Question 1

 x_2

$$p_1 = 9, p_2 = 12$$

Question 2

$$x_1 = 24, x_2 = 8.$$

2. Now suppose that the price of good 2 decreases to $p_2 = 1$. Income and the price of good 1 remain unchanged. Then optimal consumption is

$$x_1 = 4, x_2 = 12$$

Question 4

1.
$$\frac{\partial u(x_1, x_2)}{\partial x_1} = x_2^4$$
 and $\frac{\partial u(x_1, x_2)}{\partial x_2} = 4x_1x_2^3$. Thus,

$$MRS = \frac{x_2^4}{4x_1x_2^3} = \frac{x_2}{4x_1}.$$

$$MRS = \frac{x_2}{4x_1}.$$
 n

2.
$$\frac{\partial u(x_1, x_2)}{\partial x_1} = (8x_1^{-1} + x_2^{-1})^{-2} 8x_1^{-2}. \quad \frac{\partial u(x_1, x_2)}{\partial x_1} = (8x_1^{-1} + x_2^{-1})^{-2} x_2^{-2}. \text{ Thus,}$$

$$MRS = \frac{(8x_1^{-1} + x_2^{-1})^{-2} 8x_1^{-2}}{(8x_1^{-1} + x_2^{-1})^{-2} x_2^{-2}} = \frac{8x_2^2}{x_1^2}.$$

$$MRS = \frac{8x_2^2}{x_1^2}.$$

Question 5

At the optimal choice $x_1 = 5, x_2 = 15$

Question 6 $\frac{\partial u(x_1,x_2)}{\partial x_1} = 3x_1^2x_2$ and $\frac{\partial u(x_1,x_2)}{\partial x_2} = x_1^3$. Thus,

$$MRS = \frac{3x_1^2x_2}{x_1^3} = \frac{3x_2}{x_1}.$$

1. The equation of the income offer curve is $\frac{3x_2}{x_1} = 1$, i.e.,

$$x_2 = (1/3)x_1$$

2. The budget line equation is $2x_1 + 2x_2 = 400$. Thus, $(8/3)x_1 = 400$, i.e., $x_1 = 150$, and $x_1 = 50$.

$$x_1 = 150, x_2 = 50.$$

Question 7 The MRS equals the price ratio 2/4 because the optimal choice is interior.

1. She will spend all her money on good 2. Her income in the base case is 300.

$$x_1 = 0, x_2 = 75.$$

2. Now m = 150 and she will spend all income on good 1. Thus, $x_1 = 50, x_2 = 0.$

$$x_1 = 50, x_2 = 0.$$

Question 8 $\frac{\partial u(x_1,x_2)}{\partial x_1} = 100/(x_1+1)^2$ and $\frac{\partial u(x_1,x_2)}{\partial x_2} = 1$. Thus,

MRS =
$$\frac{x_2^2}{2x_1x_2} = \frac{100}{(x_1+1)^2}$$
.

(a) MRS = p_1/p_2 implies $\frac{100}{(x_1+1)^2} = 4$, i.e., $x_1 + 1 = 5$.

Joe's optimal choice of x_1 is 4

The gym's revenue (from Joe) is \$16

(b) MRS = p_1/p_2 implies $\frac{100}{(x_1+1)^2} = 1$ $(x_1+1) = 10$.

Joe's optimal choice of x_1 is 9

The gym's revenue (from Joe) is \$19

His utility from not going is 1,000 - 100 = 900. If he goes then $x_1 = 9$. He spends fee F plus 9 Dollars, thus $x_2 = 1,000 - F - 9$. Utility is therefore, 990 - F - 9. Joe is indifferent if 981 - F = 900, i.e.,

$$F = 81$$