All questions must be answered on this test form!
For each question you must show your work and (or) provide a clear argument.
All graphs must be accurate to get credit.
If you need scratch paper, use the last page or the back of the form.

Question 1

1. Suppose there are only two goods. If Joe spends all of his income then he can afford 12 units of good 1 and 6 units of good 2. Furthermore, if he wants to purchase 2 units of good 1 and still remain on his budget line he must give up 3 units of good 2. Graph the budget line in the grid above.

2. Suppose that Joe’s income is \(m = 96 \). Then

\[
p_1 = \quad , \quad p_2 =
\]

5 points
Question 2 Suppose that there are two goods. The price of each unit of good 2 is 2 Dollars. The price of good 1 depends on the quantity purchased. That is, if a person buys up to 5 units, then the price of each unit is 4 Dollars. If the person buys more than 5 units, then the first 5 units are still priced at 4 Dollars per unit, while each additional unit is priced at 1 Dollar per unit. Suppose that the person’s income is \(m = 50 \).

10 points

1. Graph the budget line using the grid below.
2. Clearly indicate the budget set by shading it.
Question 3 Income offer curves for different price ratios are depicted below.

1. Suppose that income is $m = 58$ and prices are $p_1 = p_2 = 2$. Then optimal consumption is

\[x_1 = \quad x_2 = \]

2. Now suppose that the price of good 2 decreases to $p_2 = 1$. Income and the price of good 1 remain unchanged. Then optimal consumption is

\[x_1 = \quad x_2 = \]
Question 4

1. A utility function is given by \(u(x_1, x_2) = x_1^3 x_2 \). Then

\[
\text{MRS} = \frac{\partial u}{\partial x_1} / \frac{\partial u}{\partial x_2} = \frac{3x_1^2}{x_2}.
\]

2. Now suppose that the utility function is \(u(x_1, x_2) = (x_1^{-1} + 2x_2^{-1})^{-1} \). Then

\[
\text{MRS} = \frac{\partial u}{\partial x_1} / \frac{\partial u}{\partial x_2} = \frac{2}{x_1^2} / \frac{1}{x_2^2} \cdot 2.
\]
Question 5 A consumer’s utility function is given by \(u(x_1, x_2) = \min\{2x_1, 3x_2\} \). Assume that prices are \(p_1 = 1 \), \(p_2 = 3 \) and income is \(I = 27 \).

(a) Graph the budget line in the grid below.
(b) Graph at least three indifference curves.
(c) Graphically solve for the optimal consumption choice.

At the optimal choice \(x_1 = \), \(x_2 = \)
Question 6 A utility function is given by $u(x_1, x_2) = x_1 x_2^2$. Prices are $p_1 = 2$, $p_2 = 2$.

1. The equation of the income offer curve is \[\frac{x_2}{x_1} = \frac{2}{600}. \] \[x_2 = \]

2. Suppose that income is $m = 600$. Then optimal consumption is \[x_1 = \quad , x_2 = \quad . \]
Question 7 Mary consumes only two goods and she has perfect substitutes preferences for them. Currently prices are $p_1 = 2$ and $p_2 = 4$, and she consumes 10 units of each good. We refer to this as the base case.

1. Suppose that the price of good 2 increases to $p_2 = 5$ everything else remains the same as in the base case. Then her optimal consumption is

\[
\begin{align*}
 x_1 = & \quad , x_2 = \\
\end{align*}
\]

Note: There is enough information to solve this question.

2. Now suppose that p_1 increases to $p_1 = 4$, p_2 increases to $p_2 = 6$ and income increases by 50% compared to the base case.

Then her optimal consumption is

\[
\begin{align*}
 x_1 = & \quad , x_2 = \\
\end{align*}
\]

Note: There is enough information to solve this question.
Question 8 Joe’s utility function is given by \(u(x_1, x_2) = x_2 - 16(x_1 + 1)^{-1} \), where \(x_1 \) is the number of hours he spends in a gym and \(x_2 \) is money he spends on everything else. His income is \(m = 1,000 \). The price of good 2 is \(p_2 = 1 \)

(a) Suppose that the gym charges 4 Dollars per hour, i.e., \(p_1 = 4 \). Then

- Joe’s optimal choice of \(x_1 \) is
- The gym’s revenue (from Joe) is

(b) Now suppose that the gym charges a membership fee of 4 Dollars (this membership reduces income \(m \) by 4 Dollars), but with the membership the hourly price is now \(p_1 = 1 \). Then

- Joe’s optimal choice of \(x_1 \) is
- The gym’s revenue (from Joe) is $

The maximum membership fee \(F \) the gym can charge, at which Joe is just indifferent between going to the gym and not going to gym (not going means that \(x_1 = 0 \) and Joe does not pay the fee) is given by

\[F = \]