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Abstract

When financial markets are competitive (infinitely deep), there can be no
riskless and costless opportunities for profit; arbitrage opportunities are im-
possible under equilibrium prices in competitive markets. In thin markets,
however, trading positions exert significant price impacts, which could ren-
der the classical analysis inapplicable. In this paper we examine how non-
competitiveness in thin markets affects the choice of financial portfolios and
the determination of equilibrium prices. We apply a model of economic equi-
librium based on [14], in which individual traders recognize and estimate the
impact of their trades on financial prices, and in which these effects are deter-
mined endogenously as part of the equilibrium concept. The departure from
the competitive model complicates the structure of equilibrium determina-
tion, and none of the standard positive or normative results are immediately
applicable. The possibility of a no-arbitrage condition, and the derivation
of state prices must now be argued. We concentrate on the case in which
markets allow for perfect insurance.
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The Arrow-Debreu model has been the basis of a very significant portion

of economic and financial research in the last decades. The model has served

as a flexible and general, yet parsimonious, tool for theoretical analysis, for

the development of applications, and for many policy recommendations.

The competitive model imposes the assumption that all agents interven-

ing in the market observe a price that they take as given: they assume

that their trade in the market, however large, can be made at that fixed

price. This assumption simplifies the definition and applications of economic

equilibrium, and yields important results such as the formalization of Adam

Smith’s “invisible hand” in the form of the First Fundamental Theorem of

Welfare Economics. The assumption has also been critically present in promi-

nent applications of the Arrow-Debreu model - the equilibrium asset pricing

models such as CAPM or consumption CAPM, for instance. Furthermore,

the theory of the determination of the prices of derivatives, and the formulae

derived from this theory and applied in practice, are based on the implication

that at equilibrium there should be no costless and riskless opportunities for

profit. Under this condition, asset prices embed an “objective” probability

distribution that can be used to obtain the price of any asset as its discounted

expected return: this is the basic content of the Fundamental Theorem of As-

set Pricing, of its applications (the Modigliani-Miller theorem, for instance),

and of the formulae developed to price financial derivatives (for example, the

Black-Scholes formula).

The assumption that all agents ignore the impact of their trades on prices,

however, appears at odds with empirical evidence from crucial markets. In

financial markets, even as deep as NYSE or NASDAQ, the evidence is clear

in this direction: large institutional traders have non-negligible price impacts

(see [6]), which they do take into account when designing their trading strate-

gies: they often spread their transactions over a number of days, in order to

ameliorate their impact on prices (see [2]), and tools have been developed

to implement portfolio recompositions taking into account their price im-

pacts.1 Importantly, these large traders constitute a very significant portion
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of volume of trade in financial markets (see [3]).

Attempts to develop a general equilibrium framework in which traders do

take into account their price impacts have so far proved to be less successful

than the competitive counterpart. The work initiated by T. Negishi in [9],

though interesting, either required the oversimplification of assumptions, or

gave highly complex, intractable and inapplicable models: in the Negishi’s

approach, traders were allowed to have subjective perceptions of the price

impact, which implied a great deal of arbitrariness on the determination

of equilibria, unless the subjective conjectures where exogenously restricted;

later attempts to impose more structure to the definition of equilibrium en-

dowed the model with explicit strategic games, which came at the cost of

tractability.2

Nearly two decades ago, important literature on financial microstructure

emerged. In this strand of literature, price impacts of the traders result from

asymmetric information rather than from a small number of traders. These

models assume only one risky asset and they are consequently incapable of

addressing the question of no-arbitrage and arbitrage asset pricing.3

In this paper, we apply a model of economic equilibrium based on [14], in

which all individual traders recognize the impact that their trades have on

financial prices, and in which these effects are determined endogenously as

part of the equilibrium concept.4 We develop a model of noncompetitive fi-

nancial equilibrium that maintains the flexible, tractable and spare structure

of the Arrow-Debreu model.

The departure from the competitive model complicates the structure of

equilibrium determination, and none of the standard positive or normative

results are immediately applicable. The necessity of a no-arbitrage condition,

and the derivation of an objective probability have now to be argued. In this

paper, we concentrate on the case in which the existing financial markets

allow for complete insurance against risk; to the best of our knowledge, there

is no previous study of noncompetitive markets with many arbitrary assets

that possibly have collinear payoffs.
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This paper is part of a research program in which we study the prop-

erties of abstract thin markets. As a part of this program, [15] shows that

the concept of equilibrium from this paper refines a Subgame Perfect Nash

equilibrium in the game defined by the Walrasian auction. There, it is also

argued that the equilibrium outcome will be observed in anonymous markets,

in which investors have no other information but their past trades and market

prices, and therefore they discover market power through a statistical infer-

ence by estimating slopes of their demands using the Least Squares method.

Therefore the equilibrium has a game theoretic foundation endowed with the

learning process by which anonymous markets converge to this equilibrium.

We believe that the assumption of anonymity is approximately satisfied in

financial markets, in which large institutional investors know that they have

price impacts, but very often have no information about those with whom

they are trading.

1 The economy

We study a financial market over two periods. In the second period, there is

a finite number of states of the world, which are indexed by s = 1, . . . , S. In

the first period, investors trade assets that deliver a numèraire return in the

second period. There is only one good, money, and all assets are denominated

in this commodity.

There is a finite number of assets, indexed by a = 1, . . . , A. Asset payoffs

are uncertain: in period one, asset a pays Ra
s in state s. Ra = (Ra

1, . . . , R
a
S)T

is a commonly-known random variable. R = (R1, . . . , RA), which is an S×A

matrix, denotes the asset structure of the economy.5

We restrict our attention to complete financial markets: we assume that

there are at least as many assets with linearly independent payoffs as states

of the world. Without further loss of generality, we assume that the first S

assets are linearly independent: we partition R = ( RS RA−S ), and assume

that the S × S matrix RS is nonsingular.
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There is a finite number of (large) investors, who trade assets among

themselves; a typical investor is indexed by i = 1, . . . , I. Investor i is endowed

with a future wealth of ei
s > 0, contingent on the state of the world. We

denote by ei = (ei
1, . . . , e

i
S) the random variable representing investor i’s

future wealth.

Portfolios are denoted by Θi, so the future numèraire consumption (or

wealth) of investor i, if she decides to purchase portfolio Θi, is given by

ci = ei + RΘi, a random variable that we restrict to take strictly positive

values. In the second period, at state s, investor i values consumption ci
s

by a state-dependent utility index ui
s(c

i
s). We assume that the Bernoulli

function ui
s : R++ → R is twice continuously differentiable, differentiably

strictly monotonic and differentiably strictly concave, and satisfies Inada

conditions.6

Ex-ante, individual preferences are von Neumann-Morgenstern with re-

spect to future consumption, and quasilinear with respect to present con-

sumption: ex-ante preferences of investor i are represented by

U i(ci
0, (c

i
1, . . . , c

i
S)) = ci

0 +
∑

s

ui
s(c

i
s), (1)

where ci
0 represents the amount of numèraire that trader i consumes in the

present, a possibly negative amount.

For notational simplicity, henceforth we write ui(ci) =
∑

s ui
s(c

i
s). By our

assumptions, ∂ui(ci) � 0; we take this vector as a column. Also, ∂2ui(ci) is a

diagonal, negative definite matrix (that is, all its diagonal entries are strictly

negative, and all non-diagonal entries are zero).

The economy is completely characterized by the triple of a profile of

individual preferences, a profile of initial endowments and an asset payoff

structure: {U, e, R} = {(U i)i, (e
i)i, R}.
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2 Equilibrium in thin markets

In thin markets, investors are large relative to the average volume of trade,

and hence their trades exert non-negligible impacts on market prices.

We model price impacts in the following way: for each investor i, we

denote by M i an A×A, positive definite and symmetric matrix; the typical

element M i
a,a′ measures individual i’s belief of how the price of asset a changes

when she expands her buy order for asset a′ by one share: the perceived price

change exerted by a perturbation ∆ to her portfolio is M i∆.

Unlike in a standard equilibrium asset pricing models such as CAPM or

consumption-CAPM, in thin markets agents know that they face inelastic as-

set demands. It will be a part of the definition of equilibrium that the profile

of individual beliefs is mutually consistent, in the sense that each matrix M i

correctly measures the price impacts of trader i, given the individual price

impacts perceived by all other traders in the market.

An informal, intuitive definition of equilibrium in thin financial markets

follows. The ideas of the definition are formalized immediately after, and a

formal definition of equilibrium is given at the end of the section.

From now on, P ∈ RA is used to denote the vector of asset prices: P =

(P1, . . . , PA)T. We denote individual portfolios by Θi, and a profile (Θi)i of

portfolios by Θ. We denote a profile (M i)i of price impact matrices by M .

Definition. An equilibrium in thin financial markets for economy

{U, e, R} is a triple consisting of a vector of asset prices, a profile of portfolios

and a profile of price impact matrices, (P̄ , Θ̄, M̄), such that:

1. all markets clear:
∑

i Θ̄
i = 0;

2. all traded portfolios are individually optimal, given the price impacts

perceived by agents: for each trader i, at prices P̄ , trade Θ̄i is optimal,

given that any other trade, Θ̃i, would change prices to P̄ +M̄ i(Θ̃i−Θ̄i);

3. all perceived price impact matrices correctly estimate the effects of in-

dividual portfolio perturbations on the prices that would be required for
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the rest of the market to optimally absorb them: for each trader i, small

perturbations to her portfolio, ∆i, uniquely define a price at which the

other traders of the market, given their price impacts, are willing to

supply ∆i to i, and the derivative of this mapping at equilibrium trade

Θ̄i is M̄ i.

The first condition in the definition is standard, as in the definition of

competitive equilibrium; the other two are not.

2.1 Stable individual trade

Each trader now perceives that her trade does affect prices, and takes these

impacts into account when designing her investment strategy. Optimality of

such strategy now requires that it maximize her ex-ante utility, given that

she faces a “downward-sloping” demand from the rest of the market, with

“slope” given by her perception of price impacts. To avoid confusion with

the competitive model, we refer to this condition as stability.

Definition 1. Given prices P and price impacts M i, portfolio Θ̄i is stable

for individual i if it solves program

max
Θi

U i(−(P + M i(Θi − Θ̄i)) ·Θi, ei + RΘi). (2)

The second condition in the definition of equilibrium is the requirement

that, for each trader, her trade should be stable given equilibrium prices and

her perceived price impacts at equilibrium trade.7 It requires that for each

trader, given her price impact, no deviation from the equilibrium trade be

able improve her ex-ante utility.

Notice that, given the assumption of strong concavity of preferences and

the condition that price impact matrices are to be positive definite, stability

of Θi, given (P, M i), is characterized by the condition

P + M iΘ̄i = RT∂ui(ei + RΘ̄i). (3)
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2.2 Subequilibrium and consistent price impacts

The third condition of the definition of equilibrium requires the perceived

price impacts M̄ i of all traders to be accurate estimates of their actual price

impacts, at least locally and to a first order, given the perceived price impacts

of every other trader.

Suppose that trader i demands a portfolio Θ̃i. Unlike in a competitive

market, in which she would assume that her trade will bear no impact on

market prices, here she knows that prices must endogenously adjust to en-

courage other traders to (optimally) accommodate her trade. Consequently,

in this model markets clear and other investors respond optimally to prices,

even if one of the investors, i, is trading a suboptimal quantity of shares, Θ̃i;

this feature is captured by the notion of subequilibrium in financial markets,

defined below.

Definition 2. Given an individual i and a profile of perceived price impacts

for all traders but i, M−i = (M j)j 6=i, a subequilibrium triggered by trade

Θ̃i is a pair of prices and trades by all other investors, (P̃ , Θ̃−i), such that:

1. all markets clear: Θ̃i +
∑

j 6=i Θ̃
j = 0;

2. all traders other than i act optimally: for each j 6= i, trade Θ̃j is stable

given (P̃ , M j).

For each i, let S i(Θ̃i; M−i) be the set of all subequilibria triggered by

trade Θ̃i, given that the other traders in the market perceive their price

impacts as M−i, and let P i(Θ̃i; M−i) be the projection of that set into the

space of prices. If P i(Θ̃i; M−i) is single-valued in a neighborhood of some

Θ̄i, it defines, at least locally, an inverse demand function P i(Θ̃i), faced by

trader i, given M−i. If such function is differentiable, trader i can estimate

its derivatives. The condition of consistency of price impact matrices is

that, at equilibrium, perceived price impacts should not be arbitrary: each

trader is able to estimate the slope of her real inverse demand, so that the

inverse demand function implicit in the condition of stability of her trade
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is a correct first-order approximation to her real inverse demand, given the

estimations made by all other traders.8 This concept of mutual consistency

of price impact estimations, which completes the definition of equilibrium, is

formalized next.

Definition 3. A profile M̄ of price impact matrices for all traders is mutu-

ally consistent given prices and trades (P̄ , Θ̄) if, for each individual i, there

exist open neighborhoods N i(Θ̄i) and N i(P̄ ), and a function P i : N i(Θ̄i) →
N i(P̄ ), such that:

1. function P i is differentiable;

2. locally, P i is the inverse demand faced by i: for every Θ̃i ∈ N i(Θ̄i),

P i(Θ̃i; M−i) ∩N i(P̄ ) = {P i(Θ̃i)}; (4)

3. matrix M̄ i is a correct estimation of the derivative of function P i at

Θ̄i: ∂P i(Θ̄i) = M̄ i.

It is important to notice that consistency is imposed on the whole pro-

file of individual matrices, and not matrix by matrix: the second and third

conditions of the definition require that ∂Θ̃iP i(Θ̄i; M−i) = M i.9 Intuitively,

consistent price impact matrices reflect the price changes needed to clear the

market for any small deviation Θ̃i by trader i, given that other traders re-

spond rationally to market prices in any subequilibrium. This means that

each trader correctly estimates her price impact, to a first order, and incor-

porates this information into her individual decision problem; this contrasts

with the competitive model, in which traders incorrectly assume that their

price impacts are null. Put simply, traders in thin markets do not act (in-

correctly) as price takers, and behave as “slope takers” instead.

2.3 Equilibrium

The three principles of equilibrium in thin financial markets have now been

introduced: equilibrium is a triple of prices, trades and perceptions of price
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impacts such that (i) all markets clear; (ii) all traders are acting optimally,

given the perception they hold of their price impacts; and (iii) these per-

ceptions are accurate estimates of the actual price impacts exerted by the

traders. For the sake or formality, we repeat the definition of equilibrium

next.

Definition 4. An equilibrium in thin financial markets for economy

{U, e, R} is a triple consisting of a vector of asset prices, a profile of traded

portfolios and a profile of price impact matrices, (P̄ , Θ̄, M̄) such that:

1. all markets clear:
∑

i Θ̄
i = 0;

2. for each trader i, trade Θ̄i is stable given (P̄ , M̄ i);

3. the profile of price impact matrices M̄ is mutually consistent, given

prices and trades (P̄ , Θ̄).

Importantly, notice that at equilibrium all trades take place at prices P̄ .

The following lemma provides a transparent characterization of equilibrium

for the case when there are no redundant assets in the market. For simplicity

of notation, given an array of I − 1 positive definite matrices, ∆ = (∆j)j∈J ,

let H(∆) denote the harmonic average of the array:

H(∆) = (I − 1)(
∑
j∈J

(∆j)−1)−1. (5)

Lemma 1. Suppose that R is nonsingular.10 Then, (P̄ , Θ̄, M̄) is an equilib-

rium in thin financial markets for economy {U, e, A} if, and only if,

1.
∑

i Θ̄
i = 0;

2. for each trader i, P + M iΘ̄i = RT∂ui(ei + RΘ̄i);

3. for each trader i,

M i =
1

I − 1
H((M j −RT∂2uj(ej + RΘ̄j)R)j 6=i). (6)
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Proof. Proof of Lemma 1 is in appendix A1.

The primary objective of this paper is to demonstrate that equilibrium in

thin financial markets is consistent with the standard no-arbitrage principle.

Therefore, we now review the concept of no-arbitrage, introduce a weaker

version of that principle, and also introduce a “no irrelevant impact” condi-

tion for price impact matrices, and discuss its implication for economies with

elementary securities.

3 Arbitrage and irrelevant price impacts

3.1 No-arbitrage

It is well known that in a competitive equilibrium it is impossible to find a

portfolio that (i) generates payoff that is non-negative in all possible states

of the world, and is positive in some; and (ii) has non-positive cost in the

present. This property of asset prices is known as a no-arbitrage condition:

Definition 5. A vector of asset prices P allows no arbitrage opportu-

nities if RΘ > 0 implies P ·Θ > 0.

It is also well known that price vector P allows no-arbitrage opportunities

if, and only if, there exists a vector of strictly positive “state prices,” p ∈ RS
++,

that determines the value of income in each state of the world: P = RTp.

Consequently, the next lemma follows:

Lemma 2. The set of asset prices that allow no arbitrage opportunities is

the following convex, open, positive cone:

{P ∈ RA|∃p ∈ RS
++ : P = RTp}. (7)

Proof. This result is well known, hence its proof is omitted.
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We find it instructive to introduce a weaker condition of no-arbitrage: a

requirement that portfolios whose future return is zero in all states of the

world should have zero cost at market prices.

Definition 6. A vector of asset prices P allows no weak arbitrage op-

portunities if RΘ = 0 implies P ·Θ = 0.

The weaker no-arbitrage condition amounts to relaxing the requirement

that state prices be strictly positive, as in the following lemma.

Lemma 3. The set of asset prices that allow no weak arbitrage opportunities

is

{P ∈ RA|∃p ∈ RS : P = RTp}. (8)

Proof. Proof of Lemma 3 is in appendix A1.

In a competitive equilibrium both the strong and the weak notions of

no-arbitrage are satisfied, as long as there is at least one rational agent who

maximizes preferences. In the following sections we show that when markets

are thin, only the weak notion of no-arbitrage is implied by optimization of a

rational agent.11 In order to claim the strong no-arbitrage condition, one also

needs to invoke the market clearing condition. This is why the distinction

between the weak and strong conditions becomes important in the theory of

thin financial markets.

Henceforth, we say that a pair of vectors of prices (P, p) ∈ RA × RS

is R-associated if they satisfy P = RTp. By our assumption that mar-

kets are complete, it is immediate that (P, p) is R-associated only if p =

(RT
S)−1(P1, . . . PS)T. Consequently, R-association of prices defines a bijec-

tion between the linear subspace of all asset prices P satisfying the weak

no-arbitrage condition, set (8), and RS. In case of a strong arbitrage such

bijection is between a convex cone, set (7), and RS
++.

If (P, p) is R-associated and P allows no arbitrage opportunities in the

strong sense, then vector (
∑

s ps)
−1p � 0 is a probability measure often

referred to as the pricing kernel implied by P . Similarly, if P allows no weak
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arbitrage opportunities, then vector p can be interpreted as a (weak) pricing

kernel implied by P . Note, however, that the weak pricing kernel does not

have to be a probability measure since prices do not necessarily sum up to

one and for some states they can even take negative values.

3.2 Price impact

In this section we give an analogous result for price impact matrices. We call

it a “no irrelevant impact” condition: it is the requirement that only trades

of portfolios with non-zero future payoff should affect prices.

Definition 7. A price impact matrix M i gives no irrelevant impact if

RΘi = 0 implies M iΘi = 0.

Technically, M i gives no irrelevant impact if, and only if, the kernel of

matrix M i contains the kernel of matrix R. The no irrelevant impact condi-

tion implies that only trades of portfolios resulting in changes in consumption

may affect prices. The condition can be equivalently restated as the require-

ment that portfolios with identical payoffs should have identical price effects

and hence an agent is not subject to an asset illusion.12

The next result provides a unique decomposition for symmetric matrices

that give no irrelevant price impact. For any M i define mi = (RT
S)−1M i

S(RS)−1,

where M i
S is the S × S leading principal minor of matrix M i.

Lemma 4. Let M i be an A×A, symmetric price impact matrix. If M i gives

no irrelevant impact, then

1. M i can be written as M i = RT miR;

2. mi is the only matrix that allows for such decomposition of M i.

Proof. Proof of Lemma 4 is in appendix A1.

In the same vein as with prices, we say that a pair of an A × A matrix

and an S × S matrix (M i, mi) is R-associated, if M i = RTmiR. From
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Lemma 4, it follows that if M i is symmetric and gives no irrelevant price

impacts, then (M i, mi) is R-associated if, and only if, mi = (RT
S)−1M i

S(RS)−1.

Consequently, R-association defines a bijection between these sets of A× A

and S × S matrices.

Some other implications of the condition of no irrelevant price impact are

given next. The first two results show that the presence of one trader that

maximizes preferences and whose trade has no irrelevant impact is sufficient

for the weak no-arbitrage condition.

Proposition 1. Suppose that price impact matrix M̄ i gives no irrelevant

price impact, and that there exists a portfolio Θ̄i that is stable for i given

(P̄ , M̄ i). Then prices P̄ allow no weak arbitrage opportunities.

Proof. By stability of individual trade, it follows that

P̄ + M̄ iΘ̄i = RT∂ui(ei + RΘ̄i). (9)

Multiplying (9) by any Θi such that RΘi = 0 gives

P̄ ·Θi = ∂ui(ei + RΘ̄i)TRΘi − (Θ̄i)TM̄ iΘ = 0, (10)

where the last equality follows from the fact that M̄ i gives no irrelevant price

impact.

Intuitively, changes in the portfolio that do not affect payoffs do not

alter consumption either, and, hence, do not change the marginal rate of

substitution between assets. Since, at an optimum, the marginal rate of

substitution equals marginal revenue, P̄ + M̄ iΘ̄i, the latter is not affected

either. But, with no irrelevant impact, marginal revenue is constant only

if prices are orthogonal to zero-payoff portfolios. The following corollary is

immediate

Corollary 1. If (P̄ , Θ̄, M̄) is an equilibrium in thin financial markets for

{U, e, R}, and for at least one trader i price impact matrix M̄ i gives no
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irrelevant impact, then P̄ allows no weak arbitrage opportunities, and there

exists a (weak) pricing kernel p ∈ RS such that P = RTp.

Proof. This follows from Proposition 1 and Lemma 3.

The next result demonstrates that, in equilibrium, if all traders but i es-

timate that they have no irrelevant price impact, then trader i automatically

has no irrelevant impact. Consequently asset illusion may occur only as a

global phenomenon, in which the irrelevant impact of a trader arises only

because of the asset illusion by other traders.

Proposition 2. Let (P̄ , Θ̄, M̄) be an equilibrium in thin financial markets

for economy {U, e, R}. If for all traders j 6= i matrix M̄ j gives no irrelevant

price impact, then matrix M̄ i gives no irrelevant impact.

Before the proof of the proposition, we introduce a useful lemma, whose

proof we again defer to appendix A1.

Lemma 5. Return-equivalent deviations trigger the same subequilibrium prices:

Fix an individual i and a profile of perceived price impacts for all traders but

i, M̄−i = (M̄ j)j 6=i, and suppose that each matrix M̄ j gives no irrelevant price

impact. Suppose that portfolios Θ̃i and Θ̂i are return-equivalent, in the sense

that RΘ̂i = RΘ̃i. If (P̃ , Θ̃−i) is a subequilibrium triggered by trade Θ̃i, then(
P̃ , (Θ̃j + (I − 1)−1(Θ̃i − Θ̂i))j 6=i

)
(11)

is a subequilibrium triggered by trade Θ̂i.

Proof of proposition 2. Let Θi be an arbitrary portfolio such that RΘi = 0.

By definition of equilibrium, there exists a local inverse demand function

P i. Then, we can define ϕ(λ) = P i(Θ̄i + λΘi), for real numbers λ close

enough to 0. By lemma 5, it follows that, for any λ ∈ R, (P̄ , (Θ̄j − (I −
1)−1λΘi)j 6=i) is a subequilibrium triggered by trade λΘi. Thus, for any λ,

subequilibrium prices are not affected, so it is immediate that ϕ′(λ) = 0,
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while, by construction,

ϕ′(0) = ∂P i(Θ̄i)Θi = M̄ iΘi. (12)

Consequently, M̄ i gives no irrelevant impact.

In this paper we restrict our attention to equilibria in which there is

no asset illusion and hence all price impact matrices satisfy no irrelevant

impact. In the following sections we argue that such equilibria exist and are

determinate. We conjecture that equilibria in which traders have irrelevant

impact do not exist. As of yet, however, we are not able to give a formal

argument to support our claim, leaving it as an open question for future

research.

4 Pricing kernel in thin complete markets

4.1 Elementary securities

A thin financial market is completely characterized by a triple consisting of

the utility functions of the traders, their initial endowments and the asset

payoffs structure, {U, e, R}. Since we are considering only the case of com-

plete financial markets, we can obtain a canonical auxiliary representation

by endowing the market with a complete set of elementary (Arrow) securi-

ties, in lieu of the set of securities R. That is, the representation of economy

{U, e, R} in elementary securities is economy {U, e, IS}.
In the representation, we maintain the assumptions that markets are thin:

traders continue to realize that their trades do have price impacts, and they

estimate these impacts and take them into account at the moment of design-

ing their portfolios. For notational simplicity, we use lower-case characters for

the corresponding (endogenous) variables in the representation in elementary

securities:

Definition 8. Given preferences and endowments {U, e}, a triple consisting
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of a vector of state prices, a profile of revenue transfers across states of the

world and a profile of state-price impact matrices, (p̄, θ̄, m̄) is an equilibrium

in elementary securities for {U, e} if it is an equilibrium in thin financial

markets for economy {U, e, IS}.

The following results are important: under our assumptions, equilibria in

elementary securities exist and are (generically) locally unique.

Proposition 3. Suppose there are at least three traders in the market. Then,

1. For any profile of preferences and endowments, {U, e}, there exists an

equilibrium in elementary securities (p̄, θ̄, m̄) such that all price impact

matrices m̄i are diagonal and positive definite.

2. If, moreover, all preferences are three times continuously differentiable,

then, typically in the space of preferences and endowments, all equilibria

in elementary securities with diagonal, positive-definite price impact

matrices are locally unique (i.e., isolated from one another).13

Proof. These results follow, respectively, from Theorems 1 and 2 in [14]. For

the sake of simplicity and completeness, appendix A2 specializes the proofs

to the case treated here.

Our result shows that the thin market model always gives some predic-

tions, and, furthermore, that these predictions are typically sharp, in the

sense that they pin down the outcome of the market, at least at a local level.

It is natural to ask whether in the equilibria resulting from Proposition 3

there are arbitrage opportunities and irrelevant price impacts. Observe that

in the economy with elementary securities the only portfolio that gives zero

return in all states is a zero portfolio, and obviously both the cost of such

portfolio and its price impact are zero, regardless of the specific prices and

price impact matrices. Therefore equilibrium prices do not allow for weak

arbitrage opportunities and there is no irrelevant price impact in the economy
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with elementary securities. The more challenging question of whether the no-

arbitrage condition holds in the strong sense (so that a strong pricing kernel

exists) is addressed in the next proposition.

Proposition 4. Let (p̄, θ̄, m̄) be an equilibrium in elementary securities in

{U, e} with diagonal, positive definite price impact matrices m̄i. Then, prices

p̄ allow no-arbitrage opportunities: p̄ � 0

Proof. For every trader i, it must be true that p̄ = ∂ui(ei + θ̄i) − m̄iθ̄i. For

asset (state) s, since m̄i is diagonal, the latter means that p̄s = ∂ui
s(e

i
s +

θ̄i
s)− m̄i

s,sθ̄
i
s. By market clearing, there must exist i for whom θ̄i

s ≤ 0, which

means, by monotonicity of ui and positive definiteness of m̄i, that p̄s > 0.

Critically, the implication of Proposition 4 does not follow simply from the

existence of one rational trader with monotone preferences; rather, it follows

from the facts that traders’ von Neumann-Morgenstern utility functions are

separable and all markets clear. [16] provides examples of economies with

traders characterized by non-separable utility functions; there, one might

observe negative prices for some states of the world, even with preferences

that are strictly monotone. In such case negative prices result from cross-

market effects associated with market power.

4.2 Equivalence of the two representations

In this section we exploit market completeness to obtain a characterization of

equilibrium in economy {U, e, R}, by associating it with an equilibrium in the

corresponding economy endowed with the full set of elementary securities.

We say that a pair of portfolios (Θi, θi) ∈ RA × RS is R-associated if

the two portfolios are payoff equivalent, RΘi = θi. By market completeness,

for every θi there is at least one Θi such that (Θi, θi) is R-associated, for

example

Θi =

(
R−1

S θi

0

)
. (13)
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When there are no redundant assets, such Θi is unique. Note, however, that

the association of portfolios is not a bijection in general.

Further, we say that a triple of a vector of prices, a profile of portfolios,

and a profile of price impact matrices in market R, and a corresponding triple

in elementary securities are R-associated if so are each of their components:

(P, Θ, M) and (p, θ,m) are R-associated if:

1. the pair of prices (P, p) is R-associated: P = RTp;

2. for each i, the pair of portfolios (Θi, θi) is R-associated: RΘi = θi;

3. for each i, the pair of price impact matrices (M i, mi) is R-associated:

M i = RTmiR.

The next lemma establishes the connection between the equilibria in

economies with arbitrary assets and their counterparts with elementary se-

curities.

Lemma 6. Suppose that (P̄ , Θ̄, M̄) and (p̄, θ̄, m̄) are R-associated. Then,

1. if (p̄, θ̄, m̄) is an equilibrium in elementary securities for {U, e} and∑
i Θ̄

i = 0, then (P̄ , Θ̄, M̄) is an equilibrium in thin financial markets

for {U, e, R};

2. if (P̄ , Θ̄, M̄) is an equilibrium in thin financial markets for {U, e, R},
then (p̄, θ̄, m̄) is an equilibrium in elementary securities for {U, e}.

Proof. Proof of Lemma 6 is in appendix A1.

In the following sections we explore the theoretic and practical implica-

tions of this result.

4.3 Equilibria with no-arbitrage

Noncompetitive behavior is inconsistent with the standard argument by which

no-arbitrage14 arises as a necessary condition for equilibrium in financial mar-

kets. In fact, no-arbitrage is an immediate implication of the existence of just

18



one rational, competitive trader. But if traders are noncompetitive, the argu-

ment fails: suppose that a trader i has chosen a portfolio Θi, even though an

arbitrage opportunity Θ exists in the market; if i were competitive, portfolio

Θi + λΘ, for any λ > 0 would give her more utility, whatever her prefer-

ences. But this need not be the case for noncompetitive i, for her demand

for portfolio Θ, the arbitrage opportunity, may exert ‘detrimental’ effects of

the price of Θ itself, and on the cost of portfolio Θi; while the first effect is

of second order, and hence vanishes for small λ, the second effect is of first

order.

This is an important issue, as no-arbitrage conditions and their impli-

cations in terms of existence and positivity of state prices constitute the

analytical basis for asset pricing theory.

Proposition 4 has given a condition under which no-arbitrage remains a

necessary condition of equilibria under noncompetitive behavior, for the case

of a full set of elementary securities. The following result is the most impor-

tant one in the paper: it shows that in economies with complete markets and

separable preferences, noncompetitive behavior is not incompatible with the

existence of a pricing kernel.

Theorem 1. Suppose that there are at least three traders in the market.

Then,

1. For any economy {U, e, R}, there exists an equilibrium (P̄ , Θ̄, M̄) sat-

isfying that

(a) price impact matrices M̄ i are symmetric, positive definite and give

no irrelevant price impact;

(b) prices P̄ allow no strong (and, hence, no weak) arbitrage oppor-

tunities, and a classical pricing kernel exists.

2. If, moreover, all preferences are three times continuously differentiable,

then, for a typical profile of preferences and endowments {U, e}, and

any asset payoffs structure R, equilibria satisfying conditions (a) and
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(b) above are locally unique, at least up to the payoff equivalence of

the portfolios: generically in {U, e}, every equilibrium (P̄ , Θ̄, M̄) of

{U, e, R} has an open neighborhood such that if (P̃ , Θ̃, M̃) is an equi-

librium for the same economy and lies in that open neighborhood, then

P̃ = P̄ , M̃ = M̄ and RΘ̃i = RΘ̄i for every trader i.

Proof. Part 1 follows from part 1 Proposition 3: Given preferences and en-

dowments {U, e}, it follows from the proposition that there exists an equilib-

rium in elementary securities (p̄, θ̄, m̄), and that in this equilibrium all price

impact matrices m̄i are diagonal. Define P̄ = RTp̄ and, for all trader i,

Θ̄i =

(
R−1

S θ̄i

0

)
(14)

and M̄ i = RTm̄iR. By construction, (P̄ , Θ̄, M̄) and (p̄, θ̄, m̄) are R-associated

and
∑

i Θ̄
i = 0. It follows from part 1 of Proposition 6 that (P̄ , Θ̄, M̄) is an

equilibrium in thin financial markets for {U, e, R}. By construction, every

price impact matrix M̄ i gives no irrelevant price impact, and hence, it follows

from Proposition 1 that P allows no weak arbitrage opportunities. Moreover,

since every matrix m̄i is diagonal, it follows from part 1 of Proposition 4 that

p̄ � 0, and, hence, that P̄ = RTp̄ allows no arbitrage opportunities.

For part 2, take any profile of preferences and endowments, {U, e}, in

the generic set given by part 2 of proposition 3, and fix any R satisfy-

ing the assumptions imposed in the paper. Suppose, by way of contradic-

tion, that there exist an equilibrium (P̄ , Θ̄, M̄) and a sequence of equilibria

(Pn, Θn, Mn)∞n=1, all of them satisfying conditions (a) and (b), such that

1. for every n, (Pn, (RΘi
n)i, Mn) 6= (P̄ , (RΘ̄i)i, M̄);

2. (Pn, Θn, Mn)∞n=1 converges to (P̄ , Θ̄, M̄).

Define p̄ and pn to be the unique state-price vectors R-associated, respec-

tively, to P̄ and Pn. Similarly, let m̄ and mn be the unique profiles of price

impact matrices that are R-associated, respectively, to M̄ and Mn. By part 2

20



of lemma 6, it follows that (p̄, (RΘ̄i)i, m̄) and all (pn, (RΘi
n)i, mn) are equilib-

ria in elementary securities for {U, e}. Since R-association of prices and price

impact matrices both define bijections, it follows from the first property above

that for every n, (pn, (RΘi
n)i, mn) 6= (p̄, (RΘ̄i)i, m̄). By the second property

above, (pn, (RΘi
n)i, mn) converges to (p̄, (RΘ̄i)i, m̄), but this is impossible

since all equilibria in elementary securities for {U, e} are locally unique.

5 Thin financial markets and asset prices

5.1 The fundamental theorem of asset pricing

The following is a version of the fundamental theorem of asset pricing: the

introduction of an asset whose payoff can be replicated by a combination of

existing assets need not perturb non-competitive equilibria: the new asset is

priced at the cost of the portfolio that hedges it, and it is not traded. What

is new, though, is that the same principle by which the asset is priced applies

to the price impacts it exerts and receives.

Theorem 2. Suppose that (P, Θ, M) is an equilibrium in thin financial mar-

kets for economy {U, e, R}, and that all price impact matrices M i give no

irrelevant price impact. Let ρ be a collection of new assets, taken as an

S × Ã matrix, let R̃ = ( R ρ ), be a new asset structure, and let

Θρ =

(
R−1

S ρ

0

)
(15)

be a collection of portfolios that hedge the assets in ρ.15 Then, an equilibrium

for economy {U, e, R̃} is given by (P̃ , Θ̃, M̃) with prices

P̃ =

(
P

ΘT
ρ PT

)
, (16)

individual portfolios Θ̃i = ( (Θi)T 0 )T, and individual price impact matri-
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ces

M̃ i =

(
M i M iΘρ

ΘT
ρ M i ΘT

ρ M iΘρ

)
. (17)

Proof. By corollary 1, there exists p ∈ RS such that RTp = P . By construc-

tion, then, p = (RT
S)−1(P1, . . . , PS)T. Define also, for each i, θi = RΘi and

mi = (RT
S)−1M i

SR−1
S . By Lemma 4, (P, Θ, M) and (p, θ,m) are R-associated,

and, in particular,

M i = RTmiR =

(
M i

S M i
SR−1

S RA−S

RT
A−S(R−1

S )TM i
S RT

A−S(R−1
S )TM i

SR−1
S RA−S

)
. (18)

It follows from part 2 of proposition 6 that (p, θ,m) is an equilibrium in el-

ementary securities for {U, e}. Also by construction, prices (P̃ , p) and port-

folios (Θ̃, θ) are R̃-associated. Moreover, for each trader i,

R̃TmiR̃ =

(
M i RTmiρ

ρTmiR ρTmiρ

)
. (19)

By direct computation,

RTmiρ =

(
M i

SR−1
S ρ

RT
A−S(RT

S)−1M i
SR−1

S ρ

)
= M iΘρ, (20)

and ρTmiρ = ΘT
ρ M iΘρ, so R̃TmiR̃ = M̃ i. It follows that (M̃,m) is R̃-

associated, and the result then follows from part 1 of proposition 6.

Importantly, corollary 1 and proposition 2 can be used to write the equi-

librium prices for the economy endowed with asset structure R̃ as

P̃ = R̃Tp =

(
P

ρTp

)
. (21)

for some p ∈ RS. It is in this sense that vector p obtained from corollary

is a pricing kernel: the prices of all assets, including derivatives that can
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be replicated from existing assets, can be expressed as the value of their

returns at state prices p. Crucially, proposition 1 established the existence

of equilibria in which p is a pricing kernel in the classical sense (p � 0) and

can be used to define a probability measure over states of the world.

Notice, finally, that the computation of price impact matrices can be

obtained via their analogous in elementary securities as well: this is the

intuition of equation 19. In this sense, one can view the price impact matrices

in elementary securities as “price impact kernels.”

5.2 The interest rate puzzle

It follows by definition that in noncompetitive markets asset prices may di-

verge from competitive prices. We now ask whether such price biases can,

at least partially, explain discrepancies between the returns predicted by a

competitive model (the representative agent model) and the ones observed

empirically.

The risk-free interest rate puzzle was first observed by [13]. In short,

in the competitive theory of asset pricing, the risk-averse agents prefer flat

consumption over time. They are willing to postpone consumption only if

compensated by a high interest rate. Given the standard preferences, the

empirically observed growth rate of per capita consumption equal to 2%

cannot be reconciled with the risk-free interest rate of only 1%.

It follows from the Fundamental Theorem of Asset Pricing that with a

pricing kernel, the return to a riskless asset, 1 + r, can be computed as

the inverse of the sum of all state prices. The next proposition shows that

if one assumes that all individuals have identical CRRA Bernoulli utility

functions,16 then trade in financial markets results in an risk-free interest

rate that is below the one from a competitive model.

Proposition 5. Consider an economy {U, e, R}, where all individuals have

identical CRRA Bernoulli utility functions. In any equilibrium satisfying the

two properties stated in part 1 on Theorem 1, the risk-free interest rate is

always below the rate that would arise in a competitive economy.
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Proof. The third derivative of a CRRA utility function is positive, and, hence,

the assumptions of Proposition 4 in [14] hold. Then, state-by-state, the equi-

librium price of an elementary security is above its competitive counterpart

and therefore the risk-free interest rate is lower than in the corresponding

competitive market.

It follows that when financial markets are thin, using the competitive

model to explain the empirical returns will lead to a risk-free interest rate

puzzle. This is true even if the specified CRRA preferences have a “reason-

able” risk-aversion parameter.

What is the mechanism responsible for return biases? In a competitive

model with identical quasilinear preferences consumption of each agent is

the same and equal to a per capita consumption. In thin markets, however

traders do not perfectly hedge their idiosyncratic risk, and hence equilibrium

consumption is not degenerated. With convex marginal utility,17 in each

state the same per capita consumption is associated with a higher average

marginal utility across all traders. This enhances the price of an elementary

security. Consequently the interest rate falls.

Why, given a low interest rate, do agents hold bonds rather than consume

more in period zero? With a convex marginal utility and partial hedge of

idiosyncratic risk, an agent’s marginal value of a dollar is disproportionally

high in bad states. The riskless asset pays in all states a constant amount

and therefore is an attractive insurance instrument.

We have shown that thin trading may lead to returns biases that are

consistent with the well-known anomalies. Our finding, however, should be

interpreted with care, as we did not assess the quantitative relevance of the

mechanism. Quantitative analysis require a full-fledged dynamic model of

thin markets18 and therefore we leave for future research.

Finally, notice that this model of thin financial markets is consistent with

the ubiquitous observation that that a dollar invested in a small-cap stock

gives a significantly higher expected return than the same dollar invested in

a large-cap company, ceteris paribus : since large-cap stocks are traded in
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deeper markets, the difference in returns is a premium for market depth (or

liquidity). Such premium cannot be reconciled with the competitive theory,

while it naturally arises in the model of thin trading.

6 A (very) simple example

We now use a “coconut” example to illustrate numerical differences between

equilibria in competitive economies and equilibria in thin financial markets.

We use this computations to illustrate that noncompetitiveness may help in

explaining well-known asset pricing puzzles, such as the risk-free interest rate

puzzle. Finally we show how Theorem 2 can be applied to price derivatives

in thin markets.

6.1 The economy

Consider an island where the only production technology available is coconut

palms. There are three equally likely states of the world, s = 1, 2, 3: in state

1 there is a drought in the north of the island and the palms there are not

productive; in state 2, the drought is in the south of the island; in state

3, there is no drought anywhere in the island, and in this case each palm

produces two coconuts.

There are two types of individual t = 1, 2, and there are two (identical)

individuals of each type. Type-1 individuals live in the north, so they have

wealth only when that region of the island is productive: they are endowed

with e1 = (0, 2, 2). Type-2 individuals live in the south, and, analogously,

they have e2 = (2, 0, 2). All four individuals have identical preferences,

u(c) = c0 +
1

3

∑
s

ln(cs). (22)

There are three securities that can be traded in this economy: a riskless

bond, R1 = (1, 1, 1)T, a share in a coconut palm from the south, R2 =
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(0, 2, 2)T, and a share in a coconut palm from the north, R3 = (2, 0, 2)T.

6.2 Equilibrium in thin financial markets

If all traders ignore their price effects and behave competitively, the equi-

librium in these financial markets is at prices P̃ = (5/6, 1, 1)T, with both

type-1 individuals buying a portfolio Θ̃1 = (0,−1/2, 1/2)T and both type-2

individuals selling that portfolio.

6.2.1 Elementary securities

For simplicity of computation, we can solve first for an equilibrium in ele-

mentary securities, and then use lemma 6 to obtain one in the original thin

financial markets. By numerical computation, an equilibrium in elementary

securities is as follows:19

1. Prices are p̄ = (0.3920, 0.3920, 0.1667)T.

2. Both type-1 individuals buy a portfolio θ̄1 = (0.6647,−0.6647, 0) and

estimate a price impact matrix

m̄1 =

 0.1646 0 0

0 0.2142 0

0 0 0.0417

 . (23)

3. Each type-2 individual sells the portfolio purchased by a type-1 indi-

vidual, θ̄2 = −θ̄1 and they both estimate a price impact matrix

m̄2 =

 0.2142 0 0

0 0.1646 0

0 0 0.0417

 . (24)
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6.2.2 Equilibrium

We can now use lemma 6 to compute the equilibrium with asset structure

R = (R1, R2, R3):

1. Prices are given by

P̄ = RTp̄ = (0.9507, 1.1173, 1.1173)T. (25)

2. Each individual of type 1 buys a portfolio

Θ̄1 = R−1θ̄1 =

 0.0000

−0.3324

0.3324

 , (26)

which is sold by a type-2 individual: Θ̄2 = −Θ̄1.

3. Each individual of type 1 estimates that her price impacts are

M̄1 = RTm̄1R =

 0.4205 0.5117 0.4126

0.5117 1.0233 0.1667

0.4126 0.1667 0.8252

 , (27)

while each individual of type 2 estimates

M̄2 = RTm̄2R =

 0.4205 0.4126 0.5117

0.4126 0.8252 0.1667

0.5117 0.1667 1.0233

 . (28)

One can readily verify that these values satisfy all the conditions of lemma

1, and, hence, constitute an equilibrium for {U, e, R}.
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6.3 Price biases

Notice that in this economy the competitive risk-free interest rate is r̃ =

1/P̃1 − 1 = 0.2. Importantly, notice that when these agents recognize their

price impacts the risk-free interest rate is lower: it is r̄ = 1/P̄1 − 1 = 0.0519.

Another anomaly robustly documented in the empirical literature is the

equity premium puzzle: [8] has shown that over the last century the aver-

age annual return to stocks has been six percentage points above the annual

risk-free return to Treasury bills. Under reasonable risk preferences, the co-

variance of risky returns with per capita consumption growth cannot explain

an equity premium that high.

In our example, if trade were competitive the equity premium would be,

for asset 2,
E(R2)

P̃2

− r̃ = 0.1333. (29)

In the equilibrium in thin markets, the same return is traded at a higher

premium
E(R2)

P̄2

− r̄ = 0.1414. (30)

Therefore in thin markets the equity premium is significantly above the one

obtained in the competitive setting. Intuitively, price impacts of the traders

are the highest for elementary securities corresponding to “bad” states of the

economy, and for such states the price biases are the strongest.

6.4 Arbitrage pricing in practice

To the existing assets, a bond and two stocks, we add call options shares of

the palms, with strike prices equal to 1 in both cases. These assets can be

written as

R4 =

 max{R2
1 − 2, 0}

max{R2
2 − 2, 0}

max{R2
3 − 2, 0}

 =

 0

1

1

 , (31)
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and

R5 =

 max{R3
1 − 2, 0}

max{R3
2 − 2, 0}

max{R3
3 − 2, 0}

 =

 1

0

1

 . (32)

Let ρ = (R4, R5), and notice that these claims are hedged by

Θρ =

 0 0

1/2 0

0 1/2

 . (33)

By theorem 2 (our version of the fundamental theorem of asset pricing),

we can obtain an equilibrium where prices of the existing (primitive) as-

sets remain the same, all traders constitute the same portfolios as before

(that is, they do not trade the options), the options are priced at P̄Θρ =

(0.5587, 0.5587), and the price impact matrices are as follows: for each type-

1 individual the matrix is

(
M̄1 M̄1Θρ

ΘT
ρ M̄1 ΘT

ρ M̄1Θρ

)
=


0.4205 0.5117 0.4126 0.2558 0.2063

0.5117 1.0233 0.1667 0.5117 0.0833

0.4126 0.1667 0.8252 0.0833 0.4126

0.2558 0.5117 0.0833 0.2558 0.0417

0.2063 0.0833 0.4126 0.0417 0.2063

 ,

(34)

while for each type-2 individual it is

(
M̄2 M̄2Θρ

ΘT
ρ M̄2 ΘT

ρ M̄2Θρ

)
=


0.4205 0.4126 0.5117 0.2063 0.2558

0.4126 0.8252 0.1667 0.4126 0.0833

0.5117 0.1667 1.0233 0.0833 0.5117

0.2063 0.4126 0.0833 0.2063 0.0417

0.2558 0.0833 0.5117 0.0417 0.2558

 .

(35)
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7 Concluding remarks

We have studied a model of trade in financial markets where individual in-

vestors recognize the fact that prices do depend on their trades. In this

setting, the argument why asset prices do not allow for arbitrage opportuni-

ties at equilibrium fails. In the customary argument, arbitrage opportunities

cannot exist because if they do, the portfolios that individuals are demanding

cannot be optimal: whatever her preferences and believes20 adding one unit

of the arbitrage opportunity to the existing portfolios of one trader would

make her strictly better-off. Thus, according to this argument, equilibrium

asset prices eliminate arbitrage opportunities and embed, in consequence, an

objective probability distribution that allows to price any state-contingent

claim in the economy as the discounted expected return it entails. This is

the foundation of the theory of asset pricing. But, indeed, this argument is

untenable if one believes that individual investors do anticipate that their

trades will affect asset prices: even if an arbitrage opportunity exists, it may

be that an investor’s attempt to exploit it affects the prices in a way such that

the cost of her existing portfolio increases to the point that she is no longer

better-off in ex-ante terms. If a theory of asset pricing based on an objective

probability embedded in prices is going to be consistent with noncompetitive

behavior of investors, a new argument has to be provided.

In this paper, we have tackled that question in the context of a two-

period, financial economy with a finite number of states of the world. We

have considered a situation in which all traders know that, given a status quo

of prices and trades in the market, if they were to attempt a different trade,

they would (have to) affect prices in order to guarantee that the rest of the

market is willing to accommodate their increased demands or sales. In such a

case, the predictions of models where all traders follow price-taking behavior

are inapplicable. For instance, each individual’s willingness to trade is lower

than in the competitive case, and, consequently, not all gains to trade are

exhausted and trade leads to an equilibrium in which the asset allocation

is Pareto-inefficient.21 Here, we have shown that, even in noncompetitive

30



financial markets, financial equilibria that preclude arbitrage opportunities

do exist.

Some assumptions were made. Firstly, we only consider agents with pref-

erences that have von Neumann-Morgenstern representation with respect

to future consumption, and that are quasilinear with respect to date-zero

consumption, a variable in which we impose no non-negativity constraints;

effectively, these assumptions leave all future consumption free of income

effects, and simplifies substitution effects across consumption in different

states of the world, which makes our mathematical problem more tractable.

Secondly, we consider only the case in which the existing financial markets

allow for complete insurance opportunities against risk; this allows us to ob-

tain an auxiliary representation of the economy by replacing the financial

markets with a complete set of elementary securities, in which, thanks to

the separability of preferences, we can restrict attention to the case when

price cross-effects are null: each agent beliefs, a posteriori correctly, that

if she expands her order for some security, only the price of that security

will be affected. We then invoke the argument of [14] to prove the existence

of equilibria in the auxiliary economy in which no arbitrage opportunities

can exist. Critically, though, this conclusion follows as a consequence of the

facts that all traders are individually rational and all markets are clearing,

which contrasts with the competitive case, in which the existence of just one

individually rational trader suffices for the conclusion, regardless of market

clearing. We then associate the equilibria of the auxiliary economy with

equilibria on the original financial structure, and obtain that at these equi-

libria no arbitrage opportunities can exist either. Furthermore, we provide

an extension of the fundamental theorem of asset pricing to (two-period, fi-

nite) noncompetitive economies, which allow not only for the computation

of the prices of redundant securities, but also for the direct determination of

the price impacts exerted by these securities (and also of those exerted by

other securities on these). The effect of market thinness on asset prices is

not clear without further assumptions. If one assumes a symmetric economy
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with CRRA preferences, asset prices are above the ones that would prevail

were the markets competitive.22

Critically, in our analysis market power is determined endogenously, as

part of the definition of equilibrium. Here, we have considered the case in

which traders correctly estimate their price impacts to a first-order level

of accuracy: implicit in their individual portfolio problems, they impute a

correct linear approximation to the real inverse demand they face from the

rest of the market (which, in itself, depends on the estimations other traders

are making of the inverse demand they face, which depend on the estimation

made by the trader in question). This assumption simplifies the definition

and treatment of equilibrium, in that it guarantees that each trader’s solution

to her portfolio problem is characterized by its first-order conditions, but is

of no further importance. Moreover, [15] provides strategic foundations for

the equilibrium used here.

The extension of these results, and the relaxation of the assumptions

made here remain topics for further research. If one guarantees that the

second-order conditions of the portfolio problem are satisfied for each trader,

then the assumption that they only estimate their inverse demands to a first-

order level of accuracy can be removed. The assumptions of separability and

quasilinearity are useful, but ought to be relaxed. Most critically, however,

the question of whether our results hold true for economies with incomplete

financial markets remains open.
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Appendix A1: lemmata

Proof of lemma 1: For necessity, the first two conditions are immediate, and
we only need to concentrate on the third condition.

For any investor j, since Θj is stable given (P̄ , M̄ j) it must be that it
solves the equation P̄ = RT∂uj(ej + RΘ̄j) − M̄ jΘ̄j. By strong concavity
of preferences, nonredundancy of assets and positive definiteness of the price
impact matrix, this defines, locally around P̄ , a differentiable individual (sta-
ble) demand function Θj(P ; M̄ j), with derivative

∂P Θj(P̄ ; M̄ j) = (RT∂2uj(ej + RΘ̄j)R− M̄ j)−1, (36)

a negative definite matrix.
Thus, the demand trader i faces from the rest of the market is, locally

around P̄ , ϕi(P ) =
∑

j 6=i Θ
j(P ; M̄ j). By construction,

∂ϕi(P̄ ) =
∑
j 6=i

(RT∂2uj(ej + RΘ̄j)R− M̄ j)−1, (37)

again a negative definite matrix. A subequilibrium triggered by a local devi-
ation Θ̃i (close enough to Θ̄i) requires prices P̃ such that ϕi(P̃ ) = −Θ̃i. This
defines, locally, a differentiable subequilibrium price function φi(Θ̃i), with
the property that

∂φi(Θ̄i) = −(∂ϕi(P̄ ))−1 = H((M̄ j −RT∂2uj(ej + RΘ̄j)R)j 6=i). (38)

Now, since M̄ is mutually consistent given (P̄ , Θ̄), there exists a local
inverse demand function P i. Since subequilibria are locally unique, it must be
that, in a neighborhood of Θ̄i, φi(Θ̃i) = P i(Θ̃i), which immediately implies,
again by mutual consistency of M , that

M i = ∂P i(Θ̄i) = ∂φi(Θ̄i) = H((M j −RT∂2uj(ej + RΘ̄j)R)j 6=i). (39)

For sufficiency, market clearing and stability of all trades are immediate,
and we only need to prove mutual consistency of profile M̄ .

As in the proof of necessity, by the second condition of the lemma, for
each trader i we again have, locally around P̄ , an inverse demand function
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ϕi(P ) =
∑

j 6=i Θ
j(P ; M̄ j), with

∂ϕi(P̄ ) =
∑
j 6=i

(RT∂2uj(ej + RΘ̄j)R− M̄ j)−1 (40)

a negative definite matrix. By the implicit function theorem we can find
neighborhoods N i(Θ̄i) and N i(P̄ ), and a diffeomorphism ρi : N i(Θ̄i) →
N i(P̄ ), such that

a. P i(Θ̃i) is the only P in N i(P̄ ) satisfying that ϕi(P ) + Θ̃i = 0;

b. ∂P i(Θ̄i) = −(
∑

j 6=i(R
T∂2uj(ej + RΘ̄j)R− M̄ j)−1)−1.

By property (a), for every Θ̃i ∈ N(Θ̄i), P i(Θ̃i; M−i) ∩ N(P̄ ) = {P i(θ̃i)},
while, by property (b) and the third condition of the lemma, ∂P i(Θ̄i) =
M i.

Proof of lemma 3: That prices in the set allow no weak arbitrage opportuni-
ties is straightforward. Now, vector P allows no weak arbitrage opportunities
if, and only if, there exists no solution to the system

P ·Θ < 0, RΘ = 0. (41)

It follows from Farkas’s lemma that if P allows no weak arbitrage opportuni-
ties, then for some (p0, p1) ∈ R++ × RS, it is true that p0P = RTp1. Letting
p = 1

p0
p1 completes the proof.

Proof of lemma 4: Write

M =

(
MS ∆
∆T Γ

)
. (42)

Define

T =

(
−R−1

S RA−S

IA−S

)
, (43)

and notice that RT = 0. Since M gives no irrelevant impact, it follows that
MT = 0, which implies that MSR−1

S RA−S = ∆ and ∆TR−1
S RA−S = Γ.

Now, by direct computation,

RTmR =

(
MS RT

SmRA−S

RT
A−SmRS RT

A−SmRA−S

)
, (44)
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whereas RTmRT = 0, so MSR−1
S RA−S = RT

SmRA−S. Immediately, it follows
that RT

SmRA−S = ∆, which implies that RT
A−SmRA−S = ∆TR−1

S RA−S = Γ,
and hence that RTmR = M .

For uniqueness, suppose that RTm̃R = M . Then,

m̃ = (RT
S)−1RT

Sm̃RS(RS)−1 = (RT
S)−1MS(RS)−1 = m. (45)

Proof of lemma 5. By construction,∑
j 6=i

(Θ̃j + (I − 1)−1(Θ̃i − Θ̂i)) + Θ̂i =
∑
j 6=i

Θ̃j + Θ̃i − Θ̂i + Θ̂i = 0, (46)

and hence all markets clear. It only remains to show that for each j 6= i,
trade Θ̃j +(I − 1)−1(Θ̃i− Θ̂i) is stable for j given (P̃ , M̄ j). Suppose not: for
some j and some Θj,

U j(−(P̃ + M̄ j(Θj − (Θ̃j + (I − 1)−1(Θ̃i − Θ̂i)))) ·Θj, ej + RΘj)

> U j(−P̃ · (Θ̃j + (I − 1)−1(Θ̃i − Θ̂i)), ej + R(Θ̃j + (I − 1)−1(Θ̃i − Θ̂i))).

Since R(Θ̃i− Θ̂i) = 0 and M̄ j gives no irrelevant price impact, it follows that
M̄ j(Θ̃i−Θ̂i) = 0 and, by proposition 1, P̃ ·(Θ̃i−Θ̂i) = 0. Then, the previous
equation is equivalent to

U j(−(P̃ + M̄ j(Θj − Θ̃j)) ·Θj, ej + RΘj) > U j(−P̃ · Θ̃j, ej + RΘ̃j), (47)

which means that Θ̃j is not stable for j given (P̃ , M̄ j), contradicting the fact
that (P̃ , Θ̃−i) is a subequilibrium triggered by trade Θ̃i.

Proof of lemma 6. For notational definiteness, we denote by S i(Θi; M−i, R)
and P i(Θi; M−i, R) the sets of subequilibria triggered by Θi, given M−i,
and its projection into the space of prices, when the economy is endowed
with asset structure R. We distinguish these sets for the case of elementary
securities, by denoting them as S i(Θi; M−i, IS) and P i(Θi; M−i, IS).

Notice first that, since each (M̄ i, m̄i) is R-associated, it is immediate
that all M̄ i give no irrelevant price impacts. Also, notice that, by lemma 4,
m̄i = (R−1

S )TM̄ i
SR−1

S for all i.
For the first claim, suppose that (p̄, θ̄, m̄) is an equilibrium for {U, e, IS}

and
∑

i Θ̄
i = 0. Market clearing is assumed, so we only need to show that
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each Θ̄i is stable for i given (P̄ , M̄ i), and that the profile M̄ is mutually
consistent.

Suppose that Θ̄i is not stable for i given (P̄ , M̄ i). Then, we can fix Θ
such that

−(P̄ + M̄ i(Θ− Θ̄i)) ·Θ + ui(ei + RΘ) > −P̄ · Θ̄i + ui(ei + RΘ̄i). (48)

Given that (P̄ , Θ̄, M̄) and (p̄, θ̄, m̄) are R-associated, it follows that

−(RTp̄+RTm̄iR(Θ−Θ̄i))·Θ+ui(ei+RΘ) > −(RTp̄)·Θ̄i+ui(ei+RΘ̄i), (49)

so, letting θ = RΘ, by direct computation,

−(p̄ + m̄i(θ − θ̄i)) · θ + ui(ei + θ) > −p̄ · θ̄i + ui(ei + θ̄i), (50)

contradicting the fact that, in the economy with elementary securities, θ̄i is
stable for i given (p̄, m̄i).

Now, for each i, by mutual consistency of profile m̄, there exist neighbor-
hoods N i(θ̄i) and N i(p̄) and a differentiable, local inverse demand function
pi : N i(θ̄i) → N i(p̄) such that pi(θ̄i) = p̄ and ∂pi(θ̄i) = m̄i. Then, we can
define open neighborhoods

N i(Θ̄i) = {Θ|RΘ ∈ N i(θ̄i)} (51)

and
N i(P̄ ) = {P |(RT

S)−1(P1, . . . , PS)T ∈ N i(p̄)}. (52)

By construction,f(Θ) = RΘ maps N i(Θ̄i) into N i(θ̄i), and g(p) = RTp maps
N i(p̄) into N i(P̄ ), so we can define P i = g ◦ pi ◦ f : N i(Θ̄i) → N i(P̄ ). First,
notice that P i(Θ̄i) = RTpi(RΘ̄i) = RTp̄ = P̄ , while

∂P i(Θ̄i) = RT∂pi(θ̄i)R = RTm̄iR = M̄ i. (53)

We now want to show that for any Θ ∈ N i(Θ̄i), P i(Θ) is the unique (lo-
cally) subequilibrium price triggered by Θi = Θ, namely that P i(Θ; M̄ i, R)∩
N i(P̄ ) = {P i(Θ)}. First, notice that in the economy with elementary secu-
rities, for some θ−i, (pi(RΘ), θ−i) ∈ S i(RΘ; m̄−i, IS). Defining

Θj =

(
R−1

S (θj + 1
I−1

RΘ)

0

)
− 1

I − 1
Θ, (54)
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for each j 6= i, it follows that (P i(Θ), (Θj)j 6=i) ∈ S i(Θ; M̄ i, R), and hence
that P i(Θ) ∈ P i(Θi; M̄−i, R). Now, suppose that there exists another P ∈
P i(Θ; M̄−i, R) ∩ N i(P̄ ). Then, for some Θ̃−i, (P, Θ̃−i) ∈ S i(Θ; M̄−i, R).
Since each M̄ j gives no irrelevant price impact, it follows from proposition
1 that P allows no weak arbitrage opportunities, and then, from lemma
3, that there exists p ∈ RS such that RTp = P . By construction, p =
(RT

S)−1(P1, . . . , PS)T ∈ N i(p̄) and

((RT
S)−1P, (RΘ̃j)j 6=i) ∈ S i(RΘ; m̄−i, IS). (55)

Also by construction, p 6= pi(RΘ) and p ∈ N i(p̄) ∩ P i(RΘ; m̄−i, IS), which
is impossible. It follows that for each i, P i : N i(Θ̄i) → N i(P̄ ) is a (differen-
tiable) local inverse demand: for all Θ ∈ N i(Θ̄i),

P i(Θ; M̄−i, R) ∩N i(P̄ ) = {P i(Θ)}; (56)

since ∂P i(Θ̄i) = M̄ i, it follows that M̄ is mutually consistent.
For the second claim, suppose that (P̄ , Θ̄, M̄) is an equilibrium for {U, e, R}.

Market clearing is immediate:
∑

i θ̄
i =

∑
i RΘ̄i = R

∑
i Θ̄

i = 0. As before,
we now show that each θ̄i is stable for i given (p̄, m̄i), and that m̄ is mutually
consistent.

Suppose that θ̄i is not stable for i given (p̄, m̄i). Then, we can fix θ such
that

−(p̄ + m̄i(θ − θ̄i)) · θ + ui(ei + θ) > −p̄ · θ̄i + ui(ei + θ̄i). (57)

Fix any Θ such that RΘ = θ. Given that (P̄ , Θ̄, M̄) and (p̄, θ̄, m̄) are R-
associated, it follows by direct computation that

−(P̄ + M̄ i(Θ− Θ̄i)) ·Θ + ui(ei + RΘ) > −P̄ · Θ̄i + ui(ei + RΘ̄i). (58)

contradicting the fact that, in the economy with market R, Θ̄i is stable for i
given (P̄ , M̄ i).

Now, for each i, by mutual consistency of profile M̄ , there exist neigh-
borhoods N i(Θ̄i) and N i(P̄ ) and a differentiable local subequilibrium price
function P i : N i(Θ̄i) → N i(P̄ ) such that P i(Θ̄i) = P̄ and ∂P i(Θ̄i) = M̄ i.
Then, we can define open neighborhoods

N i(θ̄i) =

{
θ|
(

R−1
S (θ − θ̄i)

0

)
+ Θ̄i ∈ N i(Θ̄i)

}
(59)
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and
N i(p̄) = {p|RTp ∈ N i(P̄ )}. (60)

By construction

F (θ) =

(
R−1

S (θ − θ̄i)
0

)
+ Θ̄i (61)

maps N i(θ̄i) into N i(Θ̄i), and G(P ) = (RT
S)−1(P1, . . . , PS)T maps N i(P̄ ) into

N i(p̄), so we can define pi = G ◦ P i ◦ F : N i(θ̄i) → N i(p̄). Notice that
pi(θ̄i) = (RT

S)−1P i(Θ̄i) = p̄, while

∂pi(θ̄i) =
(

(R−1
S )T 0

)
∂P i(Θ̄i)

(
R−1

S

0

)
= (R−1

S )TM̄ i
SR−1

S = m̄i. (62)

It only remains to show that for any θ ∈ N i(θ̄i), P i(Θ; M̄ i, IS)∩N i(p̄) =
{pi(θ)}. Let Θ = F (θ). Notice that in the economy with market R, for
some Θ−i, (P i(Θ), Θ−i) ∈ S i(Θ; M̄−i, R). Defining, for each j 6= i, θj =
RΘj, it follows that (pi(θ), (θj)j 6=i) ∈ S i(θ; m̄i, IS), and hence that pi(θ) ∈
P i(θ; m̄i, IS). Now, suppose that there exists another p ∈ P i(θ; m̄i, IS) ∩
N i(p̄). Then, for some θ̃−i, (p, θ̃−i) ∈ S i(θ; m̄i, IS). By construction, P =
RTp ∈ N i(P̄ ) and (RTp, (R−1

S θ̃j, 0)j 6=i) ∈ S i((R−1
S θ, 0); M̄−i, R). By lemma

5,

P i

((
(RS)−1θ

0

)
; M̄−i, R

)
= P i(Θ; M̄−i, R), (63)

so RTp ∈ P i(Θ; M̄−i, R). As before, by construction, P 6= P i(Θ) and P ∈
N i(P̄ ) ∩ P i(Θ; M̄−i, R), which is impossible.

Appendix A2: existence and generic determi-

nacy of equilibria in elementary securities

Existence

We now specialize the proof of theorem 1 in [14], for the particular case
treated here. All the arguments in this appendix are given for an economy
with elementary securities, {U, e, IS} satisfying our assumptions about pref-
erences and endowments. Since we will only consider positive definite and
diagonal price impact matrices, we identify these matrices with vectors in
RS

++.
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Let h : (RS
+, RS

++)I−1 → RS
++ be the (component-wise) harmonic mean

(divided by (I − 1)); that is,

hs(m, v) = (
∑

j

(mj
s + vj

s)
−1)−1. (64)

Function h is continuous, and it is well known that

(I − 1)hs(m, v) ≤ (I − 1)−1
∑

j

(mj
s + vj

s), (65)

for all m, all v and all s.

Claim 1. Let γu be any strictly positive number, and let (m, v) ∈ (RS
+, RS

++)I−1.
Suppose that for some s, mj

s ≤ (I − 2)−1γu and vj
s ≤ γu for all j. Then,

hs(m, v) ≤ (I − 2)−1γu.

Proof. This is immediate, since

(I − 1)hs(m, v) ≤
∑

j mj
s

I − 1
+

∑
j vj

s

I − 1
≤ γu

I − 2
+ γu. (66)

Define, for each state s, µs = maxi{∂ui
s(e

i
s)}, a strictly positive real

number. By the Inada conditions, we can fix, for each trader i and state s,
a revenue transfer θ̂i

s such that ∂ui
s(e

i
s + θ̂i

s) = µs. By concavity and Inada,
−ei

s < θ̂i
s ≤ 0.

Construct the (truncation) set of trades

T = {θ ∈ (RS)I :
∑

i

θi
s = 0 and θi

s ≥
1

2
(θ̂i

s − ei
s) for all i and all s}, (67)

which is nonempty, convex and compact.
Define the function V : T → (RS

++)I , componentwise, by letting V i
s (θ) =

−∂2ui
s(e

i
s + θi

s).
23 Since T is compact, V is continuous and I and S are

finite, we can further define real numbers γu = maxθ∈T maxi,s V i
s (θ) and

γd = minθ∈T mini,s V i
s (θ); these numbers, by construction, satisfy that 0 <

γd ≤ γu.
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Define the function U : ([0, (I − 2)−1γu]
S)I → (RS)I by

U(m) = arg max
θ∈T

∑
i,s

(ui
s(e

i
s + θi

s)−
1

2
mi

s(θ
i
s)

2), (68)

which is well defined since T is compact and convex, each ui is continuous and
strongly concave, and each mi

s ≥ 0. Define also the function H : ([γd, γu]
S)I×

([0, (I − 2)−1γu]
S)I → (RS)I , by letting H i(m, v) = h(m−i, v−i).

Finally, define the function F : T × ([γd, γu]
S)I , ([0, (I − 2)−1γu]

S)I →
(RS)I × (RS)I × (RS)I , by

F(θ, v, m) =

 U(m)
V (θ)

H(m, v)

 . (69)

Claim 2. There exists (θ̄, v̄, m̄) ∈ T × ([γd, γu]
S)I × ([0, (I − 2)−1γu]

S)I such
that F(θ̄, v̄, m̄) = (θ̄, v̄, m̄).

Proof. By construction, U maps into T , and V into ([γd, γu]
S)I . By claim

1, H maps into ([0, (I − 2)−1γu]
S)I . It follows that F maps a convex and

compact set continuously into itself, so it has a fixed point.

Let a fixed point, (θ̄, v̄, m̄), of F be fixed.

Claim 3. For all i and all s, it is true that θ̄i
s > 1

2
(θ̂i

s − ei
s).

Proof. Suppose not: suppose that for some i and some s, θ̄i
s = 1

2
(θ̂i

s − ei
s).

Since θ̂i
s ≤ 0, it follows that θ̄i

s < 0, which implies that, for some j 6= i,
θ̄j

s > 0. By the definition of function U , it follows, then, that

∂ui
s(e

i
s + θ̄i

s)− m̄i
sθ̄

i
s ≤ ∂uj

s(e
j
s + θ̄j

s)− m̄j
sθ̄

j
s, (70)

which is impossible, since

∂ui
s(e

i
s + θ̄i

s)− m̄i
sθ̄

i
s = ∂ui

s(
1

2
(ei

s + θ̂i
s))− m̄i

sθ̄
i
s > µs, (71)

whereas
∂uj

s(e
j
s + θ̄j

s)− m̄j
sθ̄

j
s < ∂uj

s(e
j
s) ≤ µs. (72)
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We can now conclude that given preferences and endowments {U, e}, there
exists an equilibrium in elementary securities (p̄, θ̄, m̄) satisfying that all price
impact matrices are diagonal.

To see this, notice that, given concavity of all preferences and since m̄i
s ≥ 0

for all i and all s, it follows from claim 3 that θ̄ actually solves program

max
θ:

∑
i θi=0

∑
i,s

(ui
s(e

i
s + θi

s)−
1

2
m̄i

s(θ
i
s)

2). (73)

The first-order conditions of this problem immediately imply that there exist
Lagrange multiplies p̄ ∈ RS such that, for all i and all s,

∂ui
s(e

i
s + θ̄i

s)− m̄i
sθ̄

i
s = p̄s. (74)

Identifying m̄i and v̄i with the diagonal, positive definite matrices m̄i
1 . . . 0

...
. . .

...
0 . . . m̄i

S

 and

 v̄i
1 . . . 0
...

. . .
...

0 . . . v̄i
S

 , (75)

respectively, we get that:

1.
∑

i θ̄
i = 0;

2. for each trader i, ∂ui(ei + θ̄i)− m̄iθ̄i = p̄;

3. for each trader i, m̄i = (I − 1)−1H(m̄−i + v̄−i)

4. for each trader i, v̄i = −∂2ui(ei + θ̄i).

Then, it is immediate from lemma 1 that (p̄, θ̄, m̄) is an equilibrium.

Generic determinacy

Assume now that, moreover, each Bernoulli function ui
s is of class C3 and

satisfies that ∂2ui
s is bounded strictly below zero.

Denote by U the class of Bernoulli functions that satisfy all the assump-
tions we have imposed,24 and endow this set with the topology of C3 uniform
convergence on compacta.25 The space of economies we now consider is the
set (RS

++)I × (US)I , endowed with the product topology.
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We want to show that, in a dense subset of these economies, all equilibria
in elementary securities are locally unique.

To do this, fix an economy {Ū , ē} and an open neighborhood O of that
economy. We need to show that for at least one economy {U, e} in O the
property of local uniqueness holds true.

A finite-dimensional subspace of economies

As the space of economies is an infinite dimensional manifold, it is convenient
to do our analysis in a finite-dimensional, local subspace of economies. The
strategy is to show that in this subspace we can find the economy {U, e},
where local uniqueness holds, arbitrarily close to {Ū , ē}. In this section, we
define the subspace of economies.

Fix ε > 0, and a C∞ function ρ : R++ → R+ such that

ρ(x) =

{
1, if x < maxs{

∑
i ē

i
s}+ Iε + 1;

0, if x ≥ maxs{
∑

i ē
i
s}+ Iε + 2.

(76)

Also, define for each i and s the “perturbed Bernoulli” function ui
s : R++ ×

R → R by

ui
s(x

i
s, δ

i
s) = ūi

s(x
i
s) +

1

2
ρ(xi

s)δ
i
s(x

i
s)

2.

Since each maxs{
∑

i ē
i
s} is finite, there exists δ̄ > 0 such that for all −δ̄ <

δi
s < δ̄, function ui

s(·, δi
s) ∈ U.

Now, we consider the finite dimensional subset of economies defined by
endowments e ∈ Bε(ē), and preferences given, for each i and s, by ui

s(·, δi
s) for

some δi
s ∈ Bδ̄(0). This is a submanifold parameterized by Bε(ē) × Bδ̄(0)

SI .
For notational simplicity, we identify the vector δi = (δi

s)s with the diagonal
matrix diag(δi

s), and denote δ = (δi)i. Similarly, we again identify the vector
mi = (mi

s)s with the diagonal matrix diag(mi
s).
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Transversality

Now, consider the function G : RS × (RS)I × (RS
++)I × Bε(ē) × Bδ̄(0) →

(RS)I × RS × (RS)I , defined by

G(p, θ,m, e, δ) =



...
p + miθi − ∂xu

i(ei + θi, δi)
...∑
i θ

i

...
(mi

s

∑
j 6=i(m

j
s − ∂2

x,xu
j
s(e

j
s + θj

s, δ
j
s)
−1)− 1)s

...


. (77)

It follows from lemma 1 that (p, θ,m) is an equilibrium in elementary secu-
rities for economy (e, δ) if, and only if, G(p, θ,m, e, δ) = 0.

Claim 4. Function G is transverse to 0: whenever G(p, θ,m, e, δ) = 0, matrix
∂G(p, θ,m, e, δ) has full (row) rank.

Proof. Let (p, θ,m, e, δ) be such that G(p, θ,m, e, δ) = 0. Since each θi
s > −ei

s

and
∑

i θ
i = 0, it follows that each θi

s ≤
∑

j ei
s <

∑
j ēj

s + Iε, and then, by

construction, it follows that for any x in a neighborhood of ei + θi,

ui(x, δi) = ūi(x) +
1

2
xTδix. (78)

By direct computation, and considering only the derivatives with respect
to (θ1, . . . , θI , e1) and (m1, . . . ,mI , δ1, . . . , δI), matrix ∂G(p, θ,m, e, δ) can be
written in partition form as

Γ =

(
Γ1,1 Γ1,2

Γ2,1 Γ2,2

)
, (79)

where26 Γ2,2 = ( ΓL
2,2 ΓR

2,2) ,

Γ1,1 =


m1 − ∂2ū1 − δ1 . . . 0 −∂2ū1 − δ1

...
. . .

...
...

0 . . . mI − ∂2ūI − δI 0
I . . . I 0

 , (80)
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Γ1,2 =


diag(θ1

s) . . . 0 −diag(θ1
s) . . . 0

...
. . .

...
...

. . .
...

0 . . . diag(θI
s) 0 . . . −diag(θI

s)
0 . . . 0 0 . . . 0

 , (81)

ΓL
2,2 =


∑

j 6=1(m
j − ∂2ūj − δj)−1 . . . −diag( m1

s

(mI
s−∂2ūI

s−δI
s )2

)
...

. . .
...

−diag( mI
s

(m1
s−∂2ū1

s−δ1
s)2

) . . .
∑

j 6=I(m
j − ∂2ūj − δj)−1

 (82)

and

ΓR
2,2 =


0 . . . diag( m1

s

(mI
s−∂2ūI

s−δI
s )2

)
...

. . .
...

diag( mI
s

(m1
s−∂2ū1

s−δ1
s)2

) . . . 0

 . (83)

Notice that matrix Γ1,1 is nonsingular, by standard arguments, given our
assumptions on concavity of preferences and the fact that each price impact
matrix is positive definite.27 Then, to see that Γ has full row rank, it suffices
to observe that there exists an (SI + S + SI + SI)× SI matrix A such that

ΓA =

(
0
I

)
. (84)

For this, just let matrix

A =

(
0
A2

)
, (85)

where

A2 =



m1 . . . 0
...

. . .
...

0 . . . mI

m1 . . . 0
...

. . .
...

0 . . . mI


. (86)

By direct computation, the result follows from the fact that, for each i,

mi
∑
j 6=i

(mj − ∂2ūj(ej + θj)− δj)−1 = I (87)
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Now, we argue that for almost all economies in the finite-dimensional
subspace of economies all equilibria are locally isolated.

Claim 5. For a full-measure subset of Bε(ē) × Bδ̄(0)
SI , it is true that for

any equilibrium in elementary securities (p̄, θ̄, m̄) there exists an open neigh-
borhood in which there are no more equilibria for the same economy.

Proof. By claim 4 and the Transversality theorem (see [4]), it follows that
for any (e, δ) in a full measure subset of Bε(ē) × Bδ̄(0)

SI , function G(·, e, δ)
is transverse to 0. If (p̄, θ̄, m̄) is an equilibrium for (e, δ), it must be that
G(p̄, θ̄, m̄, e, δ) = 0, and hence that ∂p,θ,mG(p̄, θ̄, m̄, e, δ) has full row rank. But
∂p,θ,mG is a square matrix, so ∂p,θ,mG(p̄, θ̄, m̄, e, δ) is nonsingular and hence,
by the inverse function theorem, G(·, e, δ) is a bijection in a neighborhood of
(p̄, θ̄, m̄).

Density

The last claim shows that in almost every economy in the finite-dimensional
subspace of economies the property of local uniqueness holds. To complete
our argument that the set of economies where the property holds is dense in
the general space of economies, it suffices to show that the finite subspace
of economies intersects the pre-fixed neighborhood O of {Ū , ē}. But this is
true, because the topology with which the space of economies is endowed is
metrizable (see [12, p. 428]), and in this metric the distance from ūi

s = ui
s(·, 0)

to ui
s(·, δi

s) can be made arbitrarily small by choosing a small enough δi
s > 0.
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Notes

1 For literature on this, see [10].
2 For a review of this literature, see [5].
3 The most prominent examples of models include Kyle [7], Vayanos [11].
4 This is the feature that closes the definition of equilibrium imposing interesting struc-

ture.
5 If we denote by In the n× n identity matrix, then R = IS is the case of a full set of

elementary securities.
6 That is, at all c > 0, u′(c) > 0 and u′′(c) < 0, and limc→0 u′(c) = ∞ and

limc→∞ u′(c) = 0.
7 The choice of the term “stable” perhaps deserves an explanation. Suppose that trader

i is faced with the following inverse demand function:

p(Θ) = P + M i(Θ− Θ̄) ·Θ, (88)

where Θ̄ is some reference point. For each Θ̄, let

Γi(Θ̄) = arg max
Θ

U i(−(P + M i(Θ− Θ̄)) ·Θ, ei + RΘ). (89)

The stability condition requires that Θ̄i be a fixed point of this mapping.
8 The approximation assures that in the definition of stability the second order condition

is always satisfied. Otherwise, the approximation is without loss of generality.
9 Strictly speaking, the intuition given before the definition is slightly weaker than

the definition itself: we do not require that subequilibrium prices be unique (i.e., that
Pi(Θ̃i;M−i) be single-valued), but only that they be determinate, or locally unique.

10 So that A = S and RS = R.
11 For this result, one also needs to assume the condition of no irrelevant impact, defined

in the following section.
12 The no irrelevant impact condition in spirit is similar to a dichotomy between a

monetary and real sector in a standard general equilibrium framework - a consequence of
no money illusion by all agents.

13 The sense in which this result holds for a “typical economy” is established in detail
in the proof.

14 That is, the fact that prices P should allow no-arbitrage opportunities.
15 Notice that Θρ is an A× Ã matrix, and not just a column vector. The a-th column

in this matrix is the hedge of the a-th payoff vector in ρ. These portfolios only use the
first S assets nontrivially.
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16 Namely, if for all i,

ui
s(c

i
s) =

(ci
s)

1−φs

1− φs
, (90)

where φs > 0 is the coefficient of risk aversion (it is well known that in the case φs = 1 one
has that ui

s(c
i
s) = ln(ci

s)). For the result below, the coefficient of risk aversion can change
across states, but is the same for all individuals, given a state.

17 The third derivative of a CRRA utility function is positive, which implies that in
each state a marginal utility is convex.

18 Till now the only dynamic model of thin trading proposed in [18] assumes quadratic
utility functions. The considered return biases require convex marginal utility.

19 This equilibrium can be compared with the competitive equilibrium of this economy
in the case of a full set or elementary securities: prices would be p̃ = (1/3, 1/3, 1/6)T,
type-1 individuals would buy θ̃1 = (1,−1, 0)T, which would be sold by type-2 individuals.

20 Assuming, of course, monotonicity of ex-ante preferences on consumption in all future
states of the world.

21 As long as a priori there are some gains to trade, i.e. the initial endowments are
Pareto inefficient. The deadweight loss due to non-competitive trading depends negatively
on the depth of the market, and it vanishes completely as a number of traders approaches
infinity (see [14]).

22 For the detailed study of model predictions for different market structures and utility
functions, see [14].

23 This function is well defined, since, by construction, θ̂i
s−ei

s

2 > −ei
s, so ei

s + θi
s > 0.

24 Namely, that each ui
s is differentiably strictly monotonic and differentiably strictly

concave, and satisfies Inada conditions. Unlike in Proposition 5, we do not require now
that these functions be CRRA.

25 See [1].
26 The precise form of matrix Γ2,1 is immaterial for computations below.
27 To see this, the argument is the one that gives determinacy in competitive models:

(i) notice that the submatrix composed by the first I superrows and I supercolumns is
nonsingular, since it is a diagonal matrix of positive numbers: each mi

s > 0 and each
∂2ūi

s(e
i
s + θi

s)+ δi
s < 0, as ui

s(·, δi
s) is strongly concave; (ii) Now, to see that the whole Γ1,1

is nonsingular, it suffices to observe that if one constructs the S(I + 1) × S matrix A by
letting the first S×S superrow be I, letting the last S×S superrow be −(∂2ū1(ei + θi) +
δ1)−1(m1−∂2ū1−δ1), and letting every other element be 0, we get, by direct computation,
that

Γ1,1A =

(
0
I

)
. (91)
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