Question 1 Because good 2 is less expensive, $x_1 = 0$. The value of his endowment is 24 + 10 = 34. Because $p_2 = 1$,

consumption

(a) At the optimal choice $-\frac{x_2}{0.9x_1} = -(1+r) = -1.1$, which implies $x_2 = 0.99x_1$. The budget line equation is $1.1x_1 + x_2 = 44,000 + 40,227 = 84,227$. Therefore,

George will spend \$40,300 this year.

(b) At the optimal choice $-\frac{x_2}{0.9x_1} = -(1+r) = -1.2$, which implies $x_2 = 1.08x_1$. The budget line equation is $1.2x_1 + x_2 = 50,400 + 43,080 = 93,480$. Therefore, $x_1 = 41,000$.

George will spend \$41,000 this year.

10 points

Question 7 $c_g = 1.6y + (1,750 - y)0.9 = 0.7y + 1,575$ and $c_b = 0.6y + (1,750 - y)1.1 = 1,925 - 0.5y$. Eliminating y, these equations can be combined to the budget line equation $5c_g + 7c_b = 21,350$. Expected utility is given by

 $u(c_g, c_b) = 0.4 \ln(c_g) + 0.6 \ln(c_b)$. Therefore, MRS $= -\frac{0.4c_b}{0.6c_g}$. At the optimal choice, $-\frac{0.4c_b}{0.6c_g} = \frac{5}{7}$. Therefore, $28c_b = 30c_g$. This, and the budget line equation yields, $c_g = 1,708$ and $c_b = 1,830$. Using $c_g = 0.7y + 1,575$ or $c_b = 1,925 - 0.5y$ we can now determine y. Therefore,

Susan will invest \$190 in fund *A*. Susan will invest \$1,560 in fund *B*.

Question 8 Nick's expected utility is $0.2(-1) + 0.1(-\frac{1}{4}) + 0.7(-10)$. Therefore,

Nick's expected utility from playing the lottery is -7.225

The maximum he should pay is the certainty equivalent, i.e., we must find the value x at which $-\frac{100}{x} = -7.225$. Thus, 7.225x = 100, which implies

Nick should pay at most \$13.84 to play the lottery.

Question 9 We must have $\sqrt{10,000} = (1/3)\sqrt{3,600} + (2/3)\sqrt{y+10,000}$. Therefore,

 $100 = 20 + (2/3)\sqrt{10,000 + y}$. Therefore y = 4,400