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1 Introduction

There are two main ways for troubled firms to resolve financial distress: liquidation and
renegotiation.1 When a distressed firm is liquidated, it is shut down and any remaining
assets are distributed to creditors. When renegotiation occurs, agents use information ac-
quired after the contract was signed to modify the initial agreement if it is mutually ben-
eficial to do so. We consider a multi-stage game of imperfect information where both
liquidation and renegotiation are possible and analyze two questions: What types of fi-
nancial contracts will agents write when both ways of resolving distress are possible? In
what sense are these contracts optimal (i.e., efficient)? There are large literatures on bank-
ruptcy, renegotiation and concepts of efficiency when information is imperfect. We begin
by making clear the precise relationship between this paper and recent work on liquidation
and renegotiation. We defer to Section 6 a broader discussion of efficiency when agents’
actions reveal information.

The paper builds on Krasa and Villamil [12], which proposes a costly enforcement
game where a firm and an investor write a contract to facilitate production.2 The firm
obtains funds from the investor in exchange for a repayment promise. After investment,
the firm privately observes the return and chooses whether or not to repay. If the firm does
not repay, agents have the opportunity to renegotiate the contract. Otherwise, the investor
can seek costly enforcement of the promised payment (and liquidation of the firm). We
generalize Krasa and Villamil [12] along two dimensions.

1. Because agents are rational, the possibility of renegotiation is foreseen ex-ante. En-
forcement will therefore occur only if there are no benefits from renegotiation, i.e.,
the contract is renegotiation proof. Krasa and Villamil specify a sufficient condition
for contracts to be renegotiation proof, but do not show how the constraint is derived
from a game. We introduce a solution concept, coalitional perfect Bayesian Nash
equilibrium (cPBNE), which derives this requirement as a necessary and sufficient
condition for renegotiation proofness.

2. Krasa and Villamil prove that the entrepreneur’s default and investor’s enforcement
decisions are both deterministic, i.e., the firm’s repayment decision is not random
given the observed return and the investor’s enforcement decision depends solely
on the amount repaid. Examples of deterministic contracts include debt (or simple

1There are several different notions of bankruptcy. Liquidation is a formal legal process (e.g., Chapter 7 of
the U. S. Bankruptcy Code) and renegotiation may occur either as a court supervised “workout” or a private
agreement. The key idea in renegotiation is that agents will exploit any mutually beneficial improvements that
are common knowledge.

2There are two key differences between the enforcement model and standard contracting models (e.g., Gale
and Hellwig [4] or Williamson [16]): costly enforcement is a choice variable and there is limited commitment
to the ex ante contract.
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debt), which are contracts where the debtor announces default if and only if the re-
quired payment cannot be met and the creditor requests enforcement if and only if
such a default occurs. Krasa and Villamil further prove that if simple debt is renego-
tiation proof, it is the optimal contract because it minimizes the incidence of default.3

Sharma [15] considers the case where simple debt contracts need not be renegotia-
tion proof. He constructs an example in which simple debt is not optimal because a
tradeoff exists between minimizing default and weakening the renegotiation proof-
ness constraint. This paper provides a complete analysis of the structure of optimal
contracts in this setting.

In order to provide a game-theoretic foundation for Krasa and Villamil’s [12] renegoti-
ation proofness condition, we introduce the concept of a coalitional perfect Bayesian Nash
equilibrium (cPBNE). Formally, a cPBNE of our two-player game is a PBNE in which both
agents cannot benefit from deviating at any information set. There are three time periods,
t = 0,1,2, in which agents could jointly deviate. Absence of such deviations att = 0
and t = 1 corresponds to the requirement that the decision rules are ex-ante and interim
efficient, respectively. Att = 2, we show that it is not possible for full information revela-
tion to occur because this would destroy the investor’s incentive to enforce. This, in turn,
would give the entrepreneur the incentive to lie and make the lowest possible payment.
Thus the absence of improvements att = 2 does not correspond to ex-post efficiency, but
rather to a second interim period in which the investor has updated his prior using informa-
tion that was endogenously and optimally revealed by the entrepreneur’s payment action
at t = 1. Forges [3] refers to this as posterior efficiency. Intuitively, posterior efficiency
means that agents have no incentive to renegotiate the contract given the information that
was revealed earlier in the game. We provide an extended discussion of efficiency concepts
under incomplete information in Section 6.

Our coalitional solution concept has both cooperative and non-cooperative aspects. Von
Neumann and Morgenstern’s classic book considered both approaches to games, and com-
mitment was central to the dichotomy. Games in which agents cannot make commitments
to coordinate their strategies are noncooperative games. Analogously, games in which play-
ers can commit to coordinate strategies are cooperative. The strategic or non-cooperative
approach requires a complete description of the rules of the game so that the strategies
available to the players can be analyzed, and the goal is to find equilibrium strategies for
each player. In contrast, cooperative games apply to situations where players can negotiate
before the game is played and that commitments made in these negotiations are binding.
In this case the strategies are not the main object of interest, but rather the determinants of
the set of feasible contracts. Because limited commitment is central to financial contract-

3Simple debt corresponds to a standard loan contract. For non-bankruptcy realizations the borrower makes
a fixed repayment (principal plus interest) that is not contingent on the realized state of nature. When bank-
ruptcy occurs, the creditor receives all assets that can be legally transferred.
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ing problems (i.e., we take into account agents’ opportunities to deviate at later stages of
the game from strategies specified at the outset), elements from both cooperative and non-
cooperative game theory exist. For example, information revelation by the entrepreneur is
non-cooperative, but the selection of the enforceable contract is cooperative and efficient
in a sense we will make precise. See the discussion in Section 2.4.

There has been increasing interest in applying cooperative game theory to models with
differential information.4 With the exception of Ichiishi and Sertel [8], the papers in this
literature consider static exchange economies where information is exogenously revealed
to agents in an interim period but agents cannot revise their choices. In contrast, we con-
sider a dynamic model where att = 2 the investor uses the information revealed by the
entrepreneur’s payment decision att = 1 to update his belief. Thus, information revelation
is endogenous (but not complete) in our model. Our endogenous information revelation
differs from learning in differential information economies in two main respects (see, for
example, Koutsougeras and Yannelis [10]). First, in these learning models information is
exogenous (i.e., it is not revealed optimally by agents’ actions as part of a PBNE as in our
model). Second, private information may be fully revealed in the limit. In contrast, it is not
possible to fully reveal all private information in our model because this would destroy the
investor’s incentive to enforce, thus unravelling the equilibrium as explained above.

In order to make clear the relationship between our model and the large literature on
economies with differential information, we callt = 0 the (standard) ex ante period, but
augment the notion of the interim period. We call periodt = 1 the exogenous interim
period because information is privately revealed to the entrepreneur (i.e., the state). After
the entrepreneur privately observes the state, he has the opportunity to make a payment
to the investor by placing “money on the table,” if it is optimal to do so. This payment
reveals information about the state to the investor, which allows the investor to update his
belief in periodt = 2. We call this the endogenous interim period because the investor
uses the information that was optimally revealed (as part of a PBNE) by the entrepreneur’s
payment. Given the updated belief, the investor then decides whether it is optimal to retain
only the money on the table (if any) or to proceed with costly enforcement.

2 The Model

2.1 Timing of Decisions

Consider a three period economy with a risk-neutral investor and entrepreneur, and a court
that can enforce contracts if requested to do so. The investor is endowed with the input that

4See Yannelis [17] for an early contribution. Also, Koutsougeras and Yannelis [9] analyze the core and
Krasa and Yannelis [13], [14] analyze the Shapley value in economies with differential information. They
propose the respective solution concepts as alternatives to the rational expectations equilibrium.
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is essential for production but no technology, and the entrepreneur owns the production
technology but has no input. One unit of input is required to produce the output, which is
described by a random variable with finitely many realizationsx ∈ X = {x, . . . , x̄} ⊂ R+.
Ex-ante the agents have a common priorβ(.) over X with β(x) > 0, and the investor and
entrepreneur value only this final period output.5 The timing of events is as follows:

t=0 (ex ante): To produce, the entrepreneur and investor must trade. This is done by spec-
ifying an enforceable loan contract`(x, v) ≥ 0, which is a payment schedule with
statex determined by the court att = 2 and a paymentv ≥ 0 made by the entrepre-
neur att = 1. If the entrepreneur and investor cannot agree on a payment schedule,
no investment occurs and each agent receives a zero reservation utility.

t=1 (exogenous interim): The entrepreneur, but not the investor, privately observes output
realizationx and selects a paymentv ≥ 0 that cannot be retracted. Paymentv is
not enforceable by the court (though the enforceable payment`(·) depends onv).
Because it is not enforceable, we refer tov as a voluntary payment.

t=2 (endogenous interim): The investor chooses whether to request costly enforcement
by the court. If no enforcement is requested, the investor’s payoff isv and the entre-
preneur’s payoff isx − v. If enforcement is requested, the investor pays costc, the
court determines the true statex, and the court enforces payment`(x, v) if it is in
the cone of “fair payments” specified in definition 2 below. With enforcement, the
investor and entrepreneur respective payoffs arev+ `(x, v)− c andx− v− `(x, v).

2.2 Definition of the Perfect Bayesian Nash Equilibrium

Given contract̀ (x, v), the entrepreneur’s payment decision (and the information it reveals)
and the investor’s enforcement probabilityev must fulfill equilibrium restrictions. The
entrepreneur’s paymentv must be chosen optimally, the investor’s enforcement decision
must be chosen optimally, and beliefβ ′v must be derived by Bayes’ rule. We formalize this
idea in definition 1 below. We allow the investor and the entrepreneur to randomize over
actions, if it is optimal to do so. The entrepreneur’s choice of paymentv is described by
strategyvx. For simplicity of exposition we assume that these paymentsv are restricted to
a countable setV ,6 wherevx(v) is the probability that paymentv is chosen, given that the
entrepreneur observes realizationx. The investor knowsvx, the rule that the entrepreneur
uses to choose paymentv, and uses it to update his prior fromβ to β ′v. Finally, the investor
selects a probability of enforcement,ev, given paymentv from the entrepreneur. Thus,vx

andev are behavioral strategies of the game described in section 2.1.

5For interesting recent extensions to heterogeneous beliefs, see Carlier and Renou [1] and [2].
6All results extend to the case wherev is any non-negative payment.
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Figure 1: Feasible Bankruptcy Payments

We require thatvx, ev, β andβ ′v are a perfect Bayesian Nash equilibrium (PBNE),
which is defined as follows.

Definition 1 {vx,ev, β, β
′
v} is a perfect Bayesian Nash equilibrium (PBNE) in behavioral

strategies for the game given by`(x, v) if and only if

1. vx solvesmaxvx x −∑v∈V

(
v + ev`(x, v)

)
vx(v);

2. ev solvesmaxev v +
∑

x∈X ev
(
`(x, v)− c

)
β ′v(x);

3. β ′v(x) = vx(v)β(x)∑
y∈X vy(v)β(y)

if the denominator is non-zero. Otherwise,βv is an arbitrary

probability on{x ∈ X|x ≥ v}.

An important feature implied by a PBNE is that it builds in “incentive compatibility.”
By this we mean that the entrepreneur’s paymentv is chosen optimally via condition 1 of
definition 1. As we shall see, it is not optimal for the entrepreneur to reveal all information.
The reason is that condition 2 of definition 1 specifies that the investor’s enforcement choice
must also be optimal. If all information were revealed, the investor would have no incentive
to enforce att = 2. This, in turn, would imply that the entrepreneur would not reveal
information truthfully, but would instead announce the realization that results in the least
payment.

2.3 Fair Enforcement

The court’s role in this model is to enforce payments, when requested. Rather than me-
chanically enforcing any payment that is specified, courts typically are concerned with the
ex-post fairness of the outcome. One way to impose fairness is to endow the court with a
concave utility functionu(πE, πI ), whereπE is the entrepreneur’s payment andπI is the
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investor’s payment. We requireu to be homothetic. Thus, fairness is not linked to the total
surplus available for distribution. If thet = 1 payment isv and enforcement is requested,
then the court solves maxπE,πI u(πE, πI ) s.t.πE+πI = x−v. The solution of this problem
is of the formπI = η(x−v), whereη ≤ η ≤ η̄, i.e., the payment is in the cone, as indicated
in figure 1.7 This follows from the fact that when preferences are homothetic, the wealth
expansion path is a straight line for strictly concave preferences and a cone for concave
preferences. When the wealth expansion path is a straight line, contracting parties have no
discretion in setting payments because`(x, v) = η(x−v). However, in real life we observe
a reasonable amount of discretion, which is consistent with preferences that are not strictly
concave. Figure 1 shows that by an appropriate choice of`, any payment between̄η(x−v)
andη(x − v) in the cone can be obtained. The only case in which the payment need not
be in the fair cone is if the investor has given up all claims against the entrepreneur and the
court therefore has no authority to enforce the contract, i.e., if`(·, v) ≡ 0.

This leads to the following definition.

Definition 2 Payment functioǹ is fair if and only if eitherη(x−v) ≤ `(x, v) ≤ η̄(x−v),
for all x ∈ X or `(·, v) ≡ 0.

Throughout the paper, we assume that 0< η ≤ η̄ < 1.

2.4 The Coalitional Perfect Bayesian Nash Equilibrium

We now extend the definition of a PBNE to allow for coalitional deviations. As discussed
in Krasa and Villamil [12], in a standard (not coalitional) PBNE it may be mutually ben-
eficial for agents to alter the contract. If this occurs at a stage at which some information
has been revealed, such a deviation is commonly referred to as renegotiation. Krasa and
Villamil [12] use a non-cooperative framework and impose a renegotiation proofness con-
straint on the set of solutions. In contrast, we adopt a framework which has both cooper-
ative and non-cooperative elements. The cooperative solution concept that we introduce
solely imposes that agents take advantage ofmutually beneficialdeviations that arecom-
mon knowledge,and does not depend on the order of moves in the game.8 At t = 0 the
contract choice is individually rational and ex-ante efficient (i.e., cooperative), and att = 1
andt = 2 agents can cooperatively change the continuation contract. In addition, at time
t = 1 paymentv is chosen by strategyvx as part of a non-cooperative PBNE, and att = 2
enforcement choiceev is non-cooperative (see conditions 1 and 2 in definition 1).

7The cone structure is important for applications of the model. For example, Krasa, Sharma and Vil-
lamil [11] use the cone to analyze how the amount of debtor/creditor protection in a legal code affects the
interest rate in a loan contract and the default probability.

8In other words, the solution concept does not depend on the investor’s bargaining power, because improve-
ments must be mutually beneficial. Further, our approach does not impose a particular game form that induces
strategic transfer of information. See footnote 10.

6



Coalitional deviations can occur in each of the three time periodst = 0,1,2. The
possibility to deviate is foreseen by the agents, hence agents’ choices are time consistent. In
other words, an unimprovable contract at timet is a contract that cannot be improved upon
by any other time consistent contract.9 Incorporating time consistency into the definition
of improvability automatically leads to a recursive definition, which we now provide.

Definition 3 {`(x, v),vx,ev, β, β
′
v} is a cPBNE if and only if

1. {vx,ev, β, β
′
v} is a PBNE for the game given by`(x, v).

2. {`(x, v),ev, β ′v} is unimprovable att = 2 for anyv that occurs with positive proba-
bility, i.e., nov exists withvx(v) > 0 for somex ∈ X and { ˜̀(x, v), ṽ, ẽv, β ′v} such
that

x − ṽ − ẽv`(x, v) ≥ x − v − ev`(x, v) for β ′v a.e.x∑

x∈X

ṽ + ẽv(`(x, v)− c)β ′v(x) ≥
∑

x∈X

v + ev(`(x, v)− c)β ′v(x)

where at least one inequality is strict.

3. {`(x, v),vx,ev, β, β
′
v} is unimprovable att = 1, i.e., no{ ˜̀(x, v), ṽx, ẽv, β, β̃

′
v}

exists where conditions 1 and 2 are satisfied,˜̀ is fair, and both parties are better off
in the exogenous interim period, i.e.,

∑

v∈V

(
x − v − ẽv ˜̀(x, v)

)
ṽx(v) ≥

∑

v∈V

(
x − v − ev`(x, v)

)
vx(v), for all x ∈ X

∑

x∈X

∑

v∈V

(
v + ẽv( ˜̀(x, v)− c)

)
ṽx(v)β(x) ≥

∑

x∈X

∑

v∈V

(
v + ev(`(x, v)− c)

)
vx(v)β(x).

where at least one inequality is strict.

4. {`(x, v),vx,ev, β, β
′
v} is unimprovable ex-ante, i.e., no{ ˜̀(x, v), ṽx, ẽv, β, β̃

′
v} ex-

ists where conditions 1, 2, and 3 are satisfied,˜̀ is fair, and both parties are better off
ex ante, i.e.,
∑

x∈X

∑

v∈V

(
x − v − ẽv ˜̀(x, v)

)
ṽx(v)β(x) ≥

∑

x∈X

∑

v∈V

(
x − v − ev`(x, v)

)
vx(v)β(x)

∑

x∈X

∑

v∈V

(
v + ẽv( ˜̀(x, v)− c)

)
ṽx(v)β(x) ≥

∑

x∈X

∑

v∈V

(
v + ev(`(x, v)− c)

)
vx(v)β(x).

where at least one inequality is strict.

9A contract which is unimprovable does not admit a mutually beneficial deviation.
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Conditions 2, 3, and 4 of definition 3 consider coalitional deviations in each period:
Condition 2 specifies that in the final period, agents cannot improve upon the status quo

given their updated information. The entrepreneur knowsx and the investor’s information
is summarized by the updated priorβ ′v. A coalitional deviation is possible if the alternative
contract makes the investor better off with respect to beliefβ ′v and if the entrepreneur is
better off in all statesx that cannot be excluded given paymentv, i.e., all statesx with
β ′v(x) > 0.10 Also, if a mutually beneficial deviation{ ˜̀(x, v), ṽ, ẽv, β ′v} exists att = 2,
then one also exists in which̃ev = 0.

Condition 3 specifies that no coalitional improvement exists att = 1 when the en-
trepreneur knows realizationx, but no information has yet been revealed to the investor.
Because any mutually beneficial deviation att = 1 must fulfill conditions 1 and 2, the
entrepreneur’s paymentv and the enforcement decision must be optimal. Moreover, the
deviation att = 1 should not admit a further deviation att = 2. The fact that future
deviations are foreseen is crucial in order to get existence of equilibria in our model.

Finally, condition 4 is similar to condition 3 except that it uses ex-ante instead of interim
expected utility. It is easy to see that condition 4 is more stringent than condition 3, i.e., any
deviation that makes agents better off at the interim, also makes agents better off ex-ante.11

3 Characterization of Equilibria

The arguments proceed as follows. Lemma 1 shows that voluntary payments in any con-
tract associated with a cPBNE must be lower than all possible realizations ofx. If not,
for the relevant realizations ofx the firm could improve its outcome by reducing the vol-
untary payment. Lemma 2 shows that a contract is unimprovable att = 2 if and only if
the investor’s expected gain from enforcement must be at least the minimum that can be
enforced on the firm. If the investor’s net gain from enforcement were always less than
the entrepreneur’s loss, it would be mutually advantageous to deviate. The entrepreneur
could bribe the investor with a higher payment to forestall enforcement. We next show
that at a cPBNE enforcement is deterministic rather than stochastic and satisfies a reser-
vation value property: Voluntary payments below some thresholdv̄ trigger enforcement
with probability 1, and those above lead to enforcement with probability 0. Lemma 3 then
shows that the entrepreneur’s best response is to select one of two voluntary payments 0 or

10 We do not consider alternative contracts that improve the entrepreneur only in some statex but make him
worse off in a statey with β ′(y) > 0 (in our model coalitional improvement must be common knowledge).
In order to consider deviations that improve only in some states, some communication would be necessary
between the parties in order to adopt the alternative contract (e.g., voting). This would require an additional
information set in the game tree.

11This reflects the Holmström and Myerson [7] classic result that ex-ante efficiency implies interim effi-
ciency.

8



v̄. Lemma 4 shows that it may be optimal to reduce payments in the lowest state to prevent
the entrepreneur from trying to bribe the investor to forgo enforcement.

Lemma 1 Let {`(x, v),vx,ev, β, β
′
x} be a cPBNE. Thenv < x for all x ∈ X andv ∈ V

with vx(v) > 0.

Proof. Suppose by way of contradiction thatv ≥ x for somex and that the entrepreneur
paysv in statex. By feasibilityv = x. The entrepreneur’s payoff is therefore zero. Instead,
if the entrepreneur were to payx − ε, whereε > 0 and small, then the payoff would be
at leastηε. Becauseη > 0, the payoff would be strictly increased. This contradicts
condition 1 of definition 1.

Lemma 2 Let{vx,ev, β, β
′
v} be a PBNE. Then{`(x, v),ev, β ′v} does not admit a mutually

beneficial deviation att = 2 for anyv with ev > 0 if and only if
∑

x∈X

`(x, v)β ′v(x)− c ≥ min
x∈X,β ′v(x)>0

`(x, v). (1)

Proof. We first prove sufficiency. Assume that (1) holds but that{`(x, v),ev, β ′v} admits a
mutually beneficial deviation att = 2. If ev = 0 for all v, then it is easy to see that there is
no mutually beneficial deviation. It must be the case that there existsv such thatev > 0.

We now show thatev = 1. The investor’s continuation payoff from enforcement is
given by the left-hand side of (1). Nextη(x−v) > 0, by Lemma 1, and the right-hand side
of (1) is strictly positive. Thereforeev = 1.

Because the contract admits a mutually beneficial deviation att = 2, there exists̃v
such that

ṽ ≤ v + `(x, v), ∀x : β ′v(x) > 0.

Otherwise the entrepreneur would be worse off in one of the states. Therefore,

ṽ ≤ v + min
x∈X, β ′v(x)>0

`(x, v). (2)

Further, the investor is strictly better off, i.e.,

v +
∑

x∈X

(`(x, v)− c)β ′v(x) < ṽ (3)

Inequalities (2) and (3) contradict (1). This completes the sufficiency part of the argument.
We now prove that (1) is necessary. Assume by way of contradiction that there exists

{`(x, v),ev, β ′v}, which does not allow a coalitional deviation att = 2 but violates (1) for
somev. Let

ṽ = v + ev

[
min

x∈X, β ′v(x)>0
`(x, v)

]
.
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Clearly the investor is strictly better off asev > 0. The entrepreneur is (weakly) better off.
Therefore{`(x, v),ev, β ′v} admits a mutually beneficial deviation att = 2, a contradiction.

Lemma 2 implies that enforcement is deterministic.

Corollary 1 Let {`(x, v),vx,ev, β, β
′
v} be a cPBNE. Thenev is either 0 or 1 for allv that

occur with positive probability, i.e.,vx(v) > 0 for somex ∈ X.

Proof. Assume thatev > 0. Lemma 1 implies that the right-hand side of (2) is strictly
positive. Therefore, the investor’s payoff from enforcement is strictly positive. In contrast
the payoff from not enforcing is 0. Therefore,ev = 1.

Lemma 3 Let {`(x, v),vx,ev, β, β
′
v} be a cPBNE. Then there exists an alternative payoff

equivalent cPBNE{ ˜̀(x, v), ṽx, ẽv, β, β̃
′
v} such that the following properties are satisfied:

1. At most the two payments0 and v̄ occur with positive probability, i.e,̃vx(v) = 1
only if eitherv = 0 or v = v̄.

2. Enforcement takes place only ifv < v̄, i.e.,ẽv = 1 if v < v̄ andẽv = 0 if v ≥ v̄.

Proof. We first prove 2. Let̂v be some payment which occurs with positive probability
from an ex ante perspective and which is followed by no enforcement, i.e.,vx(v̂) > 0 for
somex ∈ X andev̂ = 0. Condition 1 of definition 1 then implies thatvx = 0 for all
v > v̂ irrespective of the value ofev. Hence without loss of payoff for any agent we can
setev = 0 for all v > v̂. If v̂ = 0, then the lemma is true. So letv̂ > 0 and considerv < v̂.
By Corollary 1,ev is either 0 or 1. Ifev = 0, then condition 1 of definition 1 implies that
vx(v̂) = 0, a contradiction. So,ev = 1. Let v̄ = v̂. Thus, there is at most one payment
v̄ > 0 such thatvx(v̄) > 0 andev̄ = 0.

We now prove 1. Ifv̄ = 0, the lemma is true, so let̄v > 0. Consider all payments
v < v̄ and redefine for eachx

˜̀(x,0) = v + `(x, v) for somev such thatvx(v) > 0; (4)

˜̀(x,0) = max`(x, v) if vx(v) = 0 for all v < v̄; (5)

ṽx(0) =
∑

v<v̄

vx(v). (6)

Because of statement 2 of the lemma and corollary 1,ẽ0 = 1. Since for allv < v̄ andṽ < v̄

over which the entrepreneur is indifferent we havev + `(x, v) = ṽ + `(x, ṽ) = ˜̀(x,0), it

10



follows that (4) and (5) are well defined and the payoffs of the lender and entrepreneur are
not affected by the reconstruction of the contract. Hence,ṽx(0) is optimal.

To show that˜̀(x,0) is feasible, note that optimality implies that for allv < v̄ andx
such thatvx(v) > 0 we havev + `(x, v) ≤ η̄x. By definitionη(x − v) ≤ `(x, v). This

impliesηx ≤ v + `(x, v). Hence,ηx ≤ ˜̀(x,0) ≤ η̄x.

We now prove that{ṽx, ẽv, β, β̃
′
v} does not admit a mutually beneficial deviation at

t = 2. Because the original contract{vx,ev, β, β
′
v} does not admit a mutually beneficial

deviation, condition 1 of lemma 2 must hold. This, and 3 of definition 1 imply
∑

x∈X

`(x, v)vx(v)β(x) ≥
[

min
x∈X,β ′v(x)>0

`(x, v)+ c
]∑

x∈X

vx(v)β(x),

for all v such thatvx(v) > 0 andv < v̄. Therefore
∑

x∈X

[v + `(x, v)]vx(v)β(x) ≥
[
v + min

x∈X,β ′v(x)>0
`(x, v)+ c

]∑

x∈X

vx(v)β(x).

This implies
∑

v<v̄,vx(v)>0

∑

x∈X

[
v+`(x, v)

]
vx(v)β(x) ≥

∑

v<v̄,vx(v)>0

[
v+ min

x∈X,β ′v(x)>0
`(x, v)+c

]∑

x∈X

vx(v)β(x).

This implies
∑

x∈X

˜̀(x,0)ṽx(0)β(x) ≥
∑

v<v̄,vx(v)>0

[
min

x∈X,β ′v(x)>0
(v + `(x, v)+ c)

]∑

x∈X

ṽx(0)β(x).

The right hand side equals
[

min
x∈X,β̃ ′0(x)>0

˜̀(x,0)+ c
]∑

x∈X

ṽx(0)β(x).

Finally, this implies
∑

x∈X

˜̀(x,0)β̃ ′v(0) ≥ min
x∈X,β̃(0)>0

˜̀(x,0)+ c. (7)

Therefore, Lemma 2 implies that{ṽx, ẽv, β, β̃
′
v} does not admit a mutually beneficial de-

viation att = 2.
By Lemma 1 the right hand side of (7) is strictly positive and hencee0 = 1 is optimal.

As a consequence of Lemma 3, it sufficient to consider strategiesvx for which at most
two payments occur with positive probability. If paymentv̄ is made, then no enforcement
occurs. Thus, only payments̀(·,0) matter. Moreover,vx(0) is now the probability that
the entrepreneur does not pay, i.e., the default probability.

We will use the following assumption to simplify the analysis of the game.
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Assumption 1 β(x) ≤ β(x), ∀x ≤ η̄

η
x.

If x is close to 0, then assumption 1 imposes no restriction on the probability distribution. If
the probabilitiesβ(x) are increasing, then assumption 1 holds by default. Ifβ(x) increases
but then decreases, as long asη is not too small, assumption 1 also holds.

The next lemma shows that the right-hand side of (1) is minimized atx = x.

Lemma 4 Let assumption 1 be satisfied. Let{vx,ev, β, β
′
v} be a cPBNE that satisfies

(1). Then there exists an alternative cPBNE{ṽx, ẽv, β, β̃
′
v} which gives the same expected

payoffs to the investor and the entrepreneur, and for whichx solvesminx∈X,β̃ ′v(x)>0
˜̀(x,0).

Proof. Because of Lemma 3 we can assume that only paymentv = 0 leads to enforcement.
Now assume that there existx̂ > x such that̀ (x,0) > `(x̂,0). Then`(x,0) ≤ η̄x and
`(x̂,0) ≥ ηx̂ implies η̄x ≥ ηx̂. Assumption 1 implies thatβ(x) ≤ β(x̂). Now let

˜̀(x,0) =





`(x̂,0) if x = x;
β(x)(`(x,0)− `(x̂,0))

β(x̂)
+ `(x̂,0) if x = x̂;

`(x,0) otherwise.

Note that ˜̀(x,0) is in the fair cone. Forx 6= x, x̂ this is immediate. Now letx = x. Then
˜̀(x,0) = `(x̂,0) < `(x,0) ≤ η̄x and ˜̀(x,0) = `(x̂,0) ≥ ηx̂ > ηx. Therefore,˜̀(x,0)
is in the fair cone. Finally, letx = x̂. Then ˜̀(x̂,0) = β(x)

β(x̂)(`(x,0) − `(x̂,0)) + `(x̂,0) <
`(x,0) − `(x̂,0) + `(x̂,0) = `(x,0) ≤ η̄x < η̄x̂. Similarly, ˜̀(x̂,0) = β(x)

β(x̂)(`(x,0) −
`(x̂,0))+ `(x̂,0) > `(x̂,0) ≥ ηx̂. Therefore,˜̀(x̂,0) is also in the fair cone.

Next, note thatβ(x)`(x,0)+β(x̂)`(x̂,0) = β(x) ˜̀(x,0)+β(x̂) ˜̀(x̂,0). Therefore, the
expected payments are the same under`(x,0) and ˜̀(x,0). Similarly, the left-hand side of
(1) does not change if we replace` by ˜̀. Since ˜̀(x,0) < `(x̂,0) it follows immediately
that the right-hand side of (1) is minimized atx = x if we replacè by ˜̀.

4 The Equilibrium Contract Problem

Theorem 1 below shows that equilibria of our model correspond to solutions of the follow-
ing optimization problem.

Problem 1 At t = 0, choose{v̄, `(x,0),vx(0)} to maximize

E0[uI (x)] =
∑

x∈X

[(
`(x,0)− c

)
vx(0)+ v̄(1− vx(0))

]
β(x) (8)
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Subject to

E0[uF(x)] =
∑

x∈X

[
x − `(x,0)vx(0)− v̄(1− vx(0))

]
β(x) ≥ ūF (9)

vx(0) =





1 if v̄ > `(x,0)

0 if v̄ < `(x,0)

α ∈ [0,1] if v̄ = `(x,0)
(10)

If vx(0) > 0 for an x ∈ X (i.e., bankruptcy occurs) then:
∑

x∈X

`(x,0)β ′0(x)− c ≥ `(x,0) (11)

η̄(x̄ − v̄)− c ≥ 0 (12)

ηx ≤ `(x,0) ≤ η̄x, ∀x ∈ X (13)

(8) is the investor’s ex-ante expected payoff. Given realizationx, the entrepreneur
defaults with probabilityvx(0). In equilibrium, the investor pays costc to request enforce-
ment when default occurs. Otherwise, with probability 1− vx(0) the entrepreneur pays̄v.
The left-hand side of (9) is the entrepreneur’s expected payoff. By fixing the entrepreneur’s
expected utility at a level̄uF and maximizing the investor’s payoff we obtain ex-ante ef-
ficient allocations. (10) requires the entrepreneur’s bankruptcy choicevx(0) to maximize
his expected payoff. If̄v exceeds the payment from enforcement,`(x,0), the entrepreneur
chooses to default (i.e., not payv̄). If the inequality is reversed, the entrepreneur chooses
to pay v̄ with probability 1. If the payments are the same, then the entrepreneur can ran-
domize with probabilityα. (11) rules out mutually beneficial deviations. (12) ensures that
it is not beneficial for the entrepreneur to make a payment 0< v < v̄.12 (13) ensures that
payments are in the fair cone.

Theorem 1 Let {`(x, v),vx,ev, β, β
′
v} be a cPBNE. Let̄uF be the entrepreneur’s ex-ante

expected utility. Then the solution of problem 1 provides the same expected payoffs to the
investor and entrepreneur in each statex.

Conversely, let̄uF ≥ 0 and let{`(x, v),vx(0), v̄} be a solution to problem 1 which,
if there is more than one, gives the highest expected payoff to the investor. If the entre-
preneur’s expected payoff is non-negative then{`(x, v),vx(0), v̄} can be supported as a
cPBNE.

12Condition 3 of definition 3 requires that agents cannot make any improvements ex-ante. By definition
such improvements include coordinating beliefsβ ′v to support the highest possible ex-ante utilities. This is
achieved by the following “optimistic beliefs:” If a deviation 0< v < v̄ were to occur, the investor believes
that the highest possiblēx was realized.

13



Proof. Lemma 2 and lemma 4 prove that mutually beneficial deviations do not exist if
and only if (11) holds. Lemma 3 implies that we can focus on equilibria where only
payments 0 and̄v occur. Given such an equilibrium, (10) is equivalent to condition 1
of definition 1. Condition 2 is implied by (11) and (12). In particular, (11) implies that∑

x∈X `(x,0)β
′
0(x) − c ≥ `(x,0) > 0. Therefore, the investor will request enforcement

whenv = 0. For off equilibrium path payments 0< v < v̄, (11) is the weakest restriction
that ensures that enforcement takes place, thereby ruling out such payments. Because of
condition 2 of definition 1, in order forev = 1 we must have

∑

x∈X

(`(x, v)− c)β ′v(x) ≥ 0. (14)

First, note that we can increase the left-hand side of (14) by setting`(x, v) = x − v for
0 < v < v̄, as this does not affect payments on the equilibrium path. Second, we can
assume thatβ ′v puts all the mass on̄x, the highest possible realization, which satisfies
condition 3 of definition 1. Inserting̀(x, v) = x− v andβ ′v(x̄) = 1 into (14) immediately
implies (12). The second statement of the theorem is now immediate.

Finally, let ūF be the entrepreneur’s expected utility. Consider a cPBNE but assume by
contradiction that there exists an alternative contract that increases the objective of prob-
lem 1 and satisfies all the constraints. Because the alternative contract satisfies all con-
straints, it is a PBNE and does not admit a mutually beneficial deviation. The alternative
contract gives at least utilitȳuF to the entrepreneur and strictly increases the investor’s
expected utility. This contradicts condition 3 of definition 3.

We can now prove that cPBNEs exist for our model.

Theorem 2 cPBNEs exist. In equilibrium, the project will receive funding if costsc are
not too high, and̄η and the project’s expected return are not too low.

Proof. First, assume that any{`(x,0),vx(0), v̄} that satisfies the constraints of problem 1
for ūF = 0 gives the entrepreneur a negative payoff. Then the only equilibrium is autarky.

Now assume that it is possible to satisfy the constraints of problem 1 and give the
entrepreneur a non-negative payoff. Note that this is always the case ifη̄ is close to 1,∑

x∈X xβ(x) > 1 andc is small. Fixvx(0). The set of payment functions̀(x,0) is
finite dimensional becauseX is finite. The objective of problem 1 and the constraints are
therefore continuous iǹ(x,0) andv̄. Because the constraint set is bounded, a maximum
exists, and the set of solutions to problem 1 keepingvx(0) fixed is compact. Therefore,
there exists a solution that maximizes the investor’s payoff. Because there is only a finite
number of different choices ofvx(0), problem 1 has a solution. Among the solutions there
exists one that maximizes the investor’s payoff. Theorem 1 therefore implies the result.
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5 Equilibrium Contracts

We now characterize solutions of problem 1. We first define a debt contract. The key
feature of debt is that default occurs only for “low” project realizations.

Definition 4 {`(x,0), v̄,vx(0)} is a debt contractif the set of all default statesD =
{x|vx(0) > 0} is an interval of low realizations.

The contract issimple debtif `(x,0) = η̄x for all x (i.e., the ex-ante contract specifies
that all non-exempt assets are seized in bankruptcy).

The model accommodates both inability to pay and willful default (cf., Krasa, Sharma
and Villamil [11]).

Definition 5 LetD = {x|vx(0) > 0} be the set of bankruptcy states. Then

1. Da = {x ∈ D |x < v̄} is the set of default states where the entrepreneur isunableto
pay.13

2. Dw = {x ∈ D |x ≥ v̄} is the set of default states where the entrepreneur isunwilling
to pay.

3. N = X \D is the set of non-default states.

Theorem 3 proves that a debt contract that distinguishes between ability and willing-
ness to pay is optimal in the model. Further, when constraint (11) does not bind, a simple
debt contract is optimal.14

Theorem 3 In all solutions of Problem 1,Da is an interval where the entrepreneur is
not able to pay andDw is an interval where the entrepreneur is not willing to pay, with
Da ≤ Dw ≤ N .

1. If (11) does not bind, then simple debt contracts are optimal.

2. If (11) binds, then debt contracts are optimal with`(x,0) increasing inx for all x
with `(x,0) < v̄ (i.e., for all realizationsx where the entrepreneur strictly prefers
default).

13If x < v̄, then by feasibility default must occur. Thus,Da can also be defined asDa = {x|x < v̄}.
14When (11) binds debt rather than simple debt is optimal. Sharma [15] shows that lowering`(x, 0) to a

value strictly less than̄ηx lowers the right-hand side of (11), thereby weakening the constraint. This allows
agents to find better outcomes. Intuitively, leaving the entrepreneur with some assets in the lowest state makes
the entrepreneur less willing to renegotiate (i.e., deviate). This increases the investor’s incentive to request
enforcement rather than to renegotiate.
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Proof. We consider each case.

Case 1.Constraint (11) does not bind.

Consider Problem 1 without (11). If (9) does not bind, then`(x,0) = x for all x
with vx(0) > 0. Otherwise, if̀ (x,0) < x the investor’s payoff can be increased without
violating any constraint.

Now assume that constraint (9) binds. Substituting (9) into the objective of Problem 1
yields

∑
x∈X xβ(x) − ūF − c

∑
x∈X vx(0)β(x). Therefore, Problem 1 is equivalent to

minimizing ∑

x∈X

vx(0)β(x); (15)

subject to (9), (10), (12) and (13), where the inequality in (9) is reversed. Now chooseṽ

such that ∑

x< ṽ
η̄

η̄xβ(x)+
∑

x≥ ṽ
η̄

ṽxβ(x) = ūF . (16)

Note thatṽ exists and̃v ≤ v̄ since`(x,0) ≤ x. Defineṽx(0) = 1 if and only if η̄x < ṽ.
Clearly, (10) is satisfied. (16) immediately implies that (9) holds. Next,ṽx(0) ≤ vx(0).
Hence, (15) is decreased. Thus, choosing˜̀(x,0) = x is optimal because it minimizes
expected enforcement costs.

Finally, we show thatDa andDw are intervals. By definition,Da is an interval. Be-
causè (x,0) = x, we getDw = {x|η̄x < v̄ ≤ x}. Therefore,Dw is also an interval.

Case 2.Constraint (11) binds.

Let D̃w = {x ∈ Dw|`(x,0) < v̄}. We can redefinè(x,0) such that it is monotonically
increasing onDa ∪ D̃w: Let x, x̃ ∈ Da ∪ D̃w with x < x̃. Assume that̀ (x,0) > `(x̃,0).
We can then find̃̀ (x,0) = ˜̀(x̃,0) such thatβ(x) ˜̀(x,0) + β(x̃) ˜̀(x̃,0) = β(x)`(x,0) +
β(x̃)`(x̃,0). Repeating this argument for all states, we get a monotone payoff function that
yields the same expected payoff as`(x,0). Therefore, constraints (9), (10), (12), and (13)
are satisfied for̀̃. Similarly, the left-hand side of (11) does not change. Clearly, (11) holds
if ˜̀(x,0) = `(x,0). Thus, assumè̃(x,0) 6= `(x,0). This implies that̀ (x,0) > `(x̃,0)
for somex̃ ∈ Da ∪ D̃w. Then the above construction yields˜̀(x,0) ≤ `(x,0). As a
consequence, (11) is also satisfied.

Finally, we show that the default regions are intervals: Clearly,Da = {x|x < v̄} is
an interval. Becausè(x,0) is monotone inx, it follows that {x|`(x,0) < v̄ ≤ x} is an
interval. Therefore,D̃w is an interval. Without affecting payoffs or constraints, we can also
redefinè (x,0) andvx(0) on Dw \ D̃w such that this set becomes the interval bordering
D̃w.
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6 Concepts of Efficiency

We now clarify our notion of efficiency with those in the literature.15 (Pareto) efficiency is
often viewed as a minimal test that any welfare optimal outcome should satisfy. An allo-
cation is said to be efficient if and only if there is no other feasible allocation that makes
some agents better off without making any agent worse off. This criterion is straightfor-
ward under complete information, but in a classic paper Holmström and Myerson [7] show
that under incomplete information efficiency is more difficult to define. They identify six
classes of efficient mechanisms which are distinguished by two criteria – three time peri-
ods at which welfare is evaluated and two incentive cases. Holmström and Myerson note
that the timing of the welfare evaluation directly affects the information conditions under
which an agent’s expected utility is evaluated. They identify the time periods as ex ante,
interim and ex post. The two incentive cases take into account whether or not constraints
which make it optimal to reveal information are considered.

Classical efficiencyrefers to the case where no incentive constraints are considered
(e.g., the incentive constraint is ignored or the state becomes public information). In con-
trast,incentive efficiencyrefers to the situation where information is private and a constraint
which governs the agents’ incentive to reveal information is satisfied. The three time peri-
ods are distinguished as follows:

1. Ex ante incentive/classical efficiency:Ex-ante, agents have not yet received any pri-
vate information, and expected utility is therefore not conditional on it. In our model
at t = 0, β(x) is the agents’ common prior before information is revealed. If no de-
viation exists that both agents would agree to, then the allocation is ex-ante incentive
efficient in the sense of Holmström and Myerson.

2. Interim incentive/classical efficiency:Expected utility is evaluated given each agent’s
type (i.e., private information). In our model this corresponds to the situation att = 1
where the entrepreneur observesx, but the investor remains uninformed.

3. Ex post classical/incentive efficiency:Utility is evaluated at the realized state of na-
ture, even if all agents do not know the state (which is the case in our model when
enforcement does not occur). Standard Bayesian incentive compatibility is often
used in connection with the definition of ex-post efficiency. In a mechanism de-
sign framework, agents simultaneously truthfully reveal all of their information to a
“planner” who then uses it to design an efficient allocation. As a consequence, there
is no further opportunity for agents to make strategic choices based on information
(as no private information remains). In contrast, in our model the investor chooses
whether or not to invoke costly enforcement att = 2 based on paymentv observed

15Because there are only two agents in the model, the absence of a coalitional deviation corresponds to
efficiency.
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at t = 1, and it is not possible to reveal all information att = 1 without destroying
the investor’s incentive to enforce. In fact, Lemma 3 indicates that information rev-
elation will be minimal. The coalitional deviation att = 2 therefore does not occur
when information is complete. Thus, neither ex-post classical nor ex-post incentive
efficiency is applicable in our model att = 2, and we must introduce a new notion.

We call the notion that we introduce endogenous interim efficiency (i.e., the absence
of coalitional deviations att = 2). This concept corresponds most closely to posterior
efficiency in Forges [3], which extends Green and Laffont’s [5] posterior implementation
approach. Forges considers a Bayesian collective-choice problem where a mechanismµ

selects a decisiond ∈ D, andν(δ) ∈ 1(D) is a feasible alternative decision whereν is a
probability onD. Thenµ is posterior efficient if it is not possible to increase the expected
utility, given d, of all agents.

Let ti denote agenti ’s type, and lett−i denote the type of the remaining agents. Forges
defines posterior efficiency for a mechanism as follows:

Definition 6 Mechanismµ is posterior efficient if the following is not true:
There existd ∈ D, Pµ(d) > 0 and an alternative mechanismν ∈ 1(D) such that

∑
t−i

Pµ(t−i |ti ,d)[ui (t,d)−
∑

δ

ν(δ)ui (t, δ)] < 0,

for all i = 1, ...,n and for all ti with Pµ(ti |d) > 0.

No further information revelation is necessary to useδ. Forge notes that this concept is
appropriate when agents can communicate only through the mechanism.16 In our case
agents communicate both within the mechanism, as in Forges, and outside the mechanism
because agents can make arbitrary paymentsv ≥ 0 which reveal information.17

Forges’ definition maps into condition 2 of definition 3. The choicesd ∈ D correspond
to paymentsv ∈ V . The entrepreneur’s typetE is given by realizationx ∈ X. The
investor has no private information, hencetI is trivial. ThereforePµ(t−i |ti ,d) = β ′v(x)
if t−i = x = tE and ti = tI , and Pµ(t−i |ti ,d) assigns probability 1 tox if t−i = tI and
ti = x = tE. ν(δ) is the probability that alternative decisionδ ∈ D is chosen. In our case,
we could consider lotteries overV . However, because both agents’ utilities are linear in
v, we can consider arbitrary paymentsṽ ≥ 0 instead of lotteries overV . Therefore our

16Because we assume that communication can occur only in the game, any coalitional improvements must
be common knowledge. For example, this is captured, in the definitions of ex-ante and interim efficiency of
Holmstr̈om and Myerson [7] or definition 5.3.5 of Hahn and Yannelis [6]. In contrast, definition 5.3.4 or the
example in Proposition 5.4.6 in Hahn and Yannelis [6] capture situations where improvements are not common
knowledge (i.e., the alternative decision rule improves upon the status quo in all statesω ∈ A, but all agents
need not know whether eventA has occurred).

17In other words, a planner cannot restrict a priori that agents announce only 0 orv̄.
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notion of absence of coalitional deviations att = 2 in definition 3 corresponds exactly to
conditions 2 and 3 of definition 6 from Forges. Condition 1 of definition 6 corresponds to
our requirement that̃vx(v) > 0.

Finally, recall from section 2.4 that we must also account for potential deviations att =
0 andt = 1, and that we require{`(x, v),vx,ev, β, β

′
v} to be a PBNE. As a consequence,

we need a broader notion of equilibrium. Thus in our definition 3, condition 2 corresponds
to Forges, but we also require conditions 1, 3 and 4 which account for the PBNE and the
possibility for deviations in previous time periods.

7 Concluding Remarks

This paper develops the notion of a coalitional perfect Bayesian Nash equilibrium in which
the chosen strategies are optimal for a given enforceable contract, and there are no mutually
beneficial deviations from the contract at any stage in the game. The possibility of mutually
beneficial deviations (or improvements) is natural in financial contracting problems where
higher voluntary payments can potentially reduce the likelihood of enforcement, thereby
allowing agents to share the surplus generated by economizing on enforcement costs. The
solution concept captures both the non-cooperative aspect of firm liquidation and the co-
operative aspect of firm restructuring. The Theorems establish that equilibria of the model
correspond to solutions of an optimal contracting problem that exist and resemble debt.
These results are useful because they make computation and policy evaluation possible in
the contract problem.
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