SOLUTIONS FOR QUIZ III (WHITE)

Question 1 Bidder A's expected payoff is

$$\Pi(b_A) = (v_A - b_A) P(\{v_B | b_B(v_B) < b_A).$$

Note that

$$P(\{v_B|b_B(v_B) < b_A) = P(\{v_B|v_B^3 < b_A) = P(\{v_B|v_B < b_A^{1/3}\}) = b_A^{1/3},$$

where the last equality follows because v_B is uniformly distributed on [0, 1]. Thus, $\Pi(b_A) = (v_A - b_A)b_A^{(1/3)}$. The first order conditions, $\frac{d}{db_A}\Pi(b_a) = 0$ yields

$$\frac{v_A - 4b_A}{3b_A^{2/3}} = 0.$$

Therefore, $v_A = 4b_A$ which implies $b_A(v_A) = (1/4)v_A$.

Question 2 The expected payoff of bidder *i* is

$$(100 - (3/4)b_i)F_{-i}(b_i) - (1/4)b_i(1 - F_{-i}(b_i)).$$

In a symmetric equilibrium $F_{-i} = F_i = F$. Therefore, we get

$$(100 - (3/4)b_i)F(b_i) - (1/4)b_i(1 - F(b_i)).$$

In a mixed strategy equilibrium, this expected payoff must be the same for all bids. Now note that at $b_i = 0$ we get $F(b_i) = 0$. Therefore the expected payoff is 0. As a consequence

$$(100 - (3/4)b_i)F(b_i) - (1/4)b_i(1 - F(b_i)) = 0.$$

Dropping the index i, this implies

$$F(b) = \frac{b}{400 - 2b}.$$

Question 3 A bids 0.5α and B bids 0.5β . Therefore A will win if and only if $\beta \le 1/3$. Therefore, A's expected payoff is

$$E[\alpha\beta - 0.5\beta|\alpha = 1/3, \beta < 1/3] = E[(1/3)\beta - 0.5\beta|\beta < (1/3)]$$

= -(1/6)E[\beta|\beta < (1/3)]
= -(1/6)(1/6) = -(1/36).