Question 1

(a) Suppose that $p_1/p_2 = 2$ and that (6, 14) is on the budget line. Then

are also on the budget line. (Fill in the missing numbers)

6 points

(b) See the green budget line below. The intercepts are (18,0) and (0,27). Since income is 540, this implies $p_1 = 540/18$ and $p_2 = 540/27$, i.e.,

6 points

$$p_1=30, p_2=20$$

You can use the grid below to help you find the answers.

 x_2

Question 2 The following points are on the budget line

(Fill in the missing numbers)

8 points

The slope of the budget line is
$$-2.5$$
 when $x_1 < 10$, and $-1/4$ when $x_1 > 10$. 4 points

Question 3 Note that $\frac{\partial u(x_1,x_2)}{\partial x_1} = 2x_1x_2$ and $\frac{\partial u(x_1,x_2)}{\partial x_2} = x_1^2$. Thus, MRS = $2x_2/x_1$. The equation of the income offer curve is therefore $2x_2/x_1 = 1/2$, i.e., $x_1 = 4x_2$.

- 1. Compute the income offer curve and graph it in the grid below. 6 points
- 2. Now suppose that the person's income is m = 18. Graph the budget line in the grid below. 3 points
- 3. Thus, the optimal consumption is $x_1 = 12, x_2 = 3$

Question 4 The optimal consumption is $x_1 = 16, x_2 = 4$.

14 points

Question 5

1.
$$\frac{\partial u(x_1, x_2)}{\partial x_1} = 3x_1^2 x_2$$
 and $\frac{\partial u(x_1, x_2)}{\partial x_2} = x_1^3$.
Thus,

6 points

$$MRS = \frac{3x_2}{x_1}$$

2.
$$\frac{\partial u(x_1, x_2)}{\partial x_1} = (-1/2)(x_1^{-2} + 2x_2^{-2})^{-3/2}(-2)(x_1)^{-3}$$
 and $\frac{\partial u(x_1, x_2)}{\partial x_2} = (-1/2)(x_1^{-2} + 2x_2^{-2})^{-3/2}(-2)(2)(x_2)^{-3}$. Then
$$MRS = \frac{x_2^3}{2x_1^3}.$$

$$MRS = \frac{x_2^3}{2x_1^3}.$$

Question 6 The equation of the income offer curve is MRS = $\frac{x_2^2}{x_1^2}$ = 4. Thus, $x_2 = 2x_1$. The budget line equation is $4x_1 + x_2 = 90$. Thus, $6x_1 = 90$ and hence $x_1 = 15$ and $x_2 = 30$. Then the optimal consumption is $x_1 = 15, x_2 = 30$. 14 points

Question 7 At prices $p_1 = 1$, $p_2 = 4$ and income m, the optimal consumption is on this indifference curve. Then the optimal consumption is $x_1 = 20$, $x_2 = 0$, and

income is m = 20

12 points

Question 8 His utility function is given by $u(x_1, x_2) = 10x_1 - x_1^2 + x_2$. Thus, MRS = $10 - 2x_1$.

- (a) Suppose the price of a ride is p = 2. Then $10 2x_1 = 2$. Thus, he will take $x_1 = 4$ rides and spend 8 at the park. 4 points
- (b) Since p = 0, we get $0 = 10 2x_1$. Thus, the person will take $x_1 = 5$ rides. 4 points
- (c) (Difficult) The utility from not going to the park is m, where m is the person's income. Given the result from (b), the utility of going to the park is 50 26 + m F. Thus, at the maximum F we have 25 + m F = m. Hence, Determine the maximum entry fee F a person with the above preferences would be willing to pay to enter the park (if the person does not pay F then he cannot enter the park and $x_1 = 0$). Thus, F = 25.