Question 1

(a) Suppose that \(p_1/p_2 = 1/3 \) and that (6, 10) is on the budget line. Then

(0, 12), (12, 8), and (36, 0)

are also on the budget line. *(Fill in the missing numbers)*

(b) See the green budget line below. The intercepts are (28, 0) and (0, 21). Since income is 162, this implies \(p_1 = 162/28 \) and \(p_2 = 162/21 \), i.e.,

\[p_1 = 5.79, \quad p_2 = 7.71 \]

You can use the grid below to help you find the answers.

![Graph showing budget line]

Question 2

The following points are on the budget line

(0, 115), (10, 65), (30, 60), and (270, 0)

(Fill in the missing numbers)

The slope of the budget line is \(-\frac{5}{4}\) when \(x_1 < 10\), and \(-\frac{1}{4}\) when \(x_1 > 10\).
Question 3 Note that $\frac{\partial u(x_1, x_2)}{\partial x_1} = x_2^2$ and $\frac{\partial u(x_1, x_2)}{\partial x_2} = 2x_1x_2$. Thus, MRS = $2x_2/x_1$. The equation of the income offer curve is therefore $x_2/(2x_1) = 2/3$, i.e., $x_2 = (4/3)x_1$.

1. Compute the income offer curve and graph it in the grid below. 6 points

2. Now suppose that the person’s income is $m = 36$. Graph the budget line in the grid below. 3 points

3. Thus, the optimal consumption is $x_1 = 6, x_2 = 8$ 3 points
Question 4 The optimal consumption is \[x_1 = 10, x_2 = 5. \] 14 points

Question 5

1. \[\frac{\partial u(x_1, x_2)}{\partial x_1} = 4x_1x_2 \] and \[\frac{\partial u(x_1, x_2)}{\partial x_2} = x_1^4. \]

Thus, \[\text{MRS} = \frac{4x_2}{x_1}, \]

6 points
2. \[\frac{\partial u(x_1, x_2)}{\partial x_1} = \frac{-1}{2}(x_1^2 + 2x_2^2)^{-3/2}(-2)(3)(x_1)^{-3} \text{ and } \frac{\partial u(x_1, x_2)}{\partial x_2} = \frac{-1}{2}(x_1^2 + 2x_2^2)^{-3/2}(-2)(x_2)^{-3}. \] Then

\[\text{MRS} = \frac{3x_2^2}{x_1^3}. \]

Question 6 The equation of the income offer curve is \(\text{MRS} = \frac{x_2}{x_1} = 9 \). Thus, \(x_2 = 3x_1 \).

The budget line equation is \(9x_1 + x_2 = 240 \). Thus, \(12x_1 = 240 \) and hence \(x_1 = 20 \) and \(x_1 = 60 \). Then the optimal consumption is \(x_1 = 20, x_2 = 60 \).

Question 7 At prices \(p_1 = 1, p_2 = 4 \) and income \(m \), the optimal consumption is on this indifference curve. Then the optimal consumption is \(x_1 = 30, x_2 = 0 \), and income is \(m = 30 \).
Question 8 His utility function is given by \(u(x_1, x_2) = 14x_1 - x_1^2 + x_2 \). Thus, \(MRS = 14 - 2x_1 \).

(a) Suppose the price of a ride is \(p = 2 \). Then \(14 - 2x_1 = 2 \). Thus, he will take \(x_1 = 6 \) rides and spend \$12 at the park. 4 points

(b) Since \(p = 0 \), we get \(0 = 14 - 2x_1 \). Thus, the person will take \(x_1 = 7 \) rides. 4 points

(c) (Difficult) The utility from not going to the park is \(m \), where \(m \) is the person’s income. Given the result from (b), the utility of going to the park is \(98 - 49 + m - F \). Thus, at the maximum \(F \) we have \(49 + m - F = m \). Hence, determine the maximum entry fee \(F \) a person with the above preferences would be willing to pay to enter the park (if the person does not pay \(F \) then he cannot enter the park and \(x_1 = 0 \)). Thus, \(F = 49 \). 4 points