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1 Introduction

Since the time of Wald [19] and Arrow, Block, and Hurwicz [2], the standard suffi-
ciency condition used to prove uniqueness of general exchange equilibrium has been
that of gross substitutability introduced by Metzler [15] (cf. [13, p. 613]). Other suf-
ficient conditions have been introduced by Arrow and Hahn [3, Ch. 9], and further
results have been obtained by Kehoe [9], who introduced production adjustments
of the activity-analysis type, showing that with at least four commodities and four
agents, multiple equilibrium is possible even with gross substitutability. In the two-
commodity two-agent model of pure exchange, however, few results appear to have
been obtained for the standard functional forms of utility functions used in econo-
metric research. The particular case of consumption in fixed proportions has been
analyzed by Mas-Colell [12]. In the case of preferences represented by CES (constant
elasticity of substitution) utility functions, it is known (e.g. [4, p. 725-7]) that gross
substitutability implies that the elasticity of substitution satisfies o = 1.

In this paper I show using elementary methods that in the simple case of two
agents and two commodities, and under an assumption that I call supersymmetry
(the agents’ preferences and endowments are mirror images of one another), a suffi-
cient condition for uniqueness of general equilibrium is the weaker property o =1/2
(Theorem 1). I also show (Theorem 2) that even under those conditions (and this
has been remarked upon in another context in [12, p. 285]), preferences must favor
the good that is sold (in international trade, the export good) in order for multiple
equilibrium to be possible.

The problem of multiple equilibrium has received considerable attention atten-
tion in the theory of international trade ([4, p. 735]), owing to the fact that among
three equilibria, an egalitarian distribution of welfare between two countries occurs
only in the unstable equilibrium, the stable ones necessarily favoring one country
over the other. In recent work by Zhou [21] and Wan and Zhou [20], who postulate
mirror-image quasilinear-quadratic utility functions for two trading countries, these
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authors argue that the possibility of multiple equilibrium under free trade can result
in both countries preferring a unique optimal-tariff Johnson-Nash equilibrium to the
prospect of an uncertain stable free-trade equilibrium, since the former will have a
more favorable outcome for each party than the worse of the two stable free-trade
solutions. This work has provided the main stimulus for the present paper, which
is to explore whether their results can be extended to the case of CES preferences,
which have played a prominent role in the so-called computable general equilibrium
(CGE) models of international trade (e.g. [14]). In view of this, I adopt the termi-
nology of international trade in which “countries” take the place of “agents”, and
(fixed) production levels take the place of endowments. It is of course assumed that
consumers in each country have identical CES preferences of the specified types.

2 CES preferences and competitive equilibrium

Maximization of country k’s utility function Uy (z1x, zox) = (oqxe?, + a%:):gk)l//?
subject to p1x1g + poxar =Yy (where Yy is country k’s disposable national income,
and where p = 1—1/0 and o is the constant elasticity of substitution), entails setting
the ratio of marginal utilities to the price ratio. The marginal utility of commodity
1 to consumers in country k is
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From this last equality we obtain (recalling that p=1—1/0)
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Now, combining this with equality in the budget constraint we obtain country k’s

demand function for commodity i as a function of the two prices and disposable
income,
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It will be assumed that country k’s supply function y;; = gir(p1, p2) is a constant
w;k, and that trade is balanced. Country k’s excess-demand function for commodity
1 is given by
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It will also be assumed that the parameters are such that, in equilibrium, country
k exports commodity k to country j # k. In the case of country 2’s excess demand



for commodity 1 (its import good), formula (2.2) reduces to
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3 World equilibrium and supersymmetry

In the special case oy = 1 for i,k = 1,2, from (2.2) we have for the world excess
demand for commodity i,

p1(wi1 +wi2) + p2 (w21 + wa2)

pI(p1 7 +py7)

zi1 + zig = — (wi1 + wi2).

Setting this equal to zero for world equilibrium, we obtain

p1(wi1 +wi2) + p2 (w21 + w22)

l1—0o

p%_a + D

P (Wil + wi2) = for i =1,2.
It follows that
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Assuming that w1 +wi2 = wa1 +wag, the equilibrium price ratio is p1/p2 = 1. Then
(22) yields Z91 — 212 — 1/2

Relaxing the requirement of equal consumption coefficients «a;x, the following
supersymmetry conditions (with apologies to the cosmologists for the terminology)
also lead to a unit equilibrium price ratio, namely that each matrix

w1l wi2 1] Q12
Q= and A=
w21 W22 2] (23

(a) is symmetric and (b) has equal diagonal elements. If the material-balance con-
ditions z;1 + z;2 = 0 are to be satisfied at a unit price ratio, it follows from (2.2)
that

w11 + w21 w12 + w22

B Tl + (@] | (@) " law)? + ()]

=wj1twp fori=1,2.

From the supersymmetry of €2, each of the numerators on the left is equal to the
expression on the right, so they may be cancelled out. From the supersymmetry of A,
whose elements will also be assumed to be positive, we have a1 /a1 = age/a12 =
say. Then (3.4) reduces to the identity

1 1
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whose validity is easily verified. Thus, under supersymmetry there will always exist
a world equilibrium at a unit price ratio.



Given our assumption of supersymmetry, the notation in the remainder of this
paper will be simplified to w;; = w for ¢ = 1,2 and w;; = ¢ for i # j. To give each
country k£ a comparative advantage in commodity k, I shall assume throughout that
w > §. And since the scale of world equilibrium is immaterial to the analytic results,
we may assume that § = 1 in the case of diversification, and of course § = 0 in the
case of specialization. Moreover, since consumer preferences are affected only by the
ratios of the a;j;s, we shall denote agr = o and «a;; = 1 for i # j.

With this notation, we have

=" 0 and A= 1 , wherew >4, d =1or0, and o > 0,
0 w 1 «

and denoting r; = p1/p2 we may write the equation of world equilibrium as

wry+ 0 or1 +w
3.6 = 0.
(3.6) r+aor{ +'r1—|—a" Wt

4 Marshallian offer functions and the stability of the
symmetric equilibrium

Country 2’s offer function, expressing its export quantity as a function of its import
quantity, is defined as follows. In terms of the relative price 71 = pi/pe, in the
notation of the previous section (and assuming supersymmetry), country 2’s excess
demand (2.3) for its import good (commodity 1) becomes (dropping the parametric
arguments for convenience)

w—0a’ry

4.7 z19 = 219(r1) = ————L.
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Country 2’s inverse excess-demand function 71(z12) is then defined as the solution
of the equation’

(4.8) fg(zlg) = ((5 + 212)[f1(212) + aafl(zlg)a] — (5’?1(212) —w=20.
This is well defined provided

dz1 _ (1-0)a%r{6 — (14 aor{ Hw
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(4.9) J(r) = # 0.

In particular, J(r;) < 0 (the law of demand holds for the excess-demand function
(4.7)) if either 021 (the commodities are weak gross substitutes) or 6 = 0 (the
countries specialize). In the case of diversification (§ = 1), one must choose the

Tt may be noted that a zero price ratio r; = 0 cannot be a solution to this equation, hence the
example in Mas-Colell [12, p. 285, Figure 4(b)] of zero prices in stable equilibria under consumption
in fixed proportions does not carry over to CES preferences with low elasticity of substitution. On
the other hand, as Figures 3 and 6 below illustrate, under multiple equilibrium, stable CES equilibria
will typically be characterized by extremely low price ratios.



parameters w, «, and o so as to assure that the preference (o > 1) for the export
good does not counterbalance comparative advantage (w > 1) so much as to cause
each country to import the good in which it has a comparative advantage. From
(4.7) this requires w > a”r{. Assuming this to be the case, it follows that J(r1) < 0.
In the case of the symmetric equilibrium price ratio 1 = 1 this requires w > aZ.
For example, if & = 1024 and o = .1, J(1) < 0 requires w > 2.
Differentiating (4.8) with respect to z12 we obtain
dry 71(z12) + a%71(212)7
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Evaluated at the symmetric equilibrium point, given by (4.7) for r; = 1, this is

dr 1 o\2
(4.11) ar _ (1+a7%) '
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The Marshallian offer function for country 2 is now defined by

(4.12) —292 = Fy(212) = 2z1271(212),

expressing the quantity of its exports as a function of the quantity of its imports.
Its derivative at the symmetric equilibrium point is
dF, 1 (w—10a%)(1+a%)

4.13 = — =1- .
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By supersymmetry, exactly the same formula holds for the slope v; of country 1’s
offer function dF} /dz9; evaluated at the same expression for zo;.

The Marshall-Samuelson non-titonnement dynamic-adjustment process ([10],
[17, p. 266]) is

(4.14) 212 = Fi(221) — 212 = Pi(212, 221), 221 = Fa(212) — 201 = Pa(212, 221).

From a theorem of Liapunov (cf. [1, pp. 272-3, 279]), the stability of a process such as
(4.14) in the neighborhood of a stationary point may be determined under certain
circumstances by that of the first-order Taylor approximation to the P; around
that point. In particular, we examine the stability of (4.14) around the symmetric
equilibrium values Z;; = (w — da?)/(1 + a”) > 0 for i # j given by (4.7) at r = 1.
Defining u; = 25 — Zij (i # j), as well as y1 = dF1/dz21 and 2 = dF>/dz2 at this
equilibrium point, we obtain the approximating dynamical system

BRI

with characteristic roots A and distribution coefficients v satisfying
A+1 —m 11 |0
v| |0}’

4.1
(4.16) —v2 A+1




namely A = —1£,/9172 and v = £/v2/7 (cf. [1, p. 258], [6, p. 935]). Equilibrium
of this system is attained at (u1,u2) = (0,0). The conditions imposed by Liapunov’s
theorem are that the real parts of the roots A must not be zero; if one of them is
zero, the stability of the equilibrium cannot be determined by this method.

Asymptotic stability follows if both roots have negative real parts, which are —1
if the roots are complex, and real if the v have the same sign. In the latter case,
stability is assured if v172 < 1. Geometrically, referring the slopes of both of the
offer curves to the z19 axis, this sufficient condition for asymptotic stability may be
written |y2| < 1 < 1/|v1], i.e., country 2’s offer curve is less steep (in absolute terms)
than country 1’s (cf. [11, p. 353]). If the 7 are both negative (the only case in which
multiple equilibrium is possible), the relevant stability condition is yo > —1 > 1/;.

With supersymmetry, 1 = v2 = 7, hence A = —1 &~ and v = +1. The system
(4.16) is satisfied by each of the two pairs (A, v) = (—y—1,—1) and (A\,v) = (y—1,1).
Accordingly, the solution of (4.15) may be written

(4.17) l u ] - l _11 ] bre—(HDE |
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where the b; are constant parameters (cf. [6, p. 935]). The symmetric equilibrium is
then a stable node if —1 < v < 1 and an unstable saddle point if v < —1. Stability
in the case of “neutral equilibrium” (v = —1) cannot be determined by Liapunov’s
above (“first”) method.? However, this does not mean that it cannot be determined.
In fact, it is determined by Liapunov’s “second method” (cf. [7, pp. 192-209]):

LEMMA. Under supersymmetry, the symmetric equilibrium is asymptotically sta-
ble for —1 =~y < 1.

Proof. By Liapunov’s main theorem, an equilibrium at u = 0 is stable if, for
a positive-definite Liapunov function V(u) > 0 for u # 0 and V(0) = 0, its total
derivative V(u) = Y OV/dusi; is non-positive along any trajectory in a neighbor-
hood U of u = 0, and asymptotically stable if V' (u) < 0 in U\0.

Let us take the simplest case V(u) = u? 4 u3. Then from (4.15),

LW (u) = —(u? — 2yurus +ud) £ — (w1 +u)? <0 for —1=7.

The asymptotic stability for 0 <+ < 1 follows from (4.17). O
It follows from this lemma that for competitive equilibrium with CES utility
functions under supersymmetry, asymptotic stability is equivalent to uniqueness.
In the following development, it will be convenient to deal with the function

(w—=138a%)(1+a”)
(1+0a%)+ (0 —1)dac’

(4.18) Y(ow,6.0)=

Since 1) = 1 —~, the sufficient condition —1 <~ < 1 for asymptotic stability may be
written simply as 0 < ¢ = 2.

2The same is true of the other neutral equilibrium given by v = 1, but this case has been ruled
out by the above assumption w > da? (cf. (4.9) and (4.13)).



THEOREM 1. A sufficient condition for asymptotic stability (hence unique-
ness) of the symmetric equilibrium, under the hypothesis of supersymmetry, is that
o=1/2.

Proof. We are to show that o =1/2 implies 1) <2 (i.e., y= — 1), or conversely,
that ¢ > 2 (v < —1) implies 0 < 1/2.

Let us first consider the case of specialization (6 = 0). Then

(4.19) b =01+0a%)/(1+0a%)>2

if and only if (1 — 20)a® > 1, which implies 0 < 1/2.

Next we consider case of diversification (§ > 0); without loss of generality we
take § = 1. First we observe that if o =1/2, then since w > 1 by hypothesis, the
denominator of (4.18) is positive—in fact > 1:

w(l+oa?)+(c—1)a’ >1+4+2(c—1/2)a’ 21.

Now to show that o =1/2 implies ¢ =2, suppose by way of contradiction that
021/2 as well as 1) > 2; then by cross-multiplication in the formula (4.18) we
obtain

w+a? +2w+1)(c—1/2)a’ <0,

which is impossible. O

THEOREM 2. Multiple or neutral equilibrium (1 = 2) is possible only if the trad-
ing parties have a relative preference for their export goods (o > 1).

Proof. We prove that o =1 implies ) < 2. From (4.18) we may write

(1—-a%)(w—10a7%)+20a%(w+0)
w— 00 + 00 (w +9) '

p-2=-

If « <1, this is clearly negative. O

5 On the probability of multiple equilibrium

Theorem 1 provides a necessary condition (o < 1/2) for nonuniqueness of competi-
tive equilibrium under supersymmetry; but this condition is far from being sufficient.
In fact it turns out that multiple equilibrium is quite rare even when o < 1/2. For
the case of specialization (0 = 0), Table 1 provides a tabulation of consecutive values
of o in the first column, and of

1
5.1 inf « = ———
( ) 1;%206 (1_20)1/0

(see (4.19)) in the second, referred to as the minimum associated value of «, above
which multiple (triple) equilibrium occurs. The third column of Table 1 provides
the share of the exportable in consumer expenditures at the unit price ratio, given
by (2.1), namely 1/(1+ a~7) (see (3.5)).



550

Figure 1

o as a function of « for § =0, when ) = 2

TABLE 1 (6 =0)

o | minimum associated « | export share
0+ 7.38905609895 .5

.01 7.54036607387 .505050505
.05 8.22526333997 526315789
1 9.31322574615 .555555556
.15 10.7815135548 .588235294
2 12.8600823045 .625

.25 16. 666666667
3 21.2063876296 714285714
.35 31.1845349756 .769230769
4 55.9016994375 .833333333
45 | 166.810053719 909090909
49 | 2932.82211971 980392157
) 0. 1

The function 6 («) inverse to (5.1) is depicted in Figure 1. It starts with o = 0 at
a = 7.389 (rounded down to 7 in the figure) and rises asymptotically to o = 1/2 as
a — o0o. The interior of the shaded area is the “zone of instability” (or of multiple
equilibrium), consisting of those combinations (a, o) for which ¢ > 2 (y < —1).
While it forms most of the area of the extended rectangle, when limited to small
values of a such as a = 16 as shown in the figure, it forms the smaller part of the
extended rectangle.

Table 1 provides cases of so-called neutral equilibrium on the borderline of in-
stability, at which ¢ = 2. The case 0 = .25 and « = 16 is illustrated in Figure 2.
The equilibrium occurs where the share of each country’s importable in consumer
expenditure is 1/3. It is unique (from (5.1) and the Lemma) and stable. Starting
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Figure 2

Marshallian offer curves under “neutral” equilibrium: the case
w=1,6=0, a=16,and o0 =.25. vy=—1.
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Figure 3

Marshallian offer curves with w =20, § =0, a =70 and o = .2. v = —1.275.
Equilibrium relative prices .02174, 1, 45.9962, trades 18.0285, 5.9899, .39196.



from such a neutral equilibrium, as depicted by the dashed lines in Figure 1, in or-
der to find an unstable equilibrium one must either increase a above 16, or decrease
o below .25, or both. Table 1 (and Figure 1) also show that under specialization
(6 = 0), multiple equilibrium is never possible unless a > 7.389.3 Figure 3 illustrates
a case in which « is increased to 70 and o is reduced to .2. Note that when § = 0
the level of w affects only the scale.

The case of diversification is more complex. Table 2 provides, for given w > 1
and § = 1, the maximum value of ¢ for which a solution exists to the equation
1) = 2, and the corresponding critical value of o at which this maximum is attained.
This may be obtained, for given w, by solving the equation ¢ = 2 in (4.18) for o,
given successive values of «, and determining that value of o at which o reaches
a maximum; alternatively, by solving, given w, for the associated value of « at
successive values of ¢, until no solution is found. An illustration is given in Figure 4
for the case w = 20 and é = 1, where o reaches a maximum of approximately .287 at
« = 184.62. The figure also shows the minimum value 9.12 of « in the domain of this
function. This is obtained by tabulating « as a function of ¢ for successively smaller
values of o. The relationship of Table 2 to Table 1 should be noted: as w — oo
(with 6 = 1), diversification approaches specialization, and thus as w increases, the
corresponding minimum value of « in column 2 of Table 2 approaches the limiting
value of « in the first row of Table 1; in fact, for w = 100, 000, the minimum « in
Table 2 is approximately 7.389, achieved at o = 1075.

It is apparent from Figure 4 that the function 6(«) is very flat in the neighbor-
hood of the maximum point, so that obtaining accurate results by direct tabulation
is difficult. However, the critical « value and the corresponding maximum o value
may be computed accurately by the following simple procedure which underlies the
numbers in columns 3 and 4 of Table 2.

Setting 1) = 2 in (4.18) we arrive at the quadratic equation

(5.2) (e, o5w) = (@) = 2w+ 1)(1/2—0)a” +w =0
in o, with roots

o’ =fF+4/p*—w, where f=(w+1)(1/2—0).

Thus the critical value of « is

1/o
(5.3) o ((w F1)(1/2-0) @+ 1)2(1/2— o) - w> .

Now it turns out that the roots are repeated, hence the discriminant is zero. This
is seen as follows.

3This contradicts the example in Exercise 17.D.1 of Mas-Colell et al. [13, p. 644], where the
authors take 0 = .2 and o = 2. For o = .2, Table 1 shows that when § = 0, in order to obtain an
example of multiple equilibrium one must take o > 12.86.

10
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Maximum o as a function of «a for w = 20 and § = 1, when ¢ = 2

TABLE 2 (6 =1)

w minimum « | maximum o critical « export share
3/2 22025.974 | .010102051444 | 519539777.807 550510257216
2 403.410 | .02859547921 183482.300248 585786437626
3 54.579 | .066987298108 3641.51017644 | .633974596215
4 28.028 | .1 1024. 666666666667
5 20.085 | .12732200375 555.764551652 | .690983005625
10 11.524 | .212520212712 225.277277594 | .759746926646
19 9.226 | .282055052823 184.863460212 | .813394503137
20 9.120 | .287041145 184.61963199 | .817256002368

21 9.025 | .291701104775 184.66902107 | .82087121525
30 8.482 | .323315304031 192.45779337 | .845612911202
40 8.187 | .345742553162 207.414672881 | .863472940503
50 8.017 | .361351611532 224.312943463 | .876100656899
100 7.694 | .40099009901 311.764858269 | .909090909091
1000 7.419 | .468408814584 1593.42217089 | .96934656997
10000 7.392 | .4900009999 12067.6949665 990099009901
100000 7.389 | .496837753962 107599.933218 996847648654

Letting the identity (5.2) implicitly define the function &(o; w), we seek its max-
imum with respect to a by setting

(5.4) do  Ox/0a ca’ o — (w+1)(1/2 - 0)]
' da Ox/0oc  [a° —(w+1)(1/2—0)]a loga + (w+ 1)a®
equal to zero. The maximum of 6(«;w) for given w is achieved when d¢/da = 0 in
(5.4), at
(5.5) Qarit = [(w +1)(1/2 = 0)]"/,

11



since at this value the denominator of (5.4) is clearly positive. Thus, setting the
discriminant in (5.3) equal to zero, we obtain

Nz

(5.6) !
. O-ma.X_Q w+17

which is the maximum o for which multiple equilibrium is possible for given w > 1
and 6 = 1. Then substituting (5.6) into (5.5) we obtain

(5.7) reri = /20,

These are the two values tabulated in columns 3 and 4 of Table 2.

The lowest critical value 184.62 of o shown in Table 2, at which 81.7% of income
is spent on the exportable good, occurs at an endowment ratio of w = 20 exportables
to 1 importable. An interesting case of neutral equilibrium is that of the third row
of the table. It is illustrated in Figure 5, where the small arrows partly indicate
the movement toward erquilibrium. Finally, Figure 6 displays a case of multiple
equilibrium with ¢ = .1 and o = 1024. The diagram differs markedly from those
depicted in Marshall [10, Figs. 4, 8], [11, p. 353, Fig. 20], and subsequent textbooks.

I come now to the question of probabilities. The main question, stemming from
Theorem 2, is that of how likely it is that inhabitants of a country will spend a larger
proportion of their incomes on the country’s export good than on its import good.
This question has been approached in the economic literature largely in relation to
the “transfer problem”, since this hypothesis has been behind the presumption that
a country making a unilateral transfer to another will incur a “secondary burden”,
that is, an additional welfare loss resulting from a deterioration in its terms of trade
(its export price relative to its import price). Samuelson [18, p. 290] has read into
Pigou [16, pp. 539-40] the interpretation that “Pigou leans heavily on the simple
econometric fact that Europeans tend to spend more relatively on European prod-
ucts than Americans do; Americans likewise have a greater avarage propensity to
consume American products than do Europeans.” Accepting this as a datum, he
attributes it to the fact that tariffs and transport costs raise the relative cost of for-
eign goods, and assumes that in their absence, relative propensities to consume will
be the same across countries. Likewise, Jones [8, p. 179]) makes the “basic assump-
tion” that “a country’s taste pattern is independent of its endowment (production)
pattern.” If preferences are identical and homothetic (as both authors appear to
assume), then of course world equilibrium is determinable by maximization of a com-
mon world utility function subject to world production constraints (cf. [5]), and it
must be unique. But homothetic preferences violate Engel’s law, and there appears
to be little in the way of solid information to back up any presumptions concerning
relative expenditure patterns across countries.

One could argue that habits are formed in a state of autarky in which consumers
have no choice but to conform to the existing endowment of goods, and that such
habits may become culturally ingrained and may persist for a long time. The pre-
vailing literature on habit formation appears to assume that such habits are purely
temporary and cannot last very long, but whether this is really so we do not seem

12
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0 2/3 212

Figure 5

Marshallian offer curves under “neutral equilibrium”: The case
w=4,6=1, «a=1024,and 0 = .1. v = —1.

221

1.95/

.23

0 23 1 1.95 Z12
Figure 6

Marshallian offer curves with w =5, § =1, a = 1024, and 0 = .1. v = —1.14285.
Equilibrium prices .11809, 1, 8.4679, trades 1.95265, 1, .23059.
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to know. In the model considered in this paper, there clearly must be a positive
correlation between a country’s endowments and its preference patterns in order
for multiple equilibrium to result. The parameter o used to measure the relative
preference for the export good must in all cases exceed 7.389 for ¢ > 0, and a higher
number with higher values of ¢ and lower values of w in accordance with Tables 1
and 2. However, it is difficult to attach any intuition to specific values of a as an
indicator of relative preference for the export good, as opposed to the export share
itself, e = 1/(1+ a~7); but given some of the high required values of the latter, we
may conclude that under the assumption of CES preferences, multiple equilibrium
must be quite rare.
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