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Abstract

In this paper we consider a dynamic game with imperfect information between a
borrower and lender who must write a contract to produce a consumption good. In
order to analyze the game, we introduce the concept of a coalitional perfect Bayesian
Nash equilibrium (cPBNE). We prove that equilibria exist and are efficient in a precise
sense. Deterministic contracts that resemble debt are optimal for a general class of
economies. The cPBNE solution concept captures both the non-cooperative aspect of
firm liquidation and the cooperative aspect of firm restructuring.
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1 Introduction

There are two main ways for troubled firms to resolve financial distress: liquidation and
renegotiatiort. When a distressed firm is liquidated, it is shut down and any remaining
assets are distributed to creditors. When renegotiation occurs, agents use information ac-
quired after the contract was signed to modify the initial agreement if it is mutually ben-
eficial to do so. We consider a multi-stage game of imperfect information where both
liquidation and renegotiation are possible and analyze two questions: What types of fi-
nancial contracts will agents write when both ways of resolving distress are possible? In
what sense are these contracts optimal (i.e., efficient)? There are large literatures on bank-
ruptcy, renegotiation and concepts of efficiency when information is imperfect. We begin
by making clear the precise relationship between this paper and recent work on liquidation
and renegotiation. We defer to Section 6 a broader discussion of efficiency when agents’
actions reveal information.

The paper builds on Krasa and Villamil [12], which proposes a costly enforcement
game where a firm and an investor write a contract to facilitate produttidhe firm
obtains funds from the investor in exchange for a repayment promise. After investment,
the firm privately observes the return and chooses whether or not to repay. If the firm does
not repay, agents have the opportunity to renegotiate the contract. Otherwise, the investor
can seek costly enforcement of the promised payment (and liquidation of the firm). We
generalize Krasa and Villamil [12] along two dimensions.

1. Because agents are rational, the possibility of renegotiation is foreseen ex-ante. En-
forcement will therefore occur only if there are no benefits from renegotiation, i.e.,
the contract is renegotiation proof. Krasa and Villamil specify a sufficient condition
for contracts to be renegotiation proof, but do not show how the constraint is derived
from a game. We introduce a solution concept, coalitional perfect Bayesian Nash
equilibrium (cPBNE), which derives this requirement as a necessary and sufficient
condition for renegotiation proofness.

2. Krasa and Villamil prove that the entrepreneur’s default and investor’s enforcement
decisions are both deterministic, i.e., the firm’s repayment decision is not random
given the observed return and the investor's enforcement decision depends solely
on the amount repaid. Examples of deterministic contracts include debt (or simple

IThere are several different notions of bankruptcy. Liquidation is a formal legal process (e.g., Chapter 7 of
the U. S. Bankruptcy Code) and renegotiation may occur either as a court supervised “workout” or a private
agreement. The key idea in renegotiation is that agents will exploit any mutually beneficial improvements that
are common knowledge.

2There are two key differences between the enforcement model and standard contracting models (e.g., Gale
and Hellwig [4] or Williamson [16]): costly enforcement is a choice variable and there is limited commitment
to the ex ante contract.



debt), which are contracts where the debtor announces default if and only if the re-
quired payment cannot be met and the creditor requests enforcement if and only if
such a default occurs. Krasa and Villamil further prove that if simple debt is renego-
tiation proof, it is the optimal contract because it minimizes the incidence of défault.
Sharma [15] considers the case where simple debt contracts need not be renegotia-
tion proof. He constructs an example in which simple debt is not optimal because a
tradeoff exists between minimizing default and weakening the renegotiation proof-
ness constraint. This paper provides a complete analysis of the structure of optimal
contracts in this setting.

In order to provide a game-theoretic foundation for Krasa and Villamil's [12] renegoti-
ation proofness condition, we introduce the concept of a coalitional perfect Bayesian Nash
equilibrium (cPBNE). Formally, a cPBNE of our two-player game is a PBNE in which both
agents cannot benefit from deviating at any information set. There are three time periods,
t = 0,1, 2, in which agents could jointly deviate. Absence of such deviatiotis=at0
andt = 1 corresponds to the requirement that the decision rules are ex-ante and interim
efficient, respectively. At = 2, we show that it is not possible for full information revela-
tion to occur because this would destroy the investor’s incentive to enforce. This, in turn,
would give the entrepreneur the incentive to lie and make the lowest possible payment.
Thus the absence of improvements at 2 does not correspond to ex-post efficiency, but
rather to a second interim period in which the investor has updated his prior using informa-
tion that was endogenously and optimally revealed by the entrepreneur’s payment action
att = 1. Forges [3] refers to this as posterior efficiency. Intuitively, posterior efficiency
means that agents have no incentive to renegotiate the contract given the information that
was revealed earlier in the game. We provide an extended discussion of efficiency concepts
under incomplete information in Section 6.

Our coalitional solution concept has both cooperative and non-cooperative aspects. Von
Neumann and Morgenstern’s classic book considered both approaches to games, and com-
mitment was central to the dichotomy. Games in which agents cannot make commitments
to coordinate their strategies are noncooperative games. Analogously, games in which play-
ers can commit to coordinate strategies are cooperative. The strategic or non-cooperative
approach requires a complete description of the rules of the game so that the strategies
available to the players can be analyzed, and the goal is to find equilibrium strategies for
each player. In contrast, cooperative games apply to situations where players can negotiate
before the game is played and that commitments made in these negotiations are binding.
In this case the strategies are not the main object of interest, but rather the determinants of
the set of feasible contracts. Because limited commitment is central to financial contract-

3Simple debt corresponds to a standard loan contract. For non-bankruptcy realizations the borrower makes
a fixed repayment (principal plus interest) that is not contingent on the realized state of nature. When bank-
ruptcy occurs, the creditor receives all assets that can be legally transferred.



ing problems (i.e., we take into account agents’ opportunities to deviate at later stages of

the game from strategies specified at the outset), elements from both cooperative and non-
cooperative game theory exist. For example, information revelation by the entrepreneur is

non-cooperative, but the selection of the enforceable contract is cooperative and efficient

in a sense we will make precise. See the discussion in Section 2.4.

There has been increasing interest in applying cooperative game theory to models with
differential informatior?t With the exception of Ichiishi and Sertel [8], the papers in this
literature consider static exchange economies where information is exogenously revealed
to agents in an interim period but agents cannot revise their choices. In contrast, we con-
sider a dynamic model where &= 2 the investor uses the information revealed by the
entrepreneur’s payment decisiort at 1 to update his belief. Thus, information revelation
is endogenous (but not complete) in our model. Our endogenous information revelation
differs from learning in differential information economies in two main respects (see, for
example, Koutsougeras and Yannelis [10]). First, in these learning models information is
exogenous (i.e., it is not revealed optimally by agents’ actions as part of a PBNE as in our
model). Second, private information may be fully revealed in the limit. In contrast, it is not
possible to fully reveal all private information in our model because this would destroy the
investor’s incentive to enforce, thus unravelling the equilibrium as explained above.

In order to make clear the relationship between our model and the large literature on
economies with differential information, we call= 0 the (standard) ex ante period, but
augment the notion of the interim period. We call pertog= 1 the exogenous interim
period because information is privately revealed to the entrepreneur (i.e., the state). After
the entrepreneur privately observes the state, he has the opportunity to make a payment
to the investor by placing “money on the table,” if it is optimal to do so. This payment
reveals information about the state to the investor, which allows the investor to update his
belief in periodt = 2. We call this the endogenous interim period because the investor
uses the information that was optimally revealed (as part of a PBNE) by the entrepreneur’s
payment. Given the updated belief, the investor then decides whether it is optimal to retain
only the money on the table (if any) or to proceed with costly enforcement.

2 The Model

2.1 Timing of Decisions

Consider a three period economy with a risk-neutral investor and entrepreneur, and a court
that can enforce contracts if requested to do so. The investor is endowed with the input that

4See Yannelis [17] for an early contribution. Also, Koutsougeras and Yannelis [9] analyze the core and
Krasa and Yannelis [13], [14] analyze the Shapley value in economies with differential information. They
propose the respective solution concepts as alternatives to the rational expectations equilibrium.



is essential for production but no technology, and the entrepreneur owns the production
technology but has no input. One unit of input is required to produce the output, which is
described by a random variable with finitely many realizatiors X = {x, ..., X} C R;.
Ex-ante the agents have a common pgoy over X with g(x) > 0, and the investor and
entrepreneur value only this final period outpthe timing of events is as follows:

t=0 (ex ante): To produce, the entrepreneur and investor must trade. This is done by spec-
ifying an enforceable loan contraetx, v) > 0, which is a payment schedule with
statex determined by the court &t= 2 and a payment > 0 made by the entrepre-
neur att = 1. If the entrepreneur and investor cannot agree on a payment schedule,
no investment occurs and each agent receives a zero reservation utility.

t=1 (exogenous interim): The entrepreneur, but not the investor, privately observes output
realizationx and selects a payment> 0 that cannot be retracted. Paymenis
not enforceable by the court (though the enforceable payiientiepends on).
Because it is not enforceable, we refewtas a voluntary payment.

t=2 (endogenous interim): The investor chooses whether to request costly enforcement
by the court. If no enforcement is requested, the investor's payofaisd the entre-
preneur’s payoff ix — v. If enforcement is requested, the investor pays co#ie
court determines the true stateand the court enforces paymeitk, v) if it is in
the cone of “fair payments” specified in definition 2 below. With enforcement, the
investor and entrepreneur respective payoffearel (X, v) — candx — v — £(X, v).

2.2 Definition of the Perfect Bayesian Nash Equilibrium

Given contract(x, v), the entrepreneur’s payment decision (and the information it reveals)
and the investor’s enforcement probabiligy must fulfill equilibrium restrictions. The
entrepreneur’s paymemtmust be chosen optimally, the investor's enforcement decision
must be chosen optimally, and belgf must be derived by Bayes’ rule. We formalize this
idea in definition 1 below. We allow the investor and the entrepreneur to randomize over
actions, if it is optimal to do so. The entrepreneur’s choice of paymésidescribed by
strategyvy. For simplicity of exposition we assume that these paymeat® restricted to

a countable se¥ ,® wherew, (v) is the probability that paymentis chosen, given that the
entrepreneur observes realizatianThe investor knoww, the rule that the entrepreneur
uses to choose paymentand uses it to update his prior frofrto g;. Finally, the investor
selects a probability of enforcemeiat,, given payment from the entrepreneur. Thusy
ande, are behavioral strategies of the game described in section 2.1.

SFor interesting recent extensions to heterogeneous beliefs, see Carlier and Renou [1] and [2].
BAll results extend to the case wharés any non-negative payment.
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Figure 1: Feasible Bankruptcy Payments

We require thaty, €,, g and g, are a perfect Bayesian Nash equilibrium (PBNE),
which is defined as follows.

Definition 1 {vy, €,, B8, B,} is a perfect Bayesian Nash equilibrium (PBNE) in behavioral
strategies for the game given bgx, v) if and only if

1. vy solvesmax, X — Y,y (v + €, €(X, v))vx(v);

2. €, solvesmax,, v+ Y, €, (£(X, v) — C) B(X);

ex Vy(W)B(Y)
probability on{x € X|x > v}.

3. BL(X) = Zyi’x(& if the denominator is non-zero. Otherwigk, is an arbitrary

An important feature implied by a PBNE is that it builds in “incentive compatibility.”
By this we mean that the entrepreneur’s paymeistchosen optimally via condition 1 of
definition 1. As we shall see, itis not optimal for the entrepreneur to reveal all information.
The reason is that condition 2 of definition 1 specifies that the investor’'s enforcement choice
must also be optimal. If all information were revealed, the investor would have no incentive
to enforce at = 2. This, in turn, would imply that the entrepreneur would not reveal
information truthfully, but would instead announce the realization that results in the least
payment.

2.3 Fair Enforcement

The court’s role in this model is to enforce payments, when requested. Rather than me-
chanically enforcing any payment that is specified, courts typically are concerned with the
ex-post fairness of the outcome. One way to impose fairness is to endow the court with a
concave utility functioru(zg, ), whererg is the entrepreneur’'s payment amdis the

5



investor’'s payment. We requiteto be homothetic. Thus, fairness is not linked to the total
surplus available for distribution. If the= 1 payment is» and enforcement is requested,
then the court solves max,, u(rg, m) S.t. 7g +m = Xx—v. The solution of this problem
is of the formm, = n(X—v), Whereﬁ <n <n,l.e., the paymentisinthe cone, as indicated
in figure 17 This follows from the fact that when preferences are homothetic, the wealth
expansion path is a straight line for strictly concave preferences and a cone for concave
preferences. When the wealth expansion path is a straight line, contracting parties have no
discretion in setting payments becadsge, v) = n(x—v). However, in real life we observe
a reasonable amount of discretion, which is consistent with preferences that are not strictly
concave. Figure 1 shows that by an appropriate choiégeafy payment betweej(x — v)
andn(x — v) in the cone can be obtained. The only case in which the payment need not
be in the fair cone is if the investor has given up all claims against the entrepreneur and the
court therefore has no authority to enforce the contract, i.é(;,ib) = 0.

This leads to the following definition.

Definition 2 Payment functior is fair if and only if either (x —v) < £(X, v) < (X —v),
forall x € X or£(-,v) = 0.

Throughout the paper, we assume that @ <7 < 1.

2.4 The Coalitional Perfect Bayesian Nash Equilibrium

We now extend the definition of a PBNE to allow for coalitional deviations. As discussed
in Krasa and Villamil [12], in a standard (not coalitional) PBNE it may be mutually ben-
eficial for agents to alter the contract. If this occurs at a stage at which some information
has been revealed, such a deviation is commonly referred to as renegotiation. Krasa and
Villamil [12] use a non-cooperative framework and impose a renegotiation proofness con-
straint on the set of solutions. In contrast, we adopt a framework which has both cooper-
ative and non-cooperative elements. The cooperative solution concept that we introduce
solely imposes that agents take advantagenatually beneficiableviations that areom-

mon knowledgeand does not depend on the order of moves in the Jamiet = 0 the
contract choice is individually rational and ex-ante efficient (i.e., cooperative), and at

andt = 2 agents can cooperatively change the continuation contract. In addition, at time
t = 1 payment is chosen by strategy, as part of a non-cooperative PBNE, and &t 2
enforcement choice, is non-cooperative (see conditions 1 and 2 in definition 1).

"The cone structure is important for applications of the model. For example, Krasa, Sharma and Vil-
lamil [11] use the cone to analyze how the amount of debtor/creditor protection in a legal code affects the
interest rate in a loan contract and the default probability.

8In other words, the solution concept does not depend on the investor’s bargaining power, because improve-
ments must be mutually beneficial. Further, our approach does not impose a particular game form that induces
strategic transfer of information. See footnote 10.



Coalitional deviations can occur in each of the three time periogsO0, 1,2. The
possibility to deviate is foreseen by the agents, hence agents’ choices are time consistent. In
other words, an unimprovable contract at titvie a contract that cannot be improved upon
by any other time consistent contrdctncorporating time consistency into the definition
of improvability automatically leads to a recursive definition, which we now provide.

Definition 3 {£(X, v), vy, €y, B, B,} is a cPBNE if and only if
1. {vy, €y, B, B} is a PBNE for the game given Byx, v).

2. {€(X,v), €,, B} is unimprovable at = 2 for anyv that occurs with positive proba-
bility, i.e., nov exists withvy(v) > 0 for somex € X and{£(X, v), v, €,, B,} such
that

X — 10— €,l(X,v) > X —v— ¢,l(X,v) for g/ a.e.x

DT+ & X V) = OB(X) = Y v+ ey (L(X, v) = ©)B(X)

xeX xeX

where at least one inequality is strict.

3. {€(x, v), vx, €y, B, B} is unimprovable at = 1, i.e., No{€(X, v), ¥y, &,, B, AL}
exists where conditions 1 and 2 are satisfied; fair, and both parties are better off
in the exogenous interim period, i.e.,

D (X —v = 8,L(x, 1) Bx(v) = D (X — v — €,l(X, v))vy(v), forall x e X

veV veV
DY (vt e lxv) = 0) 5B = DY (v + €, (E(X, v) — ©)vx(V)BX).
xeX veV xeX veV

where at least one inequality is strict.

4. {€(X, v), vy, €y, B, B,} IS unimprovable ex-ante, i.e., HO(X, v), Ty, 4, B, B;} ex-
ists where conditions 1, 2, and 3 are satisfied; fair, and both parties are better off

ex ante, i.e.,

DY (x—v =&l 0)TxBM) = DY (X — v — €y l(X, 1) vx(V)B(X)
xeX veV xeX veV

DY (vt lxv) = 0) 5B = DY (v + €, (E(X, v) — ©)vx(V)BX).
xeX veV xeX veV

where at least one inequality is strict.

9A contract which is unimprovable does not admit a mutually beneficial deviation.



Conditions 2, 3, and 4 of definition 3 consider coalitional deviations in each period:

Condition 2 specifies that in the final period, agents cannot improve upon the status quo
given their updated information. The entrepreneur kngwsd the investor’s information
is summarized by the updated prjgf. A coalitional deviation is possible if the alternative
contract makes the investor better off with respect to bgljednd if the entrepreneur is
better off in all statex that cannot be excluded given payment.e., all statesx with
B, (X) > 0.19 Also, if a mutually beneficial deviatioﬁf(x, V), U, €y, B} exists att = 2,
then one also exists in which, = 0.

Condition 3 specifies that no coalitional improvement exists at 1 when the en-
trepreneur knows realization but no information has yet been revealed to the investor.
Because any mutually beneficial deviationtat 1 must fulfill conditions 1 and 2, the
entrepreneur’s paymentand the enforcement decision must be optimal. Moreover, the
deviation att = 1 should not admit a further deviation at= 2. The fact that future
deviations are foreseen is crucial in order to get existence of equilibria in our model.

Finally, condition 4 is similar to condition 3 except that it uses ex-ante instead of interim
expected utility. It is easy to see that condition 4 is more stringent than condition 3, i.e., any
deviation that makes agents better off at the interim, also makes agents better off €x-ante.

3 Characterization of Equilibria

The arguments proceed as follows. Lemma 1 shows that voluntary payments in any con-
tract associated with a cPBNE must be lower than all possible realizatioxs Iénot,

for the relevant realizations of the firm could improve its outcome by reducing the vol-
untary payment. Lemma 2 shows that a contract is unimprovaltle=a® if and only if

the investor’s expected gain from enforcement must be at least the minimum that can be
enforced on the firm. If the investor’s net gain from enforcement were always less than
the entrepreneur’s loss, it would be mutually advantageous to deviate. The entrepreneur
could bribe the investor with a higher payment to forestall enforcement. We next show
that at a cPBNE enforcement is deterministic rather than stochastic and satisfies a reser-
vation value property: Voluntary payments below some threshdlijger enforcement

with probability 1, and those above lead to enforcement with probability 0. Lemma 3 then
shows that the entrepreneur’s best response is to select one of two voluntary payments O or

10 we do not consider alternative contracts that improve the entrepreneur only in somelstateake him
worse off in a statey with g/(y) > 0 (in our model coalitional improvement must be common knowledge).
In order to consider deviations that improve only in some states, some communication would be necessary
between the parties in order to adopt the alternative contract (e.g., voting). This would require an additional
information set in the game tree.

U1This reflects the Holmsdm and Myerson [7] classic result that ex-ante efficiency implies interim effi-
ciency.



v. Lemma 4 shows that it may be optimal to reduce payments in the lowest state to prevent
the entrepreneur from trying to bribe the investor to forgo enforcement.

Lemmal Let{l(X, v), vy, €, B, By} be a cPBNE. Then < x for all x € X andv € V
with vy (v) > 0.

Proof. Suppose by way of contradiction that> x for somex and that the entrepreneur
paysv in statex. By feasibilityv = x. The entrepreneur’s payoff is therefore zero. Instead,
if the entrepreneur were to pay— ¢, wheree > 0 and small, then the payoff would be
at leastne. Becausen > 0, the payoff would be strictly increased. This contradicts
condition 1 of definition 1.m

Lemma 2 Let{vy, €., B, B} be a PBNE. Thef{(x, v), €,, ,} does not admit a mutually
beneficial deviation at = 2 for anyv with ¢, > 0 if and only if
D L B () —Cc=  min (X, v). 1)

xeX,B! (x)>0
xeX €X.5y 00>

Proof. We first prove sufficiency. Assume that (1) holds but f#ax, v), ,, B,} admits a
mutually beneficial deviation at= 2. If ¢, = 0 for all v, then it is easy to see that there is
no mutually beneficial deviation. It must be the case that there exsish thate, > O.

We now show that, = 1. The investor’s continuation payoff from enforcement is
given by the left-hand side of (1). Nextx — v) > 0, by Lemma 1, and the right-hand side
of (1) is strictly positive. Therefore, = 1.

Because the contract admits a mutually beneficial deviatidn=at2, there existd
such that

b < v+ (X, v), ¥X: BL(x) > 0.

Otherwise the entrepreneur would be worse off in one of the states. Therefore,

v<v+ min £(X,v). (2)
xeX, B, (x)>0

Further, the investor is strictly better off, i.e.,

v+ D (X v) = OB <D 3)

xeX
Inequalities (2) and (3) contradict (1). This completes the sufficiency part of the argument.
We now prove that (1) is necessary. Assume by way of contradiction that there exists
{€(x, v), €,, B,}, which does not allow a coalitional deviationtat 2 but violates (1) for
somev. Let

6=v—|—ev|: min Z(X,v):|.
xeX, B, (x)>0

9



Clearly the investor is strictly better off & > 0. The entrepreneur is (weakly) better off.
Therefore{¢(x, v), e,, B, } admits a mutually beneficial deviationtat= 2, a contradiction.
[ ]

Lemma 2 implies that enforcement is deterministic.

Corollary 1 Let{e(x, v), vy, €y, B, B,} be a cPBNE. Thea, is either 0 or 1 for allv that
occur with positive probability, i.eyx(v) > 0 for somex € X.

Proof. Assume thate, > 0. Lemma 1 implies that the right-hand side of (2) is strictly
positive. Therefore, the investor’s payoff from enforcement is strictly positive. In contrast
the payoff from not enforcing is 0. Therefore, = 1. m

Lemma 3 Let{¢(x, v), vx, €v, B, B,} be a cPBNE. Then there exists an alternative payoff
equivalent cPBNE{(X, v), vx, €,, B, B,} such that the following properties are satisfied:

1. At most the two paymen@sand v occur with positive probability, i.epx(v) = 1
only if eitherv = 0orv = v.

2. Enforcement takes place onlyif< v, i.e.,¢, = 1lifv < vande, =0if v > v.

Proof. We first prove 2. Leth be some payment which occurs with positive probability
from an ex ante perspective and which is followed by no enforcementyj.€:) > O for
somex € X ande; = 0. Condition 1 of definition 1 then implies that, = 0 for all
v > 0 irrespective of the value of,. Hence without loss of payoff for any agent we can
sete, = O0forallv > 0. If b = 0, then the lemma is true. So et- 0 and consider < ©.
By Corollary 1,¢, is either O or 1. Ife, = 0, then condition 1 of definition 1 implies that
vy (0) = 0, a contradiction. Sog, = 1. Letv = 0. Thus, there is at most one payment
v > 0 such thatry(v) > 0 ande; = 0.

We now prove 1. Ifo = 0, the lemma is true, so let > 0. Consider all payments
v < v and redefine for eack

2(x, 0) = v + £(x, v) for somev such thatry (v) > O; (4)
Z(x, 0) = max{(x, v) if v4(v) = 0forallv < o; (5)
vx(0) = Z vy (V). (6)

v<v

Because of statement 2 of the lemma and corollaBy % 1. Since foralb < v andv < v
over which the entrepreneur is indifferent we have £(x, v) = v + £(X, D) = £(X, 0), it

10



follows that (4) and (5) are well defined and the payoffs of the lender and entrepreneur are
not affected by the reconstruction of the contract. Heng€Q) is optimal.

To show that/(x, 0) is feasible, note that optimality implies that for all< & andx
such thatvk(v) > 0 we havev + £(X, v) < nx. By definitionn(x — v) < €(x, v). This
impIiest <v+£L(X,v). Hence,ﬂx < Z(x, 0) < nx.

We now prove thaf{vy, €., 8, B;} does not admit a mutually beneficial deviation at
t = 2. Because the original contrafaty, ,, 8, 8,} does not admit a mutually beneficial
deviation, condition 1 of lemma 2 must hold. This, and 3 of definition 1 imply

D L )P = [ min £(x, v) + c] > o ()B),

xeX, B, (x)>0
xeX Po(x)> xeX

for all v such thatry(v) > 0 andv < v. Therefore

S lo + € I Z[v+  min 00, v) 4] 3 v @BX).

xeX, B, (xX)>0
xeX €X.Au (0> xeX

This implies

> Y[ w]m@poo = X [+ min e vte] Y o @Bo.

xeX, B, (x)>0

v<v,vx(v)>0xeX v<v,vx(v)>0 xeX
This implies
PCSVEACLIVENDY [xexf?;,'&w“ + L6 0) +0) | 3 5 @B,
xeX v<v,vx(v)>0 xeX

The right hand side equals
[ min  #(x,0) + c] 3 5 (O)BX).

xeX, By (x)>0 xex

Finally, this implies

ZZ(X,O)B;(O)z min  £(x,0) +c. (7)
xeX xeX,B(0)>0

Therefore, Lemma 2 implies théby, €, B, 5;} does not admit a mutually beneficial de-
viation att = 2.

By Lemma 1 the right hand side of (7) is strictly positive and heayce- 1 is optimal.
[

As a consequence of Lemma 3, it sufficient to consider strategiés which at most
two payments occur with positive probability. If payments made, then no enforcement
occurs. Thus, only payments-, 0) matter. Moreoverp(0) is now the probability that
the entrepreneur does not pay, i.e., the default probability.

We will use the following assumption to simplify the analysis of the game.

11



Assumption 1 B(x) < B(X), VX < %x.

If x is close to 0, then assumption 1 imposes no restriction on the probability distribution. If
the probabilitiess (x) are increasing, then assumption 1 holds by defau(Xf) increases
but then decreases, as longgs not too small, assumption 1 also holds.

The next lemma shows that the right-hand side of (1) is minimized=aix.

Lemma 4 Let assumption 1 be satisfied. Lety, €., 8, B,} be a cPBNE that satisfies
(1). Then there exists an alternative cPBNE,, <., 8, B,} which gives the same expected
payoffs to the investor and the entrepreneur, and for whisblvesmin,_y z -0 €(X, 0).

Proof. Because of Lemma 3 we can assume that only paymen@ leads to enforcement.
Now assume that there exigt> x such that{(x, 0) > £(X, 0). Thené(x,0) < fx and
£(X,0) > nX impliesix > nX. Assumption 1 implies that(x) < B(X). Now let

£(X,0) if X = x;
BX)(L(x, 0) — £(X, 0))
B(X)
£(x, 0) otherwise

2(x, 0) = +0(%,0) ifx=X;

Note thatf(x, 0) is in the fair cone. Fok # X, X this is immediate. Now letx = x. Then
€(x,0) = £(X,0) < £(x,0) < nx and{(x,0) = £(X,0) > nX > nx. Thereforef(x, 0)
is in the fair cone. Finally, lex = X. Then{(&, 0) = %(K(g, 0) — £(X,0)) + £(X,0) <
2(x,0) — £(X,0) + £(%,0) = £(x,0) < 7x < 7X. Similarly, £(%,0) = %(z(x, 0) —
£(X,0)) + £(X, 0) > £(X, 0) > nXk. Therefore{(X, 0) is also in the fair cone.

Next, note thap (x)£(x, 0) + B(X)£(X, 0) = B(X)E(x, 0) + B(R)L(X, 0). Therefore, the
expected payments are the same urider0) and¢(x, 0). Similarly, the left-hand side of
(1) does not change if we replaéey ¢. Sincet(x, 0) < £(X, 0) it follows immediately

that the right-hand side of (1) is minimized»at= x if we replacel by ¢. m

4 The Equilibrium Contract Problem

Theorem 1 below shows that equilibria of our model correspond to solutions of the follow-
ing optimization problem.

Problem 1 Att = 0, choos€v, £(X, 0), v«(0)} to maximize

Eolu 001 = Y[ (£0x, 0) = ¢)v(0) + 5(1 = vx(0) | BX) ®)

xeX
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Subject to

Eolur (0] = D[ X = £0x, 0)vx(0) — 1(1 — v(0) |B(X) = U )
xeX
1 if v > £(x,0)
vx(0) = {0 if 5 < £(x, 0) (10)

a €[0,1] ifv=4£(x,0)

If v«(0) > Oforanx € X (i.e., bankruptcy occurs) then:

Y (X, 0)Bp(X) — € = £(X, 0) (11)
xeX

7X—v)—c>0 (12)

X < (X, 0) <nx, Vx e X (13)

(8) is the investor's ex-ante expected payoff. Given realizaxipthe entrepreneur
defaults with probabilityiy (0). In equilibrium, the investor pays costo request enforce-
ment when default occurs. Otherwise, with probability 1-,(0) the entrepreneur pays
The left-hand side of (9) is the entrepreneur’s expected payoff. By fixing the entrepreneur’s
expected utility at a levdli and maximizing the investor’s payoff we obtain ex-ante ef-
ficient allocations. (10) requires the entrepreneur’s bankruptcy chqi@@® to maximize
his expected payoff. li exceeds the payment from enforceménx, 0), the entrepreneur
chooses to default (i.e., not pay. If the inequality is reversed, the entrepreneur chooses
to payv with probability 1. If the payments are the same, then the entrepreneur can ran-
domize with probabilityx. (11) rules out mutually beneficial deviations. (12) ensures that
it is not beneficial for the entrepreneur to make a paymeat® < v.*? (13) ensures that
payments are in the fair cone.

Theorem 1 Let{{(X, v), vy, €,, B, B,} be a cPBNE. Leiir be the entrepreneur’s ex-ante
expected utility. Then the solution of problem 1 provides the same expected payoffs to the
investor and entrepreneur in each state

Conversely, lelir > 0 and let{¢(x, v), v«(0), v} be a solution to problem 1 which,
if there is more than one, gives the highest expected payoff to the investor. If the entre-
preneur’s expected payoff is non-negative tfeix, v), v«(0), v} can be supported as a
cPBNE.

12Condition 3 of definition 3 requires that agents cannot make any improvements ex-ante. By definition

such improvements include coordinating beligfsto support the highest possible ex-ante utilities. This is

achieved by the following “optimistic beliefs:” If a deviation© v < v were to occur, the investor believes
that the highest possiblewas realized.
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Proof. Lemma 2 and lemma 4 prove that mutually beneficial deviations do not exist if
and only if (11) holds. Lemma 3 implies that we can focus on equilibria where only
payments 0 and occur. Given such an equilibrium, (10) is equivalent to condition 1

of definition 1. Condition 2 is implied by (11) and (12). In particular, (11) implies that

Y oxex LX, 0)By(X) — ¢ = £(x,0) > 0. Therefore, the investor will request enforcement
whenv = 0. For off equilibrium path payments0 v < v, (11) is the weakest restriction

that ensures that enforcement takes place, thereby ruling out such payments. Because of
condition 2 of definition 1, in order foe, = 1 we must have

D (. v) = ©)BL(x) = 0. (14)

xeX

First, note that we can increase the left-hand side of (14) by setting) = x — v for

0 < v < v, as this does not affect payments on the equilibrium path. Second, we can
assume thag, puts all the mass oR, the highest possible realization, which satisfies
condition 3 of definition 1. Inserting(x, v) = X — v andg, (X) = 1 into (14) immediately
implies (12). The second statement of the theorem is now immediate.

Finally, letUr be the entrepreneur’s expected utility. Consider a cPBNE but assume by
contradiction that there exists an alternative contract that increases the objective of prob-
lem 1 and satisfies all the constraints. Because the alternative contract satisfies all con-
straints, it is a PBNE and does not admit a mutually beneficial deviation. The alternative
contract gives at least utilityr to the entrepreneur and strictly increases the investor's
expected utility. This contradicts condition 3 of definitions.

We can now prove that cPBNEs exist for our model.

Theorem 2 cPBNEs exist. In equilibrium, the project will receive funding if castse
not too high, and; and the project’'s expected return are not too low.

Proof. First, assume that arf¥(x, 0), v« (0), v} that satisfies the constraints of problem 1
for Ug = O gives the entrepreneur a negative payoff. Then the only equilibrium is autarky.
Now assume that it is possible to satisfy the constraints of problem 1 and give the
entrepreneur a non-negative payoff. Note that this is always the casis iflose to 1,
Y wex XB(X) > 1 andc is small. Fixwvy(0). The set of payment functiongx, 0) is
finite dimensional becausg is finite. The objective of problem 1 and the constraints are
therefore continuous iA(x, 0) andv. Because the constraint set is bounded, a maximum
exists, and the set of solutions to problem 1 keepin@) fixed is compact. Therefore,
there exists a solution that maximizes the investor’s payoff. Because there is only a finite
number of different choices af, (0), problem 1 has a solution. Among the solutions there
exists one that maximizes the investor’'s payoff. Theorem 1 therefore implies the mesult.
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5 Equilibrium Contracts

We now characterize solutions of problem 1. We first define a debt contract. The key
feature of debt is that default occurs only for “low” project realizations.

Definition 4 {£(X, 0), v, v«(0)} is a debt contractif the set of all default state® =
{X|v«(0) > 0} is an interval of low realizations.

The contract isimple debfif £(x, 0) = 5x for all x (i.e., the ex-ante contract specifies
that all non-exempt assets are seized in bankruptcy).

The model accommodates both inability to pay and willful default (cf., Krasa, Sharma
and Villamil [11]).

Definition 5 LetD = {x|v(0) > 0} be the set of bankruptcy states. Then

1. D, = {x € DIx < v}is the set of default states where the entrepreneunableto
pay:

2. D, = {x € D|x > v} is the set of default states where the entrepreneunigilling
to pay.

3. N = X\ D is the set of non-default states.

Theorem 3 proves that a debt contract that distinguishes between ability and willing-
ness to pay is optimal in the model. Further, when constraint (11) does not bind, a simple
debt contract is optimatt

Theorem 3 In all solutions of Problem 1D, is an interval where the entrepreneur is
not able to pay andD,, is an interval where the entrepreneur is not willing to pay, with
°(Da = O(Dw = N.

1. If (11) does not bind, then simple debt contracts are optimal.

2. If (11) binds, then debt contracts are optimal witfx, 0) increasing inx for all x
with £(x, 0) < v (i.e., for all realizationsx where the entrepreneur strictly prefers
default).

13f x < o, then by feasibility default must occur. ThuB, can also be defined @3 = {X|x < v}.

14when (11) binds debt rather than simple debt is optimal. Sharma [15] shows that loweéxiry to a
value strictly less thamx lowers the right-hand side of (11), thereby weakening the constraint. This allows
agents to find better outcomes. Intuitively, leaving the entrepreneur with some assets in the lowest state makes
the entrepreneur less willing to renegotiate (i.e., deviate). This increases the investor’s incentive to request
enforcement rather than to renegotiate.
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Proof. We consider each case.
Case 1.Constraint (11) does not bind.

Consider Problem 1 without (11). If (9) does not bind, thgr, 0) = x for all x
with v, (0) > 0. Otherwise, ifZ(x, 0) < x the investor’s payoff can be increased without
violating any constraint.

Now assume that constraint (9) binds. Substituting (9) into the objective of Problem 1
yields ) .y XB(X) — U — ¢c)_,.x vx(0)B(X). Therefore, Problem 1 is equivalent to
minimizing

D k(0B (15)
xeX
subject to (9), (10), (12) and (13), where the inequality in (9) is reversed. Now chioose
such that
Y AXBOO+ Y TXBOO = k. (16)

< = >£
X n X_’I

Note thatv exists andb < v sincef(x, 0) < X. Definevy(0) = 1 if and only if jx < .
Clearly, (10) is satisfied. (16) immediately implies that (9) holds. Néxt0) < v« (0).
Hence, (15) is decreased. Thus, choodifig 0) = x is optimal because it minimizes
expected enforcement costs.

Finally, we show thatD, andD,, are intervals. By definitionD, is an interval. Be-
causel/(x, 0) = x, we getdD,, = {X|nx < v < x}. Therefore D, is also an interval.

Case 2.Constraint (11) binds.

LetD, = {x € Dyp|l(x,0) < ¥}. We can redefiné(x, 0) such that it is monotonically
increasing oD, U D,,: Letx, X € D, U D,, with x < X. Assume that(x, 0) > £(X, 0).
We can then find(x, 0) = £(X, 0) such thaB(x)£(x, 0) + B(X)E(X, 0) = B(X)£(x, 0) +
B(X)L(X, 0). Repeating this argument for all states, we get a monotone payoff function that
yields the same expected payoff@ds, 0). Therefore, constraints (9), (10), (12), and (13)
are satisfied fof. Similarly, the left-hand side of (11) does not change. Clearly, (11) holds
if £(x,0) = £(x, 0). Thus, assumé(x, 0) # £(x, 0). This implies that/(x, 0) > £(X, 0)
for someX € D, U D,. Then the above construction yieldsx, 0) < ¢(x,0). As a
consequence, (11) is also satisfied.

Finally, we show that the default regions are intervals: Cleably,= {x|x < v} is
an interval. Becausé(x, 0) is monotone irx, it follows that{x|£(x,0) < v < X} is an
interval. ThereforeD,, is an interval. Without affecting payoffs or constraints, we can also
redefineZ(x, 0) and v, (0) on D,, \ D,, such that this set becomes the interval bordering
D,y
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6 Concepts of Efficiency

We now clarify our notion of efficiency with those in the literatdtgPareto) efficiency is

often viewed as a minimal test that any welfare optimal outcome should satisfy. An allo-
cation is said to be efficient if and only if there is no other feasible allocation that makes
some agents better off without making any agent worse off. This criterion is straightfor-
ward under complete information, but in a classic paper Hotimsand Myerson [7] show

that under incomplete information efficiency is more difficult to define. They identify six
classes of efficient mechanisms which are distinguished by two criteria — three time peri-
ods at which welfare is evaluated and two incentive cases. Hamsind Myerson note

that the timing of the welfare evaluation directly affects the information conditions under
which an agent’s expected utility is evaluated. They identify the time periods as ex ante,
interim and ex post. The two incentive cases take into account whether or not constraints
which make it optimal to reveal information are considered.

Classical efficiencyefers to the case where no incentive constraints are considered
(e.g., the incentive constraint is ignored or the state becomes public information). In con-
trast,incentive efficiencyefers to the situation where information is private and a constraint
which governs the agents’ incentive to reveal information is satisfied. The three time peri-
ods are distinguished as follows:

1. Ex ante incentive/classical efficiendgx-ante, agents have not yet received any pri-
vate information, and expected utility is therefore not conditional on it. In our model
att = 0, B(x) is the agents’ common prior before information is revealed. If no de-
viation exists that both agents would agree to, then the allocation is ex-ante incentive
efficient in the sense of Holm&im and Myerson.

2. Interim incentive/classical efficiencigxpected utility is evaluated given each agent’s
type (i.e., private information). In our model this corresponds to the situatios dt
where the entrepreneur obserwedut the investor remains uninformed.

3. Ex post classical/incentive efficiendyltility is evaluated at the realized state of na-
ture, even if all agents do not know the state (which is the case in our model when
enforcement does not occur). Standard Bayesian incentive compatibility is often
used in connection with the definition of ex-post efficiency. In a mechanism de-
sign framework, agents simultaneously truthfully reveal all of their information to a
“planner” who then uses it to design an efficient allocation. As a consequence, there
is no further opportunity for agents to make strategic choices based on information
(as no private information remains). In contrast, in our model the investor chooses
whether or not to invoke costly enforcement at 2 based on paymentobserved

15Because there are only two agents in the model, the absence of a coalitional deviation corresponds to
efficiency.
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att = 1, and it is not possible to reveal all informationtat 1 without destroying

the investor’s incentive to enforce. In fact, Lemma 3 indicates that information rev-
elation will be minimal. The coalitional deviation ait= 2 therefore does not occur
when information is complete. Thus, neither ex-post classical nor ex-post incentive
efficiency is applicable in our model ait= 2, and we must introduce a new notion.

We call the notion that we introduce endogenous interim efficiency (i.e., the absence
of coalitional deviations at = 2). This concept corresponds most closely to posterior
efficiency in Forges [3], which extends Green and Laffont’s [5] posterior implementation
approach. Forges considers a Bayesian collective-choice problem where a meghanism
selects a decisiod € D, andv(8) € A(D) is a feasible alternative decision wherés a
probability onD. Thenyu is posterior efficient if it is not possible to increase the expected
utility, givend, of all agents.

Lett; denote agerits type, and let_; denote the type of the remaining agents. Forges
defines posterior efficiency for a mechanism as follows:

Definition 6 Mechanismu is posterior efficient if the following is not true:
There existl € D, P,(d) > 0 and an alternative mechanisme A (D) such that

Y Pu(tilt, duict, d) = Y " v@uit, $)] <0,

t §

foralli =1, ..., nand for allt; with P, (t|d) > O.

No further information revelation is necessary to dseForge notes that this concept is
appropriate when agents can communicate only through the mech¥nismour case
agents communicate both within the mechanism, as in Forges, and outside the mechanism
because agents can make arbitrary payment<) which reveal informatiof’

Forges’ definition maps into condition 2 of definition 3. The chodes D correspond
to paymentsy € V. The entrepreneur’s type is given by realizatiorx € X. The
investor has no private information, hengeis trivial. ThereforeP, (t_i|ti, d) = B, (X)
if t; = x = te andt; = t;, andP,(t_;|t;, d) assigns probability 1 ta if t_; = t; and
ti = X = te. v(§) is the probability that alternative decisiére D is chosen. In our case,
we could consider lotteries ovéf. However, because both agents’ utilities are linear in
v, we can consider arbitrary payments> 0 instead of lotteries ovev. Therefore our

16Because we assume that communication can occur only in the game, any coalitional improvements must
be common knowledge. For example, this is captured, in the definitions of ex-ante and interim efficiency of
Holmstdm and Myerson [7] or definition 5.3.5 of Hahn and Yannelis [6]. In contrast, definition 5.3.4 or the
example in Proposition 5.4.6 in Hahn and Yannelis [6] capture situations where improvements are not common
knowledge (i.e., the alternative decision rule improves upon the status quo in allstatds but all agents
need not know whether eveAthas occurred).

17In other words, a planner cannot restrict a priori that agents announce onfy. 0 or
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notion of absence of coalitional deviationstat 2 in definition 3 corresponds exactly to
conditions 2 and 3 of definition 6 from Forges. Condition 1 of definition 6 corresponds to
our requirement thak (v) > 0.

Finally, recall from section 2.4 that we must also account for potential deviations at
0 andt = 1, and that we requirf{(x, v), vx, €., B8, B,} to be a PBNE. As a consequence,
we need a broader notion of equilibrium. Thus in our definition 3, condition 2 corresponds
to Forges, but we also require conditions 1, 3 and 4 which account for the PBNE and the
possibility for deviations in previous time periods.

7 Concluding Remarks

This paper develops the notion of a coalitional perfect Bayesian Nash equilibrium in which
the chosen strategies are optimal for a given enforceable contract, and there are no mutually
beneficial deviations from the contract at any stage in the game. The possibility of mutually
beneficial deviations (or improvements) is natural in financial contracting problems where
higher voluntary payments can potentially reduce the likelihood of enforcement, thereby
allowing agents to share the surplus generated by economizing on enforcement costs. The
solution concept captures both the non-cooperative aspect of firm liquidation and the co-
operative aspect of firm restructuring. The Theorems establish that equilibria of the model
correspond to solutions of an optimal contracting problem that exist and resemble debt.
These results are useful because they make computation and policy evaluation possible in
the contract problem.
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