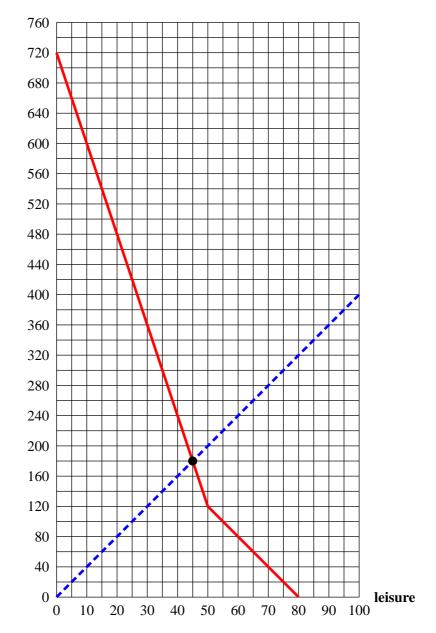
Question 1


- (a) C + 4P = 1,200. The MRS must be equal to the slope of the budget line, i.e., $-P^2/C^2 = -1/4$. Therefore $4P^2 = C^2$, i.e., 2P = C. Thus, C = 400 and P = 200.
- (b) C + 9P = 2,700. The MRS must be equal to the slope of the budget line, i.e., $-P^2/C^2 = -1/9$. Therefore $9P^2 = C^2$, i.e., 3P = C. Thus, P = 225. Her consumption therefore increases by 25 units.

Question 2

- (a) The budget line equation is 4R + c = 320. Since 4R = c, it follows that R = 40. Therefore she works 40 hours.
- (b) The budget line equation is 8R + c = 640. Since 4R = c, it follows that R = 53.33. Therefore she works 27.67 hours.

(c)

consumption

(d) Mary will therefore work 35 hours.

Question 3

- (a) The equation of the budget line is $1.15c_1 + c_2 = 21,850$ At the optimal choice $-c_2/(0.9c_1) = -1.15$. Thus, $c_2 = 1.035c_1$. Inserting this in the budget line equation yields $c_1 = 10,000$ and $c_2 = 10,350$.
- (b) He will borrow 8000 Dollars.
- (c) The answer will change. He will borrow 1,000 Dollars.
- Question 4 (a) The expected utility without the lock is $0.1\sqrt{600+0.9}\sqrt{1,000} = 30.90999$ The expected utility with the lock is $0.04\sqrt{570}+0.96\sqrt{970} = 30.85401$ Therefore he will not purchase the lock.
 - (b) Let p be the probability. Then the expected utility with the lock is $p\sqrt{570} + (1-p)\sqrt{970} = 30.90999 = 0.1\sqrt{600} + 0.9\sqrt{1,000}$ Therefore p = 0.0323, which is about 1/31.
 - (c) Without insurance, expected utility is again $0.1\sqrt{600} + 0.9\sqrt{1,000} = 30.90999$ With the insurance, it is $\sqrt{950} = 30.822$. Therefore you should not purchase the insurance
 - (d) Without the lock expected utility is $0.1\sqrt{950} + 0.9\sqrt{990} = 31.400$ With the lock expected utility is $0.04\sqrt{946} + 0.96\sqrt{986} = 31.374$. Therefore you should not get the lock.
- Question 5 If he buys y shares then $c_u = 10,000 + 2y$ and $c_d = 10,000 y$. Therefore $c_u + 2c_d = 30,000$, which implies $\frac{1}{3}c_u + \frac{2}{3}c_d = 10,000$.

The value of the option is $\frac{1}{3}(3) + \frac{2}{3}(0)$, i.e., 1 Dollar.

Question 6 The income offer curve is given by $x_2/x_1 = 1/2$, i.e., $x_1 = 2x_2$. The utility of (20, 90) is u(20, 90) = 1,800. Thus, $x_1x_2 = 1,800$. Solving the two equations for x_1 and x_2 yields $x_1 = 60, x_2 = 30$. The cost of this consumption is 120. The person needs m = 120.