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Abstract

This note supplements recent work by Sun (2006) on Fubini extensions.
In particular, it is shown that sufficiently rich Fubini extensions can be
obtained without appealing to constructions from nonstandard analysis.

1 Introduction

In many contexts of economics, a large finite set is idealized by the continuum.
The prototype example is Aumann’s (1964) model of economies with a contin-
uum of agents. In this spirit, there is also the desire to get, with a continuum
of random variables, an “exact version” of the classical law of large numbers.
However, there are mathematical difficulties with this idea, as was first noted in
the economic literature by Judd (1985) and Feldman and Gilles (1985). Neverthe-
less, there are positive results in the direction of an exact law of large numbers.
The pioneering work is by Green (1994, first draft 1988). Subsequent results are
by Al-Najjar (2004), Alós-Ferrer (2002), Anderson (1991), Sun (1998, 2006), and
Uhlig (1996). The views of these authors differ, though.

The approach in Sun (2006) is to derive an exact law of large numbers from
measurability of a process with respect to a Fubini extension of the product
measure corresponding to a parameter probability space and a sample space.
Existence of Fubini extensions that are “rich” in the sense that non-trivial pro-
cesses for which an exact law of large numbers holds indeed exist was shown
by Sun using Loeb space constructions. In this note, we show that such Fubini
extensions can be obtained without appealing to Loeb spaces.

Let us start with some definitions, taken from Sun (2006), but slightly refor-
mulated here concerning notation.

Definition 1. Let �X;�; �� and �Y ;T; �� be probability spaces and �X � Y ;�; ��
the corresponding product probability space. Let � be a probability measure
on X � Y , and � its domain. Then � is said to be a Fubini extension of � if
(a) � � � and (b) for each H 2 �—denoting by �H the characteristic function
of H—the integrals

R R
�H�x;y�d��y�d��x� and

R R
�H�x;y�d��x�d��y� are

well defined and
R R
�H�x;y�d��y�d��x� � ��H� �

R R
�H�x;y�d��x�d��y�.
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Note that (a) and (b) in this definition imply that � must agree with � on �.
Also note that this definition implies that if f : X � Y ! R is a �-measurable
function, then for almost all x 2 X, the x-sections f�x; �� are measurable for
the �-completion of T, and similarly for the y-sections. From this it follows in
turn that an analogous statement holds for functions from X � Y to any Polish
space. The definition also implies that the conclusion of Fubini’s theorem holds
for �-integrable functions from X � Y to R.

Definition 2. Let �X;�; �� and �Y ;T; �� be probability spaces, Z a Polish space,
and f : X�Y ! Z a function such that for almost all x 2 X, f�x; �� is measurable
for the �-completion of T and the Borel sets of Z . Then the family hf�x; ��ix2X
is said to be essentially pairwise independent if there is a null set N in X such
that for each x 2 X nN the functions f�x; �� and f�x0; �� are stochastically
independent for almost all x0 2 X.

Let �X;�; ��, �Y ;T; ��, and Z be as in this latter definition, and let � be the
product measure on X � Y given by � and � . As shown by Sun (2006), if a
function f : X � Y ! Z is measurable with respect to the domain � of some
Fubini extension � of �, then essentially pairwise independence of the family
hf�x; ��ix2X implies that this family satisfies an exact law of large numbers. Of
course, the requirements are trivially satisfied for a constant valued function,
and a question is whether there exist Fubini extensions such that the criterion
in the following definition is satisfied.

Definition 3. Let �X;�; �� and �Y ;T; �� be probability spaces, and � the corre-
sponding product probability measure. Let � be a Fubini extension of �, and �
its domain. The Fubini extension � is called a rich Fubini extension if there is a
�-measurable function f : X � Y ! �0;1� such that the family hf�x; ��ix2X is
essentially pairwise independent and for almost all x 2 X, the distribution of
the function f�x; �� is the equal distribution on �0;1�.

Recall that any Borel probability measure � on a Polish space Z is the dis-
tribution of some measurable function g defined on ��0;1�;B; ��, where B is
the Borel � -algebra of �0;1� and � is Lebesgue measure. Hence, if f is as in
Definition 3, and f 0 is the composition g �f , then f 0 is a �-measurable function
from X � Y to Z such that the family hf 0�x; ��ix2X is essentially pairwise inde-
pendent, and for almost all x 2 X, the distribution of f 0�x; �� is � . In particular,
by the Fubini property of �, the distribution of f 0 is equal to � . Thus the word
“rich” in Definition 3 is justified.

Results on the existence of rich Fubini extensions were established by Sun
(1998, Theorem 6.2) and Sun (2006, Proposition 5.6), using nonstandard analy-
sis, and in particular Loeb space constructions. The purpose of this note is to
show that one can get rich Fubini extensions without appealing to Loeb spaces.
In view of the results in Sun (2006) on the exact law of large numbers via general
Fubini extensions, the results in our note imply, in particular, that one can get
exact laws of large numbers without appealing to Loeb spaces and nonstandard
analysis.
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2 Notation, conventions, and further definitions

If �X;�; �� is any measure space, covN ��� denotes the least cardinal of any
family of �-null sets which covers X, provided such a family exists. We let
covN ��� be undefined if no such family exists. Thus, if � is a cardinal and
it is written, e.g., “covN ��� � �," then this is understood to imply that X can
be covered by a family of �-null sets.

For a non-empty set I, �I denotes the usual measure on f0;1gI . In particular,
�N denotes the usual measure on f0;1gN; �BN denotes the restriction of �N to the
Borel � -algebra of f0;1gN.

If �X;�; �� is any measure space, “measurable” for a mapping f : X ! f0;1gN

always means measurable with respect to the Borel (= Baire) sets of f0;1gN.
For convenience, we will work with the following restatement of Definition 3.

(Recall for this that �0;1� with Lebesgue measure and f0;1gN with its usual
measure are isomorphic as measure spaces.)

Definition 4. Let �X;�; �� and �Y ;T; �� be probability spaces, and � the corre-
sponding product probability measure. Let � be a Fubini extension of �, and �
its domain. The Fubini extension � is called a rich Fubini extension if there is a
�-measurable function f : X � Y ! f0;1gN such that the family hf�x; ��ix2X is
essentially pairwise independent and for almost all x 2 X, the distribution of
the function f�x; �� is equal to �BN.

Let �X;�; ��, �Y ;T; ��, and � be as in this definition. By Sun (2006, Theorem
4.2) (see also Theorem 3 below), there can be no rich Fubini extension of � if one
of the � -algebras � and T, say �, has a non-negligible element A such that the
trace of � on A is essentially countably generated. For this reason we consider
probability spaces that satisfy the criterion in the following definition.

Definition 5. Let �X;�; �� be a probability space and �A; �̂� its measure algebra.
The measure � (or the measure space �X;�; ��) is said to be super-atomless if
each non-zero principal ideal in A has uncountable Maharam type.1

Examples of super-atomless probability spaces are f0;1gI with its usual mea-
sure when I is an uncountable set, the product measure space �0;1�I where
each factor is endowed with Lebesgue measure when I is uncountable, subsets
of these spaces with full outer measure when endowed with the subspace mea-
sure, atomless Loeb probability spaces. Further, any atomless Borel probability
measure on a Polish space can be extended to a super-atomless probability mea-
sure (see Podczeck, 2008).2 We also need the following definition.

1We refer to Fremlin (2002) for terminology and facts concerning measure algebras.
2A super-atomless probability measure obtained in this way differs in a significant way from

atomless Loeb measures. Indeed, let �X;�; �� be any atomless Loeb probability space, Z a Polish
space, f : X ! Z a measurable mapping, and � the distribution of f on Z . Then by Keisler and
Sun (2002), for �-almost all z 2 Z the inverse image f�1

�
fzg

�
has a cardinality at least as large

as that of the continuum. Of course, such an implication does not hold for a super-atomless
probability space constructed via an extension of a Borel probability measure on some Polish
space.
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Definition 6. Let �X;�; �� be a probability space, with measure algebra �A; �̂�.
For an uncountable cardinal �, the measure � (or the measure space �X;�; ��)
is said to be �-super-atomless if � � minf�0 : �0 is the Maharam type of some
non-zero principal ideal in Ag.3

3 Results

Theorem 1. Given any super-atomless probability space �X;�; ��, there is prob-
ability space �Y ;T; �� (also super-atomless) such that the product measure corre-
sponding to � and � has a rich Fubini extension.

Note that in Theorem 1, for the given probability space �X;�; �� we can in
particular have that X � �0;1� and � is any extension of Lebesgue measure on
�0;1� to a super-atomless measure. We also note, writing c for the cardinal of
the continuum:

Remark 1. In Theorem 1, if #�X� � c then the probability space �Y ;T; �� can be
chosen so that #�Y� � c. (For an argument establishing this, see subsection 4.3.)
In particular, �Y ;T; �� can be chosen with #�Y� � c if X � �0;1� and � is any
extension of Lebesgue measure on �0;1� to a super-atomless measure.

A concrete version of Theorem 1 is contained in the next result. Actually,
this next result is a “Loeb space free” version of Proposition 5.6 in Sun (2006).

Theorem 2. Let �X;�; �� be any super-atomless probability space. Then there is
a probability measure � on

�
f0;1gN

�X
such that the product probability measure

on X �
�
f0;1gN

�X
corresponding to � and � has a rich Fubini extension, say

� with domain �. The measure � and the Fubini extension � can be chosen in
such a way that the coordinate projections function f : X �

�
f0;1gN

�X ! f0;1gN,
given by f�x;y� � y�x�, has the following properties: (a) f is �-measurable;
(b) the family hf�x; ��ix2X is i.i.d. for � with distribution �BN, thus, in particular,
essentially pairwise independent for the marginals � and � of �.

Can it be proved that, given any two super-atomless probability spaces, the
corresponding product measure has a rich Fubini extension? Unfortunately, the
answer is no. Consider f0;1g!1 with its usual measure �!1 , where!1 is the least
uncountable cardinal. It cannot be proved in ZFC that covN ��!1� �!1.4 On the
other hand, f0;1g!1 is Maharam-type-homogeneous with Maharam type!1. But
this implies that if covN ��!1� > !1, then the product measure corresponding
to two copies of f0;1g!1 cannot have a rich Fubini extension. In fact, the next
theorem provides necessary conditions for rich Fubini extensions to exist.

3Recall that the cardinals are well-ordered, so the definition makes sense.
4Recall that Martin’s axiom implies that covN ��!1� � c (see Fremlin, 2005, 523Y(f)(ii) and

517O(b) and (d)) and that it is (relatively) consistent with ZFC that Martin’s axiom holds and
!1 < c.
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Theorem 3. Let �X;�; �� and �Y ;T; �� be probability spaces. If the product prob-
ability measure on X�Y determined by � and � has a rich Fubini extension, then
the following hold.

(a) Each non-zero principal ideal of the measure algebra of � has Maharam type
� covN ���.

(b) Each non-zero principal ideal of the measure algebra of � has Maharam type
� covN ���.

Theorem 3 implies in particular that if �X;�; �� and �Y ;T; �� are probabil-
ity spaces, then in order for the corresponding product probability measure to
have a rich Fubini extension, it is necessary that the measure algebras of both
� and � do not contain non-zero principal ideals with countable Maharam type;
in particular, it is necessary that both probability spaces are atomless.5

The following result provides sufficient conditions in order that the prod-
uct measure corresponding to two given probability spaces have a rich Fubini
extension.

Theorem 4. Let �X;�; �� and �Y ;T; �� be probability spaces, and � the corre-
sponding product probability measure on X �Y . Suppose that for some uncount-
able cardinals � and �, � is �-super-atomless and � is �-super-atomless. Further
suppose that for some cardinal �, with � � minf�;�g, there is a non-decreasing
family hM�i�<� of null sets in X with

S
�<�M� � X and a non-decreasing family

hN�i�<� of null sets in Y with
S
�<� N� � Y . Then � has a rich Fubini extension.

The hypotheses in Theorem 4 can be satisfied, as shown in the following
example.

Example. Let � be any cardinal with uncountable cofinality, and consider f0;1g�
with its usual measure �� . Fix any x 2 f0;1g� and for each � < �, let

N� �
�
x 2 f0;1g� : x��� � x��� for all � < � with � � �

	
:

Set X �
S
�<� N� , let � be the subspace measure on X induced by �� , and � the

domain of �. As � has uncountable cofinality, X intersects every non-empty sub-
set of f0;1g� that is determined by coordinates in some countably subset of �.
Thus X has full outer measure for �� . This implies that � is a probability mea-
sure and that the measure algebra of � can be identified with that of �� . Accord-
ing to a standard fact, �� is Maharam-type-homogeneous with Maharam type �,
and it follows that � has the same property. In our terminology, this means �
is �-super-atomless. Note that for any � < �, N� is a �� -null set in f0;1g� since
all of its elements agree on some infinite subset of �. Hence for any � < �,
N� is a �-null set in X. Evidently the family hN�i�<� is non-decreasing. Thus
�X;�; �� provides an example as desired. (If � � c, where c is the cardinal of the
continuum, the argument can be refined to yield an X with #�X� � c; c.f. the
proof of Theorem 5.)

5We remark that these latter facts were already noted by Sun (2006).
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Recall that if �X;�; �� is any complete atomless probability space, there is a
mapping f : X ! �0;1� which is inverse measure preserving for � and Lebesgue
measure on �0;1�. Hence if �0;1� can be covered by a non-deceasing family
hN�i�<� of Lebesgue null sets for some cardinal �, then any atomless probability
space �X;�; �� can be covered by a non-deceasing family hM�i�<� of �-null sets
(with the same �). Thus we have the following corollary of Theorem 4.

Corollary 1. Suppose that �0;1� can be covered by a non-decreasing family
hN�i�<� of Lebesgue null sets. Then given any probability spaces �X;�; �� and
�Y ;T; �� such that � is �-super-atomless with � � �, and � is �-super-atomless
with � � �, the product measure on X � Y corresponding to � and � has a rich
Fubini extension.

If the continuum hypothesis is true then �0;1� can be covered by !1 many
Lebesgue null sets, denoting by !1 the least uncountable cardinal number.
Hence Corollary 1 implies:

Corollary 2. If the continuum hypothesis holds then given any super-atomless
probability spaces �X;�; �� and �Y ;T; ��, the product measure on X � Y corre-
sponding to � and � has a rich Fubini extension.

Recall that a weakening of the continuum hypothesis is given by Martin’s
axiom, but that Martin’s axiom still implies that the union of fewer than c many
Lebesgue null sets in �0;1� is a Lebesgue null set, where c is the cardinal of the
continuum. Thus under Martin’s axiom the hypothesis on �0;1� in Corollary 1
holds for � � c. Hence Corollary 1 implies:

Corollary 3. Suppose Martin’s axiom is true. Then given any probability spaces
�X;�; �� and �Y ;T; �� such that � is �-super-atomless with � � c, and � is �-
super-atomless with � � c, the product measure on X�Y corresponding to � and
� has a rich Fubini extension.

The final result of this note is:

Theorem 5. Let X and Y be Polish spaces, � an atomless Borel probability mea-
sure on X, and � an atomless Borel probability measure on Y . Then there is
a super-atomless probability measure �0 on X which extends �, and a super-
atomless probability measure �0 on Y which extends � , such that the product
measure on X � Y corresponding to �0 and �0 has a rich Fubini extension.
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4 Proofs

4.1 Lemmata

Lemma 1. Let �X;�; �� and �Y ;T; �� be probability spaces, and �X � Y ;�; �� the
corresponding product probability space. Suppose there is a sequence hHiii2N of
subsets of X � Y such that:

(a) There is a null set N in X such that for each x 2 X nN , the x-section Hix is
in T with ��Hix� � 1=2 for all i 2 N.

(b) There is a null set N in Y such that for each y 2 Y nN , the y-section Hiy is
in � with ��Hiy� � 1=2 for all i 2 N.

(c) For each B 2 T there is null set NB in X such that for each x 2 XnNB , B and
the sections Hix , i 2 N, form a stochastically independent family in T.

(d) For each A 2 � there is null set NA in Y such that for each y 2 Y nNA, A and
the sections Hiy , i 2 N, form a stochastically independent family in �.

Then � has a rich Fubini extension � such that the domain of � contains all the
sets Hi, i 2 N, and such that a function f : X � Y ! f0;1gN which witnesses
richness of � is given by setting, for each �x;y� 2 X � Y and i 2 N,

f i�x;y� �

8<:1 if �x;y� 2 Hi

0 if �x;y� 62 Hi:

Proof. Let F denote the set of all subsets F � X � Y such that the integralsR
X ��Fx�d��x� and

R
Y ��Fy�d��y� are well defined and equal. Then F is a

Dynkin class (i.e. ; 2 F and F is closed against forming complements and
unions of disjoint sequences) as may easily be checked. Also, (a) to (d) imply
that whenever A1 � B1; : : : ; An � Bn are finitely many measurable rectangles in
X � Y and Hi1 ; : : : ;Him is a finite subfamily of hHiii2N, then the intersection

�A1 � B1�\ � � � \ �An � Bn�\Hi1 \ � � � \Him

belongs to F . Therefore, by the monotone class theorem, there is a � -algebra
�0 � F which contains all measurable rectangles in X � Y and all the sets Hi,
i 2 N. Define �0 : �0 ! R by setting �0�F� �

R
X ��Fx�d��x� for F 2 �0. Using the

monotone convergence theorem, it follows that �0 is a probability measure on
X � Y . Let � be its completion, and � the domain of �. Then since F contains
all measurable rectangles in X � Y , we have � � �. By construction, the Fubini
property holds for the characteristic functions of the elements of �0, which
in particular implies that if N is a �0-null set in X � Y , then for �-almost every
x 2 X, the x-section of N is a �-null set in Y , and for �-almost every y 2 Y ,
the y-section of N is a �-null set in X. Consequently, the Fubini property holds
for the characteristic functions of the elements of �. In particular, � coincides
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with � on �. Thus � is a Fubini extension of � such that the domain � of �
contains all the sets Hi, i 2 N. Note that we have ��Hi� � 1=2 for all i 2 N.

Now consider the function f : X � Y ! f0;1gN defined in the statement of
the lemma. Since Hi 2 � for each i 2 N, f is measurable for � and the Borel
sets of f0;1gN.

It remains to show that the family hf�x; ��ix2X is essentially pairwise inde-
pendent, and that for almost every x 2 X, f�x; �� is inverse measure preserving
for � and �BN. To this end, for each x 2 X let Tx denote the � -algebra on Y
generated by the family hHixii2N, and let N be a null set in X chosen according
condition (a). In particular, then, for each x 2 XnN , Tx is a sub-� -algebra of T.
Also, in view of (c), we may assume that for each x 2 XnN , the family hHixii2N

is stochastically independent (applying (c) e.g. to B � Y and replacing N by a
larger null set, if necessary).

Fix any x 2 XnN . Applying (c) to each finite intersection of elements of the
family hHixii2N, we may see that there is a null set Nx in X such that for each
x 2 XnNx , the family of all the sets Hix , i 2 N, and Hix , i 2 N, is a stochastically
independent family in T. But this implies that for each x 2 XnNx , the � -algebras
Tx and Tx are stochastically independent. Now the definition of f implies that
for each x 2 X, f�x; �� is measurable for Tx and the Borel sets of f0;1gN,
and it follows that for each x 2 X nNx , f�x; �� and f�x; �� are stochastically
independent.

Since this argument applies to each fixed x 2 XnN , it follows that the family
hf�x; ��ix2X is essentially pairwise independent. Finally, note that if x 2 XnN ,
then since hHixii2N is stochastically independent for such an x, f�x; �� is inverse
measure preserving for � and �BN, by the definition of f and since ��Hix� � 1=2
for all i 2 N and all x 2 XnN . This completes the proof.

Lemma 2. Let �X;�; �� be a �-super-atomless probability space. Then there is a
stochastically independent family hE�i�<� in �, with ��E�� � 1=2 for each � < �,
such that for each A 2 � there is a countable set DA � � such that A and the sets
E� , � 2 � nDA, form a stochastically independent family in �.

Proof. Suppose first that � is Maharam-type-homogeneous, and let �A; �̂� denote
the measure algebra of �. Then by Maharam’s theorem, there is a measure alge-
bra isomorphism between �A; �̂� and the measure algebra of the usual measure
�� of f0;1g� . Denote this latter measure algebra by �C� ; �̂��. For each � < �
let F� � fx 2 f0;1g� : x��� � 1g. Then hF�i�<� is a stochastically independent
family in the domain of �� , with ���F�� � 1=2 for each � < �. Thus the fam-
ily hF��i�<� , where F�� is the element in C� determined by F� , is a stochastically
independent family in C� , with �̂��F��� � 1=2 for each � < �. By a standard
fact, the set fF�� : � < �g completely generates C� . Consequently, since �A; �̂�
and C� are isomorphic as measure algebras, there is a stochastically indepen-
dent family ha�i�<� in A, with �̂�a�� � 1=2 for each � < �, such that the set
fa� : � < �g completely generates A. For each � < � select an element E� in �
which determines a� . Then hE�i�<� is a stochastically independent family in �,
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with ��E�� � 1=2 for each � < �. Now pick any A 2 �. Let A� be the element
in A determined by A. Since the set fa� : � < �g completely generates A, there
is a countable set DA � � such that A� belongs to the closed subalgebra of A
generated by the set fa� : � 2 DAg.6 But this subalgebra of A and the closed
subalgebra of A generated by the set fa� : � 2 �nDAg are stochastically inde-
pendent, because the family ha�i�<� is stochastically independent.7 It follows
that A� and the elements a� , � 2 � nDA, form a stochastically independent fam-
ily in A, whence A and the sets E� , � 2 �nDA, form a stochastically independent
family in �.

Now suppose � is not Maharam-type-homogeneous. Since � is a probability
measure, Maharam’s theorem implies that there is a countable partition hSiii2I
of X, with Si 2 � and ��Si� > 0 for each i 2 I, such that, denoting by �i the
subspace measure on Si induced by �, �i is Maharam-type-homogeneous for
each i 2 I. Let �i be the Maharam type of �i and note that � �minf�i : i 2 Ig (by
the definition of “�-super-atomless”). For each i 2 I, let �i denote the domain of
�i (i.e. �i is the trace of � on Si) and let �i denote the normalization of �i so that
�i is a probability measure. (Thus �i is the measure on Si given as �i � 1

�i�Si�
�i.)

Now for each i 2 I, considering �Si;�i; �i� as a probability space in its own
right, let hEi�i�<�i be a family in �i, constructed according to the first part of

this proof. Recalling that � � minf�i : i 2 Ig, for each i 2 I let hEi�i�<� be a

subfamily of the family hEi�i�<�i , and then let hE�i�<� be the family in � defined

by setting E� �
S
i2I Ei� for each � < �. Note that we must have ��E�� � 1=2 for

each � < �.
Let E�1 ; : : : ; E�n be any finite subfamily of hE�i�<� . Then, by choice of the

families hEi�i�<� , i 2 I, and since hSiii2I is a partition of X,

��E�1 \ � � � \ E�n� �
X
i2I
�i�Ei�1

\ � � � \ Ei�n�

�
X
i2I
�i�Si��i�Ei�1

\ � � � \ Ei�n�

�
X
i2I
�i�Si�2�n

� 2�n

�
nY
j�1

��E�j�:

Thus the family hE�i�<� is stochastically independent.
Consider any A 2 �. Set Ai � A\ Si for each i 2 I. By choice of the families

hEi�i�<� , i 2 I, for each i 2 I there is a countable set DiA � � such that Ai and

the sets Ei� , � 2 � nD
i
A, form a stochastically independent family in �i for �i.

Set DA �
S
i2I DiA and consider any finite subfamily E�1 ; : : : ; E�n of hE�i�<� with

6See Fremlin (2002, 331G(d) and 331G(e)).
7See Fremlin (2002, 325X(e) and 325X(f)).
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�j 62 DA for j � 1; : : : ; n. Then

��A\ E�1 \ � � � \ E�n� �
X
i2I
�i�Ai \ Ei�1

\ � � � \ Ei�n�

�
X
i2I
�i�Si��i�Ai \ Ei�1

\ � � � \ Ei�n�

�
X
i2I
�i�Si���Ai�2�n

�
�X
i2I
�i�Ai�

�
2�n

� ��A�
nY
j�1

��E�j�:

Thus, A and the sets E� , � 2 � nDA, form a stochastically independent family
in �.

Lemma 3. Consider f0;1gN as endowed with its usual measure �N, let X be an
uncountable set, and let � be the product measure on

�
f0;1gN

�X
. Further, for

each i 2 N and each x 2 X, let

Kix �
n
y 2

�
f0;1gN�X : yi�x� � 1

o
:

Finally, let Y be a subset of
�
f0;1gN

�X
with full outer measure for � , and let � be

the subspace measure on Y induced by � . Then:

(i) Let T be the domain of � and set Hix � Kix \ Y for i 2 N and x 2 X. Then:

(1) For each i 2 N and each x 2 X, Hix 2 T with ��Hix� � 1=2.

(2) Given any B 2 T, there is countable set JB � X such that B and the sets
Hix , i 2 N, x 2 XnJB , form a stochastically independent family in T.

(ii) Let �0 be the image measure of � under the inclusion of Y into
�
f0;1gN

�X
,

and T0 its domain. Then:

(1) For each i 2 N and each x 2 X, Kix 2 T0 with �0�Kix� � 1=2.

(2) Given any B 2 T0, there is countable set JB � X such that B and the sets
Kix , i 2 N, x 2 XnJB , form a stochastically independent family in T0.

Proof. Write T for the domain of � . For each i 2 N and each x 2 X, we have
Kix 2 T by the definition of a product measure, whenceHix 2 T and thus Kix 2 T0.
Also by the definition of a product measure, ��Kix� � 1=2 for all i 2 N and
x 2 X. Since Y has full outer measure, it follows that ��Hix� � 1=2 for all i 2 N
and x 2 X, and from this that �0�Kix� � 1=2 for all i 2 N and x 2 X. Thus (i)(1)
and (ii)(1) hold.

For each x 2 X let Tx be the sub-� -algebra of T generated by the x-th coor-
dinate projection �x :

�
f0;1gN

�X ! f0;1gN. By definition of a product measure,

10



hTxix2X is a stochastically independent family of sub-� -algebras of T. Since the
family of coordinate projections � i : f0;1gN ! f0;1g, i 2 N, is stochastically
independent for �N, it follows that hKixii2N;x2X is a stochastically independent
family in T. For each J � X, let TJ be the smallest sub-� -algebra of T which
includes Tx for each x 2 J.

Consider any C 2 T. For some countable J � X, there is a C0 2 TJ which
differs from C by a null set. The fact that hTxix2X is stochastically independent
implies that TJ and TXnJ are stochastically independent. Since Kix 2 Tx for each
x 2 X and i 2 N, it follows that C0 and the sets Kix , i 2 N, x 2 X nJ, form a
stochastically independent family in T. Since C0 differs from C by a null set, the
same is true for C and the sets Kix , i 2 N, x 2 XnJ.

Now consider any B 2 T. For some C 2 T we have B � C\Y and ��C� � ��B�.
From the previous paragraph, there is a countable set J � X such that C and
the sets Kix , i 2 N, x 2 X nJ, form a stochastically independent family in T.
Let L be any non-empty finite subset of X nJ, and for each l 2 L let Ml be any
non-empty finite subset of N. Consider the finite subfamily hHml il2L;m2Ml of the
family hHixix2XnJ;i2N. Using the fact that Y has full outer measure for � , we may
see that

�
�
B \

\
l2L;m2Ml

Hml
�
� �

�
�C \ Y�\

\
l2L;m2Ml

�Kml \ Y�
�

� �
��
C \

\
l2L;m2Ml

Kml
�
\ Y

�
� �

�
C \

\
l2L;m2Ml

Kml
�

� ��C�
Y

l2L;m2Ml
��Kml � because L � XnJ

� ��B�
Y

l2L;m2Ml
��Hml �:

It follows that B and the sets Hix , i 2 N, x 2 XnJ, form a stochastically indepen-
dent family in T. Thus (i)(2) holds.

Finally, consider any B 2 T0. Let �Y denote the inclusion of Y into
�
f0;1gN

�X
,

and recall that �0 was defined to be the image measure of � under �Y . From the
previous paragraph, there is a countable set J � X such that ��1

Y �B� and the sets
Hix , i 2 N, x 2 XnJ, form a stochastically independent family in T. Since �0 is
the image measure of � under �Y , and since Hix � ��1

Y �Kix� by the definition of
Hix , it follows that B and the sets Kix , i 2 N, x 2 X nJ, form a stochastically
independent family in T0. Thus (ii)(2) holds.

4.2 Proof of Theorem 1

Since �X;�; �� is super-atomless, and since for any infinite cardinal � there is
a bijection between � and � � N, Lemma 2 implies that we may select an un-
countable cardinal � and a stochastically independent family hEi�i�<�;i2N in �,
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with ��Ei�� � 1=2 for each � < � and i 2 N, such that given any A 2 � there is

countable set JA � � such that for each � < � with � 62 JA, A and the sets Ei� ,
i 2 N, form a stochastically independent family in �.

For each � < �, define a function y� from X to f0;1gN by setting

yi��x� �

8<:1 if x 2 Ei�
0 if x 62 Ei�

for i 2 N and x 2 X. Attach a countably infinite subset D� � X to each � < �
in such a way that for each countably infinite subset D � X there is a � < �
such that D \D� � ;. (Since X is uncountable, this is possible. Indeed, X being
uncountable implies that we may select a disjoint family hDiii2I of countably
infinite subsets of X such that #�I� � !1. Now since � is uncountable, there is
a surjection from � onto I, say �. Let D� � D����.)

Now for each � < � let

N� �
�
y 2

�
f0;1gN

�X
: there is a null set N � X such that

y uXnN � y� uXnN and N \D� � ;
�

and then let Y �
S
�<� N� . Let � be the product measure on

�
f0;1gN

�X
when each

factor f0;1gN is given its usual measure �N. Note that for each � < �, N� is a �-
null set, since all of its elements agree on the infinite set D� . On the other hand,
Y has full outer measure for � . Indeed, letW be any non-negligible �-measurable
subset of

�
f0;1gN

�X
. Then W � W 0 for some non-empty subset W 0 of

�
f0;1gN

�X
which is determined by coordinates in some countable subset of X, say J. By
construction, there is a � < � such that J \D� � ;. Since the countable set J is
a null set in X, it follows that, for such a �, the set�

y 2
�
f0;1gN

�X
: y uXnJ � y� uXnJ

�
is included inN� and intersects the setW 0. Thus Y intersects every non-negligible

�-measurable subset of
�
f0;1gN

�X
, i.e., Y has full outer measure for � .

Let � be the subspace measure on Y induced by � , and T its domain. Then
since Y has full outer measure for � , �Y ;T; �� is a probability space. Note also
that for each � < �, N� is a �-null set in Y . Hence for any A 2 �,

S
�2JA N� is

a �-null set in Y since JA is countable.
For each i 2 N let

Hi � f�x;y� 2 X � Y : yi�x� � 1g:

Then Lemma 1 applies to the sequence hHiii2N. Indeed, note first that we may
assume that � is complete. Next, note that by construction, for any y 2 Y
there is a � < � such that for each i 2 N the y-section Hiy differs from Ei�
by a null set. By the choice of the family hEi�i�<�;i2N, it follows that Hiy is in �
with ��Hiy� � 1=2 for each i 2 N and each y 2 Y , and that given any A 2 �,
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if y does not belong to the null set
S
�2JA N� then A and the sets Hiy , i 2 N,

form a stochastically independent family in �. Thus (b) and (d) of Lemma 1 hold
for the family hHiii2N. By Lemma 3(i), (a) and (c) of Lemma 1 hold, too. Thus,
by Lemma 1, the product measure corresponding to � and � has a rich Fubini
extension. This completes the proof.

4.3 Proof of Remark 1

In the proof of Theorem 1, define the sets N� , � < �, alternatively as

N� �
�
y 2

�
f0;1gN

�X
: there is a countable D � X such that

y uXnD � y� uXnD and D \D� � ;
�
:

Observe that the arguments of the proof of Theorem 1 continue to hold with
this new definition of the sets N� . Now if #�X� � c, then the set of all countable
subsets of X has cardinal � c, which implies #�N�� � c for each � < �, under
the new definition of N� . Clearly, we may choose � in the proof of Theorem 1
so as to have � � c. But if #�N�� � c for each � < � and � � c, then we have
#�Y� � c, by the definition of Y as Y �

S
�<� N� . Note that since X must be an

uncountable set by hypothesis, we must have, in fact, #�Y� � c.

4.4 Proof of Theorem 2

Construct a subset Y of
�
f0;1gN

�X
in the same way as in the proof of Theorem 1,

and then define the probability measure � on Y as in the proof of Theorem 1.
Let �0 denote the image measure of � under the inclusion of Y into

�
f0;1gN

�X
,

and let T0 denote the domain of �0. Observe that �0 is a probability measure on�
f0;1gN

�X
which extends the product measure on

�
f0;1gN

�X
that is given when

f0;1gN is endowed with its usual measure. For each i 2 N let

Ki �
�
�x;y� 2 X �

�
f0;1gN

�X
: yi�x� � 1

�
:

Note that Lemma 1—with
��
f0;1gN

�X ;T0; �0� in place of �Y ;T; ��—applies to

the family hKiii2N. To see this, observe that the complement of Y in
�
f0;1gN

�X
and the sets N� , � < �, appearing in the construction of Y are �0-null sets
and conclude from this that (b) and (d) of Lemma 1 hold for the family hKiii2N.
From Lemma 3(ii) it may be seen that (a) and (c) of Lemma 1 hold. Thus, by
Lemma 1, the product measure corresponding to � and �0 has a rich Fubini
extension � whose domain � contains the sets Ki, i 2 N. In particular, the
function f defined in the statement of the theorem is �-measurable. Finally,
since �0 extends the product measure on

�
f0;1gN

�X
that is given when f0;1gN

is endowed with its usual measure, it follows that (b) in the statement of the
theorem holds. This completes the proof.
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4.5 Proof of Theorem 3

Suppose the product measure corresponding to � and � has a rich Fubini ex-
tension, with domain � say. We may assume that the � -algebras � and T are
complete. Then, by Definitions 1, 2, and 4, there are an element H 2 � and null
sets NX � X and NY � Y such that (a) for each x 2 XnNX the x-section Hx is
in T with ��Hx� � 1=2, (b) given any x 2 XnNX we have ��Hx \Hx0� � 1=4 for
almost all x0 2 XnNX , and (c) for each y 2 Y nNY the y-section Hy is in �.

Then by Sun (2006, Theorem 2.8) it follows that given any A 2 �, there is a
null set NA � Y such that ��Hy\A� � �1=2���A� for all y 2 YnNA. In particular,
then, given any A 2 � and any y 2 Y nNA, there is a null set Ny;A � Y such that
��Hy0 \ �Hy \ A�� � �1=2���Hy \ A� for all y0 2 Y nNy;A. Thus, given A 2 �,
if y 2 Y nNA and y0 2 Y nNA;y , then ��Hy0 \Hy \A� � �1=4���A�.

Setting A � X, the previous paragraph show in particular that each y 2 Y
is contained in some null set of Y , i.e. Y can be covered by some family of null
sets. Set � � covN ���.

Fix any A 2 � with ��A� > 0. By transfinite induction, choose a family
hy�i�<� in Y as follows. Let y0 be an arbitrarily chosen element of YnNA. Given
that hy�i�<� has been chosen, where � < �, choose a y� in Y n

�
NA[

S
�<� Ny�;A

�
.

Such a choice is possible for each � < � because � < � � covN ��� implies
Y n

�
NA [

S
�<� Ny�;A

�
6� ;.

Then for any �, �0 < � with � 6� �0, we have

�
�
�Hy� \A�\ �Hy�0 \A�

�
� ��Hy� \Hy�0 \A�

� 1
4
��A�

� 1
2
��Hy� \A� �

1
2
��Hy�0 \A�

whence �
�
�Hy� \ A�4 �Hy�0 \ A�

�
� �1=2���A�. Thus since ��A� > 0, writing

�A; �̂� for the measure algebra of �, and AA for the principal ideal in A deter-
mined by A, AA has a subset that is discrete for the measure metric of �A; �̂� and
has cardinal �.8 In particular, the Maharam type of � cannot be finite, and hence
by Fremlin (2002, 323A(d), and 2005, 524D) it follows, considering �AA; �̂ u AA�
as a measure algebra in its own right, that the Maharam type of AA is, in fact,
at least �. Thus (b) of the theorem holds.

As for (a), note that for each A 2 � and B 2 T we have �A� B�\H 2 � and
hence, by the Fubini property,

R
A ��Hx \ B�d��x� �

R
B ��Hy \ A�d��x�. From

the second paragraph of this proof,
R
B ��Hy \ A�d��x� � �1=2���A���B� for

each A 2 � and B 2 T. Consequently, for each fixed B 2 T,Z
A
��Hx \ B�d��x� �

1
2
��B���A� for all A 2 �:

8Recall that if �Z;� ; �� is a finite measure space and �C; �̂� its measure algebra, the measure
metric on C is just the metric that assigns, to every pair E�, F� of elements of C, the number
��E4 F� where E and F are any elements of T determining E� and F�, respectively.
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Hence, for each B 2 T there is a null set NB � X such that ��Hx\B� � �1=2���B�
for all x 2 X nNB . From this it follows that (a) of the theorem holds, using an
argument analogous to that which had led to (b) of the theorem.

4.6 Proof of Theorem 4

Since both �, � are � �, and since there is a bijection between � and � � N,
using Lemma 2 we may select a stochastically independent family hEi�i�<�;i2N

in �, with ��Ei�� � 1=2 for each � < � and i 2 N, such that given any A 2 � there

is countable set JA � � such that for each � < � with � 62 JA, A and the sets Ei� ,
i 2 N, form a stochastically independent family in �. Similarly, we may select
a stochastically independent family hF i�i�<�;i2N in T, with ��F i�� � 1=2 for each
� < � and i 2 N, such that given any B 2 T there is countable set JB � � such
that for each � < � with � 62 JB , B and the sets F i� , i 2 N, form a stochastically
independent family in T.

For each � < � setM0� � M�n
S
�<�M� and N0� � N�n

S
�<� N�. Then hM0�i�<� is

a disjoint family of null sets in X which covers X, and hN0�i�<� a disjoint family
of null sets in Y which covers Y . For each i 2 N set

Hi �
�[
�<�
M0� � �F

i
� nN��

�
[
�[
�<�
�Ei� nM���N

0
�

�
:

We want to see that Lemma 1 applies to the family hHiii2N. To this end, for
each x 2 X let �x be the least ordinal � < � such that x 2 M� . Thus �x is also
the uniquely determined ordinal � < � such that x 2 M0� . Observe that for each

x 2 X and each i 2 N the x-section Hix satisfies

F i�xnN�x � H
i
x � F i�x [N�x :

Thus for each x 2 X and each i 2 N, Hix differs from F i�x by a null set. We
may assume that T is complete. It then follows that for each x 2 X and each
i 2 N, Hix belongs to T and ��Hix� � 1=2. Moreover, by choice of the family
hF i�i�<�;i2N, it follows that given any B 2 T and x 2 X, if �x 62 JB—where JB is
the countable subset of � that has been associated with B at the beginning of
this proof—then B and the sets Hix , i 2 N, form a stochastically independent
family in T. That is, if x does not belong to the null set

S
�2JB M

0
� , then B and

the sets Hix , i 2 N, form a stochastically independent family in T. Thus (a) and
(c) of Lemma 1 hold. Similarly it follows that (b) and (d) of Lemma 1 hold. Thus,
by Lemma 1, the product measure corresponding to � and � has a rich Fubini
extension. This completes the proof.

4.7 Proof of Theorem 5

Let c denote the cardinal of the continuum. By Theorem 4, it suffices to show
that if Z is any Polish space and � an atomless Borel probability measure on Z ,
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then there is an extension of � to a measure �0 on Z such that �0 is Maharam-
type-homogeneous with Maharam type c and such that there is a non-decreasing
family hN�i�<c of �0-null sets in Z which covers Z , i.e. such that

S
�<cN� � Z .

To this end, note first that if I is any set with #�I� � c then there is a subset
A � f0;1gI , with #�A� � c, such that A has full outer measure for the usual
measure �I on f0;1gI (see Fremlin, 2005, 523B together with 523D(d)).

Now consider f0;1gc with its usual measure �c. Fix any x 2 f0;1gc. For each
� < c, let J� � f� < c : � � �g. By the fact stated in the previous paragraph, for
each � < c we may choose a set N0� � f0;1gc so that (a) x u cnJ� � x u cnJ� for
each x 2 N0� , (b) N0� intersects every non-negligible measurable subset of f0;1gc

which is determined by coordinates in J� , and (c) #�N0�� � c. For each � < c, let
N� �

S
��� N0�. Then hN�i�<c is a non-decreasing family of subsets of f0;1gc.

Let Y �
S
�<cN� . Then #�Y� � c. Since c has uncountable cofinality, (b) implies

that Y has full outer measure for �c (because every non-negligible measurable
subset of f0;1gc includes a non-negligible measurable subset of f0;1gc which is
determined by coordinates in some countable set J � c). Finally, because of (a),
N� is a �c-null set in f0;1gc for each � < c.

Now let � be Lebesgue measure on �0;1� and let � be the product measure
on f0;1gc � �0;1� which is determined by �c and �. By Fremlin (2005, 334X(g)),
� is Maharam-type-homogeneous with Maharam type c. Since #�Y� � c and Y
has full outer measure for �c, the arguments in the proof of Proposition 521P(b)
in Fremlin (2005) show that there is a subset C � Y � �0;1� � f0;1gc � �0;1�
such that

(1) C has full outer measure for �.

(2) The subspace measure �C on C induced by � is countably separated.

(1) implies that �C is a probability measure on C and in particular that the
measure algebra of �C can be identified with that of �. Thus since � is Maharam-
type-homogeneous with Maharam type c, so is �C .

Observe that hN� � �0;1�i�<c is a non-decreasing family of �-null sets in
f0;1gc� �0;1� whose union is Y � �0;1�. Thus setting M� � C \ �N� � �0;1�� for
each � < c, we get a non-decreasing family hM�i�<c of �C -null sets in C which
covers C .

Write �C for the domain of �C . (2) above means that we may identify C
with a subset of R such that B \ C 2 �C for each Borel set B of R. Under this
identification, let �̂ be the image measure of � under the inclusion of C into R,
and let cT be the domain of �̂. Thus cT � fF � R : F \ C 2 �Cg. In particular, RnC
is a �̂-null. Thus if we set M0� � M� [ �RnC� for each � < c, then hM0�i�<c is a
non-decreasing family of �̂-null sets which covers R.

Now let Z be any Polish space, and � an atomless Borel probability measure
on Z . The construction in Podczeck (2008, Appendix) yields a bijection � : R! Z
and a probability measure �0 on Z such that �0 extends � , �0 is Maharam-type-
homogeneous with Maharam type c, and � is inverse measure preserving for
�0 and �̂ in both directions. Thus if we set M00x � ��M0��, then hM00� i�<c is a
non-decreasing family of �0-null sets which covers Z .
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