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Abstract

We study a definition of subjective beliefs applicable to preferences that allow for the
perception of ambiguity, and provide a characterization of such beliefs in terms of mar-
ket behavior. Using this definition, we derive necessary and sufficient conditions for the
efficiency of ex-ante trade, and show that these conditions follow from the fundamental
welfare theorems. When aggregate uncertainty is absent, our results show that full insur-
ance is efficient if and only if agents share some common subjective beliefs. Our results
hold for a general class of convex preferences, which contains many functional forms used
in applications involving ambiguity and ambiguity aversion. We show how our results can
be articulated in the language of these functional forms, confirming results existing in the
literature, generating new results, and providing a useful tool for applications.
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1 Introduction

In a model with risk averse agents who maximize subjective expected utility, betting occurs
if and only if agents’ priors differ. This link between common priors and speculative trade
in the absence of aggregate uncertainty is a fundamental implication of expected utility for
risk-sharing in markets. A similar relationship holds when ambiguity is allowed and agents
maximize the minimum expected utility over a set of priors, as in the model of Gilboa and
Schmeidler (1989). In this case, purely speculative trade occurs when agents hold no priors
in common; full insurance is Pareto optimal if and only if agents have at least one prior
in common, as Billot, Chateauneuf, Gilboa, and Tallon (2000) show. This note develops a
more general connection between subjective beliefs and speculative trade applicable to a broad
class of convex preferences, which encompasses as special cases not only the previous results
for expected utility and maxmin expected utility, but all the models central in studies of
ambiguity in markets, including the convex Choquet model of Schmeidler (1989), the smooth
second-order prior models of Klibanoff, Marinacci, and Mukerji (2005) and Nau (2006), the
second-order expected utility model of Ergin and Gul (2004), the confidence preferences model
of Chateauneuf and Faro (2006), the multiplier model of Hansen and Sargent (2001), and the
variational preferences model of Maccheroni, Marinacci, and Rustichini (2006).

By casting our results in the general setting of convex preferences, we are able to focus on
several simple underlying principles. We identify a notion of subjective beliefs based on market
behavior, and show how it is related to various notions of belief that arise from different
axiomatic treatments. We highlight the close connection between the fundamental welfare
theorems of general equilibrium and results that link common beliefs and risk-sharing. Finally,
by establishing these links for general convex preferences, we provide a framework for studying
ambiguity in markets while allowing for heterogeneity in the way ambiguity is expressed through
preferences. The generality of this approach identifies the forces underlying betting without
being restricted to any one particular representation, and in so doing unifies our thinking about
models of ambiguity aversion in economic settings.

The note is organized as follows. Section 2 studies subjective beliefs and behavioral char-
acterizations, with illustrations for various familiar representations. Section 3 studies trade
between agents with convex preferences. Appendix A develops an extension of these results to
infinite state spaces, while Appendix B collects some proofs omitted in the text.
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2 Beliefs and Convex Preferences

2.1 Convex Preferences

Let S be a finite set of states of the world. The set of consequences is R+, which we interpret
as monetary payoffs. The set of acts is F = RS

+ with the natural topology. Acts are denoted
by f , g, h, while f(s) denotes the monetary payoff from act f when state s obtains. For any
x ∈ R+ we abuse notation by writing x ∈ F , which stands for the constant act with payoff x
in each state of the world.

Let % be a binary relation on F . We say that % is a convex preference relation if it satisfies
the following axioms:

Axiom 1 (Preference). % is complete and transitive.

Axiom 2 (Continuity). For all f ∈ F , the sets {g ∈ F | g % f} and {g ∈ F | f % g} are
closed.

Axiom 3 (Monotonicity). For all f, g ∈ F , if f(s) > g(s) for all s ∈ S, then f Â g.

Axiom 4 (Convexity). For all f ∈ F , the set {g ∈ F | g % f} is convex.

These axioms are standard, and well-known results imply that a convex preference relation
% is represented by a continuous, increasing and quasi-concave function V : F → R.1 Con-
vex preferences include as special cases many common models of risk aversion and ambiguity
aversion. In many of these special cases, one element of the representation identifies a notion
of beliefs. In what follows, we adopt the notion of subjective probability suggested in Yaari
(1969) to define subjective beliefs for general convex preferences. We then study character-
izations of this concept in terms of market behavior, and illustrate particular special cases
including maxmin expected utility, Choquet expected utility, and variational preferences.

2.2 Supporting Hyperplanes and Beliefs

The decision-theoretic approach of de Finetti, Ramsey, and Savage identifies a decision maker’s
subjective probability with the odds at which he is willing to make small bets. In this spirit,
Yaari (1969) identifies subjective probability with a hyperplane that supports the upper contour
set.2 If this set has kinks, for example because of non-differentiabilities often associated with

1Axiom 4 captures convexity in monetary payoffs. For Choquet expected utility agents, who evaluate an act
according to the Choquet integral of its utility with respect to a non-additive measure (capacity), the relation
between payoff-convexity and uncertainty aversion has been studied by Chateauneuf and Tallon (2002). Dekel
(1989) studies the relation between payoff-convexity and risk aversion.

2In the finance literature this is commonly called a risk-neutral probability, or risk-adjusted probability.
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ambiguity, there may be multiple supporting hyperplanes at some acts. To encompass such
preferences, we consider the set of all (normalized) supporting hyperplanes.3

Definition 1 (Subjective Beliefs). The set of subjective beliefs at an act f is

π(f) := {p ∈ ∆S | p · g ≥ p · f for all g % f}

Given the interpretation of the elements of π(f) as beliefs, we will write Epg instead of p ·g.
For any convex preference relation, π(f) is nonempty, compact and convex, and is equivalent
to the set of (normalized) supports to the upper contour set of % at f . In the next section
we explore behavioral implications of this definition, including willingness or unwillingness to
trade, and their market consequences.

2.3 Market Behavior and Beliefs

We begin with a motivating example, set in the maxmin expected utility (MEU) model of Gilboa
and Schmeidler (1989). The agent’s preferences are represented using a compact, convex set of
priors P ⊆ ∆S and a utility index u : R+ → R that is concave and differentiable. The utility
of an act f is given by the minimum expected utility over the set of priors P :

V (f) := min
p∈P

∑

s∈S

psu(f(s)) = min
p∈P

Epu(f)

where we abuse notation by writing u(f) for
(
u(f(1)), . . . , u(f(S))

)
.

Imagine that the agent is initially endowed with a constant act x. First, consider an act
f such that Epf = x for some p ∈ P , as depicted in the left panel of Figure 1 (the shaded
area collects all such acts). One can see that the agent will have zero demand for f . Second,
consider an act f such that Epf > x for all p ∈ P , as depicted in the right panel of Figure 1.
One can see that there exists ε > 0 sufficiently small such that εf + (1− ε)x Â x.

3Alternatively, Chambers and Quiggin (2002) define beliefs using superdifferentials of the benefit function.
Their definition turns out to be equivalent to ours.
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Figure 1. Behavioral properties of beliefs in the MEU model.

In the MEU model, the set P captures two important aspects of market behavior (both
evident in Figure 1). First, agents are unwilling to trade from a constant bundle to a random
one if the two have the same expected value for some prior in the set P . In particular, the set
P is the largest set of beliefs revealed by this unwillingness to trade based on zero expected
net returns. Second, agents are willing to trade from a constant bundle to (a possibly small
fraction of) a random one whenever the random act has greater expected value according to
every prior in the set P . In particular, the set P is the smallest set of beliefs revealing this
willingness to trade based on positive expected net returns.

We introduce two notions of beliefs revealed by market behavior that attempt to capture
these properties for general convex preferences. The first notion collects all beliefs that reveal
an unwillingness to trade from a given act f .

Definition 2 (Unwillingness-to-trade Revealed Beliefs). The set of beliefs revealed by unwill-
ingness to trade at f is

πu(f) := {p ∈ ∆S | f % g for all g such that Epg = Epf}.

This set gathers all beliefs for which the agent is unwilling to trade assets with zero expected
net returns. It can also be interpreted as the set of Arrow-Debreu prices for which the agent
endowed with f will have zero net demand. For a convex preference, it is straightforward to see
that this gives a set of beliefs equivalent to that defined by our subjective beliefs in Definition 1.

Our second notion collects beliefs revealed by a willingness to trade from a given act f . To
formalize this, let P(f) denote the collection of all compact, convex sets P ⊆ ∆S such that
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if Epg > Epf for all p ∈ P then εg + (1 − ε)f Â f for sufficiently small ε.4 We define the
willingness-to-trade revealed beliefs as the smallest such set.5

Definition 3 (Willingness-to-trade Revealed Beliefs). The set of beliefs revealed by willingness
to trade at an act f is

πw(f) :=
⋂
{P ⊆ ∆S | P ∈ P(f)}.

The following proposition establishes the equivalence between the different notions of belief
presented in this section, and therefore gives behavioral content to Definition 1. Subjective
beliefs are related to observable market behavior in terms of willingness or unwillingness to
make small bets or trade small amounts of assets.

Proposition 1. If % is a convex preference relation, then π(f) = πu(f) = πw(f) for every
strictly positive act f .

2.4 Special cases

In this section we explore the relationships between our notion of subjective belief and those
arising in several common models of ambiguity. For the benchmark case of classical subjective
expected utility, as observed by Yaari (1969), our subjective beliefs coincide with the local
trade-offs or risk-neutral probabilities that play a central role in many applications of risk.
If we restrict attention to constant acts, then subjective beliefs will coincide with the unique
prior of the subjective expected utility representation. This property generalizes beyond SEU.
The subjective beliefs we calculate at a constant act, at which risk and ambiguity are absent,
coincide with the beliefs identified axiomatically in particular representations.

Maxmin Expected Utility Preferences

We begin with MEU preferences, represented by a particular set of priors P and utility
index u.6 These preferences also include the convex case of Choquet expected utility, for which
P has additional structure as the core of a convex capacity.

To derive a simple characterization of the set π(f) for MEU preferences, let U : RS
+ → RS

be the function U(f) := (u(f(1)), . . . , u(f(S))) giving ex-post utilities in each state. For any
4Notice that P(f) is always nonempty, because ∆S ∈ P(f) by Axiom 3.
5The proof of Proposition 1 shows that P(f) is closed under intersection.
6The MEU model is a special case of the model of invariant biseparable preferences in Ghirardato and

Marinacci (2001). Ghirardato, Maccheroni, and Marinacci (2004) introduce a definition of beliefs for such
preferences and propose a differential characterization. For invariant biseparable preferences that are also convex,
their differential characterization is equivalent to ours when calculated at constant bundle. The only invariant
biseparable preferences that are convex are actually MEU preferences, however, so these are already included in
our present discussion.
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f ∈ RS
++, DU(f) is the S × S diagonal matrix with diagonal given by the vector of ex-post

marginal utilities (u′(f(1)), . . . , u′(f(S))). For each f ∈ RS
+, let

M(f) := arg min
p∈P

Epu(f)

be the set of minimizing priors realizing the utility of f . Note that V (f) = Epu(f) for each
p ∈ M(f). Using a standard envelope theorem, we can express the set π(f) as follows.

Proposition 2. Let % be a MEU preference represented by a set of priors P and a concave,
strictly increasing and differentiable utility index u. Then % is a convex preference, and

π(f) =
{

q

‖q‖ | q = pDU(f) for some p ∈ M(f)
}

.

In particular, π(x) = P for all constant acts x.

Variational Preferences

Introduced and axiomatized by Maccheroni, Marinacci, and Rustichini (2006), variational
preferences have the following representation:

V (f) = min
p∈∆S

[Epu(f) + c?(p)]

where c? : ∆S → [0,∞], is a convex, lower semicontinuous function such that c?(p) = 0 for at
least one p ∈ ∆S. The function c? is interpreted as the cost of choosing a prior. As special cases,
this model includes MEU preferences, when c? is 0 on the set P and ∞ otherwise, the multiplier
preferences of Hansen and Sargent (2001), when c?(p) = R(p‖q) is the relative entropy between
p and some reference distribution q, and the mean-variance preference of Markovitz and Tobin,
when c?(p) = G(p ‖ q) is the relative Gini concentration index between p and some reference
distribution q.

For each f ∈ RS
+, let

M(f) := arg min
p∈∆S

{Ep[u(f)] + c?(p)}

be the set of minimizing priors realizing the utility of f . Note that V (f) = Epu(f) + c?(p) for
each p ∈ M(f). The set π(f) can be characterized as follows.

Proposition 3. Let % be a variational preference for which u is concave, increasing, and
differentiable. Then % is a convex preference and

π(f) =
{

q

‖q‖ | q = pDU(x) for some p ∈ M(f)
}

.

In particular, π(x) = {p ∈ ∆S | c?(p) = 0} for all constant acts x.
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The set of subjective beliefs at a constant act x, π(x), is equal to the set of probabilities
for which c?, the cost of choosing a prior, is zero. An interesting implication of this result
is that at a constant act, the subjective beliefs of an agent with Hansen and Sargent (2001)
multiplier preferences are equal to the singleton {q} consisting of the reference probability,
since R(p‖q) = 0 if and only if p = q.7 A similar result holds for mean-variance preferences.

Confidence Preferences

Chateauneuf and Faro (2006) introduced and axiomatized a class of preferences in which
ambiguity is measured by a confidence function ϕ : ∆S → [0, 1]. The value of ϕ(p) describes
the decision maker’s confidence in the probabilistic model p; in particular ϕ(p) = 1 means
that the decision maker has full confidence in p. By assumption, the set of such measures is
nonempty; moreover, the function ϕ is assumed to be upper semi continuous and quasiconcave.
Preferences in this model are represented by:

V (f) = min
p∈Lα

1
ϕ(p)

Epu(f),

where Lα = {q ∈ ∆S |ϕ(q) ≥ α} is a set of measures with confidence above α.

As before, for each f ∈ RS
+, let

M(f) := arg min
p∈Lα

{
1

ϕ(p)
Epu(f)

}

be the set of minimizing priors realizing the utility of f . Note that V (f) = 1
ϕ(p)Epu(f) for each

p ∈ M(f). By standard envelope theorems, π(f) can be characterized in this case as follows.

Proposition 4. Let % be a confidence preference for which u is concave, increasing, and
continuously differentiable. Then % is a convex preference and

π(f) =
{

q

‖q‖ | q = pDU(x) for some p ∈ M(f)
}

.

In particular, π(x) = {p ∈ ∆S | ϕ(p) = 1} for all constant acts x.

Smooth Model

The smooth model of ambiguity developed in Klibanoff, Marinacci, and Mukerji (2005)
allows preferences to display non-neutral attitudes towards ambiguity, but avoids kinks in the
indifference curves.8 This model has a representation of the form

V (f) = Eµφ(Epu(f))
7This result also follows from an alternate representation V (f) = −Eq exp

`−θ−1 ·u(f)
´

of those preferences.
Strzalecki (2007) obtains an axiomatization of multiplier preferences along these lines.

8For similar models, see Segal (1990), Nau (2006) and Ergin and Gul (2004).
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where µ is interpreted as a probability distribution on the set of probabilities that the decision
maker considers plausible, φ : R→ R and u : R+ → R. When the indexes φ and u are concave,
increasing, and differentiable, this utility represents a convex preference relation, and the set
of subjective beliefs is a singleton consisting of a weighted mixture of all probabilities in the
support of the measure µ.

Proposition 5. Let % be a smooth model preference for which u and φ are concave, increasing,
and differentiable. Then % is a convex preference and

π(f) =
1

‖Eµ[φ′(Epu(f))pDU(f)]‖Eµ[φ′(Epu(f))pDU(f)].

In particular, π(x) = {Eµp} for all constant x.

Ergin-Gul Model

Ergin and Gul (2004) introduce a model in which the state space takes the product form
S = Sa × Sb. This model permits different decision attitudes toward events in Sa and Sb,
thereby inducing Ellsberg-type behavior. Consider a product measure p = pa ⊗ pb on S; for
any f ∈ RS let Eaf be the vector of conditional expectations of f computed for all elements
of Sb (thus Eaf ∈ RSb) and for any g ∈ RSb let Ebg denote the expectation of g according to
pb. The preferences are represented by

V (f) = Ebφ(Eau(f)).

In order to express subjective beliefs, let U(f) and DU(f) be defined as before, with the
convention that the states in S are ordered lexicographically first by a, then by b. Analogously,
for each f define the vector Φ(Eau(f)) ∈ RSb and the diagonal matrix DΦ(Eau(f)).

Proposition 6. Let % be an Ergin-Gul preference for which u and φ are concave, increasing,
and differentiable. Then % is a convex preference and

π(f) =
1

‖pDU(f)[Ia ⊗DΦ(Eau(f))]‖pDU(f)[Ia ⊗DΦ(Eau(f))],

where Ia is the identity matrix of order Sa and ⊗ is the tensor product. In particular, π(x) =
{p} for all constant x.

Remark 1: Our notion of beliefs may not agree with the beliefs identified by some represen-
tations, in part because we have focused on beliefs revealed by market behavior rather than
those identified axiomatically. An illustrative case in point is rank-dependent expected utility
(RDEU) of Quiggin (1982) and Yaari (1987) in which probability distributions are distorted
by a transformation function. When the probability transformation function is concave, this
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model reduces to Choquet expected utility with a convex capacity, a special case of MEU. By
using the MEU representation, beliefs would be identified with a set of priors P , in general
not a singleton. As we showed above, this set P coincides with the set π(x), the subjective
beliefs given by any constant act x. However, RDEU preferences are also probabilistically
sophisticated in the sense of Machina and Schmeidler (1992), with respect to some measure
p∗.9 Using the alternative representation arising from probabilistic sophistication, beliefs would
instead be identified with this unique measure p∗ rather than with the set P . Although p∗ ∈ P ,
these different representations nonetheless lead to different ways of identifying subjective be-
liefs, each justified by differing behavioral axioms.10 This indeterminacy could lead to different
ways of attributing market behavior to beliefs. For example, Segal and Spivak (1990) attribute
unwillingness to trade to probabilistic first-order risk aversion, while Dow and Werlang (1992)
instead attribute unwillingness to trade to non-probabilistic ambiguity aversion.

3 Ex-Ante Trade

In this section, we use subjective beliefs to characterize efficient allocations. As our main result,
we show that in the absence of aggregate uncertainty, efficiency is equivalent to full insurance
under a “common priors” condition. While we maintain the assumption of a finite state space
for simplicity, all of these results extend directly to the case of an infinite state space with
appropriate modifications; for details see Appendix A.

We study a standard two-period exchange economy with one consumption good in which
uncertainty at date 1 is described by the set S. There are m agents in the economy, indexed
by i. Each agent’s consumption set is the set of acts F . The aggregate endowment is e ∈ RS

++.
An allocation f = (f1, . . . , fm) ∈ Fm is feasible if

∑m
i=1 fi = e. An allocation f is interior if

fi(s) > 0 for all s and for all i. An allocation f is a full insurance allocation if fi is constant
across states for all i; any other allocation will be interpreted as betting. An allocation f is
Pareto optimal if there is no feasible allocation g such that gi %i fi for all i and gj Âj fj for
some j.

Proposition 7. Suppose %i is a convex preference relation for each i. An interior allocation
(f1, . . . , fm) is Pareto optimal if and only if

⋂
i πi(fi) 6= ∅ .

Proof: First, suppose (f1, . . . , fm) is an interior Pareto optimal allocation. By the second
welfare theorem, there exists p ∈ RS , p 6= 0, supporting this allocation, that is, such that

9For more on probabilistic sophistication, RDEU and MEU, see Grant and Kajii (2005).
10A similar issue arises in the differing definitions of ambiguity found in the ambiguity aversion literature.

One definition of ambiguity, due to Ghirardato and Marinacci (2002), takes the SEU model as a benchmark and
attributes all deviations from SEU to non-probabilistic uncertainty aversion. Another definition, due to Epstein
(1999), uses the probabilistic sophistication model as a benchmark and hence attributes some deviations from
SEU to probabilistic first-order risk aversion rather than non-probabilistic uncertainty aversion.
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p·g ≥ p·fi for all g %i fi and each i. By monotonicity, p > 0, thus after normalizing we may take
p ∈ ∆S. By definition, p ∈ πi(fi) for each i, hence

⋂
i πi(fi) 6= ∅. For the other implication,

take p ∈ ⋂
i πi(fi). By standard arguments, (f1, . . . , fm; p) is a Walrasian equilibrium in the

exchange economy with endowments (f1, . . . , fm). By the first welfare theorem, (f1, . . . , fm) is
Pareto optimal.

This result provides a helpful tool to study mutual insurance and contracting between
agents, regardless of the presence of aggregate uncertainty. The following example illustrates.
Consider an exchange economy with two agents. The first agent has MEU preferences with set
of priors P1 and linear utility index, while the second agent has SEU preferences with prior p2,
also with a linear utility index. Assume p2 belongs to the relative interior of P1 (and hence
that P1 has a nonempty relative interior).11 Thus this is an economy in which one agent is risk
and ambiguity neutral, while the other is risk neutral but strictly ambiguity averse; moreover,
the second agent is more ambiguity averse than the first, using the definition of Ghirardato,
Maccheroni, and Marinacci (2004). In this case, an interior allocation is Pareto optimal if and
only if it fully insures the ambiguity averse agent. Proposition 7 implies an interior allocation
f can be Pareto optimal if and only if p2 ∈ π1(f1). If f1 does not involve full insurance for
agent 1, then π1(f1) will be a subset of the extreme points of P1, and in particular, will not
contain p2. Alternatively, at any constant bundle x1, π1(x1) = P1 3 p2 = π2(e − x1), so
any such allocation is Pareto optimal. This result can be easily extended to the case in which
agent 1 is also ambiguity averse, with MEU preferences given by the same utility index and a
set P2, provided P2 is contained in the relative interior of P1. Similarly, risk aversion can be
introduced, although for given beliefs the result will fail for sufficiently high risk aversion.

Our main results seek to characterize desire for insurance and willingness to bet as a function
of shared beliefs alone. To isolate the effects of beliefs, we first rule out aggregate uncertainty
by taking the aggregate endowment e to be constant across sates. In addition, we must rule
out pure indifference to betting, as might occur in an SEU setting with risk neutral agents.
The following two axioms guarantee that such indifference to betting is absent.

Axiom 5 (Strong Monotonicity). For all f 6= g, if f ≥ g, then f Â g.

Axiom 6 (Strict Convexity). For all f 6= g and α ∈ (0, 1), if f % g, then αf + (1−α)g Â g.

Finally, we focus on preferences for which local trade-offs in the absence of uncertainty are
independent of the (constant) level of consumption. These preferences are characterized by
the fact that the directions of local improvement, starting from a constant bundle at which
uncertainty is absent, are independent of the particular constant.

Axiom 7 (Translation Invariance at Certainty). For all g ∈ RS and all constant bundles
x, x′ > 0, if x + λg % x for some λ > 0, then there exists λ′ > 0 such that x′ + λ′g % x′.

11By relative interior, here we mean relative to ∆S.
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This axiom will be satisfied by all of the main classes of preferences we have considered.
A simple example violating this axiom is the SEU model with state-dependent utility; in this
case, the slopes of indifference curves can change along the 45o line. In fact, in the class of SEU
preferences Axiom 7 is equivalent to a state-independent and differentiable utility function. We
show below that for a convex preference relation, translation invariance at certainty suffices to
ensure that subjective beliefs are instead constant across constant bundles.

Proposition 8. Let % be a convex preference relation satisfying Axiom 7. Then π(x) = π(x′)
for all constant acts x, x′ > 0.

By this result, we can write π in place of π(x) when translation invariance at certainty is
satisfied; we maintain this notational simplification below.

Our main result follows. For any collection of convex preferences satisfying translation
invariance at certainty, the sets πi of subjective beliefs contain all of the information needed
to predict the presence or absence of purely speculative trade. Regardless of other features of
the representation of preferences, the existence of a common subjective belief, understood to
mean

⋂
i πi 6= ∅, characterizes the efficiency of full insurance. Moreover, these results can be

understood as straightforward consequences of the basic welfare theorems.

Proposition 9. If %i satisfies Axioms 1-7 for each i, then the following statements are equiv-
alent:

(i) There exists an interior full insurance Pareto optimal allocation.

(ii) Any Pareto optimal allocation is a full insurance allocation.

(iii) Every full insurance allocation is Pareto optimal.

(iv)
⋂

i πi 6= ∅.

Proof: We show the sequence of inclusions:

(i) ⇒ (iv): Suppose that x = (x1, . . . , xm) is an interior full insurance allocation that is
Pareto optimal. By the second welfare theorem, there exists p 6= 0 such that p supports the
allocation x, that is, such that for each i, p · f ≥ p · xi for all f %i xi. By monotonicity, p > 0,
so after normalizing we can take p ∈ ∆S. By definition p ∈ πi for all i, hence

⋂
i πi 6= ∅.

(iv) ⇒ (ii): Let p ∈ ⋂
i πi and suppose f is a Pareto optimal allocation such that fj is not

constant for some j. Define xi := Epfi for each i. By strict monotonicity, p À 0. Thus xi ≥ 0
for all i, and xi = 0 ⇐⇒ fi = 0. Since p ∈ ⋂

{i:xi>0} πi(xi) =
⋂
{i:xi>0} πu

i (xi), xi % fi for
all i, and by strict convexity, xj Âj fj . Then the allocation x = (x1, . . . , xm) is feasible, and
Pareto dominates f , which is a contradiction.
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(ii) ⇒ (iii): Suppose that x is a full insurance allocation that is not Pareto optimal. Then
there is a Pareto optimal allocation f that Pareto dominates x. By (ii), f must be a full
insurance allocation, which is a contradiction.

(iii) ⇒ (i): The allocation ( 1
me, . . . , 1

me) is an interior full insurance allocation. By (iii) it
is Pareto optimal.

Remark 2 : Billot, Chateauneuf, Gilboa, and Tallon (2000) derive a version of this result for
the particular case of maxmin preferences using an ingenious separation argument.12 In this
case, the common prior condition (iv) becomes the intuitive condition ∩iPi 6= ∅.13 Billot,
Chateauneuf, Gilboa, and Tallon (2000) also consider the case of an infinite state space. In the
appendix, we show that our result can be similarly extended to an infinite state space, although
the argument is somewhat more delicate.

We view a main contribution of our result (and its extension to the infinite state space
case) not as establishing the link between efficiency and notions of common priors per se, but
in illustrating that these results are a simple consequence of the welfare theorems linking Pareto
optimality to the existence of linear functionals providing a common support to agents’ preferred
sets, coupled with the particular form these supports take for various classes of preferences.

Proposition 9 can be articulated in the language of specific functional forms discussed in
Section 2.4. For SEU preferences, condition (iv) becomes the standard common prior assump-
tion, whereas for MEU preferences we recover the result of Billot, Chateauneuf, Gilboa, and
Tallon (2000). For the smooth model of Klibanoff, Marinacci, and Mukerji (2005) condition (iv)
means that the expected measures have to coincide, while for variational preferences of Mac-
cheroni, Marinacci, and Rustichini (2006) the sets of measures with zero cost have to intersect.
Interestingly, it follows that for Hansen and Sargent (2001) multiplier preferences condition
(iv) means that the reference measures coincide.

Finally, we note that extending Propositions 7 and 9 to allow for incomplete preferences is
fairly straightforward, after appropriately modifying axioms 1 and 2. 14

Appendix A: Infinite State Space

Now we imagine that the state space S may be infinite, and let Σ be a σ-algebra of measurable
subsets of S. Let B(S, Σ) be the space of all real-valued, bounded, and measurable functions

12In Billot, Chateauneuf, Gilboa, and Tallon (2000) there is an imprecision in the proof that (ii) ⇒ (iii),
which implicitly uses condition (iv).

13See Kajii and Ui (2006) for related results regarding purely speculative trade and no-trade theorems.
14A similar observation is made by Rigotti and Shannon (2005), while a recent paper by Mandler (2006)

studies Pareto optima for general incomplete preferences.
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on S, endowed with the sup norm topology. Let ba(S, Σ) be the space of bounded, finitely
additive measures on (S, Σ), endowed with the weak∗ topology, and let ∆S be the subset of
finitely additive probabilities. As in the finite case, we let F denote the set of acts, which is
now B(S, Σ)+. We continue to use x ∈ R+ interchangeably for the constant act delivering x
in each state s. For an act f , a constant x ∈ R+ and an event E ⊂ S, let xEf denote the act
such that

(xEf)(s) =
{

x if s ∈ E
f(s) if s /∈ E

The goal of this section is to establish an analogue of our main result regarding the con-
nection between the efficiency of full insurance and the existence of shared beliefs, Proposition
9, for infinite state spaces. Our work in section 3 renders this analogue fairly straightforward
by highlighting the close link between these results and the fundamental welfare theorems,
appropriate versions of which hold in infinite-dimensional settings as well.

Because topological issues are often subtle in infinite-dimensional spaces due to the multi-
plicity of non-equivalent topologies, we begin by emphasizing the meaning of our basic conti-
nuity axiom in this setting.

Axiom 2 (Continuity). For all f ∈F , the sets {g ∈ F | g % f} and {g ∈ F | f % g} are closed
in the sup-norm topology.

To accommodate an infinite state space, we will need several additional axioms that serve
to restrict agents’ beliefs, first by ensuring that beliefs are countably additive, and that beliefs
are all mutually absolutely continuous both for a given agent and between different agents. To
that end, consider the following:

Axiom 8 (Countable Additivity). For each f , each p ∈ π(f) is countably additive.

Axiom 9 (Mutual Absolute Continuity). If xEf ∼ f for some event E and some acts x, f
with x > sup f , then yEg ∼ g for every y and every act g.

Proposition 10. Let % be monotone, continuous, convex, and satisfy mutual absolute conti-
nuity. If f, g are acts such that inf f, inf g > 0, then π(f) and π(g) contain only measures that
are mutually absolutely continuous.

Proof: Suppose, by way of contradiction, that acts f, g with inf f, inf g > 0, an event E, and
measures p ∈ π(f), p̄ ∈ π(g) such that p(E) = 0 while p̄(E) > 0. Choose x > sup f . By
monotonicity, x Â f and xEf % f . Since p(E) = 0,

p · (xEf) = p · f
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Together with p ∈ π(f) this implies xEf ∼ f . Choose y such that y < inf g. By mutual
continuity, yEg ∼ g. Since p̄(E) > 0,

p̄ · (yEg) < p̄ · g
But p̄ ∈ π(g), which yields a contradiction.

The same argument will show that if mutual continuity holds across agents, then all beliefs
of all agents are mutually absolutely continuous. We say that a collection {%i: i = 1, . . . , m}
of preference orders on F satisfies mutual absolute continuity if whenever xEf ∼i f for some
agent i, some event E, and some x > sup f , then yEg ∼j g for every agent j, every y, and
every act g.

Proposition 11. Let %i be monotone, continuous, and convex for each i, and let {%i: i =
1, . . . , m} satisfy mutual absolute continuity. Then for every i, j and any acts f, g such that
inf f, inf g > 0, πi(f) and πj(g) contain only measures that are mutually absolutely continuous.

Mutual absolute continuity is a strong assumption, and is close to the desired conclusion of
mutual absolute continuity of agents’ beliefs. Without more structure on preferences, it does
not seem possible to weaken, however. Without the additional structure available in various
representations, nothing needs to tie together beliefs at different acts. This gives us very little to
work with for general convex preferences. In contrast, in particular special cases, much weaker
conditions would suffice to deliver the same conclusion. For example, Epstein and Marinacci
(2007) show that a version of the modularity condition of Kreps (1979) is equivalent to mutual
absolute continuity of priors in the MEU model.

For a complete analogue of our main result regarding the connection between common
priors and the absence of betting, we must ensure that individually rational Pareto optimal al-
locations exist given any initial endowment allocation. This is needed to show that (ii) ⇒ (iii)
in Proposition 9 without the additional assumption of a common prior, that is, to show that if
every Pareto optimal allocation must involve full insurance, then all full insurance allocations
are in fact Pareto optimal. Since no two full insurance allocations can be Pareto ranked, this
conclusion will follow immediately from the existence of individually rational Pareto optimal
allocations. Instead Billot, Chateauneuf, Gilboa, and Tallon (2000) use the existence of a
common prior, condition (iv), to argue that any Pareto improvement must itself be Pareto
dominated by the full insurance allocation with consumption equal to the expected values,
computed with respect to some common prior. In the finite state space case, it is straightfor-
ward to give an alternative argument that does not make use of the common prior condition.
If a full insurance allocation is not Pareto optimal, then there must exist a Pareto optimal
allocation that dominates it, as a consequence of the existence of individually rational Pareto
optimal allocations. When all Pareto optimal allocations involve full insurance, this leads to a
contradiction that establishes the desired implication.
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With an infinite state space, the existence of individually rational Pareto optimal allocations
is more delicate. Typically, this existence is derived from continuity of preferences in some
topology in which order intervals, and hence sets of feasible allocations, are compact. In our
setting, such topological assumptions are problematic, as order intervals in B(S, Σ) fail to
be compact in topologies sufficiently strong to make continuity a reasonable and not overly
restrictive assumption. Instead we give a more subtle argument that makes use of countable
additivity and mutual continuity to give an equivalent formulation of the problem recast in
L∞(S, Σ, µ) for an appropriately chosen measure µ.

More precisely, suppose that {%i: i = 1, . . . , m} satisfy mutual absolute continuity. Choose
a measure µ ∈ π1(x) for some constant x. We can extend each %i to L∞(S, Σ, µ)+ in the natural
way, first by embedding B(S, Σ)+ in L∞(S, Σ, µ)+ via the identification of an act f with its
equivalence class [f ] ∈ L∞(S, Σ, µ)+, and then by noticing that a preference order satisfying
our basic axioms will be indifferent over any acts f, f ′ ∈ B(S, Σ)+ such that f ′ ∈ [f ]. This
allows us to extend each preference order %i to L∞(S, Σ, µ)+ in the natural way, by defining
[f ] %i [g] ⇐⇒ f %i g for any f, g ∈ B(S, Σ)+. Similarly, given a utility representation Vi of
%i on B(S, Σ)+, define Vi : L∞(S, Σ, µ)+ → R by Vi([f ]) = Vi(f) for each f ∈ B(S, Σ)+.

With this recasting of the problem, the existence of individually rational Pareto optimal
allocations follows from an additional type of continuity.

Axiom 10 (Countable Continuity). There exists x̄ and µ ∈ π(x̄) such that for all g, f, x∈F ,
if {fα} is a net in F with fα % x and fα ≤ g for all α, and q · fα → q · f for all q ∈ ca(S, Σ)
such that q ¿ µ, then f % x.

Proposition 12. Let %i be monotone, continuous, countably continuous, countably additive,
and convex for each i, and let {%i: i = 1, . . . ,m} satisfy mutual absolute continuity. For any
initial endowment allocation (e1, . . . , em), individually rational Pareto optimal allocations exist.

Proof: Fix a constant act x > 0 and choose a measure µ ∈ π1(x). If f and g are µ-equivalent,
so µ({s : f(s) 6= g(s)}) = 0, then f ∼i g for each i. To see this, fix µ-equivalent acts f and g,
and an agent i. Without loss of generality suppose g %i f . First suppose that inf f, inf g > 0.
In this case, every p ∈ πi(f) is absolutely continuous with respect to µ, so

p · g = p · f ∀p ∈ πi(f)

Thus f %i g, and we conclude g ∼i f as desired. For the general case, consider the sequence of
constant acts {xn} with xn = 1

n for each n: inf xn > 0 for each n while xn → 0 in the sup-norm
topology. For each n, the acts f+xn and g+xn are µ-equivalent, and inf(f+xn), inf(g+xn) > 0.
By the previous argument, f + xn ∼i g + xn for each n, and by continuity f ∼i g as desired.

For each i, extend Vi to L∞(S, Σ, µ)+ using this observation, by defining Vi([f ]) := Vi(f)
for each f ∈ B(S, Σ)+.
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Fix an initial endowment allocation (e1, . . . , em), and set e :=
∑

i ei. By the Banach-Alaoglu
Theorem, the order interval [0, e] is weak∗-compact in L∞(S, Σ, µ)+, and by mutual absolute
continuity and countable continuity, Vi is weak∗-upper semi-continuous on [0, e].

From this it follows by standard arguments that for every initial endowment allocation
(e1, . . . , em), an individually rational Pareto optimal allocation exists; for completeness we
reproduce an argument from Boyd (1995); see also Theorem 1.5.3 in Aliprantis, Brown, and
Burkinshaw (1989).

Define a preorder on the compact set of feasible allocations

A := {f ∈ [L∞(S, Σ, µ)+]m :
∑

i

fi = e}

as follows. Given feasible allocations (f1, . . . , fm) and (g1, . . . , gm), define f % g if fi %i gi for
each i. Set

B(g) := {f ∈ A : f % g}
and

S := B((e1, . . . , em)) = {f ∈ A : f % (e1, . . . , em)}
Let R be a chain in S. For any finite subset R̄ of R, ∩g∈R̄B(g) = B(max R̄) is nonempty,
by transitivity. Thus {B(g) : g ∈ R} has the finite intersection property. Each B(g) is weak∗-
closed, hence, by compactness of A, ∩g∈RB(g) 6= ∅, and any element of ∩g∈RB(g) provides an
upper bound for R. By Zorn’s lemma for preordered sets (see, e.g., Megginson (1998), p. 6),
S has a maximal element, which is then an individually rational Pareto optimal allocation.

With this in place, we turn to the infinite version of Proposition 9. The proof is analogous,
making use of an infinite-dimensional version of the second welfare theorem and our previous
result establishing the existence of individually rational Pareto optimal allocations in our model.
As in the finite case, the aggregate endowment e is constant, with e > 0, hence inf e > 0. We
say that f = (f1, . . . , fm) ∈ Fm is a norm-interior allocation if inf fi > 0 for i = 1, 2, . . . m.

Proposition 13. Let {%i: i = 1, . . . , m} satisfy Axioms 1-10 and mutual absolute continuity.
Then the following statements are equivalent:

(i) There exists a norm-interior full insurance Pareto optimal allocation.

(ii) Any Pareto optimal allocation is a full insurance allocation.

(iii) Every full insurance allocation is Pareto optimal.

(iv)
⋂

i πi 6= ∅.
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Proof: As in the proof of Proposition 9, we show the sequence of inclusions:

(i) ⇒ (iv): Suppose that x = (x1, . . . , xm) is a norm-interior full insurance allocation that
is Pareto optimal. Each xi is contained in the norm interior of B(S, Σ)+, hence by the second
welfare theorem, there exists p ∈ ba(S, Σ) with p 6= 0 such that p supports the allocation x,
that is, such that for each i, p · f ≥ p · xi for all f %i xi. By monotonicity, p > 0, so after
normalizing we can take p ∈ ∆S. By definition p ∈ πi for all i, hence

⋂
i πi 6= ∅.

(iv) ⇒ (ii): Let p ∈ ⋂
i πi and suppose f is a Pareto optimal allocation such that fj is not

constant for some j. Define xi := Epfi for each i. By strict monotonicity, p is strictly positive,
that is, p · g > 0 for any act g > 0. Together with countable additivity, this yields xi ≥ 0 for
all i, and xi = 0 ⇐⇒ fi = 0. Since p ∈ ⋂

{i:xi>0} πi(xi) =
⋂
{i:xi>0} πu

i (xi), xi % fi for all i,
and by strict convexity, xj Âj fj . Then the allocation x = (x1, . . . , xm) is feasible, and Pareto
dominates f , which is a contradiction.

(ii) ⇒ (iii): Suppose that x is a full insurance allocation that is not Pareto optimal. Using
Proposition 12, there must be a Pareto optimal allocation f that Pareto dominates x. By (ii),
f must be a full insurance allocation, which is a contradiction.

(iii) ⇒ (i): The allocation ( 1
me, . . . , 1

me) is a norm-interior full insurance allocation. By
(iii) it is Pareto optimal.

We close with an example illustrating how the additional axioms arising in the infinite state
space case might naturally be satisfied. We consider the version of the MEU model studied
by Billot, Chateauneuf, Gilboa, and Tallon (2000). They consider an MEU model in which
each agent i has a weak∗-closed, convex set of priors Pi ⊂ ba(S, Σ) consisting only of countably
additive measures, and a utility index ui : R+ → R that is strictly increasing, strictly concave,
and differentiable. In addition, they assume that all measures in Pi and Pj are mutually
absolutely continuous for all i and j. It straightforward to verify that Pi = πi for each i, as
in the finite state case, and that the model satisfies countable additivity. To verify mutual
absolute continuity, suppose that x > sup f but xEf ∼i f for some event E and some agent
i. Using Theorems 3 and 5 of Epstein and Marinacci (2007), there must exist p ∈ Pi such
that p(E) = 0. Because all measures in Pi and Pj for any other j are assumed to be mutually
absolutely continuous, it must be the case that p(E) = 0 for any p ∈ Pj for any agent j, which
guarantees that yEg ∼j g for all j and any other acts y, g.

To see that continuity and countable continuity are also satisfied, first take {fn}, f in F
with ‖fn − f‖ → 0. Then

|Vi(fn)− Vi(f)| = |min
p∈πi

Ep(ui(fn))− min
p∈πi

Ep(ui(f))|
≤ max{|Epn∗ (ui(fn)− ui(f))| , |Ep (ui(fn)− ui(f))|}
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where pn∗ ∈ M(fn) and p∗ ∈ M(f).15 Since ‖ui(fn) − ui(f)‖ → 0, |Vi(fn) − Vi(f)| → 0, and
the desired conclusion follows.

Next, to see that countable continuity is also satisfied, fix µ ∈ π1 and an agent i. Take
g, f, x∈F and a net {fα} in F with fα %i x and fα ≤ g for all α. Notice that it suffices to show
that the set {f ∈ L∞(S, Σ, µ)+ : f %i x, f ∈ [0, g]} is σ(L∞(S, Σ, µ), L1(S, Σ, µ))-closed, with
%i and acts recast in L∞(S, Σ, µ) as in Proposition 12. Using convexity, this is equivalent to
showing that this set is closed in the Mackey topology τ := τ(L∞(S, Σ, µ), L1(S, Σ, µ)). Thus
suppose fα τ→ f . By way of contradiction, suppose that x Âi f , thus Vi(x) = Ep∗(ui(x)) >
Ep∗(ui(f)), where as above p∗ ∈ M(f). Then for every α,

Ep∗(ui(fα)) ≥ Vi(fα) ≥ Ep∗(ui(x)) > Ep∗(ui(f))

while

0 < Ep∗(ui(x))− Ep∗(ui(f)) ≤ Ep∗(ui(fα))−Ep∗(ui(f)) = Ep∗(ui(fα)− ui(f))
= |Ep∗(ui(fα)− ui(f))|
≤ Ep∗(|ui(fα)− ui(f)|)
≤ Ep∗(K|fα − f |)

for some K > 0, where the last inequality follows from the assumption that ui is strictly
concave, strictly increasing, and differentiable, hence Lipschitz continuous. Since τ is locally
solid, |fα − f | τ→ 0, from which it follows that |fα − f | w∗→ 0 as well. Since p∗ ¿ µ and p∗ is
countably additive, by appealing to the Radon-Nikodym Theorem, Ep∗(K|fα − f |) → 0. As
this yields a contradiction, f %i x as desired.

Appendix B: Proofs

We will use the fact that {g|g Â f} = int {g|g % f} and {g|g % f} = cl {g|g Â f}. Let 〈f, g〉
denote the inner product of f and g and ∂I be the superdifferential of a concave function I.

Proof of Proposition 1. Using continuity, monotonicity, and convexity, standard arguments
yield the equivalence of π(f) and πu(f) for any strictly positive act f .

To show that π(f) = πw(f) as well, we first observe that by definition, the set π(f) is the
set of normals to the convex upper contour set B(f) := {g ∈ RS : g % f} at f , normalized to
lie in ∆S. Let TB(f)(f) denote the tangent cone to B(f) at f , which is given by:

TB(f)(f) = {g ∈ RS : f + λg % f for some λ > 0}
15As in the finite state space case, M(f) := arg minp∈πi Ep(ui(f)).
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From standard convex analysis results, π(f) is also the set of normals to TB(f)(f), again
normalized to lie in ∆S. Thus

π(f) = {p ∈ ∆S : p · g ≥ 0 for all g ∈ TB(f)(f)}

and g ∈ TB(f)(f) ⇐⇒ p · g ≥ 0 for all p ∈ π(f). Then

g′ ∈ TB(f)(f) + {f} = {h ∈ RS : (1− ε)f + εh % f for some ε > 0}
⇐⇒ p · g′ ≥ p · f for all p ∈ π(f)

Thus π(f) = πw(f).

For many of the results in the section on special cases, we make use of the following lemma.

Lemma 1. Assume that % satisfies Axioms 1-4 and the representation V of % is concave.
Then π(f) = π∂(f) := { q

‖q‖ |q ∈ ∂V (f)}.

Proof: First, we show that π∂(f) ⊆ π(f). Let p = q
‖q‖ for some q ∈ ∂V (f). Let V (g) ≥ V (f).

We have 0 ≤ V (g) − V (f) ≤ 〈q, g − f〉, hence 〈q, f〉 ≤ 〈q, g〉, so Epg ≥ Epf . Second, we show
that π∂(f) ∈ P(f), thus πw(f) ⊆ π∂(f). Let g be such that Epg > Epf for all p ∈ π∂(f). We
need to find ε > 0 with V (εg +(1−ε)f) > V (f). The one-sided directional derivatives V ′(f ; h)
exist for all h ∈ RS , and V ′(f ; h) = min{〈l, h〉|l ∈ ∂V (f)}.16 Hence, for some q ∈ ∂V (f):

V (εg + (1− ε)f) = V (f + ε(g − f))
= V (f) + εV ′(f ; g − f) + o(ε)
= V (f) + ε min{〈l, g − f〉| l ∈ ∂V (f)}+ o(ε)
= V (f) + ε〈q, g − f〉+ o(ε)
= V (f) + ε[〈q, g − f〉+ o(1)].

Because q = ‖q‖p for some p ∈ π∂(f), 〈q, g − f〉 = ‖q‖Ep(g − f) > 0. Therefore, there exists a
δ > 0 such that for all ε ∈ (0, δ), ε[Ep(g − f) + o(1)] > 0, hence V (εg + (1− ε)f) > V (f).

Proof of Proposition 3. It follows from the proof of Theorem 3 in Maccheroni, Marinacci, and
Rustichini (2006) that I(ξ) = minp∈∆S(Epξ + c?(p)) is concave. This, together with concavity
of u, yields the concavity of V . Continuity and monotonicity follow from the fact that I is
monotonic and sup-norm Lipschitz continuous. By Theorem 18 of Maccheroni, Marinacci, and
Rustichini (2006),

∂V (f) = {q ∈ RS : q = pDU(f) for some p ∈ M(f)}.
16Theorem 23.4 of Rockafellar (1970) implies that V ′(f ; h) = inf{〈l, h〉|l ∈ ∂V (f)} for all h. Because V is a

proper concave function, ∂V (f) is a compact set, hence the infimum is achieved.
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The result follows from Lemma 1.

Proof of Proposition 2. This follows from Proposition 3 by noting that MEU is the special
case of variational preferences for which

c?(p) =
{

0 if p ∈ P
∞ if p /∈ P.

Proof of Proposition 4. It follows from Lemma 8 in Chateauneuf and Faro (2006) that
I(ξ) = minp∈Lα

1
ϕ(p)Epξ is concave. This, together with concavity of u, yields the concavity

of V . Continuity and monotonicity follow from the fact that I is monotonic and sup-norm
Lipschitz continuous (see Lemma 6 in Chateauneuf and Faro 2006). By Clarke (1983) (2.8,
Cor. 2),

∂V (f) = {q ∈ RS : q = pDU(f) for some p ∈ M(f)}.
The result follows from Lemma 1.

Proof of Proposition 5. Continuity, monotonicity and convexity are routine. When u
and φ are concave and differentiable, it is straightforward to see that V is also concave and
differentiable, and that ∂V (f) = {DV (f)} = {Eµ[Dφ(Epu(f))pDU(f)]}.

Proof of Proposition 6. Continuity, monotonicity and convexity are routine. When u
and φ are concave and differentiable, it is straightforward to see that V is also concave and
differentiable. A direct calculation of directional derivatives reveals that ∂V (f) = {DV (f)} =
{pDU(f)[Ia ⊗DΦ(Eau(f))]}.

Proof of Proposition 8. Fix constant acts x, x′ > 0, and let B(x) := {f ∈ RS
+ : f % x}

denote the upper contour set of % at x. As in the proof of Proposition 1, let TB(x)(x) denote
the tangent cone to B(x) at x:

TB(x)(x) = {g ∈ RS : x + λg % x for some λ > 0}

Again as in the proof of Proposition 1, π(x) is the normal cone to TB(x)(x), analogously for
π(x′). By translation invariance at certainty, TB(x)(x) = TB(x′)(x′), from which we conclude
that π(x) = π(x′).
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