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1 Introduction

In this paper we consider a pure exchange economy with a continuum of agents and finitely
many commodities (Aumann 1964, 1966). We associate a game with only two players to each
Aumann’s economy. Our aim is to characterize the competitive allocations of the economy as
Nash equilibria of the associated game.

The strategies of the first payer are feasible allocations of the economy. Each strategy of
the second player consists in a coalition of agents and a feasible allocation for this coalition. If
all the agents in the coalition proposed by player 2 are better off with the allocation proposed
by player 1, then player 1 payoff depends on the difference of utilities that the agents in the
coalition obtain with the allocations proposed by the two players. Otherwise, her payoff is the
essential infimum of the difference of utilities in that coalition. The payoff of the second player
is symmetric to the payoff of first player.

Given any strategy of player 1, player 2 can get zero payoff by choosing the strategy given
by the coalition of all agents and the same allocation as player 1. She could obtain a positive
payoff if and only if the allocation proposed by player 1 can be blocked by a coalition. We
show that in any Nash equilibrium both payoffs are zero.

Our main result proves that any allocation in the core of the continuum economy is a Nash
equilibrium of the two payers game and, reciprocally, any Nash equilibrium strategy can be
identified with a core allocation in the continuum economy. Then, under the assumption of
Aumann (1964, 1966) the competitive allocations of the continuum economy are characterized
as Nash equilibria of the associated two players game.

In a previous work (see Hervés-Beloso and Moreno-Garćıa, 2008, we have characterized
the walrasian allocations of a n-agents economy as the Nash equilibrium of the an associated
two players game. Thus, in this paper we extend to the continuous case our previous result
highlighting the power of the veto mechanism in atomless economies.

The power of the veto mechanism in the continuum economy can be stressed by considering
the game associated with an economy with a finite number of types of agents. For it, we consider
a finite pure exchange economy with n agents that can be identified as a continuum economy
with n types of agents. Assuming convexity of preferences, for each competitive allocation in
the n types economy, there is also a competitive allocation which is constant in each type.
This step function corresponds to a Walrasian allocation in the finite economy (see Garćıa-
Cutŕın and Hervés-Beloso, 1993). The attempt to apply our main result to a finite economy,
via an n-types continuum economy, does not longer allow to exploit the veto power of the
coalitions as we do in the continuum case. This is due to the fact that in the n agents economy
the information about the coalition proposed by the player two which affect to both agents’
payoff becomes insufficient. In fact, the size of the agents of each type forming the coalition
is the only data that can be collected in the payoff functions. Further, we highlight with an
example that this is not sufficient to conclude that any Nash equilibrium underlies a Walrasian
allocation. Precisely, in our example there is a Nash equilibrium of the game associated to
the finite economy with positive payoff for player two. Therefore, the allocation proposed by
player one can not be Walrasian.
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In our study we have only considered a finite number of commodities. This assumption is
not essential. Our main result is actually a characterization of the core. Then, the same result
holds for a general commodity space under the assumptions that guarantee the core-Walras
equivalence.

The remainder of this paper is organized as follows. In Section 2 we define the continuum
economy, we state the assumptions that guarantee the core-Walras equivalence and we also
define the associated two-players game. In Section 3 we present the properties of the game, we
prove our main result and we state some remarks regarding the size of the coalition selected by
player 2 for which the main result does still hold. In Section 4, we consider the particular case
of a continuum economy with n types of agents in order to recast the associated game for an
Arrow-Debreu pure exchange economy. A final example points out that the discrete version of
the game does not allow to characterize Nash equilibria as Walrasian allocations.

2 The economy and the game

Consider a pure exchange economy E with ` commodities. The space of consumers is repre-
sented by an atomless measure space (I,A, µ).

Each agent t ∈ I is characterized by her consumption set IR`
+, her initial endowment ω(t) ∈

IR`
+, and her preference relation �t which is represented by the utility function Ut.

An allocation is a µ-integrable function f : I → IR`
+. An allocation f is feasible in the

economy E if
∫

I

f(t)dµ(t) ≤
∫

I

ω(t)dµ(t).

A price system is an element of ∆, where ∆ denotes the (`−1)-dimensional simplex of IR`
+,

that is, ∆ = {p ∈ IR`
+ such that

∑̀
h=1

ph = 1}.

A competitive equilibrium for E is a pair (p, f), where p is a price system and f is a feasible
allocation such that, for almost every agent t, the bundle f(t) maximizes the utility function
Ut in the budget set Bt(p) = {y ∈ IR`

+ such that p · y ≤ p · ω(t)}.

A coalition is any measurable set S with µ(S) > 0. A coalition S blocks an allocation f via
another allocation g in the economy E if:

(i)
∫

S

g(t)dµ(t) ≤
∫

S

ω(t)dµ(t) and

(ii) Ut(g(t)) > Ut(f(t)) for almost all t ∈ S.

A feasible allocation belongs to the core of the economy if it is not blocked by any coalition
of agents.

We suppose that the economy E has competitive equilibrium and the Core-Walras equiva-
lence holds, i.e., the core coincides with the set of competitive allocations (see Aumann, 1964,
1966 and Hildenbrand, 1968, 1974).

We define a game G associated to the economy E in order to analyze the relation between
the non-cooperative solution of Nash equilibrium and the decentralized solution of competitive
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equilibrium.

There are two players. The strategy set for the player 1 is denoted by Θ1 and is given by

Θ1 = {f : I → IR`
+ :

∫
I

f(t)dµ(t) =
∫

I

ω(t)dµ(t)}

That is, a strategy for player 1 is a feasible allocation f. Observe that ω ∈ Θ1.

The strategy set for the player 2 is denoted by Θ2 and is defined as follows:

Θ2 = {(S, g) :
∫

S

g(t)dµ(t) =
∫

S

ω(t)dµ(t)}

That is, the strategy set for player 2 is the set of pairs which specify a coalition of agents
and a trade for the coalition. Observe that if f is a feasible allocation then (I, f) ∈ Θ2. Further,
(S, ω) ∈ Θ2 whatever coalition S may be.

Let Θ denote the product set Θ1 ×Θ2. A strategy profile is any θ = (f, S, h) ∈ Θ, that is,
a strategy profile is a strategy θ1 = f ∈ Θ1 for player 1 and a strategy θ2 = (S, g) ∈ Θ2 for
player 2.

In order to define the payoff functions, given a function F : I → IR and a coalition of agents
S ⊂ I let

ess inf{F (t), t ∈ S} = sup{c ∈ IR | F (t) ≥ c for almost all t ∈ S}.

Given a strategy profile (f, S, g), we define the following real valued functions

α(f, S, g) = ess inf{Ut(f(t))− Ut(g(t)), t ∈ S}

β(f, S, g) = ess inf{Ut(g(t))− Ut(f(t)), t ∈ S}

Now for every (f, S, g) ∈ Θ, the payoff functions Π1 and Π2 for player 1 and 2, respectively,
are defined as follows

Π1(f, S, g) =


∫

S

(Ut(f(t))− Ut(g(t))) dµ(t) if α(f, S, g) ≥ 0

α(f, S, g) otherwise

Π2(f, S, g) =


∫

S

(Ut(g(t))− Ut(f(t))) dµ(t) if β(f, S, g) ≥ 0

β(f, S, g) otherwise

3 Main Results

In this section we analyze some properties of the game G, which we have previously associ-
ated to the continuum economy, and we also present our main result which characterizes the
competitive equilibrium allocations as Nash equilibria.
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A strategy profile

Given the associated game G, note that if Π1(f, S, g) > 0 (resp. Π2(f, S, g) > 0) then
Π2(f, S, g) < 0 (resp. Π1(f, S, g) < 0). That is, both payoff can be negative for some strategy
profiles but can not be strictly positive at the same time. Observe also that Π1(θ) = 0 if and
only if Π2(θ) = 0.

Proposition 3.1 The set of Nash equilibria for the game G is nonempty.

Proof. This is a consequence of the existence of competitive equilibrium for the continuum
economy E . In fact, if f is a competitive allocation for the economy E then (f, I, f) is a Nash
equilibrium for the game G. To see this, note that Π1(f, I, f) = Π2(f, I, f) = 0. If player 1 has
an incentive to deviate then there exists g ∈ Θ1 such that Π1(g, I, f) > 0 and therefore f is not
efficient. If Π2(f, S, g) > 0 for some (S, g) ∈ Θ2, then f is blocked by the coalition S. By the
core-Walras equivalence this is a contradiction with the fact that f is a competitive allocation.

Q.E.D.

Lemma 3.1 If θ∗ is a Nash equilibrium then Π1(θ∗) = Π2(θ∗) = 0.

Proof. Let θ∗ = (f∗, S∗, g∗) be a Nash equilibrium. Since (I, f∗) is a possible strategy for
player 2, we have Π2(θ∗) ≥ 0. Assume Π2(θ∗) > 0. Then Π1(θ∗) < 0. Consider the allocation
f given by

f(t) =

{
g∗(t) if t ∈ S∗

ω(t) otherwise

Note that f ∈ Θ1 and Π1(f, S∗, g∗) = 0, which is a contradiction.
Q.E.D.

Proposition 3.2 Any Nash equilibrium of the game G is a strong Nash equilibrium.

Proof. Let θ∗ be a Nash equilibrium. Then, Π1(θ∗) = Π2(θ∗) = 0. By definition of the
payoff function, both Π1 and Π2 can not be strictly positive at the same time and Π1(θ) = 0
if and only if Π2(θ) = 0. This implies that the coalition formed by the two players have no
incentive to deviate from the profile θ∗.

Q.E.D.

Theorem 3.1 If θ∗ = (f∗, S∗, h∗) is a Nash equilibrium for the game G, then f∗ is a compe-
titive equilibrium allocation for the economy E .

Reciprocally, if f∗ is a competitive equilibrium allocation for the continuum economy E ,

then any strategy profile (f∗, I, h∗) ∈ Θ, with Ut(f∗(t)) = Ut (h∗(t)) , for almost all t ∈ I, is a
Nash equilibrium for the game G.

In particular, f∗ is a Walrasian equilibrium allocation for the economy E , if and only
(f∗, I, f∗) is a Nash equilibrium for the game G.
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Proof. Let θ∗ = (f∗, S∗, h∗) be a Nash equilibrium. By Lemma 3.1 Π1(θ∗) = Π2(θ∗) = 0.

Assume that f∗ is not a competitive allocation. Then, f∗ does not belong to the core of the
economy E which implies that there exists (S, g) ∈ Θ2 such that Π2(f∗, S, g) > 0 = Π2(θ∗).

Reciprocally, let f∗ be a competitive equilibrium allocation and (I, h∗) ∈ Θ2 such that
Ut(f∗(t)) = Ut (h∗(t)) , for almost all t ∈ I. Assume that (f∗, I, h∗) ∈ Θ is not a Nash equi-
librium. Then, either player 1 or player 2 has an incentive to modify her strategy. If player
1 has an incentive to deviate f∗ is not efficient and then it is not competitive. If there exists
(S, g) ∈ Θ2 such that Π2(f∗, S, g) > 0 = Π2(f∗, I, h∗) then f∗ is blocked by S via g which, by
core-Walras equivalence, is a contradiction.

Q.E.D.

Remark 1. We stress that from the proof of the previous Theorem we can deduce that it
is not essential the existence of a finite number of commodities in the economy. The result is
still true for atomless economies with infinitely many commodities whenever the core-Walras
equivalence holds (see for instance Bewley (1973)).

Remark 2. Let us consider a number ε ∈ (0, 1). Let G(ε) the game which coincides with G
except for the strategy set of player 2 that is restricted to coalitions S, with µ(S) ≥ 1− ε, and
feasible allocations for such coalitions. For the case of finitely many commodities, Vind (1972)
showed that in atomless economies it is enough to consider the blocking power of coalitions
with measure ε in order to get the core (see Hervés-Beloso et al. 2000, 2005 for economies with
an infinite dimensional commodity space). Then, we can conclude that our main result holds
for any game G(ε).

4 Economies with n types of consumers

Let us consider the particular case of a continuum economy Ec with only n different types of
agents. The set of agents is represented by the real interval [0, 1], with the Lebesgue measure
µ. We write I = [0, 1] =

⋃n
i=1 Ii, where Ii =

[
i−1
n , i

n

)
, if i 6= n, and In =

[
n−1

n , 1
]
. Each

consumer t ∈ Ii is characterized by her consumption set IR`
+, her utility function Ut = Ui and

her initial endowment ω(t) = ωi ∈ IR`
+. We will refer to Ii as the set of agents of type i in the

atomless economy Ec.

This particular economy Ec can be considered as a representation of a finite economy En,

with n consumers and ` commodities, where each consumer i is characterized by her utility
function Ui and her initial endowments ωi ∈ IR`

+.

In this Section, we assume convexity of preferences and the hypotheses that guarantee the
core-Walras equivalence for the n-types continuum economy Ec.

Observe that an allocation x in En can be interpreted as an allocation fx in Ec, where fx

is the step function given by fx(t) = xi, if t ∈ Ii. Reciprocally, an allocation f in Ec can be

interpreted as an allocation xf = (xf
1 , . . . , xf

n) in En, where xf
i =

1
µ(Ii)

∫
Ii

f(t)dµ(t). Observe
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also that (x, p) is an equilibrium for the economy En if and only if (f, p) is an equilibrium for
the continuum economy Ec, where f(t) = xi if t ∈ Ii.

Let Gc denote the two players game associated to the n-types continuum economy Ec. A
discrete approach of the game Gc to an associated game Gn for the finite economy En is related
with the equal treatment property of allocations. Note that if in Gc the strategy profiles are
required to satisfy the equal treatment property, then each player selects the same bundle for
agents of the same type and, therefore, the payoff functions depend on the weight of the types
in the coalitions selected by player 2 and on the corresponding step functions but do not reflect
the possibility of any other different distribution of resources among members of the same type.
On the other hand, under convexity of preferences, applying our main result we can deduce
that any Nash equilibrium for the game Gc, defines a Nash equilibrium for which the equal
treatment property holds.

The game Gc provides a two-players game Gn associated to the economy with n consumers.
Observe that, without loss of generality, we can assume that the strategy set of player 2 can be
restricted to those strategies (S, g) such that g is feasible for the coalition S and µ(S) > 1− 1

n

(see Remark 2 in the previous Section). This guarantees that all types are represented in the
coalition selected by player 2.

Thus, in the game Gc the strategy set for the player 1 is is given by

{x ∈ IR`n
+ :

n∑
i=1

xi =
n∑

i=1

ωi}

The strategy set for the player 2 is as follows:

{(a, y) ∈ [δ, 1]n × IR`n
+ :

n∑
i=1

aiyi =
n∑

i=1

aiωi},

where δ is any real number in the interval (0, 1) and ai = nµ(S
⋂

Ii).

Given a ∈ [δ, 1]n let us denote by S(a) the set of coalitions Sa in the continuum economy
Ec such that nµ(Sa

⋂
Ii) = ai for every i = 1, . . . , n. Observe that the game Gn does not

distinguish between the coalitions in S(a).

Then, in practice, the strategy set for player 2 is the set of pairs which specify a parameter(a
rate of participation) and a bundle for each agent such that the resulting allocation is feasible
in the sense of Aubin (1979).

Observe that if x is a feasible allocation then (1, x) is a possible strategy for player 2.
Further, (a, ω) is also a strategy that player 2 can choose whatever a ∈ [δ, 1]n may be.

Now for every profile (x, a, y) the payoff functions Φ1 and Φ2 for player 1 and 2, respectively,
are defined as follows

Φ1(x, a, y) =


n∑

i=1

ai(Ui(xi)− Ui(yi)) if Ui(xi) ≥ Ui(yi) for every i

min{Ui(xi)− Ui(yi)} otherwise
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Φ2(x, a, y) =


n∑

i=1

ai(Ui(yi)− Ui(xi)) if Ui(yi) ≥ Ui(xi) for every i

min{Ui(yi)− Ui(xi)} otherwise

Theorem 4.1 If (x∗, 1, x∗) is a Nash equilibrium for the game Gn, then x∗ is a Walrasian
equilibrium allocation for the economy En.

Reciprocally, if x∗ is a Walrasian equilibrium allocation for the economy En, then any
strategic profile (x∗, a∗, y∗) with Ui(y∗i ) = Ui(x∗i ) for every i = 1, . . . , n, is a Nash equilibrium
for the game Gn.

In particular, x∗ is a Walrasian equilibrium allocation for the economy En, if and only if
(x∗,b, x∗) with bi = b, for every i = 1, . . . , n, (for instance (x∗,1, x∗)) is a Nash equilibrium
for the game Gn.

Proof. Let s∗ = (x∗, 1, x∗) be a Nash equilibrium for the game Gn. If x∗ is not a Walrasian
allocation, then x∗ is blocked in the sense of Aubin with weights ai as closed as one as one
wants for every i = 1, . . . , n (see Hervés-Beloso and Moreno-Garćıa, 2001, 2005, for details).
That is there exists a strategy (a, y) for player 2 such that Φ2(x∗, a, y) > 0 = Φ2(s∗).

Reciprocally, let x∗ be a Walrasian allocation and let (x∗, a∗, y∗), with Ui(y∗i ) = Ui(x∗i ) for
every i = 1, . . . , n, a strategy profile. If player 1 has an incentive to deviate, then x∗ is not
efficient. If there is a strategy (a, y) for player 2 such that Φ2(x∗, a, y) > 0 then x∗ is blocked
by the grand coalition in the sense of Aubin which is in contradiction with the fact that x∗ is
Walrasian (see again Hervés-Beloso and Moreno-Garćıa, 2001, 2005, for details in the infinite
dimensional case).

Q.E.D.

5 Some Remarks

Let us consider the finite economy En and the continuum n-types economy Ec with their
associated games Gn and Gc, respectively.

Let (x, a, y) be a strategy profile in the game Gn. Note that if ai < 1 for every i, then player
2 has an incentive to deviate by selecting the strategy (b, y) where bi =

ai

maxi ai
. Therefore if

(x, a, y) is a Nash equilibrium in the game Gn then ai = 1 for some i.

Let x be a feasible allocation in the economy En. Recall that if (fx, S, g) is a Nash equilibrium
for the game Gc then both players get a null payoff. This is so because if player 2 obtains a
payoff strictly positive, then player 1 can select the strategy which assigns g to the coalition
S and ω to the individuals who do not belong to S. However, this strategy is not possible for
the player 1 in the game Gn. The reason is the following; the discrete approach which allows
us to recast the game Gc as the game Gn takes only into account the size of the members of
a coalition belonging to each type and does not reflect any distribution among agents with
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the same type. Further, as we have already remarked, in the continuum case, the strategy
set for player 2 can be restricted to coalitions with any size and, therefore, to arbitrarily big
coalitions. This implies that, in the particular case of an atomless n-type economy we can
consider, without loss of generality, that player 2 only selects coalitions where all types are
represented. Then, when passing to the finite case Gn the player 1 is restricted to select equal
treatment allocations, provided that the distribution properties among agents of the same type
are not contemplated as strategies. That is, when we recast the game Gc as the game Gn we
drop possibilities of distribution among agents of the same type. This implies a reduction of
strategies (basically for player 1) which results in the existence of Nash equilibria where player
2 can obtain a strictly positive payoff and, therefore, the allocation proposed by player 1 is not
Walrasian. The next example shows our claim:

An Example. Consider an economy with two agents and one commodity. Both agents have
the same preference relation represented by the utility function U(x) = x. Let ω1 = ω2 = ω > 0
be the initial endowments. Let us consider the associated game G2 where, without of generality,
the parameter a ∈ [1/2, 1]2. Consider that player 1 chooses feasible allocation x∗ = (2ω, 0)
which is efficient but it is not a Walrasian allocation. The best response for player 2 is obtained
by maximizing α(y1−2ω)+βy2 subject to αy1+βy2 = (α+β)ω, y1 ≥ 2ω and y2 ≥ 0. Then β = 1
and α < 1 (see remarks above). Further, the payoff function for player 2, taking into account
the restrictions, takes the value (1−α)ω. Therefore, the player 2’s best response is given by the
weights a∗ = (1/2, 1) and the allocation y∗ = (5ω/2, ω/4). Observe that Φ2(x∗, a∗, y∗) = ω/2
whereas Φ1(x∗, a∗, y∗) = −ω/2. Note also that when player 2 selects (a∗, y∗) player 1 is not
able to get a positive payoff and then Φ1(x, a∗, y∗) = min{x1 − 5ω/2, x2 − ω/4}. This implies
that, when (x∗, a∗, y∗) is the strategy profile, player 1 has no has no incentive to deviate
because there is no feasible allocation which improve upon x∗ for both consumers. Therefore,
we conclude that (x∗, a∗, y∗) is a Nash equilibrium but x∗ is not a Walrasian allocation.

Consider now the associated continuum economy with two types of agents. Let the strategy
profile (fx∗ , Sa∗ , fy∗), where Sa∗ is any coalition S such that µ(S

⋂
I1) = 1/4 and µ(S

⋂
I2) =

µ(I2) = 1/2. Note that Π2(fx∗ , Sa∗ , fy∗) = Φ2(x∗, a∗, y∗) > 0 which allows us to conclude that
(fx∗ , Sa∗ , fy∗) is not a Nash equilibrium for the two players game associated to the continuum
economy (see Lemma 3.1). Actually, player 1 has an incentive to deviate by selecting the
feasible allocation f given by f(t) = fy∗(t) if t ∈ Sa∗ and f(t) = ω(t) otherwise.

We refer the reader to Hervés-Beloso, C., Moreno-Garćıa, E., (2007) were we completely
characterize the Walrasian allocations of a finite economy as the Nash equilibria of a two-players
game.
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Garćıa-Cutŕın, J., Hervés-Beloso, C. (1993): A Discrete Approach to Continuum Economies.
Economic Theory 3, 577-584.

Hervés-Beloso, C., Moreno-Garćıa, E., Núñez-Sanz, C. and M. Páscoa (2000): Blocking Efficacy
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