Solutions: Mid-term Econ500

October 17, 2007

Question 1 The equivalent variation is $EV = e(p^0, u^1) - e(p^0, u^0) = e(p^0, u^1) - w$. Demand after the price change is x = (45, 20). Thus, $u^1 = 900$. Therefore, e(1, 1, 900) = 2(30)(1)(1) = 60. Thus, 15 points

The compensating variation is given by EV = -300.

(Recall that $e(p, u) = 2\sqrt{up_1p_2}$.)

Question 2 Suppose that an expenditure function is given by $e(p_1, p_2, u) = p_1 u^2$. Hicksean demand reveals that only x_1 is consumed, i.e., $x_1 = u^2$. Thus, 14 points

The quasiconcave & monotone utility function is $u(x_1, x_2) = \sqrt{x_1}$

The other utility function is $u(x_1, x_2) = \sqrt{x_1} - x_2$

In fact, any utility function $u(x_1, x_2) = \sqrt{x_1} - g(x_2)$ works where $g(x_2) \ge g(0)$.

Question 3 Let $X = \{a, b, c, d\}$ and suppose that a choice structure is given by

$$\mathfrak{B} = \{\{a, b, c\}, \{a, b\}, \{a, c, d\}\},\$$

and

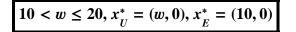
$$C(\{a, b, c\}) = \{c\}, C(\{a, b\}) = \{a\}, C(\{a, c, d\}) = \{c\}.$$

12 points

$$a > b$$
 $a < c$ $a > d$ $b < c$ $b < \text{or} > d$ $c > d$ Or $a > b$ $a < c$ $a < d$ $b < c$ $b < d$ $c > d$

Question 4 Any w with $10 < w \le 20$ works. For such a w, a solution to the utility maximization problem is (w, 0). The required utility is 10. The solution to the expenditure minimization problem is (10, 0).

12 points



Question 5 The utility function is $u(x_1, x_2) = \min\{2x_1, 4x_2\}$. Thus, $2x_1 = 4x_2 = u$. Therefore, $h_1 = u/2$ and $h_2 = u/4$. Then 13 points

$$e(p,u)=\left(\tfrac{p_1}{2}+\tfrac{p_2}{4}\right)u$$

Question 6

e(p, u) is not differentiable at all prices $2p_1 = p_2$, i.e., $p_1/p_2 = 0.5$

A monotone and quasiconcave utility function that generates exactly the same ex-

penditure function is $u(x_1, x_2) = 1/6(x_1 + 2x_2) = x_1/6 + x_2/3$. 6 points

Question 7 A utility function is given by $u(x_1, x_2) = \min\{2x_1 + x_2, x_1 + 2x_2\}$. Then 10 points

x(2, 2, 20) = (5, 5)
x(2, 3, 60) = (12, 12)
x(2, 5, 60) = (30, 0)
x(2, 10, 60) = (30, 0)
x(5, 3, 60) = (7.5, 7.5)

Question 8 An expenditure function is given by

$$e(p,u) = \frac{p_1(up_2 - p_1)}{p_2}.$$

Differentiating e(p, u) with respect to p_2 gives Hicksean demand $h_2(p, u) = p_1^2/p_2^2$. Thus, $x_2(p, w) = p_1^2/p_2^2$. Walras' law implies $p_1x_1 + p_1^2/p_2 = w$. Thus,

$$x_1(p,w) = \frac{wp_2 - p_1^2}{p_1 p_2} = \frac{w}{p_1} - \frac{p_1}{p_2}.$$

Alternatively, differentiating e(p, u) with respect to p_1 gives Hicksean demand

$$h_1(p,u) = \frac{2p_1 - up_2}{p_2}.$$

Next, solving e(p, u) = w for u yields

$$v(p,w) = \frac{p_1^2 + wp_2}{p_2 p_1}.$$

Since $x_1(p, w) = h_1(p, v(p, w))$ we get

14 points