1 has reached a firm conclusion about the type of
player 2 which happens to be true, then player 1 has a firm belief about
the continuation payoffs.

If player 1 knew that player 2 is of type h, then (according to
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Theorem 7.30) the continuation payoff would be

xh =
1− δ1

1− δ1δh
.

Similarly, if player 2 is of type 1, then the continuation payoff is

x% =
1− δ1

1− δ1δ%
.

Surprisingly, the following result shows that in some situations player 1
will never offer 1−δ1

1−δ1δ"
.

th:barg

Theorem 7.33. There is an equilibrium of an infinite-horizon bar-
gaining game with imperfect information in which player 1 offers:

s∗1,1 =

{
1− δ%(1− δ1xh) if phδ1xh + (1− ph)[1− δ!(1− δ1xh)] > 1−δ1

1−δ1δh
1−δ1

1−δ1δh
if phδ1xh + (1− ph)[1− δ!(1− δ1xh)] ≤ 1−δ1

1−δ1δh
.

Proof : When player 1 offers s1,1 = 1− δ%(1− δ1xh), then player 2 if he
is of type h, will reject the offer, as in period 2 he can offer δ1xh, which
player 1 will accept if he believes that player 2 is of type h, and receive
the payoff 1 − δ1xh > δ%(1 − δ1xh). On the other hand, if player 2 is
of type 1, then the payoff to player 2 from either accepting or rejecting
is exactly the same, in which case player 2 gains nothing by rejecting
if he is of type 1. Therefore, player 2 will reject only if he is of type
h. With this information now available, player 1 believes that player 2
is of type h if there is a rejection and makes the offer xh = 1−δ1

1−δ1δh
in

period 3. Thus, the expected payoff of player 1 from making the offer
s1,1 = 1− δ%(1− δ1xh) is

phδ1xh + (1− ph)[1− δ%(1− δ1xh)] .

If player 1 makes the offer xh = 1−δ1
1−δ1δh

, then player 2 will accept
the offer regardless of type. Thus, player 1 will make the offer

s1,1 = 1− δ%(1− δ1xh)

only if phδ1xh + (1− ph)[1− δ%(1− δ1xh)] > 1−δ1
1−δ1δh

holds, as then his
expected payoff from making the offer is greater than the payoff from
settling the bargaining issue by making the offer assuming that player 2
is of type h.
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The obvious question that crops up now is whether there is an
equilibrium in which player 1 can sensibly make the offer x% = 1−δ1

1−δ1δ"
?

That is, make an offer believing that player 2 is of type 1. Clearly,
this will happen when the probability that player 2 is of type h is low
and it is not sensible for player 1 to believe that player 2 is of type
h when player 2 rejects an offer of x%. We leave the formal details of
the analysis for the reader, but observe that the probability with which
player 2 is of type h or 1 clearly has a role in deciding what kind of
offers would be made in an equilibrium. Indeed, it is of interest to note
that, in some cases, the type of player 2 may never be revealed when
an offer is made. In other cases, the type of offer may be such that it
leads to a delay in reaching an agreement as clearly happens in the case
when player 1 makes an offer targeted at type 1, which is then rejected
by a player of type h, and the bargaining is settled in period 2.

This aspect of an equilibrium offer, that there may actually be some
delay in reaching an agreement, is quite often observed in practical
bargaining. This aspect of equilibrium in sequential bargaining with
imperfect information leaves us with some intriguing questions, since
clearly, there should never be any delay in reaching an agreement in
case there is perfect information.

We finish the section (and the book) with an example that presents
the details of a contract negotiation on a manuscript—such as this one.

Manuscript

Example 7.34. (Contract on a Manuscript) An author is negoti-
ating the terms of a contract with his publisher. The publisher starts
the bargaining process by making an offer to the author. In such cases,
the contract is usually written as a percentage of the gross earnings
that goes to the author. Such an offer can lie between 0 and 40 per-
cent, where an offer of 40 percent of the gross earnings means that the
publisher is left with no profit. The share of the pie received by the
publisher in this case is zero and the entire share of the profit goes to
the author. On the other hand, if the contract specifies 20 percent of
the gross earnings, then the share of the pie is one-half each for the
publisher and the author.

Once the publisher makes an offer, the author can either accept the
offer or reject it and come back with a counter-offer. Such a process of
making offers and counter-offers can in principle go on for any number
of periods with a typical response time of a week between offers. Thus,
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the bargaining process (on the contract on a manuscript) is a sequential
bargaining game with the possibility of many offers and counter-offers.
The sequential bargaining game starts with the publisher, whom we
will think of as player 1, making an offer s1,1, which we recall is the
share (fraction) of the pie that goes to player 1. The discount rate of
the publisher is known to be δ1 = 0.8 over a seven day period (which
is the time between offers). The publisher, however, is unsure about
the discount rate of the author, but he knows that authors are either
relatively patient with a discount rate of 0.85 or else hate bargaining
and have a low discount rate of 0.75. The probability that the author
is the one or the other type is one-half. Thus, the sequential bargaining
game is a game with imperfect information, where δh = 0.85 and δ% =
0.75.

A solution to the sequential bargaining process is, therefore, found
by examining an equilibrium of the bargaining game. Such an equilib-
rium is described in Theorem 7.33. In this example we have

x% =
1− 0.8

1− 0.8× 0.75
= 0.5 and xh =

1− 0.8
1− 0.8× 0.85

= 0.625 .

Further,

phδ1xh + (1− ph)[1− δ%(1− δhxh)]
= 1

2 × 0.8× 0.625 + 1
2 [1− 0.75(1− 0.85× 0.625)]

= 0.5742 .

Since this is less than xh = 0.625, the publisher’s offer (according to
Theorem 7.33) is

s1,1 = xh = 0.625 ,

in the first period, which is the share of the gross profits that he retains.
The author, in this case, accepts the offer and the bargaining ends in
the first period. The share of the gross revenue that is offered to the
author is 0.4(1− 0.625) = 15 percent.

Exercises

1. Suppose a buyer is thinking of making an offer on a house that is listed
at $150,000. The buyer can make an offer which the seller can accept,
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or which the seller can reject and make a counter-offer. The buyer then
has the chance of accepting the counter-offer or rejecting it and making
one final counter-offer. The bargaining then ends at this stage with an
acceptance or a rejection by the seller.

a. Sketch the sequential bargaining game when the discount rate is
δ1 = δ2 = 0.99 between offers and counter-offers and the reserva-
tion price of the seller is known to be $135,000. (The reservation
price is the price below which the seller will refuse to sell). [Hint:
The size of pie is $15,000 ]

b. Solve the 3-period bargaining game that was sketched in part (a).

2. Suppose the bargaining process of the previous exercise can go on in-
definitley. In this case what is the solution to the bargaining problem?

3. In the Automobile Purchase Example 7.31, the bargaining takes place
between a buyer and a seller with offers and counter-offers. Now sup-
pose that the buyer has the option of going to another dealer who has
agreed to sell the Ford explorer to the individual for $28,000.

a. Sketch the bargaining game between the buyer and the seller when
the buyer has this “outside option” and the negotiating process is
one in which the buyer makes an offer, waits for the counter-offer
and either takes it or rejects it and takes the outside option.

b. Find a subgame perfect equilibrium of the game described in (a).
Is the sale still executed at a price of $28,700? Explain fully.

4. Consider the game of Example 7.34. What happens in that game if
the probability that the author is patient is 15%, that is, δh has a
probability of 15%? How is the negotiation settled?

5. Suppose in the game of Example 7.34, the author has an outside offer
of 16 percent of the gross revenue. The publisher knows this and makes
an offer in period 1, which the author is free to reject and make a
counter-offer in period 2. In period 2, the negotiations terminate with
the publisher either accepting the offer or rejecting it, in which case the
author takes the other offer.

a. Sketch the sequential game that is now played between the author
and the publisher.

b. Find a sequential equilibrium of this game. What are the terms
of the agreement?
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6. Show that in the bargaining game with perfect information, the share of
the pie that goes to a player increases as the player’s discount rate goes
to player 1, when the discount rate of the other player is fixed. What
does this imply about what players would do if the discount factor is
not known fully?

7. What happens to the bargaining solution in the perfect information
game when the time period between offers and counter-offers get close
to zero? Analyze this by first determining what happens to the discount
factors and then taking limits.

8. Establish the following properties.

a. If δ1(1−δ!)
1−δ1δ!

+ δ1(1−δ1)
1−δ1δh

> δ!, then δ!(1− δ1xh) ≤ 1− x!.

b. When the result in (a) holds true, then there is a sequential equi-
librium in which player 1 offers s1,1 = x! if

phδ1xh + (1− ph)[1− δ!(1− δ1xh)] ≤ 1− δ1
1− δ1δ!

= x!,

otherwise player 1 offers s1,1 = 1− δ!(1− δ1xh).
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