Question 1

(a)
$$h(p, v(p, w)) = x(p, w)$$

(b) $ph(p, v(p, w)) = w$
(c) $px(p, e(p, u)) = e(p, u)$

Question 2 Note that $x_i(p, w) = h_i(p, v(p, w))$. Thus, $x_1(p_1, p_2, w) = \frac{p_2^2}{p_1^2}$. We can use Walras' law to determine the demand of good 2. In particular, $p_1 \frac{p_2^2}{p_1^2} + p_2 x_2 = w$. Thus, $p_2 x_2 = w - \frac{p_2^2}{p_1}$, which implies $x_1(p, w) = \frac{p_2^2}{p_1^2}, x_2(p, w) = \frac{w}{p_2} - \frac{p_2}{p_1}$

Question 3 *Proof:* Let x = x(p, w) and x' = x(p', w'). Then

$$x = (w/2.w/2)$$
, and $x' = (w'/2, w'/4)$

Thus, p'x = 3w/2 and px' = 3w'/4. If $p'x \le w'$ then $w' \ge 3w/2$. Thus, 3w'/4 > 9w/8 > w.

Next, suppose that $px' \le w$. Then $3w'/4 \le w$. Then $p'x = 3w/2 \ge 9w/8 > w$.

Question 4 Note that w = px = 36 and $w' = p'x' = 4 + x'_2$. If $px' \le w$ then $16 + 2x'_2 \le 36$ (i.e., $x'_2 \le 10$). But then p'x > w', i.e., $13 > 4 + x'_2$, i.e., $x'_2 < 9$. If, instead, $p'x \le w'$, i.e., $13 \le 4 + x'_2$ implying $x_2 \ge 9$, then px' > w, i.e., $16 + 2x'_2 > 36$, i.e., $x'_2 > 10$. Thus,

$$x'_2 < 9 \text{ or } x'_2 > 10.$$

Question 5 Note that $x_2 = x_3$. Let $y = x_2 = x_3$. Then the consumer maximizes $u(x_1, y) = x_1 y$ subject to prices $q_1 = p_1, q_2 = p_2 + p_3$ and wealth w. The MRS is given by y/x_1 , the wealth expansion path by $q_1x_1 = q_2y$. To get a utility of u we need $x_1y = u$. Thus, $x_1q_2y = q_2u$ which implies $q_1x_1^2 = q_2u$. Thus, $x_1 = \sqrt{(q_2/q_1)u}$ and similarly, $y = \sqrt{(q_1/q_2)u}$. Substituting q_1 and q_2 yields

$$h_2(p_1, p_2, p_3, u) = \sqrt{\frac{p_1}{p_2 + p_3}}u$$

As a consequence, goods 2 and 3 are **complements** because $\frac{\partial h_2(p_1, p_2, p_3, u)}{\partial p_3}$ < 0.

Question 6 Suppose a utility function is given by $u(x_1, x_2) = x_1^2 - 2x_2$. Then $x_2 = 0$. To obtain utility $u, x_1 = \sqrt{u}$. Thus, $h_1(p, u) = \sqrt{u}$. Therefore,

 $e(p_1, p_2, u) = p_1 \sqrt{u}$ $w = p_1 \sqrt{u} \text{ implies, } u = w^2/p_1^2.$ $v(p_1, p_2, w) = w^2/p_1^2$

Question 7

Question 8 We must show that $x'' = \alpha x + (1 - \alpha)x' \in h(p, u)$. Note that $u(x) \ge u$ and $u(x') \ge u$. Thus, quasi concavity implies $u(x'') \ge \min\{u(x), u(x')\} \ge u$. As a consequence, x'' fulfills the constraint of the expenditure minimization problem, when the required utility level is u. Further $px'' = \alpha px + (1 - \alpha)px' = \alpha e(p, u) + (1 - \alpha)e(p, u) = e(p, u)$. Hence, x'' minimizes expenditure, which implies $x'' \in h(p, u)$.