Midterm 1, Financial Economics

February 15, 2010

Name:

Email: @illinois.edu

All questions must be answered on this test form.

Question 1: Let $S=\{s_1,...,s_{11}\}$ be the set of states. Suppose that at t=0 the state is unknown. At t=1 the person learns whether the state is in $\{s_1,...,s_5\}$ or $\{s_6,...,s_{11}\}$. At t=2 the person learns whether the state is in $\{s_1,...,s_3\}$, $\{s_4,s_5\}$, $\{s_6,...,s_{10}\}$ or $\{s_{11}\}$. Finally, at t=3 all remaining uncertainty is revealed. *Graph the event tree*.

Question 2: For each of the following Bernoulli utility functions determine whether or not the person is risk averse (in all cases $x \ge 0$). *To get credit you need to provide a proof, don't just say yes or no.*

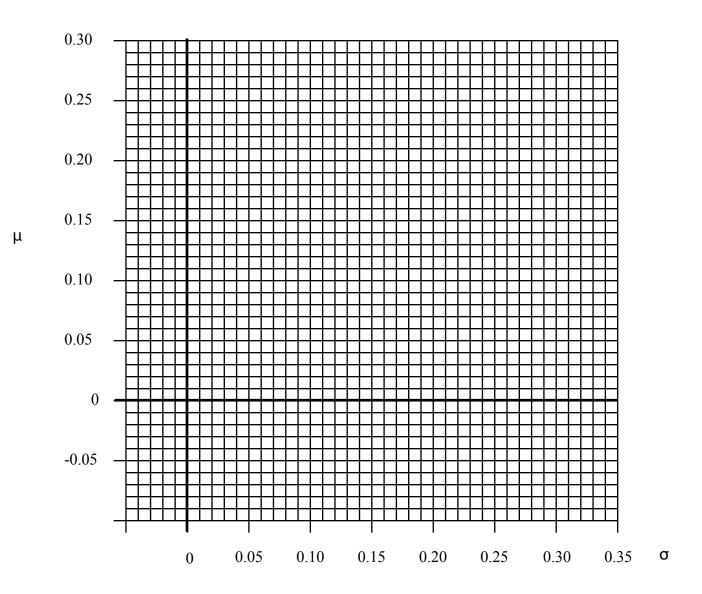
12 points

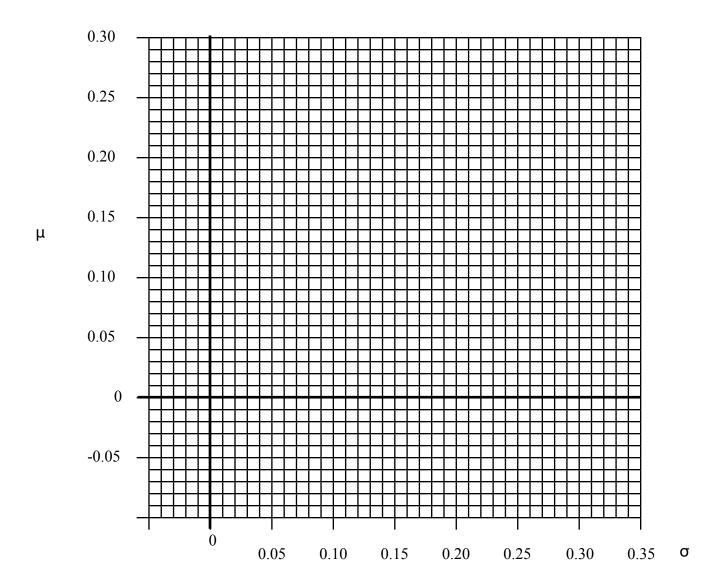
A)
$$u(x) = 10x - 4x^4$$

B)
$$u(x) = 4x^2 - 10x^4$$

C)
$$u(x) = 4\sqrt{x} - 10x$$

	nere are two investments: Investment A results in pay t B results in payoffs of 20, 10, 100, and 80, respective		
A) Suppos	se that the person's Bernoulli utility function is $u(x) =$	\sqrt{x} . Then	6 points
T	he expected utility of Investment A is		
TI	he expected utility of Investment B is		
Therefore	the investor will select (mark the correct answer)	Investment A	Investment B
B) Now su	uppose that the Bernoulli utility function is $u(x) = -1/2$	f(x). Then	6 points
	The expected utility of Investment A is		
	The expected utility of Investment B is		
Therefore	the investor will select (<i>mark the correct answer</i>)	Investment A	Investment B


Question 3: Suppose there are four states $S=\{s_1,...,s_4\}$. The probabilities of the four states are


given by 0.2, 0.6, 0.1, and 0.1, respectively.

probability	4: Suppose that asset A has a return of 20% with probability 0.5, 10% with σ 0.3 and -10% with probability 0.2. person's utility is $U(\mu,\sigma)=\mu$ -4 σ^2 . Then	8 points
	the person's utility from asset A is	
Determine	the return of a riskless asset that gives the person exactly the same utility.	
	the return of the riskless asset must be	4 points

Question 5: Asset A has a mean return of 20% and a standard deviation of 15% (i.e., μ =0.2 and σ =0.15. In addition, there is a riskless asset that has a return of 10%. Graph the efficient frontier in the grid below:

12 points

Question 7: Suppose there is a risky asset, with return 0.4 and standard deviation 0.2 and a riskless asset with return 0.1. The investor has mean variance preferences given by $G(\mu,\sigma)=\mu-0.6\sigma^2$. The person wants to find the optimal portfolio (a,1-a) where a is the fraction of wealth invested in the riskly asset and (1-a) the fraction invested in the riskless asset.

14 points

The optimal value of a is				
The mean return of the optimal portfolio is				

Question 8: Suppose there are three risky assets A, B, and C. Their returns are μ_A =0.2, μ_B =0.3, and μ_C =0.5. Their standard deviations are σ_A =0.1, σ_B =0.1, and σ_C =0.2. The correlation between the assets is zero. Determine the portfolio (a_1,a_2,a_3) that has the lowest standard deviation (i.e., the MRP).

14 points

$a_1=$	a ₂ =	a ₃ =

The portfolio's mean return is

The portfolio's standard deviation is