MID-TERM ECON500

October 17, 2007

Name:

E-mail:

All questions must be answered on this test form!

For each question you must show your work and (or) provide a clear argument. If you need scratch paper, use the last pages and the back of the form.

Question 1 A utility function is given by $u(x_1, x_2) = x_1x_2$. Originally, prices are $p_1 = p_2 = 1$ and wealth is w = 360 but increase to $p_1 = 4$ and $p_2 = 9$. Then 15 points

The equivalent variation is given by EV =

(Recall that $e(p, u) = 2\sqrt{up_1p_2}$.)

Question 2 Suppose that an expenditure function is given by $e(p_1, p_2, u) = p_1 u^2$. Specify two different utility functions that generate this expenditure function. One of the utility functions must be convex and monotone. 14 points

The quasiconcave & monotone utility function is $u(x_1, x_2) =$

The other utility function is $u(x_1, x_2) =$

Question 3 Let $X = \{a, b, c, d\}$ and suppose that a choice structure is given by

$$\mathfrak{B} = \{\{a, b, c\}, \{a, b\}, \{a, c, d\}\},\$$

and

$$C(\{a, b, c\}) = \{c\}, C(\{a, b\}) = \{a\}, C(\{a, c, d\}) = \{c\}.$$

Specify two different preference orderings (for which preferences between any two choices are strict) that rationalize these preferences

12 points

Preferences 1: (Insert > or <)

Preferences 2: (Insert > or <)

a b	а	с	a	d	b	С	b	d	с	d
-----	---	---	---	---	---	---	---	---	---	---

Question 4 Suppose that a utility function is given by

$$u(x_1, x_2) = \begin{cases} x_1 + x_2 & \text{if } x_1 + x_2 < 10; \\ 10 & \text{if } 10 \le x_1 + x_2 \le 20; \\ x_1 + x_2 - 10 & \text{if } 20 < x_1 + x_2. \end{cases}$$

Suppose that prices are $p_1 = 1$, $p_2 = 2$. Find a numerical value for wealth, w, such that a (particular) solution, x_U^* , of the utility maximization problem given w does not correspond to a (particular) solution, x_E^* , of the expenditure minimization problem where the required utility in the expenditure minimization problem is $u = u(x_U^*)$.

12 points

<i>w</i> =	$, x_{U}^{*} = ($,), $x_{E}^{*} = ($,)

Question 5 Suppose a utility function is given by $u(x_1, x_2) = \min\{2x_1, 4x_2\}$. Then 13 points

e(p,u) =

Question 6 An indifference curve providing utility u = 5 for a monotone and homothetic preference relation is depicted below.

Question 7 A utility function is given by $u(x_1, x_2) = \min\{2x_1 + x_2, x_1 + 2x_2\}$. Then (in the following Walrasian demand is denoted as usual by $x(p_1, p_2, w)$) 10 points

x(2,2,20) = (,)
x(2,3,60) = (,)
x(2,5,60) = (,)
x(2, 10, 60) = (,)
x(5, 3, 60) = (,)

Question 8 Suppose that the consumption set is $X = \mathbb{R} \times \mathbb{R}_+$. An expenditure function is given by $n_1(un_2 - n_1)$

$$e(p,u) = \frac{p_1(up_2 - p_1)}{p_2}.$$

Then

$$x_1(p,w) =$$

(Note: The algebra in this question can take more time)

14 points

Scratch Paper: Not Graded

Scratch Paper: Not Graded

Scratch Paper: Not Graded