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Abstract

This paper analyzes choice-theoretic costly enforcement in an intertem-
poral contracting model with a differentially informed investor and entrepre-
neur. An intertemporal contract is modeled as a mechanism in which there is
limited commitment to payment and enforcement decisions. The goal of the
analysis is to characterize the effect of choice-theoretic costly enforcement
on the structure of optimal contracts. The paper shows that simple debt is
the optimal contract when commitment is limited and costly enforcement is
a decision-variable (Theorem 1). In contrast, stochastic contracts are optimal
when agents can commit to the ex-ante optimal decisions (Theorem 2). The
paper also shows that the Costly State Verification model can be viewed as
a reduced form of an enforcement model in which agents choose payments
and strategies as part of a Perfect Bayesian Nash Equilibrium.
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1 Introduction

A contract is a set of promises individuals make today which they expect will
be fulfilled in the future. Unfortunately, promises can be broken. This ability to
renege on promises is important because it can break the links among individuals
that are necessary for intertemporal trade.1 One way to solve the problem is to
use “choice-theoretic costly enforcement” as a commitment device. Consider an
entity, such as a court, that has the ability to enforce an intertemporal contract
between a differentially informed investor and entrepreneur upon request. We
study the effect of costly enforcement on the structure of optimal contracts when
enforcement is a decision-variable. When agents cannot commit ex-ante to request
enforcement at a later time, they take this into account at the outset and write
contracts that are time consistent.2 We prove that when commitment problems of
this type exist, debt is the optimal contract. Otherwise, stochastic contracts are
optimal.

Our results are related to two literatures. First, there is a large literature on
renegotiation with private information. This literature shows that fully anticipated
renegotiation restricts the optimal ex-ante contract and that the implicit informa-
tion revelation which can result from agents’ actions is problematic. A key issue
in these intertemporal problems is that contracts with full commitment to initial
choices are desirable because they Pareto dominate contracts with renegotiation.
Commitment is often difficult to achieve, and when it is not possible agents try
to limit ex-post recontracting by revealing as little information as possible. This
same force drives our results. If the entrepreneur revealed all information the in-
vestor would never enforce, but this undermines the credibility of enforcement
(i.e., the court) and results in autarky. Stochastic contracts are not optimal when
recontracting is possible because they reveal too much information which makes
recontracting easier.

Second, in a series of papers designed to study debt use by firms, Town-
send (1979), Gale-Hellwig (1985), and Williamson (1986) proved that when op-
timal contracts are deterministic, they resemble debt. Townsend (1979), Border-
Sobel (1987), and Mookherjee-Png (1989) showed that stochastic contracts can
also arise, and they Pareto dominate debt. Thus, deterministic and stochastic con-
tracts do not co-exist in these costly state verification models. The simultaneous

1This is tantamount to the classic problem of attempting to trade with agents who will die or
are unborn (cf., the overlapping generations model, Samuelson (1958)).

2A contract is time consistent if the ex-ante optimal agreement is such that agents do not wish
to alter it ex post (cf., Kydland and Prescott (1977)).
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existence of both contracts is of interest because debt is pervasive and stochastic
contracts are observed frequently in insurance and taxation problems (i.e., audits
are often stochastic; see Roth et al (1989)).3;4

2 The Model

Consider an economy with two risk neutral agents, a planning period, and three
subsequent periods. Agents derive utility only from consumption in the final pe-
riod. The investor has one unit of a consumption/investment good in the initial
period and no endowment in any other period. The penniless entrepreneur owns
a production technology which is described by a random variable with finitely
many realizations x0; : : : ;xn. The technology transforms one unit of the input into
xi units of output. Agents share a common prior belief β(x) about the possible re-
alizations, and know that the entrepreneur will privately observe output. Because
the entrepreneur has a technology but no input and the investor has an input but
no technology, production occurs only if the investor can be persuaded to transfer
the good to the entrepreneur. This is done by writing a contract which consists
of payments by the entrepreneur in subsequent periods. In the first period nature
chooses the outcome of the venture. In the second period the entrepreneur decides
whether to make a voluntary payment chosen from a subset of project returns that
includes the possibility of making no payment. In the last period the investor, after
having observed the entrepreneur’s payment but not the state, decides whether to
enforce a final payment. Enforcement is provided by an outside agent such as a
court.

In the contracting literature, a contract is usually defined as a pair M;V , where
M is a set of messages m about the entrepreneur’s realization and V is a pay-
ment schedule that depends on the message. Costless ex-post enforcement of the
payment is assumed. Our model differs from the literature in two key respects.

3Debt is also of interest as theory often predicts complicated state contingent contracts
(cf., Hart-Holmström (1987) or Allen-Winton (1995) for a review). Allen-Gale (1992) suggest
that adverse selection can make it optimal to write contracts with few state contingencies and
Matthews (1994) argues that moral hazard can make it optimal to write simple contracts that will
be renegotiated. Enforcement problems are another reason.

4There is a large literature on commitment. Gale (1978, 1982) and Townsend (1980) dis-
cuss the importance of limited commitment for monetary theory (see also Huggett-Krasa (1996)
and Chatterjee-Corbae (1996)); Becker-Chakrabarti (1995) show that capital can serve as a com-
mitment device; and “control rights” (threatening to reassign control) give firms the incentive to
adhere to contracts. Enforcement is another commitment device.
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First, the entrepreneur decides whether to honor an unenforceable initial payment
promise chosen from a set V . If v is zero no payment occurs, but if it is positive
the transfer is made immediately. Second, we introduce an enforceable payment
F(�). The investor has the ability to compel payment of F by choosing an action
e, after the voluntary payment action has been observed. If e = 1 then F is en-
forced and if e = 0 it is not. Thus a contract in our model is a pair of payments
with associated probabilities for choosing whether to make a voluntary payment
or enforce.

Our model is a stylized version of the enforcement provided by courts. The
assets available before enforcement are x�v, where x is the entrepreneur’s output
realization and v is the voluntary payment. The court’s role, if enforcement is
requested, is to determine the funds available after any voluntary payment, and
then enforce payment F which is contingent on these funds. We assume that the
court’s enforcement technology is imperfect: the court cannot seize an amount x̄.5

The amount available for transfer is then y = maxfx� v� x̄;0g, where no funds
can be transferred if the amount that can be hidden x̄ exceeds x� v. We assume
that enforcement is requested by the investor. When it occurs the investor pays
a positive cost cI and the entrepreneur pays a positive cost cE . These costs are a
deadweight loss, thus both agents have an incentive to minimize the court’s use.

Payments V , F define a noncooperative game with incomplete information
with associated strategies σ1, σ2. Strategy σ1 is the probability the entrepreneur
assigns to a particular voluntary payment v in the finite set V and σ2 is the prob-
ability that the investor chooses to enforce payment F . The strategies are used to
choose v and e optimally as part of a perfect Bayesian Nash equilibrium (PBNE).
The optimal contract maximizes agents’ expected utilities subject to resource and
time consistency constraints, and a constraint that the strategies are a PBNE. We
first specify a non-cooperative game and then maximize over all contracts and
PBNE of the game. This may appear to differ from the standard optimal con-
tracting approach of choosing a mechanism subject to an incentive constraint. Re-
member, however, that incentive constraints are motivated by a non-cooperative
information revelation game. The revelation principle establishes that for prob-
lems without recontracting, any arbitrary (Bayesian) Nash equilibrium of the rev-
elation game can be replaced by one in which agents tell the truth. The revelation
principle cannot be invoked in our model due to subsequent opportunities to alter
the contract (see Dewatripont-Maskin (1990)). Thus the PBNE constraint plays

5This can occur, for example, if the entrepreneur can abscond with or hide an amount x̄
(Calomiris-Kahn (1991)).
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the role of the incentive constraint. This will be apparent in Section 3.
Characterizing the form of the optimal contract amounts to asking the quest-

ion—do agents choose deterministic or random (behavioral) strategies? We con-
sider a game which permits random strategies because whether contracts are sto-
chastic or deterministic is a property of the equilibrium of the game. A given
contract defines a game that is summarized by a set of players, strategies, a pro-
duction technology, beliefs, and payoffs.6 Initial beliefs are given by a prior β
over the outcomes. Figure 1 indicates that nature moves first and chooses x 2 X
at time 1, which the entrepreneur privately observes. The game involves two ac-
tions: which voluntary payment v to make at time 2 and whether to go to court to
enforce F at time 3 (yes if e = 1, and no if e = 0). The entrepreneur uses strategy
σ1 to choose v, and the investor uses strategy σ2 to choose e. The investor uses
publicly observable action v to update beliefs to β0.

Figure 1

x v e

t = 0 t = 1 t = 2 t = 3

Belief: β(x) β0(v;x)

Strategy: σ1(x;v) σ2(v;e)

Agents’ payoff functions πi, i = I;E are given by:
πE(x;v;e) = x� v� e[F(y;v)+ cE ] and
πI(x;v;e) = v+ e[F(y;v)� cI], where y = maxfx� v� x̄;0g.

The solution concept is the perfect Bayesian Nash equilibrium. Conditions
(i) and (ii) in Definition 1 require strategies to be subgame perfect Nash equilib-
ria given beliefs. Condition (iii) describes how the investor forms beliefs after
observing the entrepreneur’s voluntary payment action.

Definition 1. A collection of strategies σ1, σ2 and beliefs β, β0 are a Perfect
Bayesian Nash Equilibrium if and only if

(i) σ1 2 Σ1 maximizes Eσ1;σ2πE(x;v;e) for every x.
(ii) σ2 2 Σ2 maximizes ∑x2X β0(v;x)Eσ2πI(x;v;e) for every v.

(iii) β0 is derived using Bayes’ rule whenever possible.

6Formally, G b
=

�
I;E;Σ1;Σ2;X;β;β0

;πI;πE
	

, where Σ1 is the collection of all functions
σ1(x;v) that denote the probability payment v is made given x, and Σ 2 is the collection of all
σ2(v;e) that denote the probability enforcement action e is chosen given v.
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3 Optimal Contracts

We now characterize optimal contracts. Theorem 1 shows that when commitment
is limited, simple debt is the optimal subgame perfect contract. Section 3.1 be-
gins by stating the problem for which deterministic contracts are optimal. Three
propositions are proved which make clear the relationship between deterministic
contracts and debt. Theorem 1 follows immediately. In Section 3.2, Theorem 2
shows that when there is full commitment to the ex-ante optimal contract, the op-
timal contract in this “less constrained” problem is stochastic. All proofs are in
the Appendix.

3.1 Optimality of Deterministic Contracts

In Problem 1 agents choose a contract in the initial period to maximize the in-
vestor’s expected utility subject to four constraints. (1.1) is individual rationality
which ensures that the entrepreneur gets an expected utility at least as great as
reservation value ū in every state. (1.2) requires payments to be feasible for all y, v,
where non-negativity prohibits the entrepreneur from extorting further payments
from the investor. (1.3) is the PBNE restriction in lieu of incentive compatibility,
and (1.4) is time consistency.

Problem 1. At t = 0 choose σ1(x;v), σ2(v;e), V , F to maximize
∑x β(x)Eσ1;σ2πI(x;v;e) subject to:

(1.1) ∑x β(x)Eσ1;σ2πE(x;v;e)� ū.
(1.2) 0 � v � x and 0 � F(y;v)� y for all y, v.
(1.3) σ1;σ2, β;β0 is a PBNE at t = 1.
(1.4) v;F;σ2 is time consistent.

Agents have the opportunity to alter the initial contract at time 2, but (1.4) ensures
they will choose v0 = v, F 0 = F(y;v), σ0

2 = σ2 where v0, F 0, σ0

2 is the optimal con-
tinuation contract which solves Problem 2 below and v, F , σ2 is the original plan.
(1.4) is similar to (4) in Dewatripont (1989, p. 599) as both state that agents cannot
recontract in a future period to increase their expected payoffs. All possibilities
for altering the initial contract are foreseen at the outset, and this constrains the
choice of the initial contract. By modeling these future opportunities via (1.4) we
use a cooperative approach rather than specifying a non-cooperative game. The
goal of both approaches is to find Pareto superior allocations. The absence of
Pareto improvements precludes renegotiation from actually occurring.
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Problem 2 formalizes the time 2 problem from which the continuation con-
tract is derived. This contract maximizes the investor’s expected utility, given up-
dated belief β0, subject to three constraints. Individual rationality constraint (2.1)
ensures that the entrepreneur’s expected utility is at least as great as reservation
value ū0x in almost every state x, when the investor uses alternative enforcement
strategy σ0

2 and given updated investor belief β0.7 (2.2) requires the choice of v0

and F 0 to be feasible for all y. (2.3) requires the investor’s enforcement choice to
be optimal.

Problem 2. Let v, σ1 be given. At t = 2 choose an optimal continuation contract
v0, F 0, σ0

2 to maximize ∑x β0(v;x)Eσ0

2
π0I(x;v;e) subject to:

(2.1) Eσ0

2
π0E(x;v;e)� ū0x for all x with β0(v;x)> 0;

(2.2) v � v0 � x with β0(v;x)> 0 and 0 � F 0(y)� y for all y;
(2.3) σ0

2 fulfills (ii) of Definition 1.

The opportunity to alter the initial contract occurs after the voluntary payment
action, but before the enforcement action is chosen. The timing of this payment
is important because it implies limited commitment to v. In particular, the vol-
untary payment constitutes “money on the table” that cannot be retracted by the
entrepreneur or court once the payment has been made. This payment presents
two opportunities. First, the voluntary payment can be increased to v0 � v if this
is mutually agreeable. Second, agents can change the enforceable payment to F 0.
The total payment ignoring enforcement costs is v0+eF 0. By paying v0 > v, how-
ever, the entrepreneur has the opportunity to induce the investor to refrain from
enforcement or to enforce with lower probability. This saves deadweight enforce-
ment costs and the surplus can be used to make Pareto improvements (i.e., higher
payoffs net of enforcement costs).

The main result in this section is Theorem 1 which states that simple debt is
optimal when commitment is limited. More precisely, it states that debt is the op-
timal contract when agents have the ability to revise the payment and enforcement
promises they agreed to at the outset in Problem 1. Before proceeding we wish to

7(2.1) ensures the entrepreneur receives in every state x at least ū 0

x =Eσ0

2
πE(x;v;e), the expected

continuation payoff from the initial contract. Offers which make the entrepreneur better off in
some states but worse off in others are not considered as this requires modeling a particular non-
cooperative game. Our results would hold if the game had two features: (i) Assume there exist
v, β0 such that paying v0

> v in exchange for no enforcement makes the entrepreneur better off in
all states, and the investor better off in expected utility given β 0. Then the initial contract must be
revised. (ii) Debt is time consistent.
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make clear the relationship between deterministic contracts and debt. A determin-
istic contract is a contract where the choice of a particular v or e is deterministic
(i.e., occurs with probability one or zero). In contrast, debt is often described as
a pair R(x);B where x is the realization of a random variable that describes the
entrepreneur’s privately observed project outcome, R(x) is a payment function,
and B is a lower interval set of “bankruptcy states” where assets are seized from
the entrepreneur. In a debt contract bankruptcy occurs with probability one or
zero as a deterministic function of the state. In other words, if the state x were
known then bankruptcy occurs with probability one when the state is “bad” and
with probability zero when the state is “good.”

A simple debt contract R(x);B is depicted below in Figure 2.

Figure 2

R(x)

R

x*

B                                Bc

x

The lower interval bankruptcy set is given by B = fx < x�g and indicates that
bankruptcy occurs only for low project outcomes (i.e., those below x�). When
bankruptcy occurs the entire realization R(x) = x is seized from the entrepreneur
in a simple debt contract. For all other sufficiently high realizations (those with
x � x�), bankruptcy does not occur and the entrepreneur makes a fixed payment
R(x) = R̄ and retains x� R̄.

When contracts are restricted to be deterministic a priori, Townsend (1979),
Gale-Hellwig (1985) and Williamson (1986) have shown that debt is the optimal
contract in a Costly State Verification (CSV) model. Like our model, this model
has an entrepreneur with a technology but no input and an investor with an input
but no technology. In addition, in the CSV model the investor has access to a
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monitoring technology that can be used to reveal the state at a cost. When moni-
toring is assumed to be deterministic simple debt is optimal because it minimizes
the monitoring cost, but it is well known that debt is dominated by a contract with
random monitoring when stochastic contracts are allowed. Thus in the CSV model
debt is not robust to stochastic monitoring, is not ex-post efficient, and stochastic
and deterministic contracts cannot co-exist.

In our model the environment and choice variables differ from the CSV model.
As a consequence, we establish conditions under which debt is optimal but not
subject to the problems noted above. Payment schedule R(x) = v(x)+ eF(y;v)
allows for voluntary and enforceable payments, and limited commitment to initial
promises. Problem 1 shows the decisions to make a voluntary payment or en-
force F are chosen as part of the contract and hence are optimal each period by
construction. We do not restrict these strategies to be deterministic at the outset.
Rather, Theorem 1 proves that if commitment is limited (a friction imbedded in
the primitives of the model), debt is optimal even when stochastic contracts are
allowed. Proposition 1 first shows that enforcement is deterministic. Proposi-
tion 2 shows that when enforcement is deterministic we can appeal to the CSV
model and identify suitably redefined payments R(x) and a lower interval set of
enforcement states B that resemble the debt contract depicted in Figure 2. Propo-
sition 3 ensures that all constraints in Problem 1 are satisfied. Finally, Theorem 1
establishes that debt is the optimal solution to Problem 1.

The following assumptions are necessary for these results:
(A.1) 0 < x̄� cE < x0.
(A.2) x0 < ∑x<x�(x� cI)β(x j x < x�).

A.1 and A.2 are conditions on the parameters that determine the entrepreneur and
investor’s minimal payoffs from enforcement, respectively. Recall that x̄ is the
amount of funds that the entrepreneur can hide, cE is a deadweight enforcement
cost paid by the entrepreneur, and x0 is the lowest output realization. A.1 indicates
that when the court seizes funds the entrepreneur’s payoff after enforcement, net
of costs, is small but positive. Most enforcement technologies are likely to have
some degree of imperfection. Theorem 1 will show that even when this imperfec-
tion is very small and commitment is limited, simple debt is the optimal contract.
We choose additive costs, x̄� cE , for simplicity. The results also hold for other
cost structures (e.g., where costs are large or a percentage of total assets). A.2
indicates that the investor’s expected payoff from a simple debt contract when
bankruptcy occurs is larger than x0, the gross payment the investor can receive
with probability one in the worst state (ignoring x̄ and cE ). In other words, when
bankruptcy occurs, on average the investor can recover at least x0 and her expected
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enforcement costs.

Proposition 1. For a given V;F let σ1, σ2 be a PBNE. Assume that the contract is
time consistent and that A.1 holds. Then σ2 is deterministic.

Proposition 1 is proved by way of contradiction.8 Suppose the optimal contract
is stochastic. Then the investor must be indifferent between the expected payoff
from enforcement and no enforcement; the entrepreneur incurs deadweight loss
cE when enforcement occurs; and the entrepreneur retains amount x̄�cE because
the court’s enforcement technology is imperfect (and because the strategies are a
PBNE). These three facts give the entrepreneur the ability and incentive to “bribe”
the investor to refrain from enforcement by altering the initial contract to v0 > v,
F 0 = 0, and σ0

2 = 0. This is a contradiction since such a contract revision is not
time consistent. Intuitively, stochastic contracts are not optimal when recontract-
ing is possible because they reveal a lot of information. This occurs because the
investor must be indifferent between the two enforcement options when σ2 is sto-
chastic.

Next consider Proposition 2 which shows that any arbitrary contract for which
σ2 is deterministic can be dominated by a simple debt contract, ignoring (ii) from
Definition 1 and time consistency constraint (1.4). In our universe of contracts, V ,
F , σ1, σ2 is simple debt if there is a set of bankruptcy states and a critical value x�

where
(i) B = fx 2 X j x < x�g, and the investor’s enforcement action is e = 1 for x 2 B

and e = 0 for x 2 Bc with probability 1.
(ii) The entrepreneur pays v = R̄ for x 2 Bc and v = 0 for x 2 B. Moreover,

F(y;v) =
n

y for x 2 B;
0 for x 2 Bc.

This definition of simple debt corresponds to the contract depicted in Figure 2,
with R(x) and B modified to accommodate limited commitment to payment and
enforcement decisions. Specifically, (i) requires enforcement to occur on a lower
interval and (ii) requires all assets to be seized when bankruptcy occurs (which
characterizes simple debt).

Proposition 2. Consider an initial contract where σ2 is deterministic and which
fulfills (1.1), (1.2), and (i) of Definition 1. This contract is dominated by a simple
debt contract that fulfills the same constraints.

8The result that deterministic enforcement is optimal in Problem 1 also holds when agents are
risk averse. This follows from the proof of Proposition 1 and results in Krasa and Villamil (1994).
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The proof of Proposition 2 shows the relationship between the CSV model with
deterministic monitoring and our costly enforcement model. Consider an arbitrary
contract V , F , σ1, σ2 in which σ2 is deterministic. This contract is mapped into a
contract in the CSV model with deterministic monitoring. Without loss of gener-
ality one can assume that σ1 is deterministic. As both strategies are deterministic,
a set B exists where enforcement occurs. In addition, for each realization the pay-
off is given by R(x). Thus a contract in our model corresponds to a contract in
the CSV model and the expected payoffs are the same under both contracts. The
Gale-Hellwig (1985) and Williamson (1986) argument (GHW) then shows that
this arbitrary contract is dominated in payoffs by a simple debt contract in the
CSV model where monitoring occurs on a lower interval solely as a function of
x. This lower interval contract is then mapped back into a simple debt contract in
our model, though (ii) of Definition 1 and (1.4) need not hold.

The proof of Proposition 2 considers contracts where no voluntary payments v
are made in the bankruptcy case. Thus, the v payment reveals a minimal amount of
information. In general there are many contracts with different v payments in the
bankruptcy state that yield the same payoffs as a particular GHW debt contract.
These contracts also reveal more information at t = 1. We map the GHW contract
into a contract in our model where information revelation is minimal because this
captures the idea that debt is informationally minimal.

The construction used in the proof of Proposition 2 may change β0. As a
consequence, optimality of the investor’s enforcement decision (ii) of Definition 1
and time consistency constraint (1.4) from Problem 1 need not hold. Proposition 3
shows that with assumption A.2 all the constraints of Problem 1 are satisfied. Thus
simple debt is the optimal solution. Theorem 1 follows immediately. A.2 ensures
there are enough funds to recover cost cI when enforcement occurs and enough
uncertainty about the enforcement states. Both prospects for fund recovery and
uncertainty about x are crucial for making enforcement credible.9 The credibility
of costly enforcement, in turn, makes contracts time consistent.

Proposition 3. Consider a simple debt contract where A.1, A.2 are satisfied and
V = f0; R̄g. Then the contract fulfills (ii) of Definition 1 and (1.4).

Propositions 1–3 immediately imply Theorem 1, which states that simple debt

9To see that uncertainty matters, suppose that (i) two agents have signed a simple debt contract
with face value R̄, (ii) the actual realization is x̃< R̄, and (iii) the entrepreneur can truthfully reveal
x̃ to the investor. If agents go to court costs cI and cE are incurred, and if they do not this surplus
can be split. Thus, enforcement would not occur. Once the entrepreneur knows that enforcement
will not occur, she will reveal x̂ < x̃.
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is optimal and subgame perfect (ex post efficient) even when agents have the op-
portunity to use stochastic decision rules. This debt result differs fundamentally
from the CSV model where debt is not efficient ex post and not optimal when
stochastic verification is possible.

Theorem 1. Assume there exists a simple debt contract which satisfies A.1, A.2
and which gives the entrepreneur reservation utility ū. Then this contract solves
Problem 1.

3.2 The Optimality of Stochastic Contracts

We now show that stochastic contracts are optimal when commitment to the initial
contract is possible. Agents solve the problem at the outset and have no oppor-
tunity to alter their actions. They are fully “committed to” their initial σ1, σ2, V ,
F . This reduces the subgame perfection conditions in Definition 1 to (i) only; (ii),
(iii), and (1.4) are unnecessary as there is no opportunity to revise the contract. In
addition, F < 0 is now possible under full commitment. That is, the enforcement
technology can recover payment v from the investor. Problem 1’ is the following
“less constrained” analog of Problem 1:

Problem 1’. At t = 0 choose σ1(x;v), σ2(v;e), V , F to maximize
∑x β(x)Eσ1;σ2πI(x;v;e) subject to:

(1.1), (1.2), (i) of Definition 1, and F(y;v)��v+ cE .

Now consider the CSV model with stochastic monitoring (cf., Border-Sobel
(1987) or Krasa-Villamil (1994)). Let x be the true realization, x0 be the reported
realization, p(x) be the probability that monitoring occurs when x is reported, t
and f be payments that are linked to monitoring, and c be the monitoring cost.
If monitoring does not occur the entrepreneur pays t(x). If monitoring occurs the
payment is f (x;x0). Implicit in this problem is the revelation principle. That is, if
x is the true state then this state x is truthfully reported by the entrepreneur. For
simplicity suppose that x̄ = cE = 0. See the Appendix for the general case.

Problem 3. Choose t(x), f (x;x0), and p(x) to maximize

∑x2X

h
(1� p(x))t(x)+ p(x)( f (x;x)� c)

i
β(x) subject to:

(i) ∑x2X

h
x� (1� p(x))t(x)� p(x) f (x;x)

i
β(x)� ū.

(ii) x� [(1� p(x))t(x)+ p(x) f (x;x)� x� [(1� p(x0))t(x0)+ p(x0) f (x;x0).
(iii) 0 � p(x)� 1, 0 � t(x)� x, 0 � f (x;x0)� x for all x;x0 2 X .
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The optimal contract maximizes the investor’s expected utility subject to (i) entre-
preneur individual rationality, (ii) incentive compatible reports by the entrepreneur
(i.e., truthfully reporting x is weakly better than reporting any other state x0), and
(iii) feasibility.

Theorem 2 shows the equivalence between Problems 1’ and 3. The proof
shows how contracts in the costly enforcement model with full commitment and
the CSV model can be mapped into each other without affecting payoffs and con-
straints. Intuitively, monitoring probability p(x) corresponds to enforcement prob-
ability σ2(v;1) where v is the payment made in state x, v corresponds to t(x), and
F corresponds to f � v (in the CSV model the total payment if monitoring occurs
is f while in the enforcement model it is F + v). As a consequence of the equiv-
alence, the result from the CSV model that stochastic contracts are optimal holds
in the enforcement model with commitment.

Theorem 2. Problem 1’ and 3 are equivalent. Stochastic contracts are optimal.

3.3 Concluding Remarks

Theorem 1 shows that simple debt contracts are optimal when there is limited
commitment to initial decisions and enforcement is costly and imperfect. Theo-
rem 2 shows that stochastic contracts are optimal in the “less constrained” model
with full commitment to initial decisions. Problem 1’ is less constrained because
time consistency constraint (1.4) and condition (ii) of Definition 1 do not bind
when there is full commitment to the ex-ante optimal contract. In Theorem 2
stochastic contracts Pareto dominate deterministic contracts because the weaker
constraint set in Problem 1’ permits agents to choose over a larger set of con-
tracts.10 The costly enforcement model thus yields both deterministic (debt) and
stochastic contracts as a consequence of a “commitment friction.” When commit-
ment is limited, Problem 1 requires actions to be chosen optimally as part of a
PBNE. Agents take into account any subsequent opportunity for contract revision
at the outset (time consistency). It is precisely the inefficiency arising from the
inability to commit that makes debt optimal in Theorem 1.

Our results show that the CSV model can be viewed as a “reduced form” of
the costly enforcement model.11 This is important because the CSV model has

10Lacker (1989) shows that costly enforcement can tighten incentive constraints, but contracts
in his model need not be time consistent.

11Boyd-Smith (1995) calibrate a CSV model and study conditions under which the loss from
using deterministic contracts is not too large (relative to stochastic contracts). As it is a CSV
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been widely used as a model of financial intermediation,12 but has been criticized
as a model of debt for two reasons: First, debt is not ex post efficient in the model
as the investor knows the true state. As a consequence, agents would prefer to
revise the initial contract after the state has been announced rather than incur the
monitoring cost. In contrast, in the costly enforcement model debt is time con-
sistent and enforcement is chosen optimally by the investor as part of a PBNE.
Second, debt is optimal only under the assumption of deterministic monitoring
in the CSV model. Theorem 1 shows that the costly enforcement model justifies
this assumption when commitment is limited and enforcement is costly and im-
perfect. In contrast when commitment is costless and perfect, Theorem 2 shows
that stochastic contracts are optimal. Which type of contract is more “reasonable”
depends on the underlying economic problem. In some environments it may be
possible to commit to refrain from renegotiation (e.g., commit to audits by insur-
ance companies, accounting firms, or tax authorities). In such cases Problem 1,’
and hence stochastic contracts, seem natural. In environments where recontracting
is possible (as in most loan contracts), Problem 1 and debt seem appropriate.

model, debt is inefficient ex post.
12In addition to problems in financial intermediation, see Smith (1998) and the papers therein

for recent applications of the CSV model to problems in growth, development and exchange
rates (e.g., Antinolfi and Huybens (1998)) and real business cycle models (e.g., Cooley and Nam
(1998)).
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4 Appendix

Proof of Proposition 1. Assume by way of contradiction that there exists a v
in Problem 1 such that the optimal initial contract entails stochastic enforcement
(0 < σ2 < 1). We first show that in the initial stochastic contract:

Claim. x� v � x̄� cE for all x with β0(v;x)> 0.

Assume by way of contradiction that x� v < x̄� cE for an x with β0(v;x) > 0.
Since x̄� cE < x0 � x by A.1, v must be positive under the original σ1. The
entrepreneur’s payoff under the original contract is x�v�σ2(v;1)[F(y;v)+cE]�
x�v. Now assume the entrepreneur chooses v = 0 instead. The resulting payoff is
x�σ2(0;1)[F(x� x̄;0)+cE ]� x� [F(x� x̄;0)+cE ]� x� (x� x̄+cE)� x̄�cE ,
where the last inequality follows from y = x� v� x̄ and 0 � F(�)� y. However,
x� v < x̄� cE implies that the entrepreneur is strictly better off choosing v = 0.
This contradicts the optimality of σ2 required by a PBNE, proving the claim.

We now show that constraint (1.4) does not hold, i.e., there exists a contin-
uation contract which dominates the original contract. In particular, choose v0

such that v < v0 < v+minfx̄� cE ;σ2(v;1)cEg. Then the continuation contract v0,
F 0 = 0, σ0

2 � 0 increases the objective and fulfills all constraints of Problem 2. We
first check the constraints:

(2.1) Since F 0 = 0 the entrepreneur’s payoff in the alternative contract is x� v0.
We must show that x� v0 � ū0x. Recall that ūx = x� v� σ2(v;1)[F + cE ].
As F � 0, it follows that x� v�σ2(v;1)cE � ūx. Further, by definition v0 <
v+σ2(v;1)cE . Thus x� v0 � ū0x and (2.1) holds.

(2.2) By construction v0 < v+ x̄�cE , and the claim implies that v� x� (x̄�cE) for
all x with β0(v;x)> 0. Thus v0 < x and (2.2) holds.

(2.3) follows because σ0

2 = 0 is optimal if F 0 = 0.
We now show that the objective in Problem 2 is increased when switching from

a stochastic to a deterministic contract. Stochastic enforcement implies that the
investor’s expected payoff from the two enforcement options must be the same
given β0: ∑x2X β0(v;x)π0I(x;v;0) = ∑x2X β0(v;x)π0I(x;v;1). Thus, independent of
the enforcement decision, the investor’s expected payoff under the stochastic con-
tract is v (because the payoff if no enforcement occurs is v). The payoff under
the continuation contract is v0 > v. Thus the stochastic contract does not solve
Problem 2, a contradiction and σ2 must be deterministic.

Proof of Proposition 2. Without loss of generality assume that σ1 is determinis-
tic.13 Since σ1, σ2 are deterministic, whether enforcement occurs can be foreseen

13If the choice of v is random for given x, all v with σ 1(x;v) > 0 result in the same expected
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at time 0 if x is known and is a function of x only. Let R(x) be the payment and
B = fx j σ2(v;1) = 1 where σ1(x;v) = 1g be the set of states where enforcement
occurs. Since v and e are deterministic actions given x, then R(x) = v+ eF(x;v).
The following hold.
(i) R(x) = R̄ (constant) on Bc: If there exist x, x0 2 Bc with R(x) < R(x0), the

entrepreneur is better off paying the same v in states x, x0.
(ii) R(x) � R̄+ cE on B: Assume that R(x)� cE > R̄. Then it is better for the

entrepreneur to make a voluntary payment corresponding to a state x 2 B.
Either payment contradicts σ1 fulfilling (i) in Definition 1.

(iii) 0 � R(x) � x� x̄ for x 2 B: The entrepreneur can always retain at least x̄ in
state x by choosing v = 0. Since σ1 is optimal, R(x)� x� x̄.

(iv) 0 � R̄ � x� (x̄� cE) for all x 2 Bc: Assume by way of contradiction that
R̄ > x� (x̄�cE) for all x 2 Bc. Then x� R̄ < x̄�cE . By making a payment in
B the entrepreneur can obtain at least x̄�cE which is strictly higher than from
paying R̄, a contradiction.

Define a set of states by X 0 = fx� (x̄� cE) j x 2 Xg, and a new contract

R0(x0) =

�
R(x0+(x̄� cE))+ cE if x 2 B;
R(x0+(x̄� cE))+(x̄� cE) if x 2 Bc.

Then R(x);B fulfills (i)-(iv) if and only if R0(x);B fulfills
(a) R0(x0) = R̄0 (constant) on Bc: This follows immediately.
(b) 0�R(x0)� x0 for all x0 2X 0: Let x0 2 B. Then R0(x0) = R(x0+(x̄�cE))+cE �

(x0+ x̄�cE)� x̄+cE = x0. If x2 Bc then R0(x0) =R(x0+(x̄�cE))+(x̄�cE)�
x0+(x̄� cE)� (x̄� cE)+(x̄� cE)� x+(x̄� cE) = x0.

(c) 0 � R0(x0)� R̄0 for all x0 2 B: R0(x0) = R(x0+(x̄� cE))+(x̄� cE)� R̄+(x̄�
cE) = R̄0. The other direction of the proof is similar.
Now consider the CSV model with x0 2 X 0 where the investor pays all costs

c = cI + cE . We have shown that any contract V , F , σ1, σ2 can be mapped into
a GHW debt contract R0(x);B. The GHW debt result implies it is optimal to
choose R0(x) = x0 for x 2 B and for the bankruptcy set to be a lower interval.
It remains to prove that the GHW debt contract has the same payments in each
state x. Let V = f0; R̄0

g, F(y;0) = y and F(y; R̄0) = 0. Then σ1(x;0) = 1 iff
x 2 B and σ2(x; R̄0) = 1, otherwise the investor enforces iff v = 0. Let x 2 B. The
entrepreneur gets x�F(x� x̄;v)� cE = (x̄� cE). The investor gets x� (x̄� cE)
and pays cE + cI , or x� x̄� cI . Finally, σ1 clearly fulfills (i) of Definition 1.

Proof of Proposition 3. We first prove that (ii) of Definition 1 holds. If v = R̄ then
F(y;v) = 0 by the definition of simple debt. Hence e = 0 is optimal. Assume that

payoff πE . Among these v choose one which maximizes π I and define σ1(x;v) = 1.
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v = 0. Then β0(0;x) = 0 if x � x� and β0(0;x) = β(x)=β(fxjx < x�g). A.2 implies
that the investor’s expected payoff from enforcement is strictly greater than x0 �

x̄ > 0 (subtract x̄ on each side of A.2). Since the payoff without enforcement is
zero, (ii) of Definition 1 holds.

We now prove that (1.4) holds. Assume by way of contradiction that there
exists v0, F 0, σ0

2 which increases the investor’s payoff and fulfills the constraints
of Problem 2. Then v0 � x0 � x̄ by (2.2). Moreover probability σ2(v;1) < 1.
Otherwise, there would be no surplus and agents cannot be made strictly better
off. (2.3) implies that the investor’s expected payoff from enforcement is less than
or equal to zero, thus the investor’s expected payoff in the bankruptcy state does
not exceed v0. Since v0 � x0 � x̄, A.2 implies that the investor’s payoff under the
alternative contract is strictly less than (1=β(fxjx< x�g)∑x<x�(x� x̄�cI)β(x), the
expected payoff under the original contract given v = 0. The investor is strictly
worse off under v0, F 0, σ0

2, a contradiction. Hence the original contract is time
consistent.

Proof of Theorem 2. Fix the parameters of the economy X , β, cI , cE , x̄. First
assume that x̄ = cE = 0. Problem 3 can written: Choose t, f , M, q, p to maximize

∑x2X ∑m2M

h
(1� p(m))t(m)+ p(m)( f (m;x)� cI)

i
q(x;m)β(x) subject to:

(i) ∑x2X ∑m2M

h
x� (1� p(m))t(m)� p(m) f (m;x)

i
q(x;m)β(x)� ū.

(ii) q(x;m)> 0 if and only if m 2 argmaxm x� [(1� p(m))t(m)+ p(m) f (m;x)].
(iii) 0 � t(m)� x, for all m with q(x;m)> 0; 0 � p(m)� 1, for all m 2 M.

The entrepreneur now announces an arbitrary message m 2 M that need not coin-
cide with the true state x 2 X , where p(m) is the probability of monitoring if m is
announced, and q(x;m) is the probability that a particular m is announced given
that x is the true state. The revelation principle implies that the solutions of this
problem correspond to those of Problem 3, i.e., without loss of generality we can
choose M = X and q(x;m) = 1 iff x = m (when agents report truthfully, (ii) is the
incentive constraint).

To prove that a contract from the enforcement model can be mapped into a
contract from the CSV model it is sufficient to show that a contract V , F , σ1, σ2

can be mapped into a contract t, f M, q, p. The mapping is straightforward. Let
M =V , p(m) = σ2(m;1), q(x;m) = σ1(x;m), f (x;m) = F(x;m)�m, and t(m) =
m. Message m in the CSV model corresponds to payment v in the enforcement
model. The CSV contract has the same payoffs as the original contract from the
enforcement model.

To prove that a contract of the CSV model can be mapped into a contract of the
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enforcement model we appeal to the revelation principle. Assume without loss of
generality that M = X and that the entrepreneur announces the state truthfully. Let
f (x;x0) = x if x 6= x0. First, assume that t(x) is one-to-one. Define V = ft(x) j x 2
Xg, F(x;v) = f (x; t�1(v))� v, and σ2(x;v) = p(t�1(v)). Since the entrepreneur
announces x truthfully in the CSV model, define σ1(x;v) = 1 iff v = t(x), and
σ1(x;v) = 0 otherwise. It is easy to see that all payoffs remain the same.

Now assume that t(x) is not one-to-one. That is, in the CSV contract all states
x are announced truthfully, but there are different states x, x̃ where t(x) = t(x̃).
First assume that f (x;x) = f (x̃; x̃) = 0. Then p(x) = p(x̃) must hold.14 Choose
F(x;v) = F(x; ṽ) = 0 and p(v) = p(x) = p(x̃). Now consider the case where
f (x̃; x̃) > 0. Then we can assume that p(x); p(x̃) > 0.15 Now increase t(x̃) by
ε=(1� p(x̃)) and decrease f (x̃; x̃) by ε=p(x̃), where ε > 0 but sufficiently small
that f is strictly positive and t remains feasible. It is easy to see that incentive
constraint (ii) in Problem 3 still holds for this alternative contract. Moreover
t(x̃) 6= t(x) for the alternative contract. Because the payments t(x), t(x̃) are now
different, we can again define F(�), σ2(�) as in the first part of the argument where
t(�) was one-to-one.

This concludes the proof of Theorem 2 for the case x̄ = cE = 0. The arguments
are similar for x̄;cE > 0 except let 0 � f (m;x)� x� (x̄�cE) and F(x;m)��v+
cE in the problem at the outset.

14Otherwise, the contract can be dominated by one for which the probability of monitoring is
minfp(x); p(x̃)g.

15If for example p(x) = 0 and p(x̃) > 0, the entrepreneur would always announce x in state x̃,
and similarly if p(x) > 0 and p(x̃) = 0. If p(x) = p(x̃) = 0 then one can choose without loss of
generality f (x;x) = f (x̃; x̃) = 0, which reduces it to the above case.
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