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Abstract

We argue that it is possible to adapt the approach of imposing restrictions
on available plans through finitely effective debt constraints, introduced by
Levine and Zame (1996), to encompass models with default and collateral.
Along this line, we introduce in the setting of Araujo, Páscoa and Torres-
Mart́ınez (2002) and Páscoa and Seghir (2008) the concept of almost finite-time
solvency. We show that the conditions imposed in these two papers to rule out
Ponzi schemes implicitly restrict actions to be almost finite-time solvent. We
define the notion of equilibrium with almost finite-time solvency and look on
sufficient conditions for its existence. Assuming a mild assumption on default
penalties, namely that agents are myopic with respect to default penalties, we
prove that existence is guaranteed (and Ponzi schemes are ruled out) when
actions are restricted to be almost finite-time solvent. The proof is very simple
and intuitive. In particular, the main existence results in Araujo et al. (2002)
and Páscoa and Seghir (2008) are simple corollaries of our existence result.
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1 Introduction

A central issue that arises in sequential markets models with an infinite horizon is
the nature of the borrowing constraints imposed on the participants of the economy.
This problem has no counterpart in finite horizon economies, since the requirement
that agents must balance their debts at the terminal date implies limits on debt
at earlier dates. In the absence of a terminal date agents will seek to renew their
credit by successively postponing the repayment of their debts until infinite. The
existence of such schemes (so-called Ponzi schemes) causes agents’ decision problem
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to have no solution even in cases where the system of prices does not offer (local)
arbitrage opportunities. Therefore, for an equilibrium to exist when time extends
to infinite, one must impose a mechanism (i.e., specify borrowing constraints) that
limits the rate at which agents accumulate debt, namely that avoids the existence
of Ponzi schemes.

Roughly speaking, three approaches have been proposed in the literature to
deal with the specification of debt constraints in infinite horizon sequential markets
models. The crucial difference among these lines of research hinges on the specific
assumptions made about the enforcement of payments (the possibility of default)
as well as the proposed default punishment.

The first approach, due to Magill and Quinzii (1994), Levine and Zame (1996)
and Hernández and Santos (1996), assumes full enforcement of payments (i.e., de-
fault is not allowed). Magill and Quinzii (1994) argue for self-imposed debt con-
straints that prevent agents from considering trading strategies that lead to unlim-
ited debt. In Magill and Quinzii (1994) the budget constraint is defined according
to a particular set of subjective current value price processes. The problem with
this characterization of budget sets is that this set of personalized prices is somehow
related to marginal utilities which are not typically observable objects and therefore
cannot be monitored by an agency. The specification of budget sets proposed by
Hernández and Santos (1996) does not suffer from this weakness since the valuation
operator takes into account the whole set of non-arbitrage price systems. Levine
and Zame (1996) (See also Levine and Zame (2002)) offer an alternative formula-
tion, based on the idea that at each node, all the debt can be repaid in finite time,
that is, they require the debt constrains to be finitely effective. The formulation
makes perfect sense in an incomplete markets setting, and it has the nice character-
istic that a broad class of debt constraints are equivalent or reduced to the finitely
effective debt constraints.1

The second approach builds on the work of Kehoe and Levine (1993), Zhang
(1997) and Alvarez and Jermann (2000). In this framework default is permitted
but there is a tough punishment for it: if agents do not honor their debts, they
are excluded from participating in the credit markets in future periods. In such
a framework the authors focus on constraints (so-called participating constraints)
that are tight enough to prevent default at equilibrium but simultaneously to allow
as much risk sharing as possible.

The final approach argues for debt constraints that do not necessarily imply full
enforcement of payment at equilibrium, namely it treats default as an equilibrium
phenomenon. In Araujo et al. (2002) and Kubler and Schmedders (2003) borrowers
are required to constitute collateral either in terms of durable goods or in terms of
physical financial assets which are in positive net supply and cannot be sold short
(e.g., Lucas’ trees). When the repossession of collateral is the only enforcement
mechanism, then an equilibrium always exists. Combining short-sales with the
purchase of collateral constitutes a joint operation that yields non-negative returns.

1See Levine and Zame (1996) Section 5 and Hernández and Santos (1996) Section 3.
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By non-arbitrage, the price of the collateral exceeds the price of the asset. Therefore,
agents cannot transfer wealth from tomorrow to the current period and in that way
Ponzi schemes are ruled out.

In a recent paper, Páscoa and Seghir (2008) have shown that Ponzi schemes
may reappear in collateralized economies when there is an additional enforcement
mechanism besides collateral guarantees. The additional enforcement mechanism
in Páscoa and Seghir (2008) takes the form of the linear utility penalties introduced
by Shubik and Wilson (1977) and used, among others by Dubey and Shubik (1979),
Dubey, Geanakoplos and Shubik (1990), Zame (1993), Araujo, Monteiro and Pscoa
(1996), Araujo, Monteiro and Pscoa (1998) and Dubey, Geanakoplos and Shubik
(2005). Default penalties might be interpreted as the consequence in terms of utility
of extra-economic punishment such as prison terms or pangs of conscience. Páscoa
and Seghir (2008) proved that existence of equilibria is compatible only with mod-
erate default penalties. Harsh default penalties may induce payments besides the
value of the collateral leading to Ponzi schemes. In the same spirit Revil and Torres-
Mart́ınez (2007) show that the non-existence result established in Páscoa and Seghir
(2008) goes beyond the specific enforcement mechanism these authors consider. Ex-
istence of Ponzi-schemes is consistent with any other enforcement mechanism that
is effective, i.e., it enforces payments besides the value of the collateral.

The purpose of this paper is twofold. First, our aim is to show that there is a
close relation between the budget sets defined by finitely effective debt constraints
(Levine and Zame (1996)), and the budget sets defined through collateral obliga-
tions (Araujo et al. (2002) and Páscoa and Seghir (2008)). In that respect, we link
two approaches that have been considered to be distinct to each other. Finitely ef-
fective debt constraints are relevant in models where payments can be fully enforced.
However, when full enforcement is not possible, requiring finite-time solvency does
not make sense since agents can default at any period. We appropriately modify the
definition of finitely effective debt constraints to encompass economies with default.
When payments are fully enforced, our concept of finite effective debt coincides with
the concept introduced by Levine and Zame (1996). We subsequently show that the
conditions imposed in Araujo et al. (2002) and Páscoa and Seghir (2008) implicitly
restrict actions to be almost finite-time solvent.

Equipped with the appropriate definition of debt constraints our second objec-
tive is to show the existence of what we term equilibrium with almost finite-time
solvency. Assuming a mild assumption on default penalties, namely that agents
are myopic with respect to default penalties, we prove that existence is guaran-
teed (i.e., Ponzi schemes are ruled out) when actions are restricted to be almost
finite-time solvent. The proof is very simple and intuitive. Moreover, it turns out
that the existence results in Araujo et al. (2002) and Páscoa and Seghir (2008) are
straightforward corollaries of our existence result.

The paper is structured as follows. In Section 2 we set out the model, notation
and standard equilibrium concept. Section 3 contains the assumptions imposed
on the characteristics of the economy. In Section 4 we present and discuss the
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new constraint we imposed on budget feasible plans. We define the concept of
competitive equilibrium with almost finite-time solvency and highlight its relation
with the other equilibrium concepts introduced in Araujo et al. (2002) and Páscoa
and Seghir (2008). Section 5 is devoted to the main condition we impose on default
penalties: myopia of agents and we prove in Section 6 that this condition is sufficient
for existence of a competitive equilibrium with almost finite-time solvency.

2 The Model

The model is essentially the one developed in Araujo et al. (2002). We consider a
stochastic economy E with an infinite horizon.

2.1 Uncertainty and time

Let T = {0, 1, . . . , t, . . .} denote the set of time periods and let S be a (infinite) set
of states of nature. The available information at period t in T is the same for each
agent and is described by a finite partition Ft of S. Information is revealed along
time, i.e., the sequence (Ft)t∈T is increasing. Every pair (t, σ) where σ is a set in
Ft is called a node. The set of all nodes is denoted by D and is called the event
tree. We assume that there is no information at t = 0 and we denote by ξ0 = (0, S)
the initial node. If ξ = (t, σ) belongs to the event tree, then t is denoted by t(ξ).
We say that ξ′ = (t′, σ′) is a successor of ξ = (t, σ) if t′ > t and σ′ ⊂ σ; we use the
notation ξ′ > ξ. We denote by ξ+ the set of immediate successors defined by

ξ+ = {ξ′ ∈ D : t(ξ′) = t(ξ) + 1}.

Because Ft is finer than Ft−1 for every t > 0, there is a unique node ξ− in D such
that ξ is an immediate successor of ξ−. Given a period t ∈ T we denote by Dt the
set of nodes at period t, i.e., Dt = {ξ ∈ D : t(ξ) = t}. The set of nodes up to
period t is denoted by Dt, i.e., Dt = {ξ ∈ D : t(ξ) 6 t}.

2.2 Agents and commodities

There exists a finite set L of durable commodities available for trade at every
node ξ ∈ D. Depreciation of goods is represented by a family (Y (ξ))ξ∈D of linear
functionals Y (ξ) from RL

+ to RL
+. The bundle Y (ξ)z is obtained at node ξ if the

bundle z ∈ RL
+ is consumed at node ξ−. At each node there are spot markets

for trading every good. We let p = (p(ξ))ξ∈D be the spot price process where
p(ξ) = (p(ξ, `))`∈L ∈ RL

+ is the price vector at node ξ.
There is a finite set I of infinitely lived agents. Each agent i ∈ I is characterized

by an endowment process ωi = (ωi(ξ))ξ∈D where ωi(ξ) = (ωi(ξ, `))`∈L ∈ RL
+ is

the endowment available at node ξ. Each agent chooses a consumption process
x = (x(ξ))ξ∈D where x(ξ) ∈ RL

+. We denote by X the set of consumption processes.

4



The utility function U i : X −→ [0,+∞] is assumed to be additively separable, i.e.,

U i(x) =
∑
ξ∈D

ui(ξ, x(ξ))

where ui : R+ −→ [0,∞).
Remark 2.1. As in Araujo et al. (2002), we allow U i(x) to be infinite for some con-
sumption process x in X. In Levine and Zame (1996) and Levine and Zame (2002),
the consumption set is restricted to uniformly bounded from above consumption
processes and the function U i is assumed to have finite values.

2.3 Assets and collateral

There is a finite set J of short-lived real assets available for trade at each node.
For each asset j, the bundle yielded at node ξ is denoted by A(ξ, j) ∈ RL

+. We let
q = (q(ξ))ξ∈D be the asset price process where q(ξ) = (q(ξ, j))j∈J ∈ RJ

+ represents
the asset price vector at node ξ. At each node ξ, denote by θi(ξ) ∈ RJ

+ the vector
of purchases and denote by ϕi(ξ) the vector of short-sales at node ξ.

Following Araujo et al. (2002) (see also Geanakoplos (1997) and Geanakoplos
and Zame (2002)), assets are collateralized in the sense that for every unit of asset
j sold at a node ξ, agents should buy a collateral C(ξ, j) ∈ RL

+ that protects
lenders in case of default. Implicitly we assume that payments can be enforced only
through the seizure of the collateral. At a node ξ, agent i should deliver the promise
V (p, ξ)θi(ξ−) where

V (p, ξ) = (V (p, ξ, j))j∈J and V (p, ξ, j) = p(ξ)A(ξ, j).

However, agent i may decide to default and chooses a delivery di(ξ, j) in units of
account. Since the collateral can be seized, this delivery must satisfy

di(ξ, j) > D(p, ξ, j)ϕi(ξ−, j)

where
D(p, ξ, j) = min{p(ξ)A(ξ, j), p(ξ)Y (ξ)C(ξ−, j)}.

Following Dubey et al. (2005), we assume that agent i feels a disutility λi
j(s) ∈

[0,+∞] from defaulting. If an agent defaults at node ξ, then he suffers at t = 0,
the disutility ∑

j∈J

λi(ξ, j)

[
V (p, ξ, j)ϕi(ξ−, j)− di(ξ, j)

]+

p(ξ) · v(ξ)
.

where v(ξ) ∈ RL
++ is exogenously specified.

In that case, agent i may have an incentive to deliver more than the minimum
between his debt and the depreciated value of his collateral, i.e., we may have
di(ξ, j) > D(p, ξ, j)ϕi(ξ−, j). The possibility of default forces us to add delivery
rates κ(ξ) = (κ(ξ, j))j∈J . Each asset j delivers to lenders the fraction V (κ, p, ξ, j)
per unit of asset purchased defined by

V (κ, p, ξ, j) = κ(ξ, j)V (p, ξ, j) + (1− κ(ξ, j))D(p, ξ, j).
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2.4 Solvency constraints

We let A be the space of adapted processes a = (a(ξ))ξ∈D with

a(ξ) = (x(ξ), θ(ξ), ϕ(ξ), d(ξ))

where
x(ξ) ∈ RL

+, θ(ξ) ∈ RJ
+, ϕ(ξ) ∈ RJ

+, d(ξ) ∈ RJ
+

and by convention

a(ξ−0 ) = (x(ξ−0 ), θ(ξ−0 ), ϕ(ξ−0 ), d(ξ−0 )) = (0, 0, 0, 0).

In each decision node ξ ∈ D, agent i’s choice ai = (xi, θi, ϕi, di) in A must
satisfy the following constraints:

(a) solvency constraint:

p(ξ)xi(ξ) +
∑
j∈J

di(ξ, j) + q(ξ)θi(ξ)

6 p(ξ)[ωi(ξ) + Y (ξ)xi(ξ−)] + V (κ, p, ξ)θi(ξ−) + q(ξ)ϕi(ξ), (2.1)

(b) collateral requirement:
C(ξ)ϕi(ξ) 6 xi(ξ), (2.2)

(c) minimum delivery

∀j ∈ J, di(ξ, j) > D(p, ξ, j)ϕi(ξ−, j). (2.3)

2.5 The payoff function

Assume that π = (p, q, κ) is a process of prices and delivery rates. Consider that
agent i has chosen the plan a = (x, θ, ϕ, d) ∈ A. He gets the utility U i(x) ∈ [0,∞]
defined by

U i(x) =
∑
ξ∈D

ui(ξ, x(ξ))

but he suffers the disutility W i(p, a) ∈ [0,∞] defined by

W i(p, a) =
∑
ξ>ξ0

∑
j∈J

λi(ξ, j)
[V (p, ξ, j)ϕ(ξ−, j)− d(ξ, j)]+

p(ξ)v(ξ)
.

We would like to define the payoff Πi(p, a) of the plan a as the following difference

Πi(p, a) = U i(x)−W i(p, a).
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Unfortunately, Πi(p, a) may not be well-defined if both U i(x) and W i(p, a) are
infinite. We propose to consider the binary relation �i,p defined on A by

ã �p,i a⇐⇒ ∃ε > 0, ∃T ∈ N, ∀t > T, Πi,t(p, ã) > Πi,t(p, a) + ε

where
Πi,t(p, a) = U i,t(x)−W i,t(p, a), U i,t(x) =

∑
ξ∈Dt

ui(ξ, x(ξ))

and

W i,t(p, a) =
∑

ξ∈Dt\{ξ0}

∑
j∈J

λi(ξ, j)
[V (p, ξ, j)ϕ(ξ−, j)− d(ξ, j)]+

p(ξ)v(ξ)
.

Observe that if Πi(p, ã) and Πi(p, a) exist in R then

ã �p,i a⇐⇒ Πi(p, ã) > Πi(p, a).

The set Prefi(p, a) of plans strictly preferred to plan a by agent i is defined by

Prefi(p, a) = {ã ∈ A : ã �i,p a}.

2.6 The equilibrium concept

We denote by Π the set of prices and delivery rates (p, q, κ) satisfying

∀ξ ∈ D, p(ξ) ∈ RL
++, q(ξ) ∈ RJ

+, κ(ξ) ∈ [0, 1]J (2.4)

and ∑
`∈L

p(ξ, `) +
∑
j∈J

q(ξ, j) = 1.

We denote by clΠ the closure of Π under the weak topology.2

Given a process (p, q, κ) of commodity prices, asset prices and delivery rates, we
denote by Bi(p, q, κ) the set of plans a = (x, θ, ϕ, d) ∈ A satisfying constraints (2.1),
(2.2) and (2.3). The demand di(p, q, κ) is defined by

di(p, q, κ) = {a ∈ Bi(p, q, κ) : Prefi(p, a) ∩Bi(p, q, κ) = ∅}.

Definition 2.1. A competitive equilibrium for the economy E is a family of prices
and delivery rates (p, q, κ) ∈ Π and an allocation a = (ai)i∈I with ai ∈ A such that

(a) for every agent i, the plan ai is optimal, i.e.,

ai ∈ di(p, q, κ);

2The process (p, q, κ) belongs to clΠ if the condition p(ξ) ∈ RL
++ in (2.4) is replaced by p(ξ) ∈

RL
+.
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(b) commodity markets clear at every node, i.e.,∑
i∈I

xi(ξ0) =
∑
i∈I

ωi(ξ0) (2.5)

and for all ξ 6= ξ0, ∑
i∈I

xi(ξ) =
∑
i∈I

[
ωi(ξ) + Y (ξ)xi(ξ−)

]
, (2.6)

(c) asset markets clear at every node, i.e., for all ξ ∈ D,∑
i∈I

θi(ξ) =
∑
i∈I

ϕi(ξ), (2.7)

(d) deliveries match at every node, i.e., for all ξ 6= ξ0 and all j ∈ J ,∑
i∈I

V (κ, p, ξ, j)θi(ξ−, j) =
∑
i∈I

di(ξ, j). (2.8)

The set of allocations a = (ai)i∈I in A satisfying the market clearing conditions
(b) and (c) is denoted by F. Each allocation in F is called physically feasible. A
plan ai ∈ A is called physically feasible if there exists a physically feasible allocation
b such that ai = bi. The set of physically feasible plans is denoted by Fi. We denote
by Eq(E) the set of competitive equilibria for the economy E .

3 Assumptions

For each agent i, we denote by Ωi = (Ωi(ξ))ξ∈D the process of accumulated endow-
ments, defined recursively by

Ωi(ξ0) = ωi(ξ0) and ∀ξ > ξ0, Ωi(ξ) = Y (ξ)Ωi(ξ−) + ωi(ξ).

The process
∑

i∈I Ωi of accumulated aggregate endowments is denoted by Ω. This
section describes the assumptions imposed on the characteristics of the economy.
It should be clear that these assumptions always hold throughout the paper.

Assumption 3.1 (Agents). For every agent i,

(A.1) the process of accumulated endowments is strictly positive and uniformly
bounded from above, i.e.,

∃Ωi ∈ RL
+, ∀ξ ∈ D, Ωi(ξ) ∈ RL

++ and Ωi(ξ) 6 Ωi
,

(A.2) for every node ξ, the utility function ui(ξ, ·) is concave, continuous and
strictly increasing with ui(ξ, 0) = 0,
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(A.3) the infinite sum U i(Ω) is finite.

Assumption 3.2 (Commodities). For every node ξ the depreciation function Y (ξ)
is not zero.

Assumption 3.3 (Financial assets). For every asset j and node ξ, the collateral
C(ξ, j) is not zero.

Remark 3.1. Assumptions (3.1), (3.2) and (3.3) are classical in the literature of
infinite horizon models with collateral requirements (see e.g., Araujo et al. (2002)
and Páscoa and Seghir (2008)).

Remark 3.2. Observe that Assumptions (A.2) and (A.3) imply that when restricted
to the order interval [0,Ω], the function U i is weakly continuous. For the sake of
completeness, we give the straightforward proof in Appendix A.1.

We recall a particular case of our framework that is widely used in the literature
(see e.g. Araujo and Sandroni (1999)).

Definition 3.1. The economy E is said standard if Assumptions (3.1), (3.2) and
(3.3) are satisfied and if for each agent i, there exists

(S.1) a discount factor βi ∈ (0, 1);

(S.2) a sequence (P i
t )t>1 of beliefs about nodes at period t represented by a proba-

bility P i
t ∈ Prob(Dt);

(S.3) an instantaneous felicity function vi : D × RL
+ → [0,∞);

(S.4) an instantaneous default penalty µi(ξ, j) ∈ (0,∞) for each node ξ > ξ0;

such that for each node ξ ∈ D,

ui(ξ, ·) = [βi]t(ξ)P i
t(ξ)(ξ)v

i(ξ, ·)

for each j ∈ J ,
λi(ξ, j) = [βi]t(ξ)P i

t(ξ)(ξ)µ
i(ξ, j)

and the processes (A(ξ, j))ξ>ξ0, (µi(ξ, j))ξ>ξ0 and (G(ξ, j))ξ∈D are uniformly boun-
ded from above, where

G(ξ, j) =
1

max`∈LC(ξ, j, `)
.

4 Almost finite-time solvent plans

Observe that if λi(ξ, j) is zero for every asset j at every node ξ, then our mo-
del reduces to the one in Araujo et al. (2002). In this setting equilibrium always
exists. Combining short-sales with the purchase of collateral constitutes a joint
operation that yields non-negative returns. By non-arbitrage, the price of the col-
lateral exceeds the price of the asset. Therefore, agents cannot transfer wealth from
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tomorrow to the current period and Ponzi schemes are ruled out. In a recent paper,
Páscoa and Seghir (2008) proved that harsh default penalties may induce effective
payments over collateral requirements and lead to Ponzi schemes.

When the default penalty is infinite and the collateral requirement is zero, our
model reduces to the standard one as in Magill and Quinzii (1994) and Levine
and Zame (1996). If no additional (possibly endogenous) debt constraints were
imposed, then an equilibrium could not possibly exist: all traders would attempt to
finance unbounded levels of consumption by unbounded levels of borrowing. Levine
and Zame (1996) (see also Levine and Zame (2002)) formalize the so-called finitely
effective debt constraints by requiring that agents should be capable of repaying
almost all the debt in finite time.

We propose to adapt in our setting these endogenous debt constraints. Fix a
process π = (p, q, κ) of prices and delivery rates. At the initial node ξ0, agent
i makes plans for infinite consumption and investment. Consider the case where
agent i anticipates (or fears) that, at every possible node ξ, his demand for credits
at this node may be questioned by an authority. In order to convince this authority
that he is reliable, he must prove that he can pay back his debt in at most a finite
number of periods after t(ξ), i.e., he must prove that there is a possible plan of
consumption and investment from period t(ξ) + 1 to T > t(ξ) + 1 such that, at the
virtually terminal node T , he does not need to ask for new loans in order to pay
his debt. More formally, we may consider the following definition.

Definition 4.1. A plan a ∈ Bi(p, q, κ) is said to have finitely effective debt, if for
each period t > 0, there exists a period T > t and a plan â also in the budget set
Bi(p, q, κ) such that

(i) up to period t both plans coincide, i.e.,

∀ξ ∈ Dt, â(ξ) = a(ξ);

(ii) at every node in period T , there is solvency without new loans, i.e.,

∀ξ ∈ DT , ϕ̂(ξ) = 0;

(iii) the plan â is a T -horizon plan, i.e.,

∀ξ ∈ D, t(ξ) > T =⇒ â(ξ) = 0.

Consider the following notation. If a is a plan in A and t is a period, we denote
by a1[0,t] the plan in At which coincides with a for every node ξ ∈ Dt. In other
words, a plan a has a finitely effective debt if for each period t > 0, there exists a
subsequent period T > t and a plan â such that

â ∈ Bi(p, q, κ) ∩BT and a1[0,t] = â1[0,t]
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where BT is the set of plans a in A satisfying

∀ξ ∈ DT , ϕ(ξ) = 0 and ∀ξ ∈ D, t(ξ) > T + 1 =⇒ a(ξ) = (0, 0, 0, 0).

This concept was introduced by Levine and Zame (1996) for models without
default, i.e., models for which the financial authority can enforce payments: it may
force agents to sell their current and future endowments (by short-selling assets).
However, when the authority is not capable of enforcing payments, imposing finitely
effective debt constraints does not make sense since agents can default at any period.
Indeed, let a = (x, θ, ϕ, d) be a plan in Bi(p, q, κ) and t be any period. Consider
the plan â defined by

∀ξ ∈ D, â(ξ) =


a(ξ) if t(ξ) 6 t

(ωi(ξ), 0, 0, D(p, ξ)ϕ(ξ−)) if t(ξ) = t+ 1

(0, 0, 0, 0) if t(ξ) > t+ 1.

This plan belongs to the budget set Bi(p, q, κ) and coincides with a on every node
up to period t.

In our framework, enforcement mechanisms are limited to the seizure of collat-
eral. Agents can always default up to the minimum value between their debt and
the depreciated value of their collateral. Therefore, there is no room for an authority
to control debt along time. We propose another interpretation of endogenous debt
constraints. Assume that the authority has the legal ability, when the debt carried
out by an agent becomes larger and larger, to impose at any period t that agents
can participate in the financial market only for a finite number τ of periods after
t. Assume that a negotiation is possible between agents and the financial authority
such that the number τ of periods can be chosen by agents. Each agent anticipates
this possibility and behaves accordingly in the following sense. When making a
plan ai, agent i takes in consideration that the financial authority may force him,
at any period t, to stay in the financial market no more than a finite number τ of
periods, i.e., at date T = t + τ , agent i must leave the market. Therefore, agent i
also plans that, for every period t, he can find another plan â and a terminal date
T > t, such that

â ∈ Bi(p, q, κ) ∩BT and a1[0,t] = â1[0,t]

but also that the payoff he gets at the terminal node T with the plan â is not too
far from the payoff he would get with the initial plan a.

The formal definition is as follows.

Definition 4.2. A plan a in the budget set Bi(p, q, κ) is said to be almost finite-
time solvent if for every period t > 0 and every ε > 0 there exists a subsequent
period T > t and a plan â such that

â ∈ Bi(p, q, κ) ∩BT , a1[0,t] = â1[0,t] and Πi,T (p, â) > Πi,T (p, a)− ε.
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When the default penalty is infinite, our concept of almost finite-time solvent
plans coincides with the concept introduced by Levine and Zame (1996) of plans
with finitely effective debt.

Proposition 4.1. Assume that the default penalty is infinite and consider a budget
feasible plan a ∈ Bi(p, q, κ) with a finite utility U i(x) < ∞. The plan a is almost
finite-time solvent if and only if it has a finitely effective debt.

Proof of Proposition 4.1. Let a be a budget feasible plan, i.e., a ∈ Bi(p, q, κ) with
a finite utility U i(x) <∞. Since the default penalty is infinite, agent i never plans
to default and we get

Πi(p, a) = U i(x).

It is obvious that if a is almost finite-time solvent then it has a finitely effective
debt. The converse deserves more details. Assume that the plan a has a finitely
effective debt. Fix a period t and ε > 0. If we apply the definition to the period t,
we get the existence of a period T > t and a plan â such that

â ∈ Bi(p, q, κ) ∩BT and a1[0,t] = â1[0,t].

Unfortunately, we don’t know if U i,T (x̂) > U i,T (x)− ε. However, we know that the
utility U i(x) is finite. Therefore, there exists t′ > t such that∑

s>t′

∑
ξ∈Ds

ui(ξ, x(ξ)) 6 ε. (4.1)

Now, applying the definition of finitely effective debt for the period t′, there exist a
period T > t′ and a plan â such that

â ∈ Bi(p, q, κ) ∩BT and a1[0,t′] = â1[0,t′].

Since T > t′ we can use (4.1) to get

U i,T (x̂) > U i,t′(x̂)

> U i,t′(x)

> U i,T (x)−
∑

t′<s6T

∑
ξ∈Ds

ui(ξ, x(ξ))

> U i,T (x)− ε.

We denote by Bi
?(p, q, κ) the set of all plans in Bi(p, q, κ) which are almost

finite-time solvent.
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Definition 4.3. A competitive equilibrium with almost finite-time solvency for the
economy E, is a family of prices and delivery rates (p, q, κ) ∈ Π and an allocation
a = (ai)i∈I with ai ∈ A such that conditions (b), (c) and (d) are satisfied together
with

(a’) for every agent i, the plan ai is almost finite-time solvent and optimal among
all almost finite-time budget feasible plans, i.e.,

ai ∈ di
?(p, q, κ) := {a ∈ Bi

?(p, q, κ) : Prefi(p, a) ∩Bi
?(p, q, κ) = ∅}.

We denote by Eq?(E) the set of competitive equilibria with almost finite-time
solvency for the economy E . We propose to compare our equilibrium concept with
those proposed in Araujo et al. (2002) and Páscoa and Seghir (2008).

4.1 No default penalty

Observe that if default is not allowed or if there are default penalties for it, then
Bi

?(p, q, κ) may be a strict subset of Bi(p, q, κ). However, in the model proposed
in Araujo et al. (2002), any budget feasible allocation with a finite utility is finite-
time solvent. This is a consequence of the absence of default penalties or explicit
economic punishments.

Proposition 4.2. Assume that there is no default penalty and let a = (x, θ, ϕ, d)
be a plan in the budget set Bi(p, q, κ). If U i(x) is finite then a is almost finite-time
solvent, i.e., a belongs to Bi

?(p, q, κ).

Proof of Proposition 4.2. Fix an agent i and consider a plan a that is budget feasi-
ble, i.e., a ∈ Bi(p, q, κ) with a finite utility, i.e.,∑

ξ∈D

ui(ξ, x(ξ)) <∞.

Fix a period t > 1 and ε > 0. Since U i(x) is finite, there exists T > t+ 1 such that∑
ξ∈DT

ui(ξ, x(ξ)) 6 ε.

Consider now the plan â defined by

â(ξ) =


a(ξ) if t(ξ) < T

(ωi(ξ), 0, 0, d̂(ξ)) if t(ξ) = T

(0, 0, 0, 0) if t(ξ) > T

where
∀ξ ∈ DT , ∀j ∈ J, d̂(ξ, j) = D(p, ξ, j)ϕ(ξ−, j).

13



Observe that the plan â is budget feasible, belongs to BT and satisfies

â1[0,T−1] = a1[0,T−1].

In order to prove that the plan a is almost finite-time solvent, we need to compare
U i,T (x̂) and U i,T (x). Observe that

U i,T (x̂) = U i,T−1(x) +
∑

ξ∈DT

ui(ξ, ωi(ξ))

> U i,T−1(x)

> U i,T (x)−
∑

ξ∈DT

ui(ξ, x(ξ))

> U i,T (x)− ε.

Since T − 1 > t, this implies that the plan a is almost finite-time solvent.

In general the two sets Eq(E) and Eq?(E) are not comparable. Actually, when
there is no loss of utility in case of default, both sets coincide.

Proposition 4.3. If there is no default penalty then (π,a) is a competitive equili-
brium if and only if it is a competitive equilibrium with almost finite-time solvency,
i.e., the sets Eq(E) and Eq?(E) coincide.

Proof of Proposition 4.3. Let (π,a) ∈ Eq(E) be a competitive equilibrium. Fix an
agent i ∈ I. In order to prove that ai belongs to the demand di

?(π), it is sufficient
to prove that ai is an almost finite-time solvent plan. Since a is feasible we have
xi(ξ) 6 Ω(ξ). From (A.3), we get that U i(xi) is finite. The desired result follows
from Proposition 4.2.

Now let (π,a) ∈ Eq?(E) be a competitive equilibrium with almost finite-time
solvency. We only have to prove that ai belongs to di(π) for each agent i. Fix
an agent i and assume by contradiction that there exists a plan a in Bi(π) such
that U i(x) > U i(xi). If U i(x) is finite then, applying Proposition 4.2, we get that
a ∈ Bi

?(π): contradiction. Therefore, we must have U i(x) = ∞, implying that there
exists T > 1 such that

U i,T (x) > U i(xi).

Consider the plan â defined by

â(ξ) =


a(ξ) if t(ξ) 6 T

(ωi(ξ), 0, 0, d̂(ξ)) if t(ξ) = T + 1

(0, 0, 0, 0) if t(ξ) > T + 1

14



where
∀ξ ∈ DT+1, ∀j ∈ J, d̂(ξ, j) = D(p, ξ, j)ϕ(ξ−, j).

Since the plan â is budget feasible and has a finite horizon, it is almost finite-time
solvent and belongs to Bi

?(p, q, κ). Moreover we have

U i(x̂) = U i,T (x) +
∑

ξ∈DT+1

ui(ξ, ωi(ξ)) > U i(xi).

This contradicts the optimality of xi in Bi
?(p, q, κ).

4.2 α-moderate default penalties

Before introducing the main condition imposed on default penalties by Páscoa and
Seghir (2008), we need to introduce some notations. For each asset j and node ξ,
we denote by M(ξ, j) the real number

min
`∈L

Ω(ξ, `)
C(ξ, j, `)

.

Observe that under Assumption 3.2, we have M(ξ, j) <∞. Finally, for every node
ξ 6= ξ0 we let

H(ξ, j) = M(ξ−, j) sup
p∈∆(L)

[pA(ξ, j)− pY (ξ)C(ξ−, j)]+

pv(ξ)
.

The quantity H(ξ, j) is the maximum amount in real terms that an agent may
default on asset j if his plan is feasible. The proof of the following proposition is
straightforward and omitted.

Proposition 4.4. If a in A is a plan physically feasible and (p, q, κ) in Π is a
process of prices and delivery rates, then for each node ξ and each asset j, we have

ϕ(ξ, j) 6 M(ξ, j) and
[
V (p, ξ, j)ϕ(ξ−, j)− d(ξ, j)

]+
6 H(ξ, j).

Páscoa and Seghir (2008) introduced the concept of α-moderate default penal-
ties. Fix a process α = (α(ξ))ξ∈D with α(ξ) ∈ (1,∞)J .

Definition 4.4. Default penalties are said α-moderate with respect to utility func-
tions, if for each agent i, for each period t, there exists T > t such that∑

ξ∈DT

∑
j∈J

λi(ξ, j)α(ξ, j)H(ξ, j) 6
∑

ξ∈DT

ui(ξ, ωi(ξ)). (4.2)

In other words, when default penalties are α-moderate then, sometime in the
future, the penalty associated with a maximal default for a feasible plan, is less
than the utility from consuming the current endowment.
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Remark 4.1. Actually Páscoa and Seghir (2008) replace condition (4.2) by the fol-
lowing more restrictive condition:

∀ξ ∈ DT ,
∑
j∈J

λi(ξ, j)α(ξ, j)H(ξ, j) 6 ui(ξ, ωi(ξ)).

We let Aα be the set of all of processes a in A satisfying

∃λ > 0, ∀ξ ∈ D, ∀j ∈ J, ϕ(ξ, j) 6 λα(ξ, j)M(ξ, j).

A plan a belonging to Aα is said to be α-constrained. We denote by Bi
α(p, q, κ) the

set of all plans in Bi(p, q, κ) which are α-constrained.

Remark 4.2. Observe that the constraints imposed in the definition of Aα are not
binding at equilibrium since α(ξ, j) > 1. Actually, if a in AI is a physically feasible
allocation then each plan ai is automatically α-constrained for each i, more precisely,
we have

∀ξ ∈ D, ∀j ∈ J, ϕ(ξ, j) < α(ξ, j)M(ξ, j).

Definition 4.5. An α-constrained competitive equilibrium for the economy E, is a
family of prices and delivery rates (p, q, κ) ∈ Π and an allocation a = (ai)i∈I with
ai ∈ A such that conditions (b), (c) and (d) are satisfied together with

(aα) for every agent i, the plan ai is α-constrained budget feasible and optimal
among all α-constrained budget feasible plans, i.e.,

ai ∈ di
α(p, q, κ) = {a ∈ Bi

α(p, q, κ) : Prefi(p, a) ∩Bi
α(p, q, κ) 6= ∅}.

We denote by Eqα(E) the set of α-constrained competitive equilibria for the
economy E . In general the two sets Eqα(E) and Eq?(E) are not comparable. Actu-
ally, when default penalties are α-moderate, the set Eq?(E) is a subset of Eqα(E).

Proposition 4.5. If default penalties are α-moderate, then every competitive equi-
librium with almost finite-time solvency is actually an α-constrained competitive
equilibrium, i.e.,

Eq?(E) ⊂ Eqα(E).

Proof of Proposition 4.5. Let (π,a) ∈ Eq?(E) be a competitive equilibrium with
almost finite-time solvency. Fix an agent i ∈ I. Since ai is physically feasible,
we already know that it is α-constrained, i.e., ai ∈ Bi

α(π). Let us prove that ai

belongs to the demand di
α(π). Assume by way of contradiction that there exists an

α-constrained plan a in Bi
α(π), ε > 0 and T 1 ∈ N satisfying

∀T > T 1, Πi,T (p, a) > Πi,T (p, ai) + ε. (4.3)

Since ai is physically feasible, we have

∀ξ ∈ D, xi(ξ) 6 Ω(ξ).
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It follows from Assumption (A.2) and (A.3) that

U i(xi) 6 U i(Ω) <∞.

Hence
lim

T→∞
Πi,T (p, ai) = Πi(p, ai).

Therefore, there exists T 2 > T 1 such that

∀T > T 2, Πi,T (p, ai) + ε > Πi(p, ai). (4.4)

Combining (4.3) and (4.4) we get

∀T > T 2, Πi,T (p, a) > Πi(p, ai).

Let β ∈ (0, 1) and pose
ã = βa+ (1− β)ai.

Observe that we still have

∀T > T 2, Πi,T (p, ã) > Πi(p, ai).

Recall that there exists λ > 0 such that

∀ξ ∈ D, ∀j ∈ J, ϕ(ξ, j) 6 λα(ξ, j)M(ξ, j).

Recall that ai is physically feasible, implying that ϕi(ξ, j) 6 M(ξ, j) for each node
ξ and each asset j. It then follows that

∀ξ ∈ D, ∀j ∈ J, ϕ̃(ξ, j) 6 [βλα(ξ, j) + (1− β)]M(ξ, j).

Since α(ξ, j) > 1, we can choose β close enough to 0 such that

∀ξ ∈ D, ϕ̃(ξ, j) 6 α(ξ, j)M(ξ, j).

Since default penalties are α-moderate, there exists T 3 > T 2 such that

∑
ξ∈DT3

ui(ξ, ωi(ξ))−
∑
j∈J

λi(ξ, j)α(ξ, j)H(ξ, j)

 > 0.

Let now â be the plan defined by

â(ξ) =


ã(ξ) if t(ξ) 6 T 3 − 1

(ωi(ξ), 0, 0, d̂(ξ)) if t(ξ) = T 3

(0, 0, 0, 0) if t(ξ) > T 3
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where
∀ξ ∈ DT 3 , ∀j ∈ J, d̂(ξ, j) = D(p, ξ, j)ϕ̃(ξ−, j).

By construction, the plan â is finite-time solvent and budget feasible. In particular,
it is almost finite-time solvent and belongs to Bi

?(π). We propose to compare the
payoffs of â and ai.

Πi(p, â) > Πi,T 3−1(p, ã) +
∑

ξ∈DT3

ui(ξ, ωi(ξ))−
∑
j∈J

λi(ξ, j)α(ξ, j)H(ξ, j)


> Πi,T 3−1(p, ã) > Πi(p, ai).

This contradicts the optimality of ai in Bi
?(p, q, κ).

5 Myopic agents and equilibrium existence

It was proved in Levine and Zame (1996) that finitely effective debt constraints are
compatible with equilibrium when the default penalty is infinite and no collateral is
required. A natural question concerns the possible extension of this existence result
to our framework when default penalties are not infinite and collateral requirements
are not zero. The answer is yes, provided that agents are myopic with respect to
default penalties as defined hereafter.

Definition 5.1. Agent i is said to be myopic with respect to default penalties if for
each agent i, we have

lim inf
T→∞

∑
ξ∈DT

∑
j∈J

λi(ξ, j)H(ξ, j) = 0.

Remark 5.1. Assuming myopic agents with respect to default penalties is a very
mild assumption since it is automatically satisfied for every standard economy.

Observe that if default penalties are moderate with respect to utility functions
then, for each i we have

lim inf
T→∞

∑
ξ∈DT

∑
j∈J

λi(ξ, j)H(ξ, j) 6 lim inf
T→∞

∑
ξ∈DT

ui(ξ, ωi(ξ))

6 lim inf
T→∞

∑
ξ∈DT

ui(ξ,Ωi(ξ)). (5.1)

It then follows from Assumption (A.3) that every agent is myopic with respect to
default penalties.

Proposition 5.1. If default penalties are moderate then every agent is myopic
with respect to them.
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When agents are myopic with respect to default penalties, any budget and
physically feasible plan a ∈ Bi(p, q, κ) ∩ Fi is actually almost finite-time solvent.
This result will turn out to be crucial when proving existence of equilibrium.

Proposition 5.2. If agent i is myopic with respect to default penalties, then every
budget and physically feasible plan is actually almost finite-time solvent. In other
words, we have

Bi(p, q, κ)
⋂

Fi ⊂ Bi
?(p, q, κ).

Proof of Proposition 5.2. Fix an agent i and consider a plan a that is budget and
physically feasible, i.e., a ∈ Bi(p, q, κ)∩Fi. Fix a period t > 1 and ε > 0. Since the
allocation a is physically feasible, we have x(ξ) 6 Ω(ξ), implying that∑

ξ∈D

ui(ξ, x(ξ)) <∞.

Therefore there exists T 0 > 1 such that

∀T > T 0,
∑

ξ∈DT

ui(ξ, x(ξ)) 6
ε

2
.

Since agent i is myopic with respect to default penalties, there exists T > max{t, T 0}
such that ∑

ξ∈DT

∑
j∈J

λi(ξ, j)H(ξ, j) 6
ε

2
.

Consider now the plan â defined by

â(ξ) =


a(ξ) if t(ξ) < T

(ωi(ξ), 0, 0, d̂(ξ)) if t(ξ) = T

(0, 0, 0, 0) if t(ξ) > T

where
∀ξ ∈ DT , ∀j ∈ J, d̂(ξ, j) = D(p, ξ, j)ϕ(ξ−, j).

Observe that the plan â satisfies

â ∈ Bi(p, q, κ) ∩BT and â1[0,T−1] = a1[0,T−1].
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Moreover,

Πi,T (p, â) = Πi,T−1(p, â)

+
∑

ξ∈DT

ui(ξ, ωi(ξ))−
∑
j∈J

λi(ξ, j)
[V (p, ξ, j)−D(p, ξ, j)]ϕ(ξ−, j)

p(ξ)v(ξ)


> Πi,T−1(p, a)−

∑
ξ∈DT

∑
j∈J

λi(ξ, j)H(ξ, j)

> Πi,T−1(p, a)− ε

2

> Πi,T (p, a)− ε

2
−

∑
ξ∈DT

ui(ξ, x(ξ))

> Πi,T (p, a)− ε.

Since T − 1 > t, this implies that the plan a is almost finite-time solvent.

The main result of this paper is the following generalization of Theorem 2 in
Araujo et al. (2002) and Theorem 4.1 in Páscoa and Seghir (2008). We prove
that, in order to rule out Ponzi schemes, it is not necessary to assume that default
penalties are moderate with respect to utility functions. It is sufficient to assume
that every agent is myopic with respect to default penalties.

Theorem 5.1. If every agent is myopic with respect to default penalties then a
competitive equilibrium with almost finite-time solvency exists.

As a direct consequence of Proposition 4.3, we obtain the main existence result
in Araujo et al. (2002, Theorem 2) as a corollary of Theorem 5.1.

Corollary 5.1 (Araujo et al. (2002)). If there is no default penalty then there exists
a competitive equilibrium, i.e., Eq(E) 6= ∅.

As a direct consequence of Proposition 4.5, we obtain the existence result in
Páscoa and Seghir (2008, Theorem 4.1) as a corollary of Theorem 5.1.

Corollary 5.2 (Páscoa and Seghir (2008)). If default penalties are moderate with
respect to utility functions then there exists a constrained competitive equilibrium,
i.e., the set Eqα(E) 6= ∅.

Remark 5.2. Páscoa and Seghir (2008) claim to prove that not only the set Eqα(E)
is non-empty when default penalties are α-moderate, but also that the set Eq(E) is
non-empty. However, in order to get existence of T̃ in the arguments of the proof
of their main result (Páscoa and Seghir (2008, Theorem 4.1, p. 15)), they implicitly
consider α-constrained plans.
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6 Proof of Theorem 5.1

Fix τ ∈ T with τ > 0. We denote by Aτ the set

∀ξ ∈ D, t(ξ) > τ =⇒ a(ξ) = 0.

Recall that Bτ denotes the set of plans a ∈ Aτ satisfying the additional condition

∀ξ ∈ D, t(ξ) = τ =⇒ ϕ(ξ) = 0.

Given a process (p, q, κ) ∈ Π, we denote by Bi,τ (p, q, κ) the set defined by

Bi,τ (p, q, κ) = Bi(p, q, κ) ∩Bτ .

Definition 6.1. A competitive equilibrium for the truncated economy Eτ is a family
of prices and delivery rates π = (p, q, κ) ∈ Π and an allocation a = (ai)i∈I with
ai ∈ Bτ such that

(a) for every agent i, the plan ai is optimal, i.e.,

ai ∈ di,τ (p, q, κ) = argmax{Πi,τ (p, a) : a ∈ Bi,τ (p, q, κ)}; (6.1)

(b) commodity markets clear at every node up to period τ , i.e.,∑
i∈I

xi(ξ0) =
∑
i∈I

ωi(ξ0) (6.2)

and for all ξ ∈ Dτ \ {ξ0},∑
i∈I

xi(ξ) =
∑
i∈I

[
ωi(ξ) + Y (ξ)xi(ξ−)

]
, (6.3)

(c) asset markets clear at every node up to period τ − 1, i.e., for all ξ ∈ Dτ−1,∑
i∈I

θi(ξ) =
∑
i∈I

ϕi(ξ), (6.4)

(d) deliveries match up to period τ , i.e., for all ξ ∈ Dτ \ {ξ0} and all j ∈ J ,∑
i∈I

V (κ, p, ξ, j)θi(ξ−, j) =
∑
i∈I

di(ξ, j). (6.5)

Remark 6.1. Observe that if a plan a belongs to Bτ , then Πi,τ (p, a) and Πi(p, a)
coincide for every price process p.

Remark 6.2. Observe that if (π,a) is a competitive equilibrium for the truncated
economy Eτ , then without any loss of generality, we can assume that q(ξ) = 0 and
θ(ξ) = 0 for every terminal node ξ ∈ Dτ .
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It is claimed in Páscoa and Seghir (2008) that a competitive equilibrium for every
truncated economy Eτ exists, and that commodity prices are uniformly bounded
away from 0. For the sake of completeness, we postpone to Appendix A.2 a simple
proof of this result.

Proposition 6.1. There exists a process m = (m(ξ))ξ∈D of strictly positive num-
bers m(ξ) > 0 such that for every period τ , there exists a competitive equili-
brium (πτ ,aτ ) of the truncated economy Eτ satisfying ‖p(ξ)‖ > m(ξ) at every node
ξ ∈ Dτ−1.

For each τ ∈ T with τ > 1, we let (πτ ,aτ ) be a competitive equilibrium for
the economy Eτ where πτ = (pτ , qτ , κτ ) and aτ = (ai,τ )i∈I . Each process πτ

belongs to clΠ which is weakly compact as a product of compact sets. Passing to
a subsequence if necessary, we can assume that the sequence (πτ )τ∈T converges to
a process π = (p, q, κ) in clΠ. Following Proposition 6.1, for each node ξ ∈ D, we
have ‖p(ξ)‖ > m(ξ) > 0. In particular, for each period t and every plan a ∈ A, the
payoff Πi,t(p, a) is well-defined.

By feasibility at each node ξ, we get for each j

xi,τ (ξ) 6 Ω(ξ), ϕi,τ (ξ, j) 6 M(ξ, j) and θi,τ (ξ, j) 6 M(ξ, j).

This implies that the sequence (xi,τ (ξ), ϕi,τ (ξ), θi,τ (ξ))τ∈T is uniformly bounded.
By optimality, the delivery di,τ (ξ, j) is always lower than V (pτ , ξ, j)ϕi,τ (ξ−, j) and
therefore the sequence (di,τ (ξ))τ∈T is uniformly bounded. Passing to a subsequence
if necessary, we can assume that for each i, the sequence (ai,τ )τ∈T converges to a
process ai ∈ A.

We claim that (π,a) is a competitive equilibrium with almost finite-time sol-
vency for the economy E . It is straightforward to check that each plan ai belongs
to the budget set Bi(p, q, κ) and that the feasibility conditions (2.5), (2.6), (2.7)
and (2.8) are satisfied. Applying Proposition 5.2, we get that the plan ai is al-
most finite-time solvent. We propose now to prove that ai is optimal among almost
finite-time solvent plans, i.e., Prefi(p, ai) ∩ Bi

?(p, q, κ) is empty. Assume by way of
contradiction that there exists a plan a in the budget set Bi

?(p, q, κ), ε > 0 and
T 1 ∈ N satisfying

∀T > T 1, Πi,T (p, a) > Πi,T (p, ai) + ε. (6.6)

Since ai is physically feasible, we have

∀ξ ∈ D, xi(ξ) 6 Ω(ξ).

It follows from Assumptions (A.2) and (A.3) that

U i(xi) 6 U i(Ω) < +∞.

This implies that
lim

T→∞
Πi,T (p, ai) = Πi(p, ai).

22



It follows that there exists T 2 > T 1 such that

∀T > T 2, Πi,T (p, ai) +
ε

2
> Πi(p, ai). (6.7)

Since the plan a is almost finite-time solvent, there exists T > T 2 and â in the
truncated budget set Bi(p, q, κ) ∩BT such that

â1[0,T 2] = a1[0,T 2] and Πi,T (p, â) > Πi,T (p, a)− ε

4
. (6.8)

Combining (6.6), (6.7) and (6.8) we get

Πi,T (p, â) > Πi(p, ai) +
ε

4
.

We let ψi be the correspondence from A to AT defined by

∀a ∈ A, ψi(a) =
{
b ∈ BT : Πi,T (p, b) >

ε

4
+ Πi(p, a)

}
.

Let F i be the correspondence from Π×A to AT defined by

∀(π, a) ∈ Π×A, F i(π, a) = Bi,T (π) ∩ ψi(a).

Following the arguments in Páscoa and Seghir (2008), we have the following conti-
nuity result.

Lemma 6.1. The correspondence F i is lower semi-continuous for product topologies
on Π×A.

Observe that
â ∈ F i((p, q, κ), ai).

We proved that there exists a strictly increasing sequence (Tn)n∈N with Tn ∈ N such
that

lim
n→∞

((pn, qn, κn), ai
n) = ((p, q, κ), ai)

where
(pn, qn, κn) = (pTn , qTn , κTn), ai

n = ai,Tn .

Since F i is lower semi-continuous, there exists ν large enough such that

âν ∈ F i((pν , qν , κν), ai
ν).

In particular we have

âν ∈ Bi,Tν (pν , qν , κν) ∩BTν and Πi,Tν (pν , âν) > Πi(pν , a
i
ν) +

ε

4
.

This contradicts the optimality of ai
ν .

3

We have thus proved that for each i, the plan ai is almost-finite solvent and
satisfies

Prefi(p, ai) ∩Bi
?(p, q, κ) = ∅.

This means that ai belongs to the demand set di
?(π). We already proved that all

markets clear. This means that (π,a) is a competitive equilibrium with almost
finite-time solvency.

3Recall that ((pν , qν , κν), aν) is a competitive equilibrium of the truncated economy ETν .
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7 Conclusion

This paper shows that it is possible to adapt the approach of restricting action plans
to have finite effective debt, introduced in the work of Levine and Zame (1996),
to models with default and collateralized promises. Working in this direction we
introduce in the framework developed by Araujo et al. (2002) and Páscoa and Seghir
(2008) the concept of almost finite-time solvency and show that the restrictions
imposed in these two papers to rule out Ponzi schemes imply that plans are almost
finite-time solvent. We also define the notion of what we term equilibrium with
almost finite-time solvency and provide sufficient conditions for its existence. It
turns out that the existence results in Araujo et al. (2002) and Páscoa and Seghir
(2008) can be derived as straightforward corollaries of our existence result.

A Appendix

We collect in this appendix the proofs of some technical results.

A.1 Continuity on order intervals

Assumptions (A.2) and (A.3) imply that when restricted to the order interval [0,Ω],
the function U i is weakly continuous.

Proposition A.1. The function U i is weakly continuous on [0,Ωi].

For the sake of completeness, we give the straightforward proof of this result.

Proof of Proposition A.1. For every period τ ∈ N, we let U i,τ be the function de-
fined on X by

U i,τ (x) =
∑

ξ∈Dτ

ui(ξ, x(ξ)).

Let (xn)n∈N be a sequence of consumption processes in [0,Ω], weakly converging
to x.4 Fix ε > 0. From Assumption (A.3), the utility U i(Ω) is finite. Then there
exists τ ∈ N such that

U i(Ω)− U i,τ (Ω) =
∑

ξ∈D\Dτ

ui(ξ,Ωi(ξ)) 6
ε

4
.

Observe that for each n∣∣U i(x)− U i(xn)
∣∣ 6

∣∣U i,τ (x)− U i,τ (xn)
∣∣ + 2

∑
ξ∈D\Dτ

ui(ξ,Ωi(ξ)

6
∣∣U i,τ (x)− U i,τ (xn)

∣∣ +
ε

2
. (A.1)

4Remember that the weak topology on X is metrizable.
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From Assumption (A.2), each utility function ui(ξ, ·) is continuous. Since (xn)n∈N
converges weakly to x, there exists nε > 0 large enough such that

∀n > nε,
∣∣U i,τ (x)− U i,τ (xn)

∣∣ 6
ε

2
. (A.2)

Combining (A.1) and (A.2), we get the desired result.

A.2 Proof of Proposition 6.1

We consider the following modification of the normalization of the default penalty.
For every ε > 0 and every period τ , we let

W i,τ
ε (π, a) =

∑
ξ∈Dτ\{ξ0}

∑
j∈J

λi(ξ, j)
[V (p, ξ, j)ϕ(ξ−, j)− d(ξ, j)]+

p(ξ)v(ξ) + ε ‖q(ξ)‖

and
Πi,τ

ε (π, a) = U i,τ (x)−W i,τ
ε (π, a).

When the process π belongs to cl Π, the functions (W i,t
ε )t>1 are well-defined for every

ε > 0. A pair (π,a) where π ∈ Π and a = (ai)i∈I is an allocation with ai ∈ Bτ , is
said to be a competitive equilibrium of the truncated economy Eτ

ε if market clearing
conditions (6.2), (6.3), (6.4) and (6.5) are satisfied and the optimality condition (6.1)
is replaced by

(aε) for every agent i, the plan ai is optimal with respect to Πi,τ
ε , i.e.,

ai ∈ di,τ
ε (p, q, κ) = argmax{Πi,τ

ε (π, a) : a ∈ Bi,τ (π)}.

Observe that for every process π of prices and delivery rates in cl Π, the quantity
p(ξ)v(ξ)+ ε ‖q(ξ)‖ is never 0. It is now very easy to adapt the arguments in Araujo
et al. (2002) and prove that a competitive equilibrium (π,a) for the truncated
economy Eτ

ε exists for any ε > 0 where π ∈ cl Π. Since utility functions are strictly
increasing, we must have p(ξ) ∈ RL

++ for each node ξ ∈ Dτ . We propose to
exhibit an exogenous lower bound m(ξ) for every node ξ with t(ξ) < τ . Fix a node
ξ ∈ Dτ−1, α > 0 and an agent i ∈ I. Let ãi

α be the plan in Bτ defined for every
node ζ ∈ Dτ by

ãi
α(ζ) =


ai(ζ) if ζ 6∈ {ξ} ∪ ξ+

(xi(ξ) + f(π, ξ)α1L, θ
i(ξ), ϕ(ξ) + α1J , d

i(ξ)) if ζ = ξ

(xi(ζ), θi(ζ), ϕi(ζ), d̃i
α(ζ)) if ζ ∈ ξ+

where
f(π, ξ) =

‖q(ξ)‖ − p(ξ)C(ξ)
‖p(ξ)‖

with C(ξ) =
∑
j∈J

C(ξ, j)
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and for every j,
d̃i

α(ζ) = di(ζ, j) + αD(p, ζ, j).

In other words, we propose to short-sell at node ξ an additional quantity α > 0
of each asset j and to increase consumption of each good by f(π, ξ)α units. At
each successor node ζ ∈ ξ+, we propose to “fully” default on additional short-sales.
By doing so, at node ξ we get an additional amount of α ‖q(ξ)‖ units of accounts
from short-selling. In order to satisfy the constraint imposed by the collateral
requirements, we should purchase the bundle αC(ξ) at node ξ. This is possible if
‖q(ξ)‖ > p(ξ)C(ξ). In other words, if f(π, ξ) > 0 then the plan ãi

α belongs to the
budget set Bi,τ (π) for every α > 0. We propose to compare the payoffs of the two
plans ai and ãi

α.
First observe that

U i,τ (x̃i
α)− U i,τ (xi) = ui(ξ, xi(ξ) + f(π, ξ)α1L)− ui(ξ, xi(ξ)).

Moreover, since for each ζ ∈ ξ+

[V (p, ζ, j){ϕ(ξ, j) + α} − {d(ζ, j) + αD(p, ζ, j)}]+

is lower than

[V (p, ζ, j)ϕ(ξ, j)− d(ζ, j)}]+ + [V (p, ζ, j)α− αD(p, ζ, j)]+

we get

Πi,τ
ε (π, ãi

α)−Πi,τ
ε (π, ai) > ui(ξ, xi(ξ) + f(π, ξ)α1L)− ui(ξ, xi(ξ))

− α
∑
ζ∈ξ+

∑
j∈J

λi(ζ, j)
[V (p, ζ, j)−D(p, ζ, j)]+

p(ζ)v(ζ) + ε ‖q(ζ)‖
.

Let us denote by δi,τ
ε the real number defined by

δi,τ
ε = lim

α→0+

Πi,τ
ε (π, ãi

α)−Πi,τ
ε (π, ai)

α
,

and let us denote by∇+ui(ξ, xi(ξ)) the vector in RL
++ which `-th coordinate∇+

` u
i(ξ, xi(ξ))

is defined by5

∇+
` u

i(ξ, xi(ξ)) = lim
β→0+

ui(ξ, xi(ξ) + β1{`})− ui(ξ, xi(ξ))
β

.

5The existence of ∇+
` ui(ξ, xi(ξ)) is a consequence of the concavity of ui(ξ, ·). The strict mono-

tonicity of ui(ξ, ·) implies that ∇+
` ui(ξ, xi(ξ)) is strictly positive.
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Then

δi,τ
ε >

∥∥∇+ui(ξ, xi(ξ))
∥∥ f(π, ξ)−

∑
ζ∈ξ+

∑
j∈J

λi(ζ, j)
[V (p, ζ, j)−D(p, ζ, j)]+

p(ζ)v(ζ) + ε ‖q(ζ)‖

>
∥∥∇+ui(ξ,Ωi(ξ))

∥∥ f(π, ξ)−
∑
ζ∈ξ+

∑
j∈J

λi(ζ, j)
[V (p, ζ, j)−D(p, ζ, j)]+

p(ζ)v(ζ)

>
∥∥∇+ui(ξ,Ωi(ξ))

∥∥ f(π, ξ)−
∑
ζ∈ξ+

∑
j∈J

λi(ζ, j)
H(ζ, j)
M(ζ, j)

.

Therefore, if

f(π, ξ) > g(ξ) :=

∑
ζ∈ξ+

∑
j∈J λ

i(ζ, j) H(ζ,j)
M(ζ,j)

‖∇+ui(ξ,Ωi(ξ))‖

then Πi,τ
ε (π, ãi

α) > Πi,τ
ε (π, ai) for α > 0 small enough. It follows that we must have

1− ‖p(ξ)‖ − p(ξ)C(ξ)
‖p(ξ)‖

= f(π, ξ) 6 g(ξ).

Hence there exists m(ξ) > 0 depending only on the primitives of the economy E
such that ‖p(ξ)‖ > m(ξ).

Consider now the sequence (εn)n∈N defined by

∀n ∈ N, εn =
1

n+ 1
.

For each n ∈ N, there exists an equilibrium (πn,an) of the truncated economy
Eτ

εn
. Following standard arguments, there exists a process π ∈ cl Π of prices and

delivery rates and a process a of plans ai ∈ Bτ such that, passing to a subsequence
if necessary, the sequence (πn,an)n∈N converges to (π,a). Since for each n, we have
‖pn(ξ)‖ > m(ξ) for every non-terminal node ξ ∈ Dτ−1, passing to the limit, we get
that ‖p(ξ)‖ > m(ξ), in particular p(ξ) > 0 for each ξ ∈ Dτ .6 Therefore the payoff
Πi,τ (p, a) is well-defined for every plan a ∈ Bτ . It is now standard to prove that
the limit (π,a) is actually a competitive equilibrium of the truncated economy Eτ .
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