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Abstract

Consider an exchange economy with complete information. We perturb
this economy by assuming that each agent’s observation about the true state
of the world is noisy. The paper investigates the robustness of equilibria of
the complete information economy with respect to incomplete information.
We provide conditions under which complete information equilibria are lim-
its of equilibria of the economies with incomplete information, as the noise
in the signal converges to zero.
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1 Introduction

The model of an exchange economy with complete information is best viewed
as an idealized description of a world with “sufficiently small” informational
asymmetries. Abstracting from “small” informational asymmetries is only legit-
imate if the equilibria of the complete information model are close to those of a
model in which all informational asymmetries are accounted for. In other words,
the competitive equilibrium should not change too much when a small amount
of asymmetric information is introduced, and the economy with small informa-
tional asymmetries should be almost indistinguishable from a complete informa-
tion economy. We refer to this desirable property as robustness. The objective of
this paper is to characterize when complete information competitive equilibria are
robust.

Consider a model of an exchange economy where agents have complete infor-
mation about an underlying state. In other words, think of agents receiving a sig-
nal about the state that is completely accurate. Incomplete information then means
that agents’ signals are no longer perfect, but rather are subject to some noise. We
will investigate under what conditions the complete information competitive equi-
libria are limits of equilibria of the economies with incomplete information, as the
noise in the signal converges to zero.

For economies with incomplete information, equilibrium concepts can be de-
fined in many different ways. Because the objective of this paper is to show
that economies with small informational asymmetries are almost indistinguish-
able from complete information economies, the equilibrium concept used for the
incomplete information economies should resemble as closely as possible that of
a standard competitive equilibrium. That is,

1. trade should occur at linear prices;

2. the outcome should be Pareto efficient;

3. only minimal intervention of a central authority should be necessary.

What type of interventions are considered to be minimal? All interventions will
be in the form of lump-sum taxes or subsidies. However, these transfers should
only be of a limited size. For example, the central authority cannot implement a
particular outcome by threatening large penalties, even if the penalties only occur
with a small probability in equilibrium.

In Section 2 we show by means of examples that competitive equilibria need
not be robust for some specifications of noise. One of the difficulties is that even
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if the noise in each agent’s signal is small, an agent can still have more accurate
information than the remaining agents, and can therefore manipulate the outcome.
In the terminology of McLean and Postlewaite (1999), such agents are not “infor-
mationally small.”

The main results of our paper, Theorem 2 and Theorem 3, show that the
McLean and Postlewaite (1999) informational smallness condition is the critical
property for robustness of competitive equilibria. Theorem 2 shows that complete
information equilibria are robust, if all agents become arbitrarily small informa-
tionally as the noise in the signals vanishes. In contrast, Theorem 3 shows that
one can always find complete information economies with non-robust equilibria
if the informational smallness conditions is violated. In other words, informa-
tional smallness is in essence a necessary and sufficient condition for robustness
of competitive equilibria with respect to incomplete information.

The proof of Theorem 2 uses Theorem 1, a result which provides sufficient
conditions for the supportability of Pareto efficient allocations as incentive com-
patible competitive equilibria. Proposition 1 shows that if a particular allocation
itself is not supportable, we can make it supportable by modifying it on a small
set provided a condition combining agents’ informational smallness and the size
of gains from trade is fulfilled. 1

Our main results do not only hold in the case where each agent’s informa-
tion becomes complete as the noise in the signal vanishes. Rather, each agent’s
information in the limit can be incomplete, as long as the pooled information of
all but any two agents in the economy is complete. If this condition on agents’
information holds then the equilibria of the incomplete information economy will
resemble the competitive equilibria of a complete information economy, despite
the fact that each agent’s information is incomplete even if there is no noise. This
demonstrates that there is a large class of economies with asymmetric informa-
tion for which the abstraction of a complete information Arrow-Debreu economy
is applicable.

By addressing the question how models of exchange economies with complete
information perform as approximation of economies with incomplete informa-
tion, our work is most closely related to Gul and Postlewaite (1992), and McLean
and Postlewaite (1999). They show that the informational smallness condition
mentioned above is sufficient to implement allocations that are approximately ef-

1It is interesting to note that Heifetz and Minelli (1997) address the question, whether ratio-
nal expectations equilibria themselves become incentive compatible as economies are replicated.
Clearly, such a result requires stronger conditions than when allocations are modified (i.e., when
transfers are allowed).
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ficient. The motivation for this line of research is to identify situations in which
asymmetries of information are not significant, and a mechanism designer could
therefore ignore issues of misrepresentation and incentive compatibility. As men-
tioned earlier the main motivation for our work is to identify situations in which
informational asymmetries do not matter for a particular market institution, the
competitive mechanism. In order to remain in a competitive framework, the allo-
cations in incomplete information economies must be supportable by prices, and
hence must be ex-post efficient. In contrast, given the motivation for the results
in Gul and Postlewaite (1992), and McLean and Postlewaite (1999), approximate
ex-post efficiency is all that is required and therefore analyzed. In addition, given
our question of robustness of competitive equilibria, supportability by prices is not
sufficient. Rather, as indicated in item 3 above, only small lump-sum transfers can
be used. Nevertheless, despite the different motivation for our work, informational
smallness turns out to be again the key condition for the results.

Starting with Hurwicz (1972), there is a substantial literature which investi-
gates to what extend the complete information competitive equilibrium can be
viewed as the limit of economies in which agents can act strategically and influ-
ence market prices (see for example Roberts and Postlewaite (1976), Otani and
Sicilian (1990), Jackson (1992), Rustichini, Satterthwaite and Williams (1994),
Jackson and Manelli (1997)). In the perturbed economies that we consider, agents
could also influence the market because of asymmetric information. However, our
results show that close to complete information, competitive behavior can already
be obtained through an appropriate system of (small) lump-sum transfers.

Our analysis was motivated by Kajii and Morris (1997), who address the ques-
tion of robustness of another economic solution concept with respect to incom-
plete information, the Nash equilibrium. Specifically, Kajii and Morris provide
conditions under which the Nash equilibrium of a complete information game
with two players is close to that of an informationally slightly perturbed game.
Similar to our paper, they demonstrate that small noise alone is not sufficient for
robustness. Rather, stronger conditions are needed. Kajii and Morris (1998) in-
vestigate the lower-hemicontinuity of Bayesian Nash equilibria, when ε-equilibria
are used in the perturbed games. Their paper, like ours, stresses the importance
of a condition which ensures that agents’ updated priors are close in the perturbed
games.

Our paper is organized as follows. Section 2 provides some intuition for the
main results by means of examples. The description of the model and definitions
are in Sections 3 and 4. The main results are in Section 5.
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2 Some Examples

2.1 The Lemons Problem

Consider the classic lemons problem. There is an agent who wants to sell a car.
The quality of the car is private information of the seller. For example, assume
that the buyer’s and the seller’s valuations are as follows:

Buyer Seller

good quality 5 4
bad quality 2 1

If the quality of the car is known to the buyer and the seller, then trade would
occur at a state contingent price in both states. In particular, if the car is of good
quality the price must be between 4 and 5. If the car is a lemon, the price must be
between 1 and 2. However, if only the seller is informed, then he would always
have the incentive of announcing that the car is not a lemon in order to receive the
higher price. Thus, given the informational assumptions in the lemons problem, it
is not possible to credibly reveal the quality of the car.

It seems that the informational assumptions in the lemons example are rather
extreme. In many cases a seller’s information will not be perfect. Moreover, in
many markets (e.g., arts, antiques) some buyers have at least as much information
as the seller, although both agents’ information may be incomplete. As men-
tioned above, if information is complete, both high and low quality goods will be
traded and Pareto efficient allocations will be obtained. Given this equilibrium,
robustness with respect to incomplete information means that the lemons problem
disappears provided the informational asymmetry is not too extreme. However,
robustness does not hold for the above example as we now demonstrate.

2.2 Informed Buyers and Sellers

Assume that both the buyer and the seller have both noisy information about the
quality of a good. Let ω ∈ Ω = {g,b} be the true quality, and assume that each
of the two states g or b occurs with the same probability. Rather than observing
ω directly, the buyer and the seller receive noisy signals sB,sS ∈ {g,b} about the
true quality ω. Let π

�
sB

�� ω
�

and π
�
sS
�� ω

�
be the probabilities that signals sB, sS

are received if ω is the true quality. Assume that for given ω the realizations of sS
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and sB are independent and identically distributed. Moreover, let π
�
s
�� ω) = δ for

ω �= s. That is, δ is the probability that the signal differs from the true state.
Assume that for sufficiently small δ, there exists an equilibrium with no lemons

problem. That is, agents reveal their information truthfully, trade always occurs,
and only small lump sum transfers are needed to support the equilibrium. Let
s = (sB,sS). Assume that the price p(s) = (vB(s) + vS(s))/2, where vB(s) and
vS(s) are the buyer’s and the seller’s valuation respectively (for other prices the
argument is similar). The valuations depend on the updated prior, π

�
ω
�� sB,sS

�
given by

sB = sS = g sB �= sS sB = sS = b

ω = g (1−δ)2

(1−δ)2+δ2 0.5 δ2

(1−δ)2+δ2

ω = b δ2

(1−δ)2+δ2 0.5 (1−δ)2

(1−δ)2+δ2

Assume for example that the buyer and the seller report different signals. If
the reports are truthful, both agents assign probability 0.5 to each state ω = g,b.
As a consequence, the buyer’s valuation is 3.5, the seller’s valuation is 2.5, and
the price is p(s) = 3. Now assume that both agents report the good signal. Then
as δ converges to 0, the price converges to 4.5. As a consequence, the buyer can
lower the price by reporting that the car is of bad quality, even if he observed
the good signal. In fact, as δ → 0 this false report lowers the price by 1.5. As a
consequence, a lump sum transfer of at least 1.5 would be required to induce the
buyer to report truthfully. Therefore even if the noise is small, only equilibria will
large transfers could possibly support allocations that are close to the complete
information equilibrium. A similar argument can be made for the seller.

What generates the difference between complete information and cases of “al-
most complete information” (i.e., where δ is small)?

The complete information case can be interpreted as a case where both agents
receive a signal with noise δ = 0. Thus, agents know the true state and in order
to trade it should not be necessary for them to announce their private information.
However, what would happen if the seller made a false report? In order to support
the complete information equilibrium we must assume that the buyer does not
change his updated beliefs. The buyer must therefore assume that the seller is
lying. Now consider the case where δ > 0. Then the buyer’s updated prior will be
affected as we demonstrated above. This is the case because the buyer knows that
there is some noise in his own signal. As a consequence, a different quality report
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by the seller can be an indication that the buyer’s own signal is incorrect. The
buyer’s updated prior will therefore change and misreports can have an effect.

2.3 A Robustness Example

The main reason why the above economy is not robust is that each agent can have
a large influence on the price even if the noise in the economy is small. With a
larger number of agents, one would expect this influence to become smaller as the
noise is reduced.

Consider again the lemons example, but assume that there are many pairs of
buyers and sellers. In addition, for each buyer and seller, there is another agent,
C, who has information about the quality of the good. The price of each good
will then be a function, p(sB,sS,sC), of the announcement of three agents who
have information about the particular good. Each agent’s noise is δ. Let vS(s) and
vB(s) be the valuation of the seller and the buyer, respectively, given the vector of
signals s.

Assume that if all reported signals are the same, trade occurs at the average of
the buyer’s and seller’s valuation. On the other hand, if two of the reported signals
are the same and the third agent reports a different signal, then the agent whose
report differs must make a lump sum transfer to the other agents.

Now assume for example that the seller observes b. If δ is sufficiently small
than the seller will expect with a probability close to 1 that the other agents will
also have observed the bad signal. If all reported signals are b, trade will occur at
a price of approximately p = 1.5. This results in a utility of approximately 0.5 for
the seller.

Now assume that the seller falsely claims that the good is of high quality.
Then π

�
ω
�� sB = sC = b,sS = g

�
is δ for ω = g and 1−δ for ω = b. Therefore p =

(vS(g,b,b)+ vB(g,b,b))/2 = 1.5 + 3δ. Thus, a lump sum tax of 3δ is sufficient
to deter misreports by the seller. Similarly, one can show that all other misreports
can also be deterred by small transfers. The size of the transfer converges to zero
as the noise in the signals vanishes. Thus, an incomplete information economy
with small noise δ will closely resemble a complete information economy.

The lump sum taxes and subsidies are imposed to penalize or reward agents for
certain types of reports. Agents will be penalized if their reports substantially dif-
fer from the reports of other agents. Theorem 1 and Proposition 1 provide a second
Welfare Theorem for economies with asymmetric information. In particular, con-
ditions are provided under which Pareto efficient allocations can be supported by
an incentive compatible equilibrium with lump sum transfers. This result is then
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used to show under what conditions complete information equilibria are robust.
The example also seems to suggest that robustness holds in the lemons problem if
there are at least three informed agents for each good. However, it turns out that
this is not the case in general. In particular, it is essential that each of the agents
is informationally small. Informational smallness is not automatically guaranteed
by having small noise and sufficiently many informed agents.

2.4 A Non Robustness Example

We now show, that for more general specification of agents’ noise, the complete
information case is not robust. In other words, the lemons problem persists even
if the noise is arbitrarily small.

Consider again the example with three informed agents per good. However,
assume that noise in the seller’s signal is δ2. The noise in the signal of the other
agents is δ. Thus, the seller has slightly superior information.

Now note that if δ is sufficiently small then π
�
ω
�� sB = sC = b,sS = g

�
is

approximately 0.5. Thus, as δ → 0, vS(g,b,b) converges to 2.5, and vB(g,b,b)
converges to 3.5. The price given these reports is therefore approximately 3. On
the other hand if all agents report b, then the price will be approximately 1.5,
provided δ is small. Therefore, in order to deter a misreport, the seller would
have to pay a transfer of at least 1.5. This transfer does not become small as δ is
small. Hence the complete information competitive equilibrium is not robust with
respect to this type of noise in the agents’ signals.

As in Section 2.2 complete information competitive equilibria are not robust,
because agents are able to influence the updated prior even if the noise is small.
In Example 3 we show that agents might not be informationally small even if the
noise is i.i.d. and symmetric (in the example of this section the noise is not iden-
tically distributed). In Theorem 3 we show that lack of informational smallness
leads in general to robustness problems.

3 The Model

Consider an exchange economy with i = 1, . . . ,n agents. There is uncertainty over
the state of nature ω ∈ Ω, where Ω is assumed to be finite. Each agent i receives
a noisy signal si ∈ Si about ω. Let S = ∏n

i=1 Si. Any s = (s1, . . . ,sn) ∈ S will also
be denoted by (s−i,si). Let π be a probability on Ω× S which is the common
prior of all agents over states and signals. Assume there are � goods. Let Xi = R

�
+
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be the consumption space of agent i. Each agent i’s preferences are given by a
state dependent von Neumann Morgenstern utility function ui : Ω×Xi → R. Note
that an agent’s utility depends directly only on consumption and the true state ω.
However, utility will indirectly depend on the signals, as agents use their signal to
update their prior on Ω.

A consumption bundle for agent i is therefore given by xi : S → R
�
+. Note that

consumption depends only on s but not on ω since only s is observable.
Agent i’s endowment is ei. For simplicity we assume that ei is state indepen-

dent. By assuming state independence of the endowments, agents cannot learn the
true state by observing their endowments.2

We assume that each agent i’s signal, si, is private information to agent i.

4 The Equilibrium Concept

When considering economies with incomplete information, we must avoid the
problem of lack of incentive compatibility in the standard rational expectations
equilibrium. Thus, we consider mechanisms which have basic features of decen-
tralized markets. That is, the planner’s authority is restricted to lump sum taxes
and subsidies which are used to discourage false reports. As explained in the in-
troduction, these mechanism should look like standard competitive markets for
incomplete information economies which are “close” to a complete information
economy, and use only small lump-sum transfers.

We can imagine that the economy proceeds as follows. The “planner” an-
nounces a system of lump sum transfers Mi(s), i ∈ I and prices p(s). Then na-
ture selects a state ω that is not directly observable. Rather, each agent observes
her signal si about ω, and makes a report s′i which becomes known to everyone.
Each agent i then maximizes utility subject to her budget constraint given p(s ′)
and Mi(s′), requesting a consumption bundle xi(s′). If ∑i∈I xi(s′) �= ∑n

i=1 ei, some
rationing must occur.3 As a consequence, each agent will receive a level of con-
sumption x′i(s

′) and therefore a payoff ui(ω,x′i(s
′)).

Thus, we have game with differential information. An equilibrium of this
2State dependent endowments can be accommodated. However, agents can then reveal in-

formation about the state by showing their endowment (see Hurwicz, Maskin and Postlewaite
(1995)).

3More formally, a rationing rule maps each collection of consumption bundles x i(s), i ∈ I,
where xi(s) ∈ R

�
+, into consumption bundles x ′i(s), i ∈ I, where x′i(s) ∈ R

�
+ and ∑i∈I x′i(s) = ∑i∈I ei

(feasibility). If xi(s), i ∈ I is feasible then no rationing occurs, i.e., x ′
i(s) = xi(s), for all s ∈ S, i ∈ I.
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game consists of reporting strategies for all agents that constitute a Bayesian Nash
equilibrium.

In our model, the planner does not have enough authority to implement an
explicit rationing scheme that he desires. Rather, agents have ex-ante expecta-
tions about rationing. These expectations are not known by the planner. As a
consequence, the choice of mechanism and its equilibrium should be immune to
different choices of rationing expectations. Formally, consider a mechanism p(·),
Mi(·), i ∈ I and reporting strategies for each agent. Then

1. the reporting strategies should be a Bayesian Nash equilibrium independent
of the rationing rules;

2. the equilibrium allocation should be the same for all rationing rules.

We can apply the revelation principle. Thus, without loss of generality arbitrary
mechanisms can be replaced by direct truthtelling mechanisms. Such mechanisms
are described in Definition 1 below. Before stating Definition 1, we describe the
optimization problem faced by a consumer i given a signal profile s.

In particular, agent i’s optimal consumption xi(s) solves

max
x∈Xi

EΩ
�
ui(ω,x)

�� s
�

s.t. p(s)x ≤ p(s)ei +Mi(s); (1)

Definition 1
�

xi, p,Mi
�� i = 1, . . . ,n

	
is an incentive compatible competitive equi-

librium if and only if

❶ Each xi(s) solves the consumer optimization problem (1) for all s ∈ S, given
prices p(s) and lump sum transfer Mi(s).

❷ ∑n
i=1 xi = ∑n

i=1 ei.

❸ For all agents i, signals si, s′i ∈ Si, and for all 0 ≤ x̂i(s−i,s′i) ≤ ∑∈I ei with
p(s−i,s′i)x̂i(s−i,s′i) ≤ p(s−i,s′i)ei +Mi(s−i,s′i) it follows that

EΩ×S−i

h
ui
�
ω,xi(ω,si)

� �� si

i
≥ EΩ×S−i

h
ui
�
ω, x̂i(ω,s′i)

� �� si

i
.

The first two conditions of Definition 1 follow because there cannot be rationing
in equilibrium. Otherwise, the equilibrium would depend on the rationing rule.
The last condition follows because the Bayesian Nash equilibrium must hold for
all rationing rules. As a consequence, misreporting by an agent i should not be
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optimal, even if agent i uses the most “optimistic” rationing rule, where he be-
lieves that all other agents are rationed first, and he is only rationed if his demand
of a good exceeds aggregate supply.

Although our formal definition of a mechanism includes the price vector, p(s),
our informal interpretation is that the government simply announces the lump sum
transfers and then agents go to the market where equilibrium prices are deter-
mined. Thus, our model is as decentralized as the standard competitive model,
requires minimal interference of the planner (provided the Mi(s) are small), and
has minimum possible informational requirements for the planner and agents.

We conclude this section with some comments.

1. Our mechanism assume that the reports s′i become public information. Al-
ternatively one could assume that agents only know their own signal, s ′i, the
price function, p(·), and the lump sum transfer function, Mi(·). An agent
can then learn about s by inverting these two functions. However, because
p(·) is generically fully revealing under standard assumptions, all results in
this paper would hold at least generically under this alternative formulation.

2. The incentive compatibility constraint in Definition 1 is stronger than the
standard notion of Bayesian incentive compatibility in a model for imple-
menting Pareto efficient allocations. Bayesian incentive compatibility only
requires that for all agents i, and signals si, s′i ∈ Si

EΩ×S−i

h
ui
�
ω,xi(ω,si)

� �� si

i
≥ EΩ×S−i

h
ui
�
ω,xi(ω,s′i)

� �� si

i
. (2)

Thus, Bayesian incentive compatibility implicitly assumes that the “plan-
ner” can determine the net-trades of agents. That is, after the signals si

are reported, the planner induces agents to make the trades xi(s)− ei. Im-
plicitly, this assumes that the planner has a more powerful role than one
would like to have in a model where markets should be decentralized. In
contrast, our incentive compatibility concept allows agents the possibility
of trading from xi(·,s′i) to some other consumption bundle x̂i(·,s′i). Our in-
centive compatibility notion is used in all positive results. In the negative
(i.e., non robustness) result of Theorem 3 we use the standard Bayesian in-
centive compatibility. We do this in order to strengthen the result, because
Theorem 3 obviously holds also under a stronger incentive notion.

3. All lump sum transfers must add up to zero, i.e., ∑n
i=1 Mi = 0. This follows

immediately from 1 and 2 of Definition 1.
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Figure 1: An Example for the Definition of ∆
The set ∆ is the collection of signal profiles and states that are consistent if signals were determin-
istic.

5 Robustness of Equilibria

5.1 Definition of Robustness

The examples in Section 2 consider economies where all agents are fully informed
in the limit. Our model allows also a more general interpretation. In particular, we
can start with a noiseless limit economy in which not all agents are fully informed.
Consider the Arrow-Debreu equilibrium of this economy, ignoring the informa-
tional asymmetries. We provide conditions under which this Arrow-Debreu equi-
librium is the limit of incentive compatible competitive equilibria of economies
where the signals are not only incompletely informative but also noisy.

In order to describe a noiseless economy with incompletely informative sig-
nals, we can identify each Si with a partition of Ω. In such an economy we wish
to identify the collection, ∆, of states and signal profiles, (ω,s1, . . . ,sn), which are
consistent. Formally,

∆ =
n

(ω,s1, . . . ,sn)
��� ω ∈ si for all i ∈ I

o
For example, assume the signals are completely informative, i.e., each Si is the
fine partition of Ω. Then ∆ consists of all (ω,s1, . . . ,sn) such that each si = {ω}
(with a slight abuse of notation we will write si = ω in the following). If there is
no noise in signal (i.e., π(∆) = 1) then prices, p, and consumption plans, xi, can
be written as functions of ω ∈ Ω alone, and the economy therefore corresponds to
a standard complete information economy.

As another example, illustrated in Figure 1, assume that Ω consists of four
states. The partitions representing the signal spaces are indicated by the dotted
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lines. For example, agent 1 receives signal s11 both in state ω1 and ω2, whereas
his signal is s12 in states ω3 and ω4.

We next describe what it means for equilibria of incomplete information econo-
mies to converge to an equilibrium of the complete information economy. As
mentioned above, a complete information economy is an economy where each
agent can observe ω without noise, and hence prices and the consumption bundles
can be written as functions of ω only.

Definition 2 Let xi : Ω → Xi and p : Ω → R
�
+. Then

�
xi, p

�� i = 1, . . . ,n
	

is a
complete information competitive equilibrium if and only if

❶ Each xi(ω) solves maxx∈Xi ui(ω,x) s.t. p(ω)x ≤ p(ω)ei;

❷ ∑n
i=1 xi(ω) = ∑n

i=1 ei(ω) for all ω ∈ Ω.

We perturb the complete information economy by allowing signals that are both
noisy and incomplete. Thus for fixed S and Ω, we consider sequences of priors
πk, k ∈ N such that there is no noise in the limit. Formally, limk→∞ πk(∆) = 1. We
say that an equilibrium of the complete information economy is robust, if there
exists a sequence of incentive compatible competitive equilibria of the perturbed
economies that converges to the to the competitive equilibrium of the original
economy and for which all lump sum transfers converge to zero. We now provide
the formal definition of robustness.

Definition 3 Assume
W

i∈I Si is the fine partition of Ω, and let πk be a sequence of
probabilities on Ω×S with limk→∞ πk(∆) = 1.

A competitive equilibrium
�

xi, pi
�� i ∈ I

	
of the complete information economy

E =
�

ui,ei,Ω
�� i = 1, . . . ,n

	
is robust with respect to πk, k ∈ N if and only if

there exists a sequence of incentive compatible competitive equilibria
�

xk
i , pk,Mk

i

��
i = 1, . . . ,n

	
, k ∈ N of the economies E k =

�
ui,ei,Ω,Si,πk

�� i = 1, . . . ,n
	

that
converges to

�
xi, pi

�� i ∈ I
	

, i.e.,

❶ xk
i (s), pk(s) converge to xi(ω), p(ω) for all s, ω with limk→∞ πk

�
ω
�� s
�

= 1.

❷ limk→∞ Mk
i (s) = 0 for all s ∈ S.

5.2 Existence of Incentive Compatible Equilibria

Theorem 1 (below) is the main technical result which we use to prove robustness
of equilibria with respect to incomplete information. The Theorem provides con-
ditions under which rational expectations equilibria with lump sum transfers are
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incentive compatible. Proposition 1 (below) will be used as a first step to construct
the lump sum transfers in our main robustness result (Theorem 2).

5.2.1 Notation and Assumptions

We assume that agent i’s signal space Si is a partition of Ω. If Si is the fine partition
{{ω1}, . . . ,{ωn}}, then with slight abuse of notation we write si = ω instead of
si = {ω}. Let S = ∏i∈I Si, and S−i = ∏ j �=i S j.

For every si ∈ Si, let σ−i(si) be the set of all reports of agents j �= i that are
consistent with agent i’s signal, provide all signals are deterministic. Formally,

σ−i(si) =
n

s−i

��� ∃ω ∈ Ω : (ω,s−i,si) ∈ ∆
o

.

To illustrate this definition, assume that S j = {{ω1}, . . . ,{ωn}} for all agents,
then σ−i(si) = (si,si, . . . ,si). Thus, if there is no noise, then all signals must be
the same. Now consider the example of Figure 1. Then σ−3(s31) = {(s11,s21)},
and σ−3(s32) = {(s11,s21),(s12,s21),(s12,s23)}.

Finally, we define

εi = max
si,s

′
i∈Si

s−i∈σ−i(si)

∑
ω∈Ω

���π(ω
�� s−i,si

�−π(ω
�� s−i,s

′
i

����.
Then εi determines agent i’s ability to influence the updated prior. εi is related to
the notion of information smallness introduced in McLean and Postlewaite (1999).

Throughout this section we will use the following assumptions.

Assumption A.

❶ ui(ω, ·) is continuous, strictly concave, and strictly monotone for all agents
i ∈ I, and states ω ∈ Ω.

❷ The aggregate endowment e ∈ R
�
++

Finally, note that we can normalize agents’ utility functions such that 0≤ ui(ω,x)≤
1, for all agents i ∈ I, and for all 0 ≤ x ≤ e.

13



5.2.2 The Existence Theorem

We now state conditions under which an incentive compatible competitive equi-
librium with lump sum transfers exists.

Theorem 1. Consider an economy that fulfills assumption A. Let x(s), s ∈ S be a
Pareto efficient allocation. Assume that

π
�
σ−i(si)

�� si
�≥ 1

1+ γi −2εi
, (3)

where

γi = min
si �=s′i∈Si

s−i∈σ−i(si)

EΩ

�
ui
�·,xi(s−i,si)

� ��� s−i,si

�
−EΩ

�
ui
�·,xi(s−i,s

′
i)
� ��� s−i,si

�
.

Then xi(s), i ∈ I can be supported as an incentive compatible competitive equilib-
rium.

Theorem 1 applies to arbitrary signal spaces Si, but assume for the moment that
Si = Ω. In this case, all agents will observe the same signal if there is no noise.
Thus, σ−i(si) = (si, . . . ,si). Hence γi measures the difference in each agent i’s
utility between the case where all agents observe and report the same signal, and
the case where all agents except agent i report the same signal. The left-hand side
of (3) is the conditional probability that all other agents observe the same signal
as agent i. If the noise in the economy is small, this probability will be close to 1.
Thus, the inequality is more likely to hold the larger γi and the smaller ε.

Also note that (3) never holds if γi < 0. Otherwise, the right-hand side of (3)
is strictly greater than 1, whereas the left-hand side is always less or equal to 1.
Thus, the agent must be worse off in the case where all signals except for his
signal are the same compared to the case where all agents’ signals are the same.

Theorem 1 has therefore the following intuitive interpretation. γi ≥ 0 simply
means that we have “incentive compatibility” when everyone observes the same
signal. Then if condition (3) also holds, we have incentive compatibility for all
signal profiles.

Now assume that we have a Pareto efficient allocation x(s), s ∈ S which does
not fulfill the conditions of Theorem 1. In Proposition 1 we show conditions under
which we can change x(s) on a “small” set D such that the resulting allocation
is supportable as an incentive compatible equilibrium. The changed allocation is
still individually rational, but it might require relatively large transfers. Theorem 2

14
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Figure 2: An Example for the Definition of Di

D3 is the set of all signal profiles (s1,s2,s3) for which agent 1 and 2’s signal are mutually consis-
tent, but are not consistent with agent 3’s signal (if signal were deterministic). In this example,
(s12,s22,s31) is in D3.

uses the argument of Proposition 1 and then constructs allocations for which the
transfers becomes small.

The set D is the union of sets Di for each agent i. Each Di is set of all signal
profiles, where all signals, except agent i’s signal, are consistent, if signals are
noiseless. Formally,

Di =
n

(s−i,si)
��� s−i /∈ σ−i(si) and ∃s′i �= si : s−i ∈ σ−i(s′i)

o
, and D =

[

i∈I

Di.

For example, if S j = {{ω1}, . . . ,{ωn}} for all agents, then D1 consists of all signal
profiles, where all s2 = . . . = sn, and s1 �= s2. In the example of Figure 2, si = s31,
s′i = s32, and s−i =(s12,s22). It follows that (s12,s22,s31)∈D3, because (s12,s22) /∈
σ−3(s31) but (s12,s22) ∈ σ−3(s32).

Both in Proposition 1 and in Theorem 2 below, agent i will be penalized by an
appropriate lump sum transfer if and only if s ∈Di, that is if all but agent i’s report
are consistent. In all other cases, no lump sum transfers are imposed. Thus, the
informational requirements for determining when to impose lump sum transfers
are rather minimal.

We also define

Gi = min
si∈Si

s−i∈σ−i(si)

EΩ

�
ui
�·,xi(s−i,si)

� ��� s−i,si

�
−EΩ

�
ui(·,ei)

��� s−i,si

�
,

for any consumption bundle x. Note that Gi is the minimum gains from trade for
agent i, taken over all states where the agents receive the same signal.

15



The additional assumption in Proposition 1 is that any two agents are informa-
tionally redundant.

Proposition 1. Consider an economy that fulfills assumption A. Moreover, for all
agents i, j ∈ I assume that

W
k �=i, j Sk corresponds to complete information.

Let x(s), s ∈ S be a Pareto efficient allocation. Assume that

π
�
σ−i(si)

�� si
�≥ 1/(1+Gi −2εi), (4)

for all si ∈ Si, i ∈ I. Then there exists an incentive compatible competitive equi-
librium with lump sum transfers

�
x̃i, p̃,M̃i

�� i ∈ I
	

, where x̃i(s) = xi(s), for all
s ∈ Dc.

Proof. First, let s ∈ D and hence in Di for some i. In this case we choose x̃(s)
to be a Pareto efficient allocation with EΩ(ui(·, x̃i(s))|s) = EΩ(ui(·,ei)|s). Now let
s /∈ D. Then we choose x̃(s) = x(s).

In order for this definition to be consistent, we must show that Di ∩D j = /0 for
all i �= j.

Let ω, ω′ be arbitrary. Then an element of Di is of the form (s−i, ŝi), where
s−i is the unique profile of signals containing (ω, . . . ,ω). Similarly, an element of
D j is of the form (s′− j, ŝ

′
j), where s′− j is the unique profile of signals containing

(ω′, . . . ,ω′). Now assume by way of contradiction that two such elements are the
same. Then we must have s−i,− j = s′−i,− j.

If signals are deterministic, then after removal of agents i and j, the pooled in-
formation of the remaining agents

W
k �=i, j Sk is by assumption complete. Therefore,

ω = ω′. Moreover, for the two elements to be same we must also have ŝi = s′i and
ŝ′j = s j. This and ω = ω′ implies that ŝi contains ω which contradicts (s−i, ŝi)∈Di.

Thus, x̃(s) is well defined. The allocation fulfills the conditions of Theorem 1
and can therefore be supported as an incentive compatible equilibrium.

Note that there is a tradeoff between the size of the set D on which transfers
are made and condition (4). More precisely if we increase the size of D we can
make condition (4) more slack. For example, we could invoke the transfers as
long as less than half of the agents report inconsistent signals. An agent who
reports an inconsistent signal gets penalized by a consumption close in utility to
the endowment. However, at the same time we would have to assume that the
pooled information of more than half of the agents is always complete.
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5.3 The Robustness Results

We now use Theorem 1 and Proposition 1 to provide sufficient conditions for
robustness. Theorem 2 shows that any complete information competitive equi-
librium is robust with respect to a sequence of priors which fulfills condition (5)
below. This condition says that each agent’s ability to influence the updated prior
converges to zero. In the language of McLean and Postlewaite (1999), the condi-
tion ensures that agents become informationally arbitrarily small as the noise in
signals disappears. Theorem 2 therefore implies that if we perturb an economy in
such a way that agents are informationally sufficiently small then any equilibrium
of the complete information economy will be close to an equilibrium of the econ-
omy with incomplete information. The Theorem does not require that each agent’s
information becomes complete as the noise in the signal disappears. Rather, it is
sufficient to assume that in the limit no two agents together have information that
none of the remaining agents has. Formally, this means that

W
k �=i, j Sk corresponds

to complete information, i.e., to the fine partition Ω =
�{ω1, . . . ,ωn}

	
.

Section 2 indicates the importance of the assumption that in the noiseless econ-
omy no two agents have information which is exclusive to them. In particular,
consider again the lemons market of Section 2.2. If there were no noise, then ex-
actly two agents, the buyer and the seller, would be informed about the quality of
a particular good. We have shown that this results in non robustness. In contrast,
in Section 2.3 three agents are informed about each good. As a consequence, in
the noiseless economy,

W
k �=i, j Sk corresponds to complete information.

Theorem 2. Let
�

xi, p
�� i ∈ I

	
be a complete information competitive equilibrium.

Assume that

❶ The economy fulfills Assumption A;

❷ The gains from trade are strictly positive, i.e., ui(ω,xi(ω))−ui(ω,ei) > 0;

❸
W

k �=i, j Sk is the fine partition of Ω, for any i, j ∈ I.

Let πk, k ∈ N be a sequence of priors with limk→∞ πk(∆) = 1 and

lim
k→∞

���πk(ω
�� σ−i(si),si

�−πk(ω
�� σ−i(si),s′i

���� = 0, (5)

for all si,s′i ∈ Si, ω ∈ Ω, and for all agents i.
Then the competitive equilibrium is robust with respect to πk, k ∈ N.
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We now provide three examples that illustrate Theorem 2.
Examples 1 and 2 indicate cases in which informational smallness holds, and

complete information competitive equilibria are therefore robust. In Example 1,
each agent receives a noisy signal about the entire state. Example 2 extends this
to the case also covered by Theorem 2 where agents’ signals are noisy and incom-
plete. It covers the case discussed in Section 2.3, where three agents always have
information about the quality of a particular good.

Example 1. Assume that there are n agents and m states. Each agent i’s probabil-
ity of receiving the correct signal si = ω is πδ(si|ω) = 1−δ. Moreover, each signal
s′i �= ω has the same probability πδ(s′i|ω) = δ/(m−1). Let µ(ω) be the probability
of state ω.

It is now easy to check that condition (5) holds as δ → 0. In particular, fix
ω,ω′ ∈ Ω with ω �= ω′. Choose s ∈ S with si = ω′, and s j = ω for all j �= i. Then

πδ(ω|s) =
δ(1−δ)n−1µ(ω)

δ(1−δ)n−1µ(ω)+(1−δ)δn−1µ(ω′)+∑ω′′ �=ω,ω′ δnµ(ω′′)

Clearly, πδ(ω|s) converges to 1 as δ becomes small. This implies that πδ(ω̃|s)
converges to 0 as δ becomes small, for any ω̃ �= ω. Thus, agent i cannot influence
the updated prior in the limit. This means that condition (5) holds. Therefore for
small δ, there exist incentive compatible equilibria with small transfers that are
close to the equilibria of the complete information economy.

Example 2. Now assume that Si is a partition of Ω. That is, even if there is no
noise in the signal, agents do not have complete information. Assume that the
pooled information of all except two agents is complete if signals were determin-
istic, i.e., condition 2 of Theorem 2 holds.

Let ω be the true state. Then agent i’s signal si is correct if ω ∈ si (recall that
si ∈ Si can be identified with a subset of Ω, because Si is a partition of Ω). As
in example 1, we assume that the probability of receiving the correct signal is
1−δ, and that the probability of each incorrect signal is the same. Thus, agent i’s
probability of receiving a particular incorrect signal is δ/(|Si| − 1), where |Si|
denotes the number of elements of Si. Again, let µ(ω) be the probability of state
ω.

We now check that condition (5) holds as δ → 0. Again fix ω,ω′ ∈ Ω with
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ω �= ω′. Choose s ∈ S with si � ω′, and s j � ω for all j �= i. Then

πδ(ω|s) =
δ

|Si|−1(1−δ)n−1µ(ω)
δ

|Si|−1(1−δ)n−1µ(ω)+∑ω′′ �=ω ∏k∈I µ(sk|ω′′)µ(ω′′)
.

Next we show that ω′′ /∈ sk for at least two agents k with k �= i.
Assume by way of contradiction that ω′′ /∈ sk for at most one agent k. By

assumption
W

j �=i,k S j corresponds the fine partition of Ω. Thus, all agents except
i and k should together be able to distinguish between ω and ω′′ if signals were
deterministic. That is, ω and ω′′ are in different elements of the partition S j for
all j �= i,k. However, for all these agents we have ω′′ ∈ sk. Moreover, by assump-
tion ω ∈ sk for all k �= i. Thus, ω cannot be distinguished from ω′′ with respectW

j �=i,k S j, a contradiction.
Because ω′′ /∈ sk for at least two agents k, we can conclude that

∏
k∈I

µ(sk|ω′′)µ(ω′′) ≤ δ2

|Ω|−1
(1−δ)n−2.

Thus, we get

πδ(ω|s) ≥ (1−δ)n−1µ(ω)

(1−δ)n−1µ(ω)+δ |Si|−1
|Ω|−1 ∑ω′′ �=ω(1−δ)n−2µ(ω′′)

.

Therefore limδ→0 πδ(ω|s) = 1. Hence limδ→0 πδ(ω̃|s) = 0 for all ω̃ �= ω. Thus,
condition (5) of Theorem 2 holds.

Example 2 illustrates that individual agents do not need to be fully informed
in order for the resulting equilibrium to be similar to a complete information com-
petitive equilibrium. The main property which must be fulfilled in Example 2 is
that the pooled information of all agents is complete, and that there do not exist
two agents who have information that none of the remaining agents has. This is
sufficient to ensure that the conditions of Theorem 2 hold. As mentioned above,
an example in which the sets Si fulfill the required condition is discussed in Sec-
tion 2.3. In the example there are always at least three agents who are informed
about the quality of a particular good. Thus, if there is no noise, then we can re-
move any two agents in the economy and the pooled information of the remaining
agents will still be complete.
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In Section 2 we saw that independence of the noise in agents’ signals is not
sufficient for condition (5) to hold. Example 3 shows that condition (5) can be
violated even if the assumptions on the distributions are strengthened to i.i.d. and
symmetric. This, together with Theorem 3 demonstrates that complete informa-
tion competitive equilibria may not be robust with respect to an arbitrarily small
noise, even if the noise is i.i.d. and symmetric.

Example 3. Assume that there are three agents and three states. Si = Ω and the
noise is i.i.d. and symmetric. In order to abbreviate the notation, let bi j = π(s =
ωi|ω j) for 1 ≤ i, j ≤ 3. Assume that the bi j are given by

ω1 ω2 ω3

s = ω1 1−δ−δ
1
4 δ

1
4 δ

s = ω2 δ
1
4 1−2δ

1
4 δ

1
4

s = ω3 δ δ
1
4 1−δ−δ

1
4

Now assume for example that the agents receive signals s1 = ω1 and s2 = s3 =
ω3.

Then

π(ω3|s1 = ω1,s2 = s3 = ω3) =
b13b2

33µ(ω3)
b11b2

31µ(ω1)+b12b2
32µ(ω2)+b13b2

33µ(ω3)

=
δb2

33µ(ω3)

b11δ2µ(ω1)+δ
3
4 µ(ω2)+δb2

33µ(ω3)
.

Clearly, limδ→0 πδ(ω3|s1 = ω1,s2 = s3 = ω3) = 0. On the other hand, one can
check immediately that limδ→0 πδ(ω3|s1 = s2 = s3 = ω3) = 1. Thus, agent 1 has
a non-trivial influence on the updated prior and his information does not become
negligible.

It is interesting to note that Example 3 can immediately be extended to an
example where informational smallness is violated for any number of agents n.
In particular, replace every occurrence of δ1/4 by a function f (δ) which has the
property that f (δ)n/δ converges to 0 as δ → 0. Such a function can be shown to
exist by standard arguments.
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The final result of the paper, Theorem 3, shows that the concept of informa-
tional smallness of McLean and Postlewaite (1999) is the key determinant for
robustness. In particular, we show that if condition (5) is violated, then one can
always find economies with non-robust equilibria. It should be noted that non-
robustness already holds for rather simple economies in which all agents have
Cobb-Douglas preferences.

In Theorem 3 we can replace 4 of Definition 1 by the weaker Bayesian incen-
tive compatibility notion (2). This yields a stronger result.

Theorem 3. For given Ω and S = ∏i∈I Si, let πk,k ∈ N be a sequence of priors
on Ω×S which violates the informal smallness condition (5). Then there exists a
complete information economy E =

�
ui,ei,Ω

�� i = 1, . . . ,n
	

such that

❶ E fulfills Assumption A;

❷ E has a unique competitive equilibrium with strictly positive gains from
trade (i.e., ui(ω,xi(ω))−ui(ω,ei) > 0 for all agents i ∈ I);

❸ The competitive equilibrium of E is not robust with respect to πk, k ∈ N.

6 Concluding Remarks

In this paper we perturb complete information economies by assuming that agents’
information about the true state of the world is noisy. The main results of the pa-
per characterize for what type of noise complete information equilibria are robust.
Roughly speaking, a complete information equilibrium is robust, if it is almost in-
distinguishable from an equilibrium of the incomplete information economy when
the noise is small.

Theorems 2 and 3 shows that an informational smallness condition is the key
determinant for robustness. These Theorems do not only apply to the case where
each agent’s signal is a noisy description of the complete state. Rather, the infor-
mational smallness condition holds as long as there do not exist two agents, who
have information which is exclusive to them. Clearly, this condition is not ful-
filled in a model with independent private values, or in the classic lemons problem
where only one agent is informed, but it will hold if there is sufficient correlation
between agents’ signals. Because the equilibrium concept for economies with in-
complete information used in this paper closely resembles that of a decentralized
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competitive market, the theorems therefore demonstrate that the complete infor-
mation Arrow-Debreu model remains a useful abstraction in those cases where
information is incomplete but informational smallness prevails.
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7 Appendix

In the following let Vi(s;y) = EΩ
�
ui(ω,y)

�� s
�

be agent i’s expected utility from
consuming y, given s ∈ S. We also use the notation introduced in Section 5.2.1.

Proof of Theorem 1. By the second Welfare Theorem there exist lump-sum
transfers Mi(s) and competitive equilibrium prices p(s) which support x(s).

We must now check incentive compatibility.
First, note that ���Vi(s−i,si;y

�−Vi(s−i,s
′
i;y
����≤ εi, (6)

for all si,s′i ∈ Si, s−i ∈ σ−i(si) and for any consumption bundle y, with 0 ≤ y ≤
e = ∑i∈I ei. This follows immediately from the definition of εi and from the utility
normalization which ensures that 0 ≤ u(ω,y) ≤ 1.

Now suppose that agent i receives signal si. Then a truthful report is optimal
if

∑
s−i∈S−i

Vi
�
s−i,si;xi(s−i,si)

�
π(s−i|si) ≥ ∑

s−i∈S−i

Vi
�
s−i,si; x̂i(s−i,s

′
i)
�
π(s−i|si);

where x̂i(s−i,s′i) is the agent’s optimal consumption from reporting s ′i although
si is the true signal. Recall that when an agent reports s′i instead of si we allow
arbitrary trades at prices p(s−i,s′i) as long as the resulting consumption does not
exceed the aggregate endowment (see Definition 1). As a consequence the optimal
consumption, x̂i, from reporting s′i instead of si is a solution to

max
x∈R�

+

Vi(s−i,si;x) s.t. (i) p(s−i,s
′
i)(x− ei) ≤ Mi(s−i,s

′);

(ii) x ≤ ∑
i∈I

ei.

To abbreviate the notation, let x′ = xi(s−i,s′i) and x̂′ = x̂i(s−i,s′i). Note that
both x′ and x̂′ are affordable for agent i at prices p(s−i,s′i). Thus, Vi(s−i,si; x̂′) ≥
Vi(s−i,si;x′), and Vi(s−i,s′i;x′)≥Vi(s−i,s′i; x̂′). Hence Vi(s−i,si; x̂′)−Vi(s−i,s′i;x′)≤
Vi(s−i,si; x̂′)−Vi(s−i,s′i; x̂′) ≤ εi. Similarly, we get Vi(s−i,s′i;x′)−Vi(s−i,si; x̂′) ≥
Vi(s−i,s′i;x′)−Vi(s−i,si;x′) ≥−εi. Thus,

��Vi(s−i,si; x̂′)−Vi(s−i,s
′
i;x′)

���≤ εi. (7)

23



Now note that (6) implies
��Vi(s−i,si;x′)−Vi(s−i,s′i;x′)

�� ≤ εi. Using (7) we can
therefore conclude that

��Vi(s−i,si; x̂′)−Vi(s−i,si;x′)
��≤ 2εi. Now let x = xi(s−i,si)

be agent i’s consumption from reporting truthfully. Then

Vi(s−i,si;x)−Vi(s−i,si; x̂′) = [Vi(s−i,si;x)−Vi(s−i,si;x′)]
+ [Vi(s−i,si;x′)−Vi(s−i,si; x̂′)]

≥ γi −2εi,

for all s−i ∈ σ−i(si). Hence,

∑
s−i∈S−i

�
Vi
�
s−i,si, x̃(s−i,si)

�−Vi
�
s−i,si, x̂(s−i,s

′
i)
��

π(s−i
�� si)

≥ π(σ−i(si)
�� si)[γi −2εi]− (1−π(σ−i(si)

�� si))

= π(σ−i(si)
�� si)[1+ γi−2εi]−1.

Consequently, if π(σ−i(si)
�� si)[1 + γi −2εi]−1 ≥ 0, truthful reports are optimal.

Proof of Theorem 2. Note that limk→∞ πk(∆) = 1 implies limk→∞ πk(σ−i(si)|si) =
1. Hence, the left-hand side of (3) converges to 1.

Let {xi(ω), p(ω)|i ∈ I,ω ∈ Ω} be the competitive equilibrium of the complete
information economy. Let D and Di be defined as in Proposition 1. For all ω ∈ Ω
and s ∈ S \D with limk→∞ πk(ω|s) = 1 let x̂ik(s) = xi(ω). Let xi(s), i ∈ I be a
Pareto efficient allocation with Vi(s;xi(s)) ≥Vi(s; x̂i(s)), for all agents i.

Before defining xi(s) for the remaining states, note that Gik > 0 for all agents i∈
I and for sufficiently large k, where Gik is agent i’s gains from trade given πk.4 This
follows because ui(ω,xi(ω))−ui(ω,ei) > 0, and Vik(s;x) converges to ui(ω,x) as
k → ∞ for any x ∈ R

�
+ and (ω,s) ∈ ∆. Let εik be defined as in Section 5.2.1, given

prior πk. Then (5) implies limk→∞ εik = 0. Thus, limsupk 1/(1 +Gik −2εik) < 1.
Since the left-hand side of (4) converges to 1, (4) holds for all sufficiently large k.
We can therefore find a sequence G̃ik with limk→∞ G̃ik = 0, such that (4) holds for
all sufficiently large k (replacing Gik by G̃ik).

We now define xik(s) for all remaining s. First, assume that s ∈ D j. Let s̄
be the corresponding diagonal element.5 Let ω denote the unique element in

4Gi is defined immediately before the statement of Proposition 1 as the gains from trade given
prior π.

5Recall that s ∈ D j if s = (s− j,s j) where s− j ∈ σ− j(s′j), for some s′j �= s j . Then the corre-
sponding diagonal element s̄ = (s− j,s′j). Moreover, note that s̄ is the only element of S with the
property, because the pooled information of all agents excluding agent j is complete.
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Tn
i=1 s̄i. Now choose x̂ j(s) as a convex combination of e j(ω) and x j(ω) such

that Vjk(s̄;x j(ω))−Vjk(s̄; x̂ jk(s)) = G̃ jk.
For i �= j we can find αik with 0 ≤ αik ≤ 1 and ∑i�= j αik = 1 such that x̂ik(s) =

xi(ω)+αik
�
x j(ω)− x̂ jk(s)

� ∈ R
�
+.

Let xik(s) be a Pareto efficient allocation with Vik(s;xik(s)) ≥ Vik(s; x̂ik(s)),
such that the equality holds for agent j.

Finally, for all remaining states s, choose xi(s), i ∈ I to be a competitive equi-
librium allocation in the economy with utilities Vik(s; ·) = EΩ[ui(ω, ·)|s].

Because the assumptions of Theorem 1 are fulfilled, there exist Mi, i ∈ I, such
that {xik(s), pk(s),Mik(s)|i∈ I,s∈ S}, is an incentive compatible equilibrium with
lump sum transfers. It remains to prove that limk→∞ Mik(s) = 0 for all s, and that
prices and allocations converge to those of the complete information competitive
equilibrium.

We first prove convergence of the allocations. Let ω∈Ω, s∈ S\D be such that
limk→∞ πk(ω|s) = 1. By construction Vik(s;xik(s)) ≥ Vik(s;xi(ω)). Now take any
subsequence xikt (s), t ∈ N that converges for all agents i. Such a sequence must
exist, because agents’ consumption fulfills 0 ≤ xik(s)≤ e, where e is the aggregate
endowment. Denote the limit by x̄i(s). Then limt→∞Vikt (s;xikt(s)) = ui(ω, x̄i(s)).
Thus, ui(ω, x̄i(s)) ≥ ui(ω,xi(ω)), for all agents i. Now note that because xi(ω)
is a competitive equilibrium, it is also Pareto efficient. Therefore ui(ω, x̄i(s)) =
ui(ω,xi(ω)). Since ui is strictly concave it therefore follows that x̄i(s) = xi(ω),
for all agents i. Because the subsequence kt , t ∈ N was chosen arbitrarily, we can
conclude that xik(s) converges and that limk→∞ xik(s) = xi(ω).

Now assume that s ∈ D j. Then since limk→∞ G̃ik = 0, it follows that x̂ jk(s)
converges to x j(ω). Thus, x̂ik(s) converges to xi(ω) for all agents i. We can
therefore use the above argument to show that xik(s) converges to xi(ω) for all
agents i ∈ I.

Next, we show that prices converge. Consider ω, s with limk→∞ πk(ω|s) = 1.
Because xi(ω) is the competitive equilibrium at price p(ω) and limk→∞ xik(s) =
xi(ω) it follows by the smoothness of preferences that limk→∞ pik(s) = p(ω).

Finally, we show that the lump sum transfers converge to 0. Let s, ω be
such that limk→∞ πk(ω|s) = 1. For other s, ω there is nothing to prove since
the allocation is already a competitive equilibrium with Mi(s) = 0. Note that
pik(s)(xik(s)− ei(s)) = Mik(s). If we take the limit for k → ∞ on both sides
of this equality we get p(ω)(xi(ω)− ei(ω)) = limk→∞ Mik(s). However, since
xi(ω) is a competitive equilibrium allocation, p(ω)(xi(ω)− ei(ω)) = 0. Thus,
limk→∞ Mik(s) = 0.
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Proof of Theorem 3. We provide the argument for the case where Si = Ω. The
general case where Si is a partition of Ω is similar.

If πk, k ∈ N violates condition 2 then there exists an agent j and states ω, ω′,
and c̄ > 0 such that limsupk→∞

���π(ω
�� σ− j(s j),s j

�−π(ω
�� σ− j(s j),s′j

���� ≥ c̄ > 0,

for s j = ω and s′j = ω′. Without loss of generality we can assume that j = 1. Now
consider the following economy.

The agents’ endowments are ei = (1,1), i ∈ N. For y ∈ R
2
+, let u1(ω,y) =

v(y) = logy1 + logy2. For all i > 1 let

ui(ω,y) =

(
2logy1 + logy2 if ω = ω1;

3 logy1 + logy2 otherwise.

Now consider the economy with prior πk. Let s be the signal of all agents. Then
the unique equilibrium allocation will only depend on α = πk(ω1

�� s) and can
therefore be denoted by x(α). Moreover, one can easily verify that E

�
u1(·,x1(α))

��
s
�

= v(x1(α)) is a strictly decreasing function of α.
Now assume that agent 1 observes s1 = ω1. Let s = (s1, . . . ,s1). Define

αk = π
�
ω1

�� s
�

and α̃k = π
�
ω1

�� σ−1(s1),s′1
�
. Then there exist k > 0 such that

limsupk→∞
��v(x1(αk))−v(x1(α̃k))

��≥ k. Thus, in order to induce agent 1 to report
truthfully, one must choose Mk

i (σ−1(s1),s′1) such that limsupk→∞ Mk
i (σ−1(s1),s′1) >

0. However this implies that the economy does not converge to the complete in-
formation competitive equilibrium.
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