Question 1 Let \(p \) and \(q \) be the probabilities of \(T \) and \(L \), respectively. Then player 1 must be indifferent between \(T \) and \(B \). Thus, \(q - (1 - q) = -2q + 4(1 - q) \) which implies \(q = 5/8 = 0.625 \). The expected payoff is therefore 1/4. Player 2 must be indifferent between \(L \) and \(R \). Thus, \(-p + 2(1 - p) = p - 4(1 - p) \) which implies \(p = 3/4 = 0.75 \). The expected payoff is \(-1/4\).

Player 1 chooses \(T \) with probability \(3/4 \), and her expected payoff is \(1/4 \)

Player 2 chooses \(L \) with probability \(5/8 \), and her expected payoff is \(-1/4\).

Question 2 Player \(i \) must be indifferent between participating and not participating. The payoff from not participating is 0. Thus, \((1 - p)^{n-1}10 - c = 0\), i.e., \((1 - p)^{n-1} = c/10\). Therefore, the probability \((1 - p)^{n-1}\) that none of the other agents participates is \(1/10\).

Question 3 In the mixed strategy equilibrium, each person must be indifferent between actions 1, 2, and 3. Let \(p_i \) be the probability that the opponent chooses action \(i \). Then

- Payoff from \(a_1 = 1 \): \(2p_1 + 1.5p_2 + p_3 \).
- Payoff from \(a_1 = 2 \): \(2.5p_1 + 2p_2 \).
- Payoff from \(a_1 = 3 \): \(3p_1 \).

Since all payoffs must be the same we get \(2.5p_1 + 2p_2 = 3p_1 \) which implies \(p_1 = 4p_2 \). Further, \(2p_1 + 1.5p_2 + p_3 = 3p_1 \). Thus, \(p_1 = 4p_2 \) implies \(2.5p_2 = p_3 \).

Finally, \(p_1 + p_2 + p_3 = 1 \). Thus,

1 with probability \(8/15 \), 2 with probability \(2/15 \), 3 with probability \(1/3 \).

Question 4 The subgame starting in period 3 is a standard ultimatum game: player 2 will offer \(m'_1 = 0, m'_2 = 0 \) and player 1 will accept. Thus, in period 2 player 2 will accept any bid \(m_2 = 100 \). Therefore, in period 1 player 1 will bid \(m_1 = 0, m_2 = 100 \), which will be accepted by player 2.

Player 1’s payoff is 0 and player 2’s payoff is 100.

Question 5 In the last period of the game, agent 3 will make a bid unless \(\max\{b_1, b_2\} \geq 88 \). Thus, person 2 will bid \(b_2 = 88 \) unless \(b_1 > 78 \). Therefore,

Player \(i = 1 \) wins and bids \(b_i = 88 \).
Question 6 \[v(\{B_1, S_1\}) = 4, \ v(\{B_1, B_2, S_1\}) = 4 \ v(\{B_2, S_1\}) = 2 \]

\[v(\{B_2, S_2\}) = 2, \ v(\{B_1, B_2, S_1, S_2\}) = 7, \ v(\{S_1, S_2\}) = 0 \]

Question 7 \(x_1 \) proposes \(y_1 \), \(x_2 \) proposes \(y_1 \), and \(x_3 \) proposes \(y_3 \). Both \(x_1 \) and \(x_3 \) are matched. Unmatched \(x_2 \) proposes \(y_3 \), which is accepted. Thus, \(x_1 \) is matched to \(y_1 \), \(x_2 \) to \(y_3 \) and \(x_3 \) is now unmatched. \(x_3 \) proposes to \(y_1 \), which is accepted. Thus, \(x_2 \) is now matched to \(y_3 \) and \(x_3 \) to \(y_1 \). \(x_1 \) proposes to \(y_3 \) which is accepted. Thus, \(x_1 \) is matched to \(y_3 \), and \(x_3 \) to \(y_1 \). \(x_2 \) has not further proposals and remains unmatched.

\[x_1: y_3 \ , \ x_2: \text{unmatched} \ , \ x_3: y_1 \]

Question 8 Let \(b_2 = \alpha v_2 \). Then \(b_1 \geq b_2 \) if and only if \(v_2 < b_1/\alpha \). Thus, \(\text{Prob}(\{b_1 \geq b_2\}) = b_1/\alpha \). Player 1 therefore solves

\[\max_{b_1} \frac{b_1}{\alpha} \sqrt{v_1 - b_1}. \]

The first order condition is

\[\frac{\partial}{\partial b_1} : \frac{\sqrt{v_1 - b_1}}{\alpha} - \frac{b_1}{2\alpha \sqrt{v_1 - b_1}} = 0. \]

This implies \(2(v_1 - b_1) = b_1 \), and hence \(b_1 = (2/3)v_1 \).

\[\alpha = 2/3 \]