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Abstract

Limited observability is the assumption that economic agents can only observe
a finite amount of information. Given this constraint, contracts among agents are
necessarily finite and incomplete in comparison to the ideal complete contract that
we model as infinite in detail. We consider the extent that finite contracts can
approximate the idealized complete contracts. The objectives of the paper are: (i)
to identify properties of agents’ preferences that determine whether or not finite-
ness of contracts causes significant inefficiency; (ii) to evaluate the performance of
finite contracts against the ideal optimal contract in a bilateral bargaining model.
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1 Introduction

People are limited in their ability to observe and to process information. Contracts
among individuals and institutions are therefore limited in length and may fail to ad-
dress all of the different contingencies that may arise. This incompleteness can lead to
inefficiency in the contractual outcome, as evidenced by legal disputes or costly rene-
gotiation. We develop in this paper a model that encompasses both the limited contracts
that are used in practice and the ideal contracts that address all contingencies. The goal

∗This paper originated in In-Koo Cho’s seminar on bounded rationality that we attended in the fall of
1998. We thank In-Koo for inviting us to participate in his seminar and for his comments concerning this
paper. We also thank Steven Matthews, Nabil Al-Najjar, Jim Peck, Stan Reiter, and a referee of this journal
for their suggestions.
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of this paper is to identify properties of agents’ preferences that determine whether or
not limits on contractual length cause significant inefficiency in comparison to an ideal
complete contract.

To illustrate the issues that we address, consider a service provider and a system
owner who negotiate a service contract for a computer system. A contingency is a
“yes” or “no” answer that indicates the occurrence of some aspect of the state of the
world. Contingencies of interest to the owner include all aspects of his business that
determine the value he would receive from a properly maintained system, including
future decisions by current and prospective customers and employees. For the ser-
vice provider, the contingencies include everything that affects his cost of providing
the service, including service demands from other customers, the difficulty of repair-
ing different components of the system, and whether or not the various components
require service. To model the complexity of the world, we assume that the number of
contingencies is countably infinite. The provider and the owner, however, are assumed
capable of only observing a finite number of contingencies and hence can address only
a finite number in their contract. At issue is whether or not the finite contracts that
they may write can approximate the ideal infinite contracts.

It is quite possible that beyond a certain number of contingencies the aggregate
effect of all other contingencies upon the welfare of the contracting parties is small.
We state this formally as a continuity condition that is assumed to hold throughout the
paper. Not surprisingly, continuity of this kind is useful for proving that an infinite con-
tract can be approximated arbitrarily closely with finite contracts. The optimal service
contract in this example might thus be approximated with a finite contract that does not
address an infinite number of contingencies that are insignificant in their cumulative
effect upon the owner and the provider.

We also find, however, that certain contingencies cannot be addressed in a contract
because of the constraint of incentive compatibility. Suppose that the owner or the
provider observes privately the realization of a particular contingency. If the contract is
to address this contingency, then the agent who observes its realization must be induced
to reveal his observation. Whether or not this can be accomplished depends upon the
relationship between the contingency in question and other contingencies in their effect
upon the reporting agent’s welfare. Roughly, a contingency is reversible if other con-
tingencies may be realized in a number of different ways so as to undo (or reverse) the
effect upon the agent’s welfare of the given contingency, regardless of its realization.
Conversely, the contingency is strongly irreversible if its effect upon welfare cannot
be masked by other contingencies. Each of these properties concern the relationship
between a contingency and other contingencies in their effect upon welfare; neither is
simply an issue of the absolute magnitude of the contingency’s effect upon welfare,
and hence these properties are distinct from the continuity condition discussed above.
A reversible contingency that is observed privately by an agent presents an opportunity
for misrepresentation that may be unsolvable in the sense that an incentive compatible
and finite contract cannot address it, even if its impact upon welfare is large. Con-
versely, if a contingency is strongly irreversible, then the agent who observes it can be
compensated so as to induce him to reveal its realization, which facilitates addressing
it in a contract.

We refer to an agent’s measure of well-being as preferences in our general model,
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though it may have a more precise interpretation (e.g., as the profit of the system owner)
in examples such as the one above. We thus characterize two properties (reversibility
and strong irreversibility) that concern how a contingency affects an agent’s prefer-
ences in relation to other contingencies. Strong irreversibility or reversibility affect
whether an incentive compatible finite contract either can or can not address the given
contingency. Assuming a finite ability to observe, our paper thus approaches through
the properties of agents’ preferences the problems of (i) which contingencies may and
which contingencies may not be addressed in an incentive compatible and finite con-
tract, and (ii) when a substantial welfare loss necessarily occurs because of contractual
finiteness in comparison to the ideal of infinite contracts.

Model and Results. The model is presented in section 2. There are two agents.
For each agent j and for any n ∈ N, contingency n is a random variable whose value
is either 0 or 1. The type α j of agent j is a sequence α j = (a j,n)n∈N in which a j,n is
a realization of the nth contingency. The type set A j of agent j is {0, 1}N . The set of
states of the world is A = A1 × A2. The utility u j (α j , c) of each agent is a function
of his type α j and the choice c. A contract is a function f : A → C from A into a set
C of possible collective choices for the agents. A contract is finite if it only depends
on a finite number of contingencies. Otherwise, it is infinite.

We deviate from Harsanyi’s (1967-68) theory of games with incomplete informa-
tion by assuming that agent j does not fully observe his type once it is realized. Limited
observability is the assumption that agent j can choose to costlessly observe the real-
ization of any finite number of the contingencies that define his type but not the entire
type itself. His type can thus be regarded as information that he can access to the extent
of his bounded ability. Except for this assumption, the agents are otherwise perfectly
rational in the sense that they maximize their expected return conditional upon their
finite observations.1 Limited observability is formalized in section 3.2

We prove in section 3 that a contract between agents who are constrained by limited
observability is necessarily finite. A finite contract in our paper is thus feasible and an
infinite contract is an ideal. This is analogous to using an infinite number of traders to
model perfect competition. Markets in reality never have an infinite number of traders
and we are not proposing that the contingencies in an actual contracting problem are
truly infinite. Rather, in the same way in which an infinity of traders avoids the quan-
tification of how rapidly market power diminishes as market size increases, an infinity

1While it may not capture all aspects of a human being’s capacity for observation, our model of the
relationship between an agent and the world is motivated by interpreting the agent as an empirical researcher.
The selection of a finite number of contingencies to observe is the design of an experiment and the realization
of those contingencies is a data set. Data must necessarily be expressible as a sequence of bits (or binary
digits) for scientific analysis (e.g., using statistics or a computer). Our assumption that an agent’s type is a
sequence of bits thus simply assumes that data about the state of the world is collected in the reduced form
in which it must ultimately be presentable. This interpretation was suggested to us by Nabil Al-Najjar.

2The term “limited observability” is drawn from Radner (2000), which classifies the various approaches
to bounded rationality in economic theory. Our approach is closest in spirit to his category of “costly
rationality models” in that an agent in our model is rational in his acquisition and use of a finite number of
bits of information, given that (i) there is no cost to observing any finite number of contingencies, and (ii)
it is infinitely costly to fully observe his type. We thus follow the Savage approach of modeling bounded
rationality as rationality subject to the costs of collecting and processing information. This cost function for
observing contingencies, however, is not explicitly studied within the paper.
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of contingencies models the unattainable complexity of addressing every contingency
without the need for assumptions about the feasible length of a contract or the marginal
costs of lengthening it.3

In the same sense that a perfectly competitive market is meaningful as an abstrac-
tion to the extent that it can be approximated by finite markets, an infinite contract is
meaningful only if it is approached in the limit by a sequence of finite contracts. Our
interest here is primarily in whether or not there are costs associated with contractual
finiteness. A contract is recordable if its efficiency is matched or surpassed by the
limiting performance of some sequence of finite contracts. We have selected the term
“recordable” to suggest that the gist of the infinite contract can be written in a finite
contract, with only details omitted, to whatever degree of accuracy is sought. If a con-
tract is not recordable, then finite contracts are bounded away from the contract in the
performance measure of the problem. Recordability is a rather weak requirement to
impose on an infinite contract as a way of modeling bounds on contractual length. It
is far less severe than the alternative of simply restricting attention to finite contracts.

We investigate recordability in section 5 in a generalization of the Chatterjee-
Samuelson (1983) bilateral bargaining model. Reflecting the presence of incomplete
information, we consider the recordability of those contracts that are optimal in the
sense of maximizing the ex ante expected gains from trade subject to the constraints
of incentive compatibility and interim individual rationality. The issue is whether or
not such an optimal contract is recordable with the additional requirement that the fi-
nite contracts in the sequence converging to the optimal contract must also be incentive
compatible and interim individual rational. Recordability is shown to depend crucially
upon reversibility of contingencies. The following results are derived:4

1. An optimal contract is infinite.

2. If all but a finite number of contingencies are reversible, then an optimal contract
is not recordable.

3. Conversely, if all contingencies are strongly irreversible, then an optimal contract
is recordable.

Contractual incompleteness describes a situation in which a meaningful welfare loss
occurs because a contract fails to address some contingencies. Result 2. is the most
provocative because it describes a case in which contractual incompleteness arises en-
dogenously in a contracting problem because of limited observability and properties of
the agents’ preferences.

Four examples are worked in the paper that concern the case in which agent j ’s type
α j = �

a j,q
�

q∈N affects his utility through a real value v j
�
α j
�

given by the formula

v j
�
α j
� = �∞

q=1a j,qδq for some δ ∈ (0, 1) . All of the ideas of this paper are illustrated
with this simple family of examples by varying the common ratio δ. These examples

3As emphasized in Radner (2000), determining the cost of acquiring information is a difficult empirical
problem whose solution may depend greatly upon the context.

4We have proven similar results in Krasa and Williams (2001) concerning a principal-agent model.
Though we have omitted this second example in the interests of brevity, it does suggests some generality
to points 1-3.
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are instructive because they illustrate some rather difficult ideas using little more than
the formula for the sum a geometric series together with some arithmetic. We find
it encouraging that our ideas arise in such a common family of formulas and do not
require odd examples for the sake of illustration. None of the theorems in the paper,
however, depend upon this special form of payoff function, and the issues that we raise
are clearly not restricted to this particular family of examples.

Related Work. Our paper originates most directly in the work of Anderlini and
Felli (1994, 1998), who grounded the theory of contractual incompleteness in the the-
ory of computational complexity. The most fundamental idea that we draw from their
paper is finiteness as a characteristic of real contracts and infiniteness as an ideal of
contracting. There are three significant differences between our approach and the
Anderlini-Felli model. The first is a matter of emphasis: incomplete information and
incentive compatibility are of central interest in our paper but not in Anderlini and
Felli’s work. The second is a difference in modeling. We postulate a complex world
outside of each agent that he cannot fully observe. Anderlini and Felli instead postu-
late a complex inner state of the agent (his valuation) that he knows but cannot fully
describe.5 Third, Anderlini and Felli consider only a fixed language for their finite
contracts (the digits of the binary expansion of each agent’s valuation). Our agents
in contrast can write contracts in whatever language they wish; no contract is a priori
excluded.6 Instead, the constraints of incentive compatibility and limited observability
are applied in this paper to deduce restrictions on contracts.

We assume limited observability in part to address a gap in the Anderlini-Felli
approach that arises in addressing incomplete information and the consequent issue
of revelation by agents. An agent in their model is incapable of answering a simple
question about his valuation if the answer requires examining an infinite number of the
digits that determine the binary expansion of his valuation. This is true even though
(i) answering the question may only require a “yes” or “no” response, which is hardly
complex, and (ii) the agent may know the answer by virtue of knowing his valuation.7

We resolve this difficulty first by assuming that a trader does not know his valuation and
second by allowing contracts to ask arbitrary questions of the agents in the sense that
the language in which an agent is to respond is not fixed a priori in our paper. While
operationally we come back to the constraint of finiteness of contracts as originally
posed in Anderlini and Felli (1994), the issue here is the coherence of the story that
supports this constraint.8

Similar to our approach, Segal (1999) models contracting within a complex envi-
ronment by agents who are limited in their ability to describe the world. Our paper

5See Anderlini and Felli ((1994, p. 1115), (1998, sec. 3.2)).
6We do prove a result similar to the revelation principle (Theorem 2) that reduces the study of arbitrary

contracts to a canonical form.
7For instance, an agent cannot respond to the question “Is your valuation irrational?” even though he

knows the answer.
8Anderlini and Felli cite the familiar story of Justice Potter Stewart’s assessment of obscenity as evidence

of indescribility of a complex inner state: “He could not define obscenity, he had written, but ‘I know it when
I see it”’ (Woodward and Armstrong (1979, p. 15-16). Our point here is that Stewart’s inability to codify his
definition of obscenity in legal terms did not prevent him from deciding whether or not a work was obscene
and then reporting his decision.
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and Segal’s both use a complex environment as a key ingredient in modeling boundedly
rational behavior. Segal (1999, p. 74) explains this point as follows:

While much has been said about the role of bounded rationality in explaining
contractual incompleteness, existing models have not been able to explain how
people could be irrational enough not to be able to describe all of the possible
contingencies ex ante, yet rational enough to foresee their payoffs ex ante and to
describe any given contingency ex post (see e.g. Maskin and Tirole 1999). In our
view, any attempt to model bounded rationality in a simple environment is doomed
to fall into the trap of describing decision makers as either “completely dumb” or
“perfectly rational”. Neither is an attractive alternative for modeling “transaction
costs”. It is only in environments reflecting the real world’s complexities that an
intermediate region of “bounded rationality” emerges.

We believe that our use of {0, 1}N as the set of states of the world together with the
constraint of limited observability creates a model of human behavior that successfully
lands within Segal’s intermediate region.9

2 The Model

We consider two probability spaces (A1,A1, π1) and (A2,A2, π2) together with their
product space (A,A, π). As in the Introduction, A j = {0, 1}N is agent j ’s type space.
A type α j ∈ A j of agent j is written as α j = �

a j,q
�

q∈N . The set A = A1 × A2 is the
set of states of the world and π is the common prior of the two agents.

The σ -algebra A j of measurable sets is defined with limited observability in mind.
For n ∈ N, the initial string α j,n− and the tail α j,n+ determined by α j and n are

α j,n− = �
a j,q

�
1≤q<n and α j,n+ = �

a j,q
�

q>n ,

respectively. Notice that the initial string and the tail determined by α j and n omit the
realization a j,n of the nth contingency. Let A j,n− denote the set of all initial strings of
length n − 1 and A j,n+ the set of all tails from the (n + 1)st contingency to infinity. It
is essential for our purposes that cylinder sets of the form�

a j,n−
	 × A j,n−1+ (1)

are measurable with respect to π j so that probabilities are well-defined conditional on
the observation by agent j of any initial string. We thus define A j as the σ -algebra
generated by all sets of the form (1).

Utility. Let (C, C) be a measurable space. The set C is the choice set. Each agent
j ’s utility u j (α j , c) is quasilinear in the sense that

u j (α j , c) = h j (c)v j (α j ) + t j (c), (2)

9A different tact to complexifying the state space can be found in Al-Najjar (2000). While his set of
states is a subinterval of the real line (as in Anderlini and Felli (1994)), Al-Najjar allows measures on this
interval that are only finitely additive. This permits functions that are not computable in the sense that they
cannot be approximated by simple functions.
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where h j (c), v j (α j ), and t j (c) are real-valued functions. The function v j (α j ) is agent
j ’s valuation function, which is the part of his utility that is determined directly by his
type. We thus consider an independent private value model in this paper. The function
t j (c) is a monetary transfer to agent j and h j (c) is a level or portion of v j (α) that agent
j receives as a result of the choice c. It is assumed throughout the paper that h j (C)

is bounded. The functions h j and t j are measurable on (C, C). Let v(α) denote the
valuation mapping

v(α) = (v1(α1), v2(α2)) .

Each agent j ’s valuation function v j is assumed throughout the paper to satisfy the
following condition:

for every ε > 0, there exists an n ∈ N such that (3)���v j (α j ) − v j (α
′
j )

��� < ε for all α j , α′
j ∈ A j with α j,n+1− = α′

j,n+1−.

All contingencies in a tail α j,n+ beyond the nth contingency are thus details in the
sense that together they have only a minor effect on the value of v j . As explained
below, (3) is equivalent to continuity of v j relative to a particular topology on A j .10

Our use of this condition is motivated below in subsection 2.1 as part of our discussion
of recordability.

Topology. The product topology on A j = {0, 1}N in which {0, 1} is assigned the
discrete topology is useful at several points in this paper. Several of its properties are
now noted:

1. The cylinder sets of the form (1) are a base for this topology.

2. The Tychonoff Theorem implies that A j is compact relative to this topology.

3. Condition (3) on a valuation function v j is equivalent to continuity of this func-
tion on A j relative to this topology.11

Given property 3., we refer to condition (3) as continuity of v j . Properties 1.-3. have
two implications for a valuation function v j . First, 1. and 3. together with the defini-
tion of A j imply that v j is measurable with respect to (A j ,A j , π j ). Second, 2. and

10It also resembles continuity at infinity of payoffs in an infinitely repeated game when each α j,n− is
identified with a history in the game of a particular length (see, for instance, Fudenberg and Tirole (1991,
Def. 4.1, p. 110)).

11Taking property 1. into account, v j is continuous at α j if for every ε > 0 there exists an n(α j ) ∈ N
such that

���v j (α j ) − v j (α
′
j )
��� < ε for all α′

j ∈ A with α j,n(α j )+1− = α′
j,n(α j )+1−. Condition (3) thus

implies continuity at every α j ∈ A j . The converse requires that a single value of n ∈ N exist with the
above property for all α j ∈ A j . Given property 2., the existence of such an n follows because a continuous
function on a compact metrizable topological space is necessarily uniformly continouous. The metric




α j − α
′
j




 =
∞X

q=1

���a j,q − a
′
j,q

��� 2−q

is an alternative way to define the product topology on A j , and the desired value of n can be inferred from
this formula.
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3. imply that

v j
�

A j
� ⊂

h
v j , v j

i

for some v j v j ∈ R. Let µ j denote the induced probability distribution on
h
v j , v j

i
defined by π j and v j .

Example 1 Consider v j
�
α j
� = P∞

q=1 a j,qδq for δ ∈ (0, 1) . If α j,n− = α
′
j,n−,

then

���v j (α j ) − v j (α
′
j )

��� =
�����

∞X
q=n

�
a j,q − a

′
j,q

�
δq

����� ≤
∞X

q=n
δq = δn

1 − δ
, (4)

from which it is clear that v j is continuous.

Contracts. A contract is a measurable mapping f : A → C . A contract f is finite
if and only if there exists n1, n2 ∈ N such that f (α) = f (α′) for all α = (a1,q, a2,q)q∈N
and α′ = (a′

1,q, a′
2,q)q∈N with αi,ni +1− = α′

i,ni +1− for i = 1, 2. Otherwise, f is
infinite. A finite contract f (α) is sometimes written as f (α1,n1−,α2,n2−), reflecting
the fact that (α1,n1−,α2,n2−) determines f (α).

Letting α j denote an observed type and α∗
j a reported type, a contract f is incentive

compatible if and only if

E Ai

�
u j (α j , f (α))

� ≥ E Ai

h
u j (α j , f (α∗

j , αi ))
i

(5)

for j = 1, 2, i �= j , and all α j , α
∗
j ∈ A j . Define

H j (α
∗
j ) = E

h
h j ( f (α))

���α j = α∗
j

i
, and (6)

Tj (α
∗
j ) = E

h
t j ( f (α))

���α j = α∗
j

i
. (7)

Independence of types insures that H j (α
∗
j ) and Tj (α

∗
j ) depend only upon the reported

type α∗
j of agent j and not upon his observed type α j . A contract f is thus incentive

compatible if

H j(α j )v j (α j ) + Tj (α j ) ≥ H j

�
α∗

j

�
v j (α j ) + Tj (α

∗
j ) (IC)

for j = 1, 2 and all α∗
j , α j ∈ A j . Let r j denote agent j ’s reservation utility. The

contract f is interim individually rational for agent j if

H j
�
α j
�
v j (α j ) + Tj (α j ) ≥ r j (IIR)

for all α j ∈ A j .
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2.1 Recordability

Recordability indicates that an infinite contract reflects the potential of contracting in
the sense that its performance can be approached or surpassed by a sequence of finite
contracts. A precise definition is given in the context of each problem considered. Intu-
itively, a contract f is recordable if there exists a sequence of finite contracts ( fq)q∈N
such that

lim
q→∞



 fq


 ≥ ‖ f ‖ , (8)

where “‖·‖” denotes a performance measure that is appropriate in the particular con-
tracting problem. In the bilateral trade problem of section 5, for instance, ‖ f ‖ is the
ex ante expected gains from trade in the contract f . Each contract fq in the sequence
is also required to have properties appropriate to the problem, such as incentive com-
patibility and interim individually rationality. If f is not recordable, then all finite
contracts are bounded below f according to the performance measure for the problem,
i.e., 

 f ∗

 < ‖ f ‖ − κ,

for some constant κ > 0 and any finite contract f ∗. A contract f that is not record-
able therefore overstates the performance potential of contracting. If f is an optimal
contract, then contractual incompleteness necessarily occurs if f is not recordable.

To the extent that the perfomance measure addresses the welfare of the agents, con-
tinuity of each valuation function v j is an obvious ingredient in proving recordability.
If v j is instead discontinuous, then the tail α j,n+ always has a nonnegligible effect
upon agent j ’s valuation and hence also upon the performance measure, regardless of
the value of n. Recordability is thus unlikely without continuity of the valuation func-
tions and so it is assumed throughout the paper.12 Conversely, the results in the paper
that demonstrate contractual incompleteness are especially interesting because they are
proven despite the continuity of the valuation functions.

2.2 Contracts and Mechanisms

A goal of this paper is to investigate how preferences determine whether or not contrac-
tual incompleteness necessarily occurs in the sense that an optimal contract is infinite
but not recordable. Optimization has not been previously studied for contracts in which
an agent’s private information is an element of {0, 1}N . We address this issue in this
subsection by connecting the theory of contracts as developed in this paper to the rich
literature on optimal mechanisms. The main conclusion here is that standard results
in mechanism design characterize the optimal contract in the bilateral trade model that
we address in section 5.

12Continuity of the valuation functions can in fact be sufficient to insure recordability of optimal contracts
in models with complete information. Theorem 1 of Krasa and Williams (2000) is a result of this kind.
Anderlini and Felli (1998) presents continuity conditions that are sufficient for approximating an optimal
principal-agent contract with a computable contract together with examples that illustrate how various kinds
of discontinuities can prevent such an approximation. These conditions are distinct from our definition of
continuity because they do not concern the function v j .
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A contract is a function f : A → C that determines a choice f (α) for each state
α. Consistent with the terminology of mechanism design, a mechanism is a function
f̂ : v(A) → C that determines a choice f (v1, v2) for each pair of valuations (v1, v2) ∈
v(A).13 A mechanism f̂ defines a contract f through composition with the valuation
mapping v; a contract f defines a mechanism f̂ , however, only if it selects the same
choice for all states that determine the same pair of valuations. The set of contracts
is larger than the set of mechanisms, and an optimal contract may thus in principle
surpass the performance of an optimal mechanism. Our objective in this subsection is
to state conditions under which this does not happen, so that the optimal mechanism
derived by standard methods characterizes the performance of the optimal contract.

Let

� : C × �
v1, v1

�× �
v2, v2

� → R

be the objective of the contracting problem. In a principal-agent model, for instance,
� is the principal’s ex post payoff, and in a bilateral trading problem � is the ex post
gains from trade. The optimal contract problem is

max
f

E A [� ( f (α) , v(α))] s.t. IC and IIR,

and the optimal mechanism problem is

max
f̂

E[v1,v1]×[v2,v2]
h
�
�

f̂ (v) , v
�i

s.t. IC and IIR,

where IC and IIR should be interpreted appropriately in the case of the optimal mech-
anism problem.

Theorem 9 states that if C is a convex subset of R
m and � (c, v1, v2) is concave in c

for each v1 and v2, then an optimal mechanism f̂ defines an optimal contract f through
composition with the valuation mapping v. Conversely, given these conditions on C
and �, an optimal contract f defines an optimal mechanism f̂ through the formula
f̂ ◦ v = g, where the contract g(α) is defined by averaging f (α∗) over all states α∗
for which v(α∗) = v(α).14 A formal statement and proof of Theorem 9 is in the
Appendix. The bilateral trade model considered in this paper satisfies the hypotheses
of Theorem 9, which provides us with the information we need concerning optimal
contracts in this model.

3 Limited Observability

The purpose of this section is to justify our focus in the remainder of the paper upon in-
centive compatible finite contracts. This is accomplished by grounding these contracts

13In the broader literature, “contracts” and “mechanisms” are not distinguished as they are here by their
domains; the words are used almost interchangeably, depending upon the subject of the model. The distinc-
tion we make here is purely for our expositional purposes.

14This converse reflects the common result of mechanism design that there are no gains in ex ante perfor-
mance from introducing lotteries into the operation of a mechanism. The lottery in this case is the dependence
of the choice f (α∗) upon α∗ given that v(α∗) = v(α). Given the assumptions of the theorem, ex ante ex-
pected performance can only improve by replacing each lottery over choices

�
f (α∗)

��v(α∗) = v(α)
	

with
its certainty equivalent, which corresponds to a mechanism.
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in an assumption concerning the limited abilities of the agents. Limited observability
by agent j of his type is the assumption that agent j can choose to costlessly observe
any initial string α j,n− determined by his type α j of arbitrary but finite length. There
is no a priori bound on the number n − 1 of contingencies that he may observe, and he
may choose to observe different numbers of contingencies for different realizations of
his type. The practical implication of this constraint is that any action or report that
the agent takes conditional upon his type α j must be determined by α j,n− for some
sufficiently large n.

Consider a game in which M j is agent j ’s action set and η : M1 × M2 → C is
the outcome mapping. The strategy γ j : A j → M j of agent j is finite if there exists
n ∈ N such that

if α j,n− = α∗
j,n−, then γ j

�
α j
� = γ j

�
α∗

j

�
(9)

for all α j , α
∗
j ∈ A j . The first n − 1 contingencies of α j thus determines γ j

�
α j
�

for

every α j ∈ A j . We write γ j
�
α j
� = γ j

�
α j,n−

�
in this case.

An agent who is constrained by limited observability is capable of using any finite
strategy. The following theorem goes further by proving that finite strategies are the
only strategies that such an agent can use.

Theorem 1 An agent who is constrained by limited observability can use a strategy if
and only if the strategy is finite.

The proofs of Theorem 1 and all other theorems are in the Appendix. The proof
demonstrates that the constraint of using only initial strings to select actions implies
the existence of a uniform length n − 1 of initial string that is sufficient for selecting
the action γ j

�
α j
�

for all α j . Theorem 1 thus shows that limited observability is
more severe as an ex ante constraint than as an interim constraint in the following
sense: while an agent can base his choice of an action on as large of a finite number of
contingencies of his realized type as he wishes, a well-defined strategy ex ante defines a
single upper bound on the number of contingencies that affect the value of this strategy.
Theorem 1 thus reveals the limitations on an agent’s actions at the interim that are
imposed by the requirement of coherently specifying those actions ex ante in a strategy.

If the action γ j
�
α j
�

is interpreted a signal of the agent’s type α j , then a finite
strategy uses only a finite set of signals. Theorem 1 thus proves that limited observ-
ability implies limited communication in our model, i.e., an agent’s language is finite
in the sense that he uses only a finite number of messages.15 The agent also conveys
at most the finite number of contingencies given in the initial string α j,n− that deter-
mines the value of γ j

�
α j
�
. As Example 2 at the end of this subsection reveals, limited

observability is a more restrictive constraint on an agent’s abilities than limited com-
munication. The theorem also implies that a contract implemented through a game is
necessarily finite if the agents are constrained by limited observability.

Limited observability also influences how we define an equilibrium in a game.
15This behavioral constraint has been considered by Dow (1991), Meyer (1991), and Rubinstein

((1993),(1998, Chapter 5)).
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Definition A pair of strategies (γ 1, γ 2) in the game (M1 × M2, η) is a Bayesian-
Nash equilibrium with limited observability if:

1. each agent’s strategy is finite in the sense of (9);

2. for j = 1, 2 and assuming that γ j depends only upon the first n−1 contingencies
in α j , the inequality

E A

h
u j

�
α j , η

�
γ j

�
α∗

j,n−
�

, γ i (αi )

�� ���α j,q− = α∗
j,q−

i
≥ (10)

E A

h
u j

�
α j , η(m j , γ i (αi ))

� ���α j,q− = α∗
j,q−

i
holds for every α∗

j ∈ A j , q ≥ n and m j ∈ M j .

Condition 2 requires that γ j (α
∗
j,n−) is a best response to γ i conditional upon agent

j knowing any initial string α∗
j,q− of length q ≥ n that agrees with α∗

j,n− on its first
n − 1 contingencies. There are two equilibrium conditions in (10), the first reflect-
ing agent j ’s ability to freely choose his action in the game and the second reflecting
his ability to condition that choice upon the observation of as many contingencies as
he wishes. The first is the standard condition that agent j cannot profit by deviating
from γ j (α

∗
j,n−) if observes at least enough information α∗

j,q− as may be required to
compute γ j (α

∗
j,n−). The second is that agent j does not profit from observing addi-

tional contingencies (a∗
j,k)n≤k<q beyond α∗

j,n−, for doing so never provides him with
grounds for profitably deviating from γ j (α

∗
j,n−). The second condition means that

an equilibrium of this kind is not simply a Bayesian-Nash equilibrium for the case in
which each agent observes only n − 1 contingencies.16 Unlike the standard definition
of a Bayesian-Nash equilibrium, the expected values in (10) are computed not just with
respect to the unknown value of the other agent’s type αi but also with respect to the
unknown tail α j,q−1+ of contingencies that are not observed by agent j .

Restricting attention to incentive compatible finite contracts is grounded in the con-
straint of limited observability through the following theorem.

Theorem 2 Suppose that each agent’s valuation function is continuous. A contract
f is implemented by a Bayesian-Nash equilibrium with limited observability in some
game if and only if f is finite and incentive compatible in the classical sense of (5).

Given continuity, incentive compatible finite contracts are thus exactly those that result
when the agents are constrained by limited observability.

Limited observability also alters the constraint of interim individual rationality,
though in a way that is easily seen to be inconsequential when each v j is continu-
ous. Suppose the finite contract f depends only upon the initial string α j,n− of length
n − 1 observed by each agent. The contract f is interim individually rational given
limited observability for agent j if

E A

h
u j

�
α j , f

�
α∗

j,n−, αi,n−
�� ���α j,q− = α∗

j,q−
i

≥ r j (11)

16Case 2 of Example 4 in section 5 illustrates how a Bayesian-Nash equilibrium may not be a Bayesian-
Nash equilibrium with limited observability precisely because of this second equilibrium condition.
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for all q ≥ n and α∗
j ∈ A j . In words, agent j ’s expected return conditional upon

observing α∗
j,q− is at least his reservation utility r j if he reports α∗

j,n−, regardless of
how many additional contingencies (a∗

j,k)n≤k<q he may choose to observe beyond the
(n − 1)st. A contract that is interim individually rational clearly satisfies (11); con-
versely, if v j is continuous, then (11) implies interim individual rationality. Imposing
interim individual rationality on finite contracts is therefore consistent with limited ob-
servability.

We conclude this subsection with an example that emphasizes the impact of limited
observability as a constraint on an agent’s knowledge of his valuation. The reader
should pay particular attention to cases 2 and 3 in this example, which show that an
agent may not be able to place the most elementary of bounds upon his valuation if he
is constrained by limited observability.

Example 2 Agent j ’s valuation function is

v j (α j ) = 1 − δ

δ

∞X
q=1

δqa j,q, (12)

where δ will be selected below. The agent is constrained by limited observability.
The formula for the sum of a geometric series along with some elementary analysis
implies v j (A j ) = [0, 1] for δ ∈ [0.5, 1).17 Reflecting limited communication, suppose
that agent j wishes only to announce whether his valuation is high (h) in the case of
v j (α j ) ≥ 0.5 or low (l) in the case of v j (α j ) ≤ 0.5. The formula

1 − δ

δ

∞X
q=2

δqa j,q ≤ 1 − δ

δ

∞X
q=2

δq = 1 − δ

δ
· δ2

1 − δ
= δ (13)

is helpful in this discussion.

Case 1: δ = 0.5. It is clear from (13) that v j (α j ) ≥ 0.5 if a j,1 = 1 and v(α j ) ≤
0.5 if a j,1 = 0. The strategy

γ (α j ) =
�

h if a j,1 = 1
l if a j,1 = 0

thus accurately communicates whether the valuation is high or low. This strategy is
finite and is therefore compatible with limited observability.

Case 2: δ > 0.5. Formula (13) applies to show that

v j
��

a j,1 = 0
	× A j,1+

� = [0, δ], and

v j
��

a j,1 = 1
	× A j,1+

� = [1 − δ, 1].

Both of these intervals contain 0.5 in their interiors, and so agent j cannot identify his
valuation as high or low with certainty based upon a j,1.

17The case of δ < 0.5 is not considered in this example because v j (A j ) ( [0, 1] in this case, which
complicates the discussion. This case is also omitted from Example 4 of section 5 because results that we
invoke in this section to characterize optimal mechanisms require that v j (A j ) is a closed interval.
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Case 3. The problem observed in case 2 for δ > 0.5 is also true of longer initial
strings and alternatives to the above definitions of h and l as the language. For any
k ≥ 2 and any x ∈ (0, 1) , agent j cannot determine with certainty whether v j (α j ) ≤ x
or v j (α j ) ≥ x by observing α j,k+1− for every choice of α j,k+1− ∈ A j,k+1−. Formally,
this means that for any x ∈ (0, 1) there exists an α∗

j,k+1− ∈ A j,k+1− such that

x ∈ Int
�
v j

�n
α∗

j,k+1−
o

× A j,k+
��

,

where v j ({α∗
j,k+1−} × A j,k+) is a closed interval. The proof is in the Appendix.

4 Reversibility and Strong Irreversibility

Reversibility of contingency n is a property of agent j ’s valuation function v j that can
make incentive compatible revelation of a j,n bind as a constraint in the design of a fi-
nite contract f . Conversely, strong irreversibility of contingency n is a property of v j
that can insure that incentive compatible revelation of a j,n does not constrain the de-
sign of f . Reversibility and strong irreversibility are thus useful in determining which
contingencies can be addressed by incentive compatible finite contracts. These prop-
erties will be shown in subsequent sections to be significant in determining whether or
not an optimal contract is recordable.

Definition Contingency n is reversible for agent j if for any initial string α j,n− one
can select at least two pairs of tails (α1

j,n+, α1
j,n+), (α2

j,n+, α2
j,n+) so that the following

two properties hold.

1. Each pair of tails (αk
j,n+, αk

j,n+) perfectly reverses the effect upon agent j ’s
valuation of contingency n: for k = 1, 2,

v j (α j,n−, 0, αk
j,n+) = v j (α j,n−, 1, αk

j,n+). (14)

2. The pairs of tails differ in their effects upon agent j ’s valuation:

v j (α j,n−, 0, α1
j,n+) �= v j (α j,n−, 0, α2

j,n+). (15)

Reversibility of contingency n is depicted in Figure 1 and the possibility that mul-
tiple types might determine the same valuation is illustrated in Example 2 of the last
section. This definition pinpoints a problem in incentive compatibility for finite con-
tracts. To illustrate this point, consider an incentive compatible and finite contract f
that is determined by the initial strings of length n. Suppose that the nth contingency
observed by agent j is reversible. Agent j ’s interim expected utility given his type α j
is

H j (α j,n+1−)v j (α j ) + Tj (α j,n+1−),

14



set of all states

whose initial string is

�

�

�

�

value of v ( )j j�

a = 1 a = 0

1
j

j

�

�

2
j

j
21

j,n

j,n-

j,n

j
*

Figure 1: Figure 1: Reversibility of Contingency n for Agent j .

where the tail α j,n+ beyond the nth contingency is omitted from H j (α j ) and Tj (α j ) be-
cause f does not depend upon it. Because v j (α j,n−, 0, αk

j,n+) = v j (α j,n−, 1, αk
j,n+),

it must be true that

H j(α j,n−, 0)v j (α j,n−, 0, αk
j,n+) + Tj (α j,n−, 0) = (16)

H j (α j,n−, 1)v j (α j,n−, 1, αk
j,n+) + Tj (α j,n−, 1),

or else agent j with type equal to either (α j,n−, 0, αk
j,n+) or (α j,n−, 1, αk

j,n+) would
report whichever of these two types produced the larger of the two sides of this equa-
tion. This would contradict incentive compatibility for one of these two types. Now
let v ∈ R denote a variable and consider the equation�

H j (α j,n−, 0) − H j (α j,n−, 1)
� · v = Tj (α j,n−, 1) − Tj (α j,n−, 0). (17)

Statements (15) and (16) imply that (17) holds for distinct values of v, from which we
conclude that

H j (α j,n−, 0) = H j (α j,n−, 1) and Tj (α j,n−, 1) = Tj (α j,n−, 0)

for all α j,n−. Given our assumptions here on f , the two conditions (14) and (15)
that define reversibility place conflicting incentive constraints upon an agent’s interim
expected utility function. The result is that the two functions H j and Tj that cap-
ture the effect of the contract f upon interim expected utility cannot depend upon the
reversible contingency. The reversible contingency can thus affect interim expected
utility through agent j ’s valuation v j but not through its effect upon the contract f .

The above discussion shows that an incentive compatible finite contract f may be
constrained in how it depends upon a reversible contingency. As will be shown, this
constraint upon f can cause inefficiency. The following theorem presents a slightly
different scenario in which the same conclusion holds. With an eye towards our later
results, the assumption that f does not depend upon α j,n+ is replaced in this theorem
with the assumption that each contingency in the tail is reversible.
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Theorem 3 For some n ∈ N, suppose that every contingency observed by agent j after
the nth is reversible. If the contract f is incentive compatible and finite, then the func-
tions H j(α j ) and Tj (α j ) determined by f depend only upon the first n contingencies.
Consequently, agent j ’s interim expected utility in the contract f depends upon the tail
α j,n+ only through its effect upon his valuation function v j (α j ).

The proof is straightforward. Suppose that f does not depend on any contingency
observed by agent j after the qth for some q > n. The argument above shows that
H j(α j ) and Tj (α j ) cannot depend upon a j,q . The theorem then follows by backwards
induction.

Theorem 3 begins our efforts to show how reversibility of a contingency constrains
contract design, an idea that we will explore more deeply in the context of the bi-
lateral trade model that follows. It is common in mechanism design to show that an
incentive compatible mechanism can be constructed in a particular problem only by ap-
propriately building inefficiency into the collective choice. As suggested by the above
discussion, we will show that reversibility in these models can force the agents to de-
sign inefficiency into their contract by making it insensitive to certain contingencies as
a means of achieving incentive compatibility.

Definition Contingency n is strongly irreversible for agent j if for every initial
string α j,n− there do not exist two pairs of tails (α1

j,n+, α1
j,n+), (α2

j,n+, α2
j,n+) that

satisfy (14) and (15).

“Strongly irreversible” is more demanding than “irreversible”: contingency n is
irreversible if there is at least one initial string α j,n− for which no pair of tails exists
satisfying (14) and (15), while contingency n is strongly irreversible if no such pair
exists for any initial string α j,n−. We define “strongly irreversible” as above because
it is useful in this form as a sufficient condition for proving that an optimal contract is
recordable. Strong irreversibility is interpreted after the following example.

Example 3 Let v j (α) = P∞
q=1 δqa j,q for δ ∈ (0, 1). We show in this example

that each of the properties of strong irreversibility and reversibility of contingency n
holds for an interval of values of δ ∈ (0, 1). This supports the hypothesis that neither
of these two properties of v j is degenerate in our general model of contracting. Let
α j,n− be any initial string. The inequality

v j (α j,n−, 0, α j,n+) − v j (α j,n−, 1, α j,n+)

≤ v j (α j,n−, 0, 1, 1, . . . ) − v j (α j,n−, 1, 0, 0, . . . ) (18)

= δn
�

2δ − 1
1 − δ

�
(19)

holds for any two tails α j,n+, α j,n+. Reversibility or strong irreversibility of contin-
gency n depends upon whether δ is at most or exceeds 0.5.

Case 1: δ ∈ (0, 0.5]. Each contingency is strongly irreversible. For arbitrary
α j,n− and δ = 0.5, the right side of (19) equals 0 and (18) is strict except when α j,n+ =
(1, 1, . . . ) and α j,n+ = (0, 0, . . . ). Condition (14) in the definition of reversibility thus
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holds only for this one choice of α j,n+ and α j,n+. For δ ∈ (0, 0.5) the right side of
(19) is negative, which means that (14) can never hold.

Case 2: δ ∈ (0.5, 1). Each contingency is reversible. The right side of (19) is
positive in this case. It is also true that

v j (α j,n−, 0, α j,n+) − v j (α j,n−, 1, α j,n+) = −δn .

Holding the initial string α j,n− constant, v j (α j,n−, 0, α j,n+) − v j (α j,n−, 1, α j,n+)

covers an interval on the real line that contains 0 in its interior as α j,n+ is varied.
Choose α1

j,n+ and α2
j,n+ so that (15) holds. For each of these two tails αk

j,n+, there

exists a corresponding αk
j,n+ so that (14) is satisfied, which verifies the reversibility of

contingency n.

Theorem 4 shows that strong irreversibility of each contingency implies an “order-
liness” of an agent’s valuation function with respect to initial strings. As explained
below, this property facilitates the proof of recordability. Suppose that A = {0, 1}N
and v j (A j ) = [v j , v j ]. If every contingency is strongly irreversible and v j is contin-
uous, then Theorem 4 asserts the existence of a set of points

v j = x j,1 ≤ x j,2 ≤ . . . ≤ x j,2n−1+1 = v j (20)

such that the set of valuations determined by all types that share a particular initial
string α j,n− satisfies

v j
��

α j,n−
	 × A j,n−1+

� = �
x j,k, x j,k+1

�
for some 1 ≤ k ≤ 2n−1. This is illustrated for n = 2 in case 1 of Example 2,
where 0 = v j = x j,1, x j,2 = 0.5, and x j,3 = 1. As illustrated by cases 2 and 3 of
Example 2, [v j , v j ] is not partitioned according to the initial strings of a given length
if contingencies are reversible: reversibility instead implies that the sets of valuations
determined by distinct initial strings of the same length intersect nontrivially.

Theorem 4 Assume that every contingency observed by agent j is strongly irreversible,
that his valuation function v j is continuous, and that v j (A j ) = [v j , v j ]. For any ini-
tial string α j,n−, let

Dα j,n− = v j
��

α j,n−
	 × A j,n−1+

�
.

Then the following statements hold.

1. Each set Dα j,n− is a closed interval.

2. If α j,n− �= α′
j,n−, then Dα j,n− ∩ Dα′

j,n− contains at most one point.

Theorem 4 plays the following role in proving the recordability of a contract. Ap-
plying this theorem, strong irreversibility of contingencies implies a one-to-one corre-
spondence between (i) finite contracts f that are determined by the initial strings of
length n − 1 observed by the two agents and (ii) mechanisms f̂ that are constant on the
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rectangles of the form
�
x1,k, x1,k+1

� × �
x2,q, x2,q+1

�
as defined in (20). The mech-

anism f̂ is defined by step functions whose discontinuities occur on the edges of the
rectangles and the correspondence is through the composition f = f̂ ◦v. Continuity of
v j implies that the intervals in (20) define an increasingly fine partition of [v j , v j ] as n
increases. Any given mechanism on [v1, v1] × [v2, v2] that satisfies certain regularity
properties can thus be approximated arbitrarily closely by a step function mechanism f̂
of this kind. It is therefore approximated by the corresponding finite contract f . This
is the insight that underlies our construction of sequences of finite contracts to prove
the recordability of optimal contracts in Theorem 6 below.

5 Reversibility in a Model of Bilateral Trade

A seller can provide a service to a buyer. The state of the world specifies every detail
that affects the value of the service to the buyer and the cost of provision to the seller.
The buyer’s and the seller’s types are αB = (aB,q)q∈N ∈ AB and αS = (aS,q)q∈N ∈
AS , respectively, with π B and π S denoting the distributions of these types. A contract
is a pair (p, t) that specifies for each αB and αS a probability p(αB , αS) that the seller
provides the service to the buyer and a transfer t (αB, αS) from the buyer to the seller.
Contracts are thus assumed to be ex post budget balanced throughout this discussion.
The buyer’s utility is

u B(αB , p, t) = p · vB(αB) − t

and the seller’s utility is

uS(αS, p, t) = t − p · vS(αS),

where vB : AB → [vB, vB ] ⊂ R
+ and vS : AS → [vS, vS] ⊂ R

+. A contract is
required to be incentive compatible and interim individually rational given that each
trader’s default utility is 0. It is assumed throughout this section that any initial string
observable by either trader occurs with positive probability: for j = B, S,

π j
�
α j,n−

� = π j
��

α j,n−
	 × A j,n−1+

�
> 0 (21)

for any n ∈ N and α j,n− ∈ A j,n−.

Let µB denote the distribution of the buyer’s valuation defined by vB and π B , and
let µS denote the distribution of the seller’s valuation defined by vS and π S . The model
of bilateral trade of Chatterjee and Samuelson (1983) is a special case of our model in
which the densities µ′

B and µ′
S are continuous and nonzero on [vB , vB] and [vS, vS],

respectively. Our approach extends their model by modeling as states of the world
those aspects of the service or good that determine the payoffs from trading. We thus
addresses a weakness of noncooperative bargaining theory, which is that bargainers
negotiate only price and perhaps quantity in most models, whereas real bargaining
problems typically concern a multitude of issues.
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The optimal contract (p∗, t∗) maximizes the expected gains from trade subject to
IC and IIR: (p∗, t∗) solves

max
(p,t)

Z
A

[vB(αB) − vS(αS)] p(α)dπ (α) s.t. IC and IIR. (22)

As discussed in section 2.2, Theorem 9 reduces the problem of designing optimal con-
tracts to the problem of designing optimal mechanisms. The optimal mechanism is
characterized in Myerson and Satterthwaite (1983).

Reflecting the objective in (22) of maximizing the expected gains from trade, a
contract (p, t) is recordable if there exists a sequence of finite contracts (pm, tm)m∈N
satisfying IC and IIR such that

lim
m→∞

Z
A

[vB(αB) − vS(αS)] pm(α)dπ (α) ≥ (23)Z
A

[vB(αB) − vS(αS)] p(α)dπ (α) .

Suppose that all but a finite number of contingencies observed by each trader are re-
versible. Given a recordable contract, it is shown in the proof of Theorem 5 that an
incentive compatible, interim individually rational finite contract exists that achieves
at least as much of the potential gains from trade as the given recordable contract. It
follows that optimal contracts are not recordable in problems in which only infinite
contracts can be optimal. The Myerson and Satterthwaite (1983) characterization sug-
gests that optimal contracts are typically infinite. Theorem 5 in this sense provides
sufficient conditions for contractual incompleteness.

Theorem 5 For some b, s ∈ N, suppose that all contingencies aB,n with n ≥ b and
aS,n with n ≥ s are reversible for the trader who observes its realization. If only
infinite contracts can be optimal in the given problem, then an optimal contract is not
recordable.

The next theorem concerns a case in which each contingency is strongly irreversible
and the optimal contract is both infinite and recordable. This theorem applies the
Myerson-Satterthwaite characterization of the optimal mechanism, which requires that
µB and µS are regular in the sense that: (i) the densities µ′

B and µ′
S exist, are continu-

ous, and have [0, 1] as their common support; (ii) the virtual valuation functions

VB (vB, k) = vB + k
µB (vB) − 1

µ′
B (vB)

, and (24)

VS (vS, k) = vS + k
µS (vS)

µ′
S (vS)

(25)

are increasing on [0, 1] for each k ∈ [0, 1].

Theorem 6 Assume that:

1. each contingency observed by a trader is strongly irreversible;
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2. the valuation functions vB and vS are continuous;

3. the distributions of valuations µB and µS are regular in the sense defined above.

Then an optimal contract (p∗, t∗) is recordable.

The sequence of contracts ((pn, tn))n∈N that demonstrates the recordability of the op-
timal contract (p∗, t∗) in the proof of Theorem 6 satisfies limn→∞ pn (α) = p∗ (α)

except on a set of states of π-measure zero. Finite contracts are thus shown to not only
approximate the expected gains from trade of the optimal contract (p∗, t∗) but also to
approximate the trades of p∗.

Our final theorem applies Theorem 5 to reveal the severe contractual incomplete-
ness when (i) every contingency is reversible, and (ii) it is not common knowledge ex
ante that trade should occur. It is shown that gains from trade cannot be contracted
ex ante in a recordable contract that is incentive compatible and interim individually
rational.

Theorem 7 Assume that:

1. each contingency observed by a trader is reversible;

2. there exists types α∗
B and α∗

S for the buyer and the seller such that vB(α∗
B) <

vS(α∗
S), so that trade should not occur for these types.

Then the ex ante expected gains from trade are zero in any recordable, incentive com-
patible, and interim individually rational contract.

Two points should be emphasized about this theorem. First, it concerns a special
case of our model. In contrast, Theorem 6 identifies an alternative case in which the
loss in ex ante performance can be made arbitrarily small. The second point concerns
the way in which Theorem 7 appears in familiar bargaining games. Recall that Theo-
rem 2 identifies Bayesian-Nash equilibria with limited observability of arbitrary games
with finite incentive compatible contracts. Given reversible contingencies, Theorem
7 implies that there are no ex ante gains from trade in any Bayesian-Nash equilibrium
with limited observability in any game. The practical implication of this in most games
is nonexistence of equilibrium, or existence only of a trivial no-trade equilibrium. This
is illustrated in the example that follows. Nonexistence of equilibrium models the im-
possibility of coherently specifying equilibrium behavior ex ante across all states that
may arise at the interim, which is the essential task of a contract in our approach. We
thus take nonexistence in this case as affirming Theorem 7’s assertion that gains from
trade cannot be contracted ex ante when contingencies are reversible.

Example 4 Assume that
�
vB , vB

� = �
vS, vS

� = [0, 1] and fix a price ρ ∈ (0, 1).18

The game operates as follows: with access to his type, each trader announces “yes”
or “no”, with trade occurring at the price of ρ if and only if each trader announces
“yes”. This is inspired by the fixed price game of Hagerty and Rogerson (1985),

18This example was suggested by a question from Jim Peck.
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with the minor change here that each trader announces “yes” or “no” rather than his
valuation so that communication is limited. If each trader knows his valuation at the
interim, then it is a dominant strategy for each trader to announce “yes” if and only if
he can profitably trade at the price of ρ. Trade occurs in this equilibrium for (vB , vS)

satisfying vS ≤ ρ ≤ vB and so there are gains from trade.
Let

vB = 1 − δ

δ

∞X
q=1

δqaB,q and vS = 1 − δ

δ

∞X
q=1

δqaS,q

for δ ∈ [0.5, 1). Case 1 below assumes that all contingencies are strongly irreversible
for each trader (δ = 0.5). It is shown that the dominant strategy equilibrium for the
fixed price of ρ = 0.5 defines a Bayesian-Nash equilibrium with limited observability.
Case 2 assumes that all contingencies are reversible for each trader (δ ∈ (0.5, 1)).
It is shown in this case that the dominant strategy equilibrium determined by ρ does
not define a Bayesian-Nash equilibrium with limited observability, regardless of the
choice of ρ. As an illustration of the no-trade result of Theorem 7, it is then shown
that the outcome any Bayesian-Nash equilibrium with limited observability in the case
of δ ∈ (0.5, 1) is the same as a particular no-trade equilibrium in almost all states α.

Case 1: δ = 0.5. Fix the price at ρ = 0.5. The buyer knows whether or not
vB is as big or as small as ρ based solely upon observing his first contingency aB,1.
Formally,

aB,1 = 0 ⇒ vB ≤ 0.5, and

aB,1 = 1 ⇒ vB ≥ 0.5.

The strategy

γ B (αB) =
�

no if aB,1 = 0
yes if aB,1 = 1

is finite and maximizes the buyer’s expected payoff against any strategy of the seller,
regardless of how long of an initial string the buyer may observe. Similar remarks
apply to the seller. The trading outcome

p (vB , vS) =
�

1 if vS ≤ 0.5 ≤ vB
0 otherwise

with a transfer of 0.5 if and only if trade occurs is therefore sustainable as a Bayesian-
Nash equilibrium with limited observability. The corresponding contract

p∗ (αB, αS) =
�

1 if aS,1 = 0 and aB,1 = 1
0 otherwise

, and (26)

t∗ (αB, αS) =
�

0.5 if aS,1 = 0 and aB,1 = 1
0 otherwise

is incentive compatible, interim individually rational and finite.
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Case 2: δ ∈ (0.5, 1). Let the price ρ be any fixed value in (0, 1). Case 3 of
Example 2 implies that each contingency observed by a trader is reversible, and hence
Theorem 7 together with Theorem 2 imply that the expected gains from trade are zero
in any Bayesian-Nash equilibrium with limited observability. A trader can of course
determine conditional upon a finite string of length n−1 whether his expected valuation
is no more than or at least ρ. At first glance, the finite strategies

γ B (αB) =
�

no if E
�
vB

��αB,n−
�
< ρ

yes if E
�
vB

��αB,n−
� ≥ ρ

, and (27)

γ S (αS) =
�

yes if E
�
vS

��αS,n−
� ≤ ρ

no if E
�
vS

��αS,n−
�

> ρ

may seem to sustain positive expected gains from trade in equilibrium. These strate-
gies, however, do not define a Bayesian-Nash equilibrium with limited observability
because a trader may wish to deviate from his specified message after observing a fi-
nite number of additional contingencies beyond the (n − 1)st. This can be formalized
as follows. It is shown in the analysis of case 3 of Example 2 that there exists α∗

B,n−
such that vB({α∗

B,n−}× AB,n+) is a closed interval with ρ in its interior. Consequently,

there exists q > n and α′
B , α

′′
B ∈ AB such that

α′
B,n− = α

′′
B,n− = α∗

B,n−,

but

E
h
vB (αB)

���αB,q− = α′
B,q−

i
< ρ, and

E
h
vB (αB)

���αB,q− = α
′′
B,q−

i
> ρ.

Given the seller’s use of γ S , the buyer’s unique best response is to report “no” if
he observes α′

B,q− and “yes” if he observes α
′′
B,q−. The single report γ B(α

′
B) =

γ B(α
′′
B) = γ B(α∗

B) is not a best response in each of these two instances, which means
that (γ B , γ S) is not a Bayesian-Nash equilibrium with limited observability.

The strategies γ ∗
B , γ ∗

S in which each trader reports “no” regardless of this type
define a Bayesian-Nash equilibrium with limited observability in which trade never oc-
curs. An equilibrium thus exists for every δ ∈ (0.5, 1) and ρ ∈ (0, 1). We now show
that (γ ∗

B , γ ∗
S) is the only equilibrium, except for trivial variations of γ ∗

B and γ ∗
S over

sets of measure zero. The argument is by contradiction. Suppose that (γ
′
B , γ

′
S) is

a Bayesian-Nash equilibrium with limited observability that differs from (γ ∗
B , γ ∗

S) on
some set of states of positive π-measure. This means that at least one of the traders
reports “yes” with positive probability in the equilibrium (γ

′
B, γ

′
S). Suppose for no-

tational convenience that this is true of the seller; the contradiction is derived by con-
sidering the buyer’s best response to γ

′
S . The finiteness of the strategies in a Bayesian-

Nash equilibrium with limited observability implies that there exists n ∈ N such that
γ

′
B (αB) is determined by αB,n− for all αB,n− ∈ AB,n−. Because the seller’s use of

γ
′
S presents the buyer with the positive probability of profitable trade, γ

′
B (αB) must
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equal γ B (αB) as defined in (27). The argument made above now provides the de-
sired contradiction: for the initial strings α

′
B,q−, α

′′
B,q− and α∗

B,n− defined above, the

buyer would deviate from γ
′
B

�
α∗

Bn−
�

upon observing one of α
′
B,q− or α

′′
B,q−. The pair

(γ
′
B, γ

′
S) is thus not a Bayesian-Nash equilibrium with limited observability, which

completes the contradiction.

Concluding Remarks on Bilateral Trade. We conclude by connecting our analy-
sis to the broader aims of models of incomplete contracts. Results that show that agents
may accomplish more in a later stage than they can achieve ex ante in a contract are
desirable in a model of contractual incompleteness, first because they demonstrate the
nonnegligible losses that make contractual incompleteness compelling as an issue, and
second because they demonstrate the activity in the interim and ex post stages through
which the agents try to accomplish what they failed to achieve ex ante. Renegotiation
exemplifies this later activity. That such activity occurs in reality and is inconsistent
with complete contracts is the principle issue that motivates the theory of contractual
incompleteness. We now discuss the possibility that the buyer and the seller may trade
at an interim state despite the absence of an ex ante contract that organizes their trad-
ing. Consider the fixed price game of Example 4 with the price of ρ and assume that
specific types α∗

B and α∗
S of the traders are realized. Unless vB

�
α∗

B

�
or vS

�
α∗

S

�
equals

ρ, continuity of each trader’s valuation function insures that each trader can determine
after observing a sufficiently large but finite number of contingencies whether his val-
uation is more or less than ρ. If each trader uses his dominant strategy of price-taking,
then trade occurs if vB

�
α∗

B

�
> ρ > vS

�
α∗

S

�
.

It is thus arguable that profitable trade may occur in an interim state (α∗
B, α∗

S) even
in the case of reversible contingencies in which gains from trade can not be contracted
ex ante.19 This stands in stark contrast to the “no information-based trading in equilib-
rium” result of Milgrom and Stokey (1982) or, more generally, the result that ex ante
efficiency implies interim efficiency of Holmström and Myerson (1983, p. 1806). Both
of these classic results depend crucially upon the assumption that complete contracts
are available to the agents ex ante. The primary difference between our results and
these results is our constraint of limited observability and its implication that contracts
are necessarily finite. As captured by Theorem 1, the fact that limited observability
is more severe as a constraint ex ante than at the interim explains why ex ante perfor-
mance may be worse in our model than interim performance.

19Two cautionary points, however, should be noted about the prospect of trade at the interim. First,
statements about the possibility of trading across all interim states are problematic in the case of reversible
contingencies for precisely the same reasons that an ex ante contract can not arrange gains from trade in this
case. Second, unlike the fixed-price game above, a trader may not have a dominant strategy in an arbitrary
game in a particular state (α∗

B , α∗
S); his choice at the interim would therefore depend upon the strategy of

his opponent. The specification of such a strategy leads back through Theorem 1 to the inefficiency result
of Theorem 7 in the case of reversible contingencies.
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6 Conclusion

Contractual incompleteness is inefficiency of a nonnegligible magnitude that occurs
because a contract fails to address some contingencies. We develop a model in which
all contingencies are foreseen by the agents in the sense that they know the structure
of the model and yet contractual incompleteness may necessarily occur. The causes
of contractual incompleteness in our model are: (i) limited observability, which is the
inability of agents to observe more than a finite number of contingencies; (ii) a set
of states of the world that is complex in the sense that there are an infinite number
of possible contingencies; (iii) incomplete information and the consequent problem
of incentive compatibility; (iv) reversibility of contingencies, which is a property of
an agent’s preferences over states of the world. Conversely, we identify strong irre-
versibility as a property of preferences under which contractual incompleteness need
not occur in the context of (i)-(iii) in the sense that the optimal contract is recordable.

We emphasize in this paper the properties of preferences over states of the world
that determine whether or not contractual incompleteness must occur. Our results
identify attributes of contingencies that determine whether or not those contingencies
can be successfully addressed in a contract. The task of identifying aspects of the state
of the world that either can or can not be successfully contracted upon is a promising
problem that merits further study. It is important because it identifies the potential
content of contracts.

7 Appendix: Proofs of Results

7.1 Contracts and Mechanisms

The proof of the following lemma is straightforward.

Lemma 8 If the mechanism f̂ and the contract f satisfy f = f̂ ◦ v, then:

1. f̂ is incentive compatible with respect to the revelation of valuations if and only
if f is incentive compatible with respect to revelation of types;

2. f̂ is interim individual rational for each valuation of each agent if and only if f
is interim individually rational for each type of each agent.

Theorem 9 Suppose that:

1. C is a convex subset of R
m and the objective � (c, v1, v2) is concave in c for

each v1 and v2.

2. The functions h j and t j are affine20 in c for each agent j .

Then the following statements are true:
20That is, h j (βc + (1 − β)c) = βh j (c) + (1 − β)h j (c) for all c ∈ C and β ∈ [0, 1], and similarly for t j .
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1. For every incentive compatible and interim individually rational contract f ,
there exists an incentive compatible and interim individually rational mechanism
f̂ that ex ante weakly dominates f :

Ev(A)

h
�
�

f̂ (v) , v
�i

≥ E A [� ( f (α) , v(α))] . (28)

2. As a consequence of statement 1, if a given mechanism f̂ solves the optimal
mechanism problem, then the induced contract f = f̂ ◦ v solves the optimal
contract problem. Conversely, if a contract f solves the optimal contract prob-
lem, then the mechanism f̂ defined in the proof of statement 1. solves the optimal
mechanism problem.

Proof. Define the contract g by averaging f over all states that determine the same
valuations: for α∗ ∈ A,

g(α∗) = E A[ f (α)|v(α) = v(α∗)].

The mechanism f̂ that is sought is defined as f̂ ◦ v = g. Inequality (28) follows from
the concavity of � together with an application of Jensen’s Inequality:

Ev(A)

h
�
�

f̂ (v) , v
�i

= E A [� (g (α) , v(α))]

= E A
�
�
�
E A

�
f
�
α∗� ��v(α∗) = v(α)

�
, v(α)

��
≥ E A

�
E A

�
�
�

f
�
α∗� , v(α∗)

� ��v(α∗) = v(α)
��

= E A [� ( f (α) , v(α))] .

Applying Lemma 8, the mechanism f̂ is shown to satisfy IC and IIR by showing
that the contract g has these properties. For notational simplicity, we do this for j = 1.
For α∗

1 ∈ A1, define

H ′
1(α

∗
1) = E A2

�
h1(g(α))

��α1 = α∗
1

�
, and

T ′
1(α

∗
1) = E A2

�
t1(g(α))

��α1 = α∗
1

�
.

The fact that h1 is affine implies

E A1 [H1(α1)
��v1(α1) = v1(α

∗
1) ] = E A1

�
E A2 [h1( f (α))]

��v1(α1) = v1(α
∗
1)
�

= E A2 [E A1 [h1( f (α))|v1(α1) = v1(α
∗
1)]]

= E A2 [E A[h1( f (α))|v(α) = v(α∗)]]
= E A2 [h1(E A[ f (α)|v(α) = v(α∗)])]

= E A2 [h1(g(α∗))] = H ′
1(α

∗
1).

A similar argument shows that

E A1 [T1(α1)
��v1(α1) = v1(α

∗
1) ] = T ′

1(α
∗
1).
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These equalities are now applied to demonstrate that g satisfies IC and IIR for agent 1.
Incentive compatibility of f implies

H1(α
∗
1)v1(α

∗
1) + T1(α

∗
1) ≥ H1(α1)v1(α

∗
1) + T1(α1) (29)

for all α1, α
∗
1 ∈ A1. Because (29) holds for all α1 ∈ A1, it follows that for all α∗∗

1 ∈ A1,

H1
�
α∗

1

�
v1(α

∗
1) + T1(α

∗
1) (30)

≥ E A1

�
H1 (α1) v1(α

∗
1) + T1(α1)

��v1 (α1) = v1
�
α∗∗

1

� �
= H ′

1(α
∗∗
1 )v1(α

∗
1) + T ′

1(α
∗∗
1 ).

Because (30) holds for all α∗
1 ∈ A1, it follows that

H ′
1

�
α∗

1

�
v1(α

∗
1) + T ′

1(α
∗
1)

= E A1

�
H1 (α1) v1(α

∗
1) + T1(α1)

��v1 (α1) = v1
�
α∗

1

� �
= E A1

�
H1 (α1) v1(α1) + T1(α1)

��v1 (α1) = v1
�
α∗

1

� �
≥ E A1

�
H ′

1

�
α∗∗

1

�
v1(α1) + T ′

1(α
∗∗
1 )

��v1 (α1) = v1
�
α∗

1

� �
= H ′

1(α
∗∗
1 )v1(α

∗
1) + T ′

1(α
∗∗
1 ),

and so g satisfies IC. Turning to IIR, we have

H ′
1(α

∗
1)v1(α

∗
1) + T ′

1(α
∗
1)

= E A1 [H1(α1)v1(α
∗
1) + T1(α1)|v1(α1) = v1(α

∗
1)] ≥ r.

7.2 Limited Observability

Proof of Theorem 1. The subscript j denoting an agent is omitted for notational
simplicity in this proof. Consider a strategy γ used by an agent who is constrained
by limited observability. This constraint means that there exists for every α ∈ A =
{0, 1}N a number n ∈ N such that γ (α) is determined by αn+1−, i.e., γ is constant
on the set {αn+1−} × An+. Define N : A → N as the function whose value at α is
the smallest natural number N (α) with this property. As in section 2, consider the
product topology on A = {0, 1}N when {0, 1} is assigned the discrete topology. For
each α ∈ A, the equality

N �{αη(α)+1−} × Aη(α)+
� = N (α) (31)

holds by definition of N . Because {αN (α)+1−} × AN (α)+ is open, (31) shows that
there exists a neighborhood of α whose image under the function N is N (α). The
function N is therefore continuous on A, regardless of the topology on its range N. As
noted in section 2, the Tychonoff Theorem implies that A is compact. Consequently,
the function N has a maximum n∗ on A. For all α ∈ A, γ (α) is determined by αn∗+1−
and so it is finite.21

21This proof was suggested by a referee of this journal.
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Proof of Theorem 2. Let (γ 1, γ 2) be a Bayesian-Nash equilibrium with limited
observability in the game (M1 × M2, η) that implements f . Let n ∈ N be sufficiently
large that each strategy γ j

�
α j
�

is determined by α j,n−. Because f = η◦(γ 1, γ 2), the
contract f is finite. It is now shown by contradiction that f is incentive compatible.
If not, then there exists α∗

j , α
∗∗
j ∈ A j and ε > 0 such that

E Ai

h
u j (α

∗
j , f (α∗∗

j , αi ))
i

− E Ai

h
u j (α

∗
j , f (α∗

j , αi )))
i

> ε > 0. (32)

Because of our assumption that h j (C) is bounded, continuity of v j implies the exis-
tence of k ∈ N such that ���u j (α

′′
j , c) − u j (α

′
j , c)

��� <
ε

2
(33)

for all c ∈ C and for all α′
j , α

′′
j ∈ A such that α′′

j,k− = α′
j,k−. For q ≥ k, it follows

that���E A

h
u j

�
α j , f (α∗∗

j , αi )
� ���α j,q− = α∗

j,q−
i

− E Ai

h
u j (α

∗
j , f (α∗∗

j , αi ))
i��� <

ε

2
, and

���E A

h
u j

�
α j , f (α∗

j , αi )
� ���α j,q− = α∗

j,q−
i

− E Ai

h
u j (α

∗
j , f (α∗

j , αi ))
i��� <

ε

2
.

Substitution into (32) implies

E A

h
u j

�
α j , f (α∗∗

j , αi )
� ���α j,q− = α∗

j,q−
i

− (34)

E A

h
u j

�
α j , f (α∗

j , αi )
� ���α j,q− = α∗

j,q−
i

> 0

for all q ≥ k. Replacing f with η ◦ (γ 1, γ 2) in the case of q ≥ n produces an
inequality that contradicts the assumption that (γ 1, γ 2) is a Bayesian-Nash equilibrium
with limited observability.

Conversely, suppose that f is incentive compatible and finite. Finiteness implies
the existence of n ∈ N such that f (α1, α2) depends only upon α1,n− and α2,n−, which
allows us to write

f (α1, α2) = f
�
α1,n−, α2,n−

�
. (35)

Consider the game in which M j = A j,n− for j = 1, 2 and η(m1, m2) = f (m1, m2).
Let γ 1 (α1) = α1,n− and γ 2 (α2) = α2,n−. Because f = η ◦ (γ 1, γ 2), it is sufficient
to show that these finite strategies define a Bayesian-Nash equilibrium with limited
observability. This is also proven by contradiction. Suppose that

E A

h
u j

�
α j , η

�
γ j

�
α∗∗

j

�
, γ i (αi )

�� ���α j,q− = α∗
j,q−

i
> (36)

E A

h
u j

�
α j , η

�
γ j

�
α∗

j

�
, γ i (αi )

�� ���α j,q− = α∗
j,q−

i
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for agent j , some α∗
j , α

∗∗
j ∈ A j and some q ≥ n. This is equivalent to

E A

h
u j

�
α j , f (α∗∗

j , αi )
� ���α j,q− = α∗

j,q−
i

> (37)

E A

h
u j

�
α j , f (α∗

j , αi )
� ���α j,q− = α∗

j,q−
i
.

Inequality (37) can hold only if

E Ai

h
u j

�
α j , f (α∗∗

j , αi )
�i

> E Ai

h
u j

�
α j , f (α∗

j , αi )
�i

(38)

for some α j ∈ A j such that α j,q− = α∗
j,q−. Equation (35) implies that f (α∗

j , αi ) =
f (α j , αi ) and so (38) contradicts the incentive compatibility of f .

Analysis of Case 3 in Example 2. We again omit the subscript j for notational
simplicity. Let S (αn−) denote the sum

S (αn−) = 1 − δ

δ

n−1X
q=1

δq aq

for any αn− = �
aq
�

1≤q≤n−1. The formula

v ({αn−} × An−1+) =
h

S (αn−) , S (αn−) + δn−1
i
, (39)

which follows from properties of the geometric series along with the assumption that
δ > 0.5, is needed below.

The argument is by contradiction. Given x ∈ (0, 1) , let k be the smallest element
of N such that v(α) ≥ x or v(α) ≤ x can be decided based upon αk+1− for any choice
of αk+1− ∈ Ak+1−. Case 2 implies that k > 1. The minimality of k and formula (39)
together imply that there exists an initial string α∗

k− such that

S
�
α∗

k−
�

< x < S
�
α∗

k−
� + δk−1,

so that v(α) ≤ x or v(α) ≥ x cannot be decided with certainty based upon α∗
k−. Define

α = �
aq
�

q∈N and α =
�

aq

�
q∈N as follows:

aq =
�

a∗
q if q ≤ k − 1

1 if q ≥ k
;

aq =
�

a∗
q if q ≤ k − 1

0 if q ≥ k
.

Because v(α) = S
�
α∗

k−
� + δk−1 > x , it must be the case that S(αk+1−) ≥ x else

v(α) ≤ x or v(α) ≥ x could not be decided based upon αk+1−. Because v(α) =
S
�
α∗

k−
�

< x , similar reasoning using formula (39) in the case of αn− = αk+1− implies
that S(αk+1−) + δk ≤ x . Combining these inequalities produces

1 − δ

δ
· δk = S(αk+1−) − S(αk+1−) ≥ x −

�
x − δk

�
= δk,

where the first equality follows directly from the definitions of S, α and α. This
inequality cannot hold because (1 − δ) /δ < 1 for δ > 0.5.
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7.3 Reversibility and Strong Irreversibility

Proof of Theorem 4. We again omit the subscript j for notational simplicity. The
proof is by induction on the length n −1 of the initial string αn−. The case of n −1 = 0
is obvious, given the assumption that v(A) = [v, v]. Assume that statements 1. and
2. hold for initial strings of length n − 1. We first show that D(α,n−,0) and D(αn−,1)

are closed intervals whose intersection consists of a single point. It is then shown that
statement 2. holds for all pairs of distinct initial strings of length n.

We begin by noting that D(αn−,0) and D(αn−,1) are closed sets. The Tychonoff
Theorem implies that A is compact in the product topology when each set {0, 1} is
assigned the discrete topology. The sets {α′|α′

n− = αn−, a′
n = 0} and {α′|α′

n− =
αn−, a′

n = 1} are closed subsets of A in this topology and are therefore also compact.
Continuity of v (·) implies that D(αn−,0) and D(αn−,1) are compact and therefore closed.

Because D(αn−,1) ∪ D(αn−,0) = Dαn− and Dαn− is a closed interval by the induction
hypothesis, the connectedness of Dαn− implies that D(αn−,1) ∩ D(αn−,0) �= ∅. Assume
by way of contradiction that D(αn−,0) and D(αn−,1) either fail to be closed intervals or
else they are closed intervals whose interiors overlap. Either of these statements can be
true only if there exists y1, y2 ∈ D(αn−,a) and z ∈ D(αn−,b) \ D(αn−,a) with y1 < z < y2
and a �= b ∈ {0, 1}. We derive a contradiction in the case of a = 0 and b = 1; the case
of a = 1 and b = 0 is similar. Let

y = sup{y ∈ D(αn−,0)|y ≤ z} and y = inf{y ∈ D(αn−,0)|y ≥ z}.
The points y, y exist and are elements of D(αn−,0) because this set is compact, and
y < y because otherwise z = y = y ∈ D(αn−,0). It is also the case that

y = inf{y ∈ D(αn−,1)|y ≥ y} and y = sup{y ∈ D(α,n−,1)|y ≤ y},
and consequently y, y ∈ D(αn−,1). For k = 1, 2, αk and αk therefore exist such that

αk
n+1− = (αn−, 0), αk

n+1− = (αn−, 1), v(α1) = v(α1) = y, and v(α2) = v(α2) = y.
This contradicts the assumption that every contingency is strongly irreversible, and so
D(αn−,0) and D(αn−,1) satisfy the conclusion.

Turning to statement 2 for αn+1− �= α′
n+1−, either αn− = α′

n− or αn− �= α′
n−.

We have just shown in the first case that Dαn+1− ∩ Dα′
n+1− contains one element. If

αn− �= α′
n−, then the induction hypothesis together with the fact that Dαn+1− ⊂ Dαn−

and Dα′
n+1− ⊂ Dα′

n− imply that Dαn+1− ∩ Dα′
n+1− contains at most one element.

7.4 The Model of Bilateral Trade

Proof of Theorem 5. The theorem is proven by showing that if the contract (p, t) is
recordable, then there exists an IC and IIR finite contract (p∗, t∗) such that:

1. (p∗(α), t∗(α)) does not depend upon aB,n for n ≥ b and aS,n for n ≥ s;

2. the ex ante gains from trade in (p∗, t∗) are at least as large as in (p, t), i.e.,Z
A

[vB(αB) − vS(αS)] p∗(α)dπ (α) ≥
Z

A
[vB(αB) − vS(αS)] p(α)dπ (α) .

29



The contract (p, t) thus cannot be optimal.
Let ((pm, tm))m∈N be a sequence of contracts that demonstrates the recordability of

(p, t). The first step is to construct for each m ∈ N an IC and IIR contract (p∗
m, t∗m) that

is interim payoff equivalent to (pm, tm) and whose value at α is determined by αB,b−
and αS,s−. Define (p∗

m(α′), t∗m(α′)) by averaging (pm, tm) over all states α = (αB, αS)

such that αB,b− = α′
B,b− and αS,s− = α′

S,s:

p∗
m(α′) =

Z
AB,b−1+×AS,s−1+

pm(α)dπ(α
��αB,b− = α′

B,b−, αS,s− = α′
S,s ),

and

t∗m(α′) =
Z

AB,b−1+×AS,s−1+
tm(α)dπ(α

��αB,b− = α′
B,b−, αS,s− = α′

S,s ).

For any α′
B ∈ AB , Theorem 3 implies that

R
AS

pm(αB, αS)dπ S(αS) is constant over
the set of all αB such that αB,b− = α′

B,b−. It follows that:

Z
AS

pm(α′
B , αS)dπ S(αS) =Z

AB,b−1+

Z
AS

pm(αB , αS)dπ S(αS)dπ B
�
αB

��αB,b− = α′
B,b−

�
=
Z

AS,s−

Z
AB,b−1+×AS,s−1+

pm(αB, α′
S)

·dπ
�
α
��αB,b− = α′

B,b−, α′
S,s = αS,s−

�
dπ S(αS,s−)

=
Z

AS,s−
p∗

m(α′
B , αS)dπ S(αS,s−)

=
Z

AS

p∗
m(α′

B , αS)dπ S(αS).

The second equality is a change in the order of integration, the third applies the defi-
nition of p∗

m(α′
B , αS), and the last is true because p∗

m(α′
B, αS) is determined by αS,s−.

Similar arguments prove that for all α′
B ∈ AB and α′

S ∈ AS ,Z
AS

tm(α′
B , αS)dπ S(αS) =

Z
AS

t∗m(α′
B , αS)dπ S(αS),Z

AB

pm(αB, α′
S)dπ B(αB) =

Z
AB

p∗
m(αB, α′

S)dπ B(αB), andZ
AB

tm(αB, α′
S)dπ B(αB) =

Z
AB

t∗m(αB, α′
S)dπ B(αB).

The constraints of IC and IIR thus follow for (p∗
m, t∗m) from the corresponding proper-

ties of (pm, tm). The interim expected utility function of each trader and the ex ante
expected gains from trade (p∗

m, t∗m) are the same as in (pm, tm).
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The value of (p∗
m, t∗m) at α is determined by αB,b− and αS,s−, and the set AB,b− ×

AS,s− of all pairs
�
αB,b−, αS,s−

�
of such initial strings is finite. As a probability,

p∗
m(α) ∈ [0, 1]. The boundedness of the sets vB(AB) and vS(AS), assumption (21) of

section 5, and IIR together imply that (t∗m(αB,b−, αS,s−))m∈N is bounded. By taking
a subsequence (if necessary), it can thus be assumed without loss of generality that
(p∗

m(α), t∗m(α))m∈N converges for all α ∈ A. The contract (p∗, t∗) defined by

(p∗(α), t∗(α)) = lim
m→∞(p∗

m(α), t∗m(α))

for α ∈ A is thus well-defined. The contract (p∗, t∗) inherits IC, IIR, and independence
of αB,b−1+ and αS,s−1+ from the contracts in the sequence. To verify that the expected
gains from trade in (p∗, t∗) is as large as in (p, t), Lebesgue’s Convergence Theorem
implies Z

A
(vB(αB) − vS(αS)) p∗(α)dπ (α)

= lim
m→∞

Z
AB×AS

(vB(αB) − vS(αS)) p∗
m(α)dπ (α)

= lim
m→∞

Z
AB×AS

(vB(αB) − vS(αS)) pm(α)dπ (α)

≥
Z

A
(vB(αB) − vS(αS)) p(α)dπ (α) ,

where the last two lines are the recordability inequality.

Proof of Theorem 6. Theorem 4 implies that the sets Dα j ,n− defined in the

theorem are intervals
h
xn

j,q, xn
j,q+1

i
for j = B, S and 1 ≤ q ≤ mn . Assumption (21)

of section 5 along with assumption 3 of the theorem imply that each of these intervals
has a nonempty interior. Define ξn

B (vB) and ξn
S (vS) as follows:

ξn
B (vB) = sup

n
xn

B,q

���xn
B,q ≤ vB , 1 ≤ q ≤ mn

o
,

ξ n
S (vS) = inf

n
xn

S,q

���vS ≤ xn
S,q, 1 ≤ q ≤ mn

o
.

The function ξn
B rounds a buyer’s valuation downward while ξ n

S rounds a seller’s val-
uation upward, in each case to the nearest boundary of one of the intervals DαB ,n− or
DαS,n−, respectively. Continuity of vB and vS implies that limn→∞ ξn

B (vB) = vB and
limn→∞ ξn

S (vS) = vS for all vB ∈ [vB, vB ] and vS ∈ [vS, vS].
Theorem 9 implies that an optimal contract has the form

�
p̂∗(v(α)), t̂∗(v(α))

�
,

where p∗ and v∗ solve the optimal mechanism problem

max
(p,t)

ZZ
(vB − vS) p(vB , vS)dµBdµS s.t. IC and IIR. (40)

Given the regularity of µB and µS , Theorem 2 of Myerson and Satterthwaite (1983)
characterizes a constant k∗ ∈ [0, 1] such that p̂∗(vB , vS) has the form

p̂∗(vB , vS) =
(

1 if VB(vB , k∗) ≥ VS(vS, k∗);
0 otherwise.
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Define the probability function p̂n(vB , vS) as

p̂n(vB , vS) =
(

1 if VB(ξ n
B (vB) , k∗) ≥ VS(ξn

S (vS) , k∗);
0 otherwise.

The sequence
�

p̂n
�

n∈N converges pointwise to p̂∗. A comparison of p̂n(vB , vS) with
p̂∗(vB , vS) shows that p̂n(vB , vS) satisfies inequality (2) of Myerson and Satterthwaite
(1983) because p̂∗(vB , vS) satisfies it. It also inherits from p̂∗(vB, vS) the monotonic-
ity properties required by Theorem 1 in their paper because ξn

B and ξn
S are nondecreas-

ing. Formula (6) of their paper thus defines a transfer function t̂n(vB , vS) such that
the revelation mechanism ( p̂n, t̂n) satisfies IC and IIR. Like p̂n(vB , vS), t̂n(vB, vS) is
constant on the interior of each set of the form DαB,n− × DαS,n− .

The sequence (pn(α), tn(α))n∈N that demonstrates the recordability of the opti-
mal contract

�
p̂∗(v(α)), t̂∗(v(α))

�
is defined as follows: for α = (αB, αS) ∈ A,

(pn(α), tn(α)) equals the value of
�

p̂n(v), t̂n(v)
�

in the interior of DαB,n− ×DαS,n− . It is
straightforward to show that (pn(α), tn(α)) satisfies IC and IIR because

�
p̂n(v), t̂n(v)

�
has these properties. It is clear that

lim
n→∞ pn(α) = lim

n→∞ p̂n(v (α)) = p̂∗(v(α))

except at those states α = (αB , αS) for which either vB (αB) or vS (αS) is an endpoint

of one of the intervals
h
xn

j,q, xn
j,q+1

i
for j = B or S, respectively, some n ∈ N and

1 ≤ q ≤ mn . Assumption 3 implies that this set of states has π-measure zero.
We conclude the proof by showing that the recordability inequality holds:Z

(vB (αB) − vS (αS)) p̂∗ (vB (αB) , vS (αS)) dπ (α)

=
ZZ

(vB − vS)

�
lim

m→∞ p̂n (vB, vS)

�
dµB (vB) dµS (vS)

≤ lim inf
ZZ

(vB − vS) p̂n (vB , vS) dµB (vB) dµS (vS)

= lim inf
Z

(vB (αB) − vS (αS)) pn (αB, αS) dπ(α).

Because (vB − vS) p̂n (vB , vS) ≥ − ��vB − vS
��, Fatou’s Lemma implies the inequality.

The last equality follows because pn(α) = p̂n(v(α)) for π-a.e. α. By selecting a
subsequence of (pn, tn)n∈N , the “lim inf” in the last line can be replaced with “lim”,
which completes the proof of recordability.

Proof of Theorem 7. For the recordable contract (p, t), the proof of Theorem 5
demonstrates the existence of an IC and IIR contract (p∗, t∗) such that: (i) (p∗, t∗) is
state independent and hence constant; (ii) the ex ante gains from trade in (p∗, t∗) are
as least as large as in (p, t). Suppose p∗ > 0. Interim individual rationality implies

vS (αS) ≤ t∗

p∗ ≤ vB (αB)
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for all αB ∈ AB and αS ∈ AS . It follows that vS (αS) ≤ vB (αB) for all αB ∈ AB and
αS ∈ AS , which contradicts assumption 2 in the theorem. The contradiction implies
that p∗ = 0 and so the ex ante expected gains from trade in (p∗, t∗) are zero. Property
(ii) above together with interim individual rationality therefore imply that they are also
zero in (p, t).
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