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Abstract

The nature of competition is quite different in network industries as compared to

the other, more traditional, ones. The purpose of the present paper is to thoroughly

examine the implications of these differences as reflected in the dependence of equilib-

rium outputs, price and profits on industry concentration. We restrict the analysis to

oligopolistic competition amongst firms in a market characterized by positive (direct)

network effects when the relevant network is industry-wide.

The proofs rely on lattice-theoretic methods; this approach allows us to unify in

a common setting the general results in the literature on network goods, weakening

considerably the assumptions. As a by-product we offer an alternative explanation of

the start-off phenomenon in network industries.
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1 Introduction

“From computer software and hardware, to fax machines and video game systems, to com-

pact discs and digital video discs, to communications networks and the Internet, technology

is the driver and compatibility the navigator.”

Carl Shapiro

Antitrust in Network Industries

The nature of competition is quite different in network industries as compared to the

other, more traditional, ones. The presence of adoption effects gives rise to demand-side

economies of scale that highly affect market behavior and performance. When these effects

prevail consumers and firms must form expectations about the size of the network to make

their decisions; since demand-side economies of scale vary with these expectations, even

restricting attention to rational expectations equilibrium, multiple equilibria easily arise

[Katz and Shapiro (1985) and (1994), Liebowitz and Margolis (1994), Economides (1996)

and Varian (2001)]. From the supply-side of the economy, some proponents of network

externalities models suggest that these newer technologies often display increasing returns

to scale. These distinctive features raise new questions and impose some challenges from a

methodological perspective.

The purpose of the present paper is to thoroughly examine the implications of these

differences as reflected in the dependence of equilibrium outputs, price and profits on indus-

try concentration. Since antitrust policy depends upon a solid understanding of business

strategy and economics, the interest on this topic is not purely academic [Shapiro (1996)].

We restrict the analysis to oligopolistic competition amongst firms in a market char-

acterized by positive (direct) network effects when the products of the firms are perfectly

compatible with each other, so the relevant network is industry-wide. Although most pa-

pers in the literature on network goods focus on the opposite case —perfect incompatibility—

and analyze the incentives of the incumbent firms to make their products compatible, we

think that many important industries fit the perfect compatible framework. The market of

telecommunications, e.g. fax machines and phones, is a good example; here, the value that
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people derive from consumption increases when other people acquire the good, irrespective

of which firms the other people choose.

A key feature of this paper is that it relies on lattice-theoretic methods for proving

existence and stability of equilibria and doing comparative static analysis [Topkis (1978),

Milgron and Roberts (1990) and (1994) and Milgron and Shannnon (1994)]. This approach

allows us to unify in a common setting the general results in the literature on network

goods, weakening considerably the required assumptions. Isolating minimal constraints,

we provide more transparent economic intuition behind the cause-effect relationships we

analyze.

In order to provide a summary of our findings let Z, y and S denote aggregate output,

total output of the other firms in the market and the expected size of the network, respec-

tively. We prove existence based on only two natural conditions on the inverse demand

and common cost functions that guarantee that the profit functions of the firms under

consideration have increasing differences in Z and y and the single-crossing property in

Z and S. Our proof allows for increasing returns to scale and cross-effects in the inverse

demand function. It can be thought of as an extension of the proof of existence in Amir

and Lambson (2000) and Kwon (2006); the first one does not include network effects and

the second one assumes that the inverse demand function is additively separable in output

and network size.

Although our model is static by nature, we construct a dynamic argument to analyze

the stability of the equilibria. There are several antecedents on this issue in the market of

telecommunications [Rohlfs (1974), Economides and Himmelberg (1995) and Varian (2001)].

These papers suggest that this kind of industries usually have three equilibria. Under

natural dynamics, the two extreme equilibria are stable and the middle equilibrium (usually

called "critical mass") is unstable. The argument behind the proof is quite simple; if all the

consumers expect that none will acquire the good, then the good has no value and none

will buy it, resulting in a no-trade equilibrium. However, if expectations are higher to start

with, other non-trivial equilibria are also possible. They use this framework to explain the

start-up problem in network industries, that is, the difficulties of the incumbent firms to
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generate enough expectations to achieve "critical mass." Fax machines illustrate nicely this

common pattern; the Scottish inventor Alexander Bain patented the basic technology for

fax machines in 1843, but faxes remained a niche product until the mid-1980s [Shapiro and

Varian (1998)].

The current explanation for the take-off is based on the positive feedback argument: As

the installed base of users grows, more and more users find adoption worthwhile, eventu-

ally, the product achieves "critical mass" and the market explodes. We complement this

explanation by showing the role of market structure. We prove that, under specific condi-

tions, the no-trade equilibrium is stable when there are just a few firms in the market but

becomes unstable when more firms decide to enter. In these cases, the take-off only occurs

if the number of firms in the market is big enough.

Regarding market behavior, the extremal equilibria (i.e. maximal and minimal) call for

an aggregate output that increases in the number of firms. As this also means that expec-

tations are higher at the extremal equilibria, this result does not imply that the extremal

equilibria prices increase in n. Thus, the so-called property of quasi-competitiveness1, which

under similar assumptions holds in the standard Cournot game, does not hold here. In ad-

dition to these, when n increases per-firm equilibrium output increases if the demand is not

too log-concave and decreases otherwise.

As far as per-firm profits are concerned if both the extremal equilibrium prices and

per-firm outputs increase as a function of n, per-firm profits also increase with the num-

ber of firms in the market. This last statement is quite surprising; it means that under

some feasible conditions the incumbent firms in the market prefer to see further entry by

new firms. This possibility is discussed but not proved in Katz and Shapiro (1985) and

formalized under different assumptions in Economides (1995).

The effects of entry on industry performance as reflected in social welfare, consumer

surplus and aggregate profits also display some distinct features as compared to standard

Cournot competition. The demand-side economies of scale weaken the conditions under

1A Cournot competition is said to be quasi-competitive if equilibrium industry output increases and the

equilibrium market price decreases with an increase in the number of firms in the industry.
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which social welfare and aggregate profits increase with new entries. Alternatively, if the

cross-effect on the inverse demand function is negative, it is possible that consumer surplus

decreases with n. Katz and Shapiro (1985) explain the intuition behind this result: "If the

network externality is strong for the marginal consumer, then the increase in the expected

network caused by the change in the number of firms will raise his or her willingness to pay

for the good by more than that of the average consumer. As a consequence, the firms will

be able to raise the price by more than the increase in the average consumer’s willingness

to pay for the product and consumer’s surplus will fall."

In the context of the standard Cournot oligopoly, the two extremal equilibria enjoy

particular welfare properties. The largest [smallest] equilibrium output is preferred most

[least] by consumers, but preferred least [most] by firms [Amir (2003)]. When network

effects are present, these properties are no longer true; in particular, we give sufficient

conditions under which the largest equilibrium is the most preferred by both firms and

consumers.

The paper is organized as follows. Section 2 presents the model, introduces our equilib-

rium concept and defines the notation. Section 3 proves existence of equilibria and studies

stability and uniqueness. Section 4 analyzes output, price and per-firm profits as a function

of the number of firms in the market. Section 5 deals with market performance as reflected

in social welfare, consumer surplus and aggregate profits, again, as a function of n. Section

6 assumes that the game has multiple equilibiria, and compares the different outputs from

the perspective of firms and consumers. All these sections contain several examples2. Sec-

tion 7 shows a discussion of the main results and suggests further extensions, and Section 8

contains the proofs of this paper, when not included in the corresponding sections. Finally,

a very simple and self-contained review of the lattice-theoretic notions and results needed

here form the Appendix.

2Some of the examples we use do not satisfy all the assumptions in this paper. Anyway, we include them

because they are simple and capture the features we want to highlight.
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2 Analytical Framework

In this section we present a simple model of oligopoly with network effects and introduce

our equilibrium concept. In addition to these, we define the notation and enumerate all the

assumptions we use in the paper.

2.1 Firms, Consumers and Equilibrium

We consider a simple, static, model to analyze the oligopolistic competition for goods with

network effects. For us, this means that the willingness to pay of consumers is increasing

in the number of other agents buying the same kind of good.

We assume that the products of the firms are homogeneous and perfectly compatible

with each other, so the relevant network comprises the outputs of all firms producing the

good.

The market is fully described by the number of (identical) firms n and the inverse

demand function P (Z, S), where Z is aggregate output in the market and S is the expected

size of the network, i.e. the expected number of people buying the good. We consider that

each consumer buys at most one unit of the good; thus, S also denotes the expected number

of units to be sold.

The profit function of the firm under consideration is

π (x, y, S) = xP (x+ y, S)− C (x) (2.1)

where x is the level of output chosen by the firm and y the output of the other (n− 1) firms
in the market. Sometimes, it will be useful to express total cost of production in terms

of average cost A (x) 3. At equilibrium, all relevant quantities -x, y and Z- and π will be

indexed by the underlying number of firms n.

Each firm chooses its output level to maximize (2.1) under the assumptions that: (a)

consumers’ expectations about the size of the network S is given; and (b) the output

3C (x) and A (x) are normalized to be zero at x = 0.
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level of the other firms,
P

i 6=j xjn = y, is fixed4. An equilibrium in this game is a vector

(x1n, x2n, ..., xnn) that satisfies the following conditions:

1.
Pn

i=1 xin = Zn

2. xin = argmax
n
xP

³
x+

P
j 6=i xjn, Zn

´
−C (x)

o
.

In the literature of network effects this notion of equilibrium is well known as "Fulfilled

Expectations Cournot Equilibrium (FECE)" [Katz and Shapiro (1985)]. Note that this

equilibrium requires that consumers and firms predict the market outcome correctly, so

that their beliefs are confirmed in equilibrium; in other terms, expectations are rational.

As Katz and Shapiro (1985) assert: "Although it is possible that (in the short run, at

least) consumers could be mistaken about network sizes, it is useful to limit the set of

possible equilibria by imposing the restriction that expected sales be equal to actual sales

in equilibrium." We will see later that even restricting attention to rational expectations

equilibrium, FECE still allows multiple equilibria to occur.

Alternatively, we may think of the firm as choosing total output Z = x + y, given the

other firm’s cumulative output y and the expected size of the network S, in which case its

profit is given by eπ (Z, y, S) = (Z − y)P (Z,S)−C (Z − y) . (2.2)

This second representation will result to be very useful in some of the proofs.

Related to these two specifications of the profit function, ex (y, S) denotes the arg max
of (2.1) and eZ (y, S) the arg max of (2.2); note that eZ (y, S) = ex (y, S) + y. In addition to

these, Z∗ (S, n) is defined as the value of eZ (y, S) that satisfies n
(n−1)y = eZ (y, S) . We can

think of Z∗ (S, n) as an equilibrium in the standard Cournot competition, considering S

as a simple inverse demand shifter. Under this alternative notion of equilibrium we allow

firms and consumers to make mistakes about the size of the network; this idea plays an

important role in the theorems related to stability and uniqueness.

4The first sub-index in xin indicates that this quantity corresponds to firm i, the second one denotes the

number of firms in the market.
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Whenever well-defined, we denote the maximal and minimal points of a set by an upper

and a lower bar, respectively. Thus, for instance, Zn and Zn are the highest and lowest

aggregate equilibrium outputs. Performing comparative static on the equilibrium sets will

consist of predicting the direction of change of these extremal elements as the exogenous

parameter varies. In our game, the exogenous parameter is the number of firms in the

market.

To facilitate the reading, the symbol ¥ denotes the end of a proof, N the end of an

example and , means "by definition."

We close this subsection with two definitions. The Marshallian social welfare when

aggregate output is Z, all firms produce the same quantity and the expected size of the

network is S isW (Z, S) ,
Z Z

0

P (t, S)dt−ZA (Z/n) . Similarly, the Marshallian consumer

surplus is given by CS (Z,S) ,
Z Z

0
P (t, S) dt− ZP (Z,S) .

2.2 The Assumptions

In this subsection we describe all the assumptions we use later. We distinguish two different

groups of constraints: The first one contains standard assumptions, or those that are usually

imposed, the second one is more specific to the methodology we use.

The standard assumptions are:

(A1) P (., .) is twice continuously differentiable, P1 (Z, S) < 0 and P2 (Z, S) ≥ 0;
(A2) C (.) is twice continuously differentiable and increasing;

(A3) xi ≤K ∀i.

Assumption 1 imposes two natural conditions on the inverse demand function: It is

decreasing in aggregate output, meaning that if firms want to sell more they have to choose

a lower price, and is increasing in the expected size of the network, reflecting the fact that

willingness to pay of consumers is increasing in the expected number of people buying

the good. Assumption 2 implies that cost increases with production; and assumption 3

sets capacity constraints in the production process of each firm. Although convenient, the
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smoothness assumptions are by no means necessary for the main results, we include them

just to simplify the proofs.

Before describing the second set of conditions we need to introduce two functions that

play a key role in our results. Let ∆1 (Z, y) denote the cross-partial derivative of eπ (Z, y, S)
with respect to Z and y, and ∆2 (Z,S) the cross-partial derivative of lnP (Z,S) with respect

to Z and S [multiplied by P (Z,S)2]. Then,

∆1 (Z, y) = P1 (Z, S) +C 00 (Z − y)

∆2 (Z,S) = P (Z,S)P12 (Z,S)− P1 (Z,S)P2 (Z,S)

Note that∆1 (Z, y) and∆2 (Z,S) are defined on the lattices ϕ1 , {(Z, y) : y ≥ 0, Z ≥ y}
and ϕ2 , {(Z,S) : Z ≥ 0, S ≥ 0} , respectively. The second set of constraints is:

(A4) ∆1 (Z, y) = −P1 (Z,S) +C 00 (Z − y) > 0 globally on ϕ1;

(A5) ∆2 (Z, S) = P (Z,S)P12 (Z, S)− P1 (Z,S)P2 (Z,S) ≥ 0 globally on ϕ2;

(A6) P (Z, S) is log-concave in Z.

Assumptions 4 and 5 guarantee that the profit function eπ (Z, y, S) of the firm under

consideration has increasing differences and the single-crossing property on the lattices

ϕ1 and ϕ2, respectively. It is interesting to note that A5 is equivalent to assume that the

elasticity of demand is increasing in S; this means that the higher S is the less responsive are

prices to changes in aggregate output5. Assumption 6 is needed for two results: uniqueness

and stability; when added to the others, A6 guarantees that for all S there exists only

one arg max, eZ (y, S) , of (2.2) that satisfies n
(n−1)y = eZ (y, S) , in other words, Z∗ (S, n) is

uniquely defined as a function of S.

5The price elasticity of demand is −
³
∂P(Z,S)

∂Z
Z

P(Z,S)

´−1
= −

³
Z ∂ lnP(Z,S)

∂Z

´−1
, which is increasing in S

if and only if lnP (Z, S) has increasing differences in (Z,S) [Topkis (1998), pp. 66].
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3 Existence, Stability and Uniqueness of Equilibria

In this section we prove existence and analyze stability and uniqueness of equilibria. The

fundamental questions under consideration are: Under what assumptions the equilibrium

exists?, What conditions guarantee stability and how are these conditions affected by the

entry of new firms in the market?, and What extra requirements do we need for uniqueness?.

First we provide conditions on P (., .) and C (.) that guarantee the existence of the

equilibrium. As Theorem 3.1 says, the same conditions that assure existence preclude the

possibility of asymmetric equilibria.

Theorem 3.1. Under assumptions A1-A5, for each n ∈ N, the Cournot oligopoly with

network effects has at least one symmetric equilibrium and no asymmetric equilibria.

Let ex and eZ denote the best response output level and total output, respectively, by a

firm to a joint output y by the other (n− 1) firms when the expected size of the network
is S. The following mapping, which can be thought of as a normalized cumulative best-

response correspondence, is the key element in dealing with symmetric equilibria for any

number of firms n

Bn : [0, (n− 1)K]× [0, nK] −→ 2[0,(n−1)K]×[0,nK]

(y, S) −→ £
n−1
n (ex+ y) , ex+ y

¤
.

It is readily verified that the (set-valued) range of Bn is as given, i.e. if ex ∈ [0, k] and
y ∈ [0, (n− 1) k], then n−1

n (ex+ y) ∈ [0, (n− 1)k] and ex+ y ∈ [0, nK] . Also, a fixed-point
of Bn is easily seen as a symmetric equilibrium, for it must satisfy both, y∗ = n−1

n (ex∗ + y∗) ,

or ex∗ = 1
n−1y

∗, and S∗ = ex∗ + y∗, which says that the responding firm produces as much

as each of the other (n− 1) firms and the expected size of the network equals aggregate
output at equilibrium.

Assumptions A4 and A5 guarantee that eZ = ex+ y increases with y and S, respectively.

As a consequence, Bn is an increasing mapping and the proof of existence follows as a

simple application of Tarski’s fixed point theorem.

Alternatively, the absence of asymmetric equilibria obeys the fact that the best response

mapping (y, S) −→ eZ [the arg max in (2.2)] is strictly increasing (in the sense that all its
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selections are strictly increasing) in y for all S. Thus, if we keep S fixed, to each eZ
corresponds (at most) one y such that eZ = ex+ y with eZ being a best-response to y and S.

In other words, for the arg max eZ, each firm must be producing the same ex = eZ − y, with

y = (n− 1) ex.
Theorem 3.1 extends the existence results in the literature on network goods to very

general settings. It places all the restrictions on a general inverse demand function, and thus

it does not assume any kind of homogeneity among consumers. Additionally, it dispenses

with the assumptions of no cross-effects in the demand-side and constant marginal costs of

production in the supply-side of the economy.

It is important to note that differentiability of the demand and cost functions is assumed

here purely for convenience. As will become clear in the proofs, the fundamentally needed

assumptions are the supermodularity of eπ (Z, y, S) with respect to (Z, y) on ϕ1, and the

single-crossing property with respect to (Z,S) on ϕ2.

If we compare the conditions we impose here with the ones required for the standard

Cournot competition, assuming that P2 (Z, S) ≥ 0, which holds by construction in network
goods, the only extra constraint is a cross-effect on the inverse demand function [P12 (Z,S)]

that is not too negative. All other assumptions are also needed for proving existence in the

standard analysis [Theorem 2.1, Amir and Lambson (2000)].

Theorem 3.1 guarantees existence but it does not eliminate the possibility of multiple

equilibria. As many network industries display this feature, the predictions that we ob-

tain are often incomplete. Since one possible criterion to sharpen predictions is stability,

Theorem 3.2 gives sufficient conditions to characterize the interior equilibria (including the

no-trade equilibrium) in terms of this property. For this purpose let’s define a new function

g (z, n) =
−n {P1(z, z)P2(z, z) + [C 0(z/n)− P (z, z)]P12(z, z)}

(n+ 1)P 21 (z, z) + n [C 0(z/n)− P (z, z)]P11(z, z)− P1(z, z)C 00(z/n)

Theorem 3.2. Under assumptions A1-A6 , we have:

(a) If g (z, n) < 1 at some interior equilibrium z = Zn, then the equilibrium is stable;

(b) If g (z, n) > 1 at some interior equilibrium z = Zn, then the equilibrium is unstable.

Figure 1 clarifies the idea behind the proof of this theorem. Remember that Z∗ (S, n)
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Figure 1: Stability of equilibria.

denotes the best response aggregate output of the firms to a certain value of S, subject

to the constraint n
(n−1)y = eZ (S, y). Together with assumptions A1-A4, A6 guarantees

that Z∗ (S, n) is uniquely defined as a function of S. The (fulfilled expectations) equilibria

of the network game are the points where Z∗ (S, n) crosses the 450 line. "Stability" has to

do with the following thought experiment: Suppose that, starting at some equilibrium, we

change S slightly and let firms react by choosing an action that maximizes their current

profits. This will generate a new Z∗ (S, n) that will in turn affect people expectations,

and so forth. This yields a sequential adjustment process in which consumers and firms

behave myopically (i.e. firms ignore the effect that their adjustment has on their rivals).

The equilibrium is considered "stable" if this process converges to the initial position. The

function g (z, n) , recently defined, reflects the slope of Z∗ (S, n) with respect to S at the

diagonal. Figure 1 shows that Zn is stable [unstable] when the slope of this function is

lower [higher] than one, i.e. g (Zn, n) < 1 [g (Zn, n) > 1] 6.

Figure 1 was not randomly chosen; many papers suggest that it reflects the structure

6This argument is based on the fact that the slope of eZ (S, n) with respect to S is always positive; this
result holds by A5.
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of the telecommunications industries. The implicit game there displays three possible equi-

libria: The no-trade equilibrium, a middle unstable equilibrium (usually called "critical

mass"7), and a third equilibrium that is stable and displays strictly positive sales. The

justification of this structure is quite simple: If all the consumers expect that none will

acquire the good, then the good has no value and none will buy it, resulting in a no-trade

equilibrium. However, if expectations are higher to start with, other non-trivial equilibria

can also occur.

When the no-trade equilibrium is stable, as in Figure 1, it is possible that the market

never emerges; the reason is that if the "critical mass" is very large it could be too risky for

the incumbent firms to produce enough to reach it, and any initial level of output lower than

the "critical mass" generates a process that converges to the trivial, no-trade, equilibrium.

This argument is commonly used to justify the start-up problem in network goods, that is,

the difficulties of the incumbent firms to generate enough expectations to achieve "critical

mass."8

The current explanation for the take-off is based on the positive feedback idea: As

the installed base of users grows, more and more users find adoption worthwhile, eventu-

ally, the product achieves "critical mass," and the market explodes to the following stable

equilibrium. This argument is intrinsically dynamic. We complement this explanation by

showing the role of market structure. This analysis is based on the dependence of the

stability condition in Theorem 3.2 on the number of firms in the market, at the no-trade

equilibrium.

Lemma 3.1 gives sufficient conditions that guarantee the existence of the no-trade equi-

librium; after it, Theorem 3.3 examines how the stability of this equilibrium is affected by

the entry of new firms in the market.

Lemma 3.1. Suppose that xP (x, 0) ≤ C (x) ∀x, then, for each n ∈ N, Zn = 0 is an

equilibrium for the Cournot Oligopoly with networks effects.

7"Critical mass" is defined as the minimal non-zero equilibrium size of a network good or service.
8For an interesting discussion of this phenomenon see Shapiro and Varian (1998).
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Proof. Let’s assume that y = S = 0, then ex (0, 0) = 0 is an arg max of (2.1) if and only if
the following hold

π (0, 0, 0) ≥ π (x, 0, 0) ∀x
0 ≥ xP (x, 0)− C (x) ∀x

C (x) ≥ xP (x, 0) ∀x
Thus, if xP (x, 0) ≤ C (x) ∀x, ex (0, 0) = 0 is an arg max of (2.1) and Zn = 0 is an equilibrium

for each n ∈ N. ¥

The necessary and sufficient condition in Lemma 3.1 is often satisfied. The reason is

that in many network markets if all consumers expect that none else will buy the good,

then the good has no value; in other terms, P (x, 0) = 0 ∀x.

Theorem 3.3. In addition to A1-A6, assume that xP (x, 0) ≤ C (x) ∀x and C 0 (x) = c ≥ 0.
Then,

(a) The slope of Z∗ (S, n) with respect to S at the no-trade equilibrium increases when an

extra firm enters the market, i.e.
∂Z∗ (0, n+ 1)

∂S
≥ ∂Z∗ (0, n)

∂S
;

(b)
∂Z∗ (0, n)

∂S
≷ 1 according to n ≷ − (1 + n)

P1 (0, 0)

P2 (0, 0)
.

The first part of Theorem 3.3 shows that when the no-trade equilibrium exists, it be-

comes more unstable when other firms enter the market. The second part points out the

values of n for which the equilibrium is stable or unstable.

As was mentioned before, it suggests an alternative explanation for the start-off phe-

nomenon in the network industries: It is possible that the no-trade equilibrium is stable for

a small number of firms in the market, but it becomes unstable when more firms decide to

enter. Example 2, at the end of this section, illustrates this idea. It describes an extreme

case where if the number of firms is small, the no-trade equilibrium is stable and the mar-

ket never emerges; but if the number of firms increases enough, the no-trade equilibrium

becomes unstable and the market easily converges to the highest equilibrium.

The last theorem deals with uniqueness. Its proof is quite similar to the one of Theorem

3.4. In fact, all we need for uniqueness is that the condition for stability holds globally at
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the equilibrium path, i.e. at z = Z = S.

Theorem 3.4. In addition to A1-A6, suppose that condition (3.1) is satisfied ∀z
£
P (z, z)−C 0 (z/n)

¤
[P11 (z, z) + P12 (z, z)]−P1 (z, z)

·
P1 (z, z) + P2 (z, z) +

P1 (z, z)− C 00 (z/n)
n

¸
< 0.

(3.1)

Then, there exists a unique and symmetric equilibrium.

We end this section with two examples. The first one clarifies the idea of Theorem 3.2

and the second one illustrates the relevance of Theorem 3.3.

Example 1. Consider the symmetric Cournot oligopoly with no production costs, and

inverse demand function given by

P (Z,S) = e−
Z
Sα , nK ≥ Z ≥ 0, S ≥ 0, α > 0 [6= 1] .

The reaction function is x (y, S) = Sα, for S ≥ 0. Adding for all firms in the market, we
obtain Z∗ (S, n) = nSα. At equilibrium, Z∗ (S, n) = S. Thus,

Zn =
n
0, n

1
1−α
o

if 0 < α < 1, Zn =
n
0, n

1
1−α , nK

o
if α > 1.

From the previous computations,
∂Z∗ (S, n)

∂S
= nαSα−1 for Z∗ ≤ nK, and 0 otherwise.

As a consequence, it is readily verified that when 0 < α < 1, the no-trade equilibrium

is unstable and the highest one is stable. However, when α > 1, the no-trade equilibrium

and the highest one are stable but the middle equilibrium becomes unstable. N

Example 2. Let’s consider now this alternative inverse demand function

P (Z, S) = e−
Z
bS , nK ≥ Z ≥ 0, S ≥ 0, b > 0.

The reaction function is x (y, S) = bS. Adding for all firms in the market, we obtain

Z∗ (S, n) = nbS. At equilibrium, Z∗ (S, n) = S. Thus, we have three possible equilibrium

configurations

Zn = 0 if nb < 1, Zn ∈ [0, nK] if nb = 1, Zn = {0, nK} if nb > 1.
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Figure 2: No-trade equilibrium, stability and n.

As Theorem 3.3 predicts,
∂Z∗ (S, n)

∂S
= nb increases with n. In particular, it can be verified

that if b < n−1 the no-trade equilibrium is stable, but if b > n−1 it becomes unstable.

Figure 2 illustrates these features for b = 1
2 . We observe in the graph that when n ≤ 2

the slope of Z∗ (S, n) with respect to S is less than 1, and the no-trade equilibrium is

always stable; but when n > 2 the slope is higher than 1 (for small values of S), the no-

trade equilibrium becomes unstable and a new stable equilibrium appears in the capacity

constraints of the firms. N

The last example also has an interesting implication for patent law in new network

industries: If one firm gets the rights for the good in that context, it would rather prefer to

give it for free to other potential firms than to keep it for itself; alone, the firm could never

generate enough expectations on consumers to start the market off.

4 Equilibrium Price, Output and Profits

In this section we start the analysis of market behavior and performance. The main ques-

tions are: How do total output, per-firm output, and industry price vary with the number
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of firms in the market? and How are per-firm profits affected by the entry of a new firm?.

The approach we follow to answer these questions is similar to the one used by Amir

and Lambson (2000) and Amir (2003) to analyze the standard Cournot competition; we

show that their results change significantly when network effects are included.

The mapping Bn, introduced in Section 3, can also be used for comparative static

purposes; the results in Theorem 4.1 are based on the fact that Bn is increasing in n.

Theorem 4.1. Under assumptions A1-A5, we have:

(a) The extremal equilibrium cumulative outputs of (n− 1) firms ynand y
n
are increasing

in n;

(b) The extremal equilibrium total outputs Zn and Zn are increasing in n.

Note: Theorem 4.1 part (b) does not imply that the maximal and minimal selections of the

equilibrium price P
¡
Zn, Zn

¢
and P (Zn, Zn) are decreasing in n, in contrast to standard

Cournot competition [Theorem 2.2, Amir and Lambson (2000)]. The reason is that in

our case the increase in the extremal equilibrium outputs is accompanied by the same

increase in the size of networks, and these two variables have opposite effects on market

price. In fact, if the network effect dominates the output effect at the equilibrium path,

i.e. P1 (z, z) + P2 (z, z) > 0 ∀z ∈ £Zn, Zn+1

¤
and

£
Zn, Zn+1

¤
, then P

¡
Zn+1, Zn+1

¢
>

P
¡
Zn, Zn

¢
and P

¡
Zn+1, Zn+1

¢
> P (Zn, Zn) ; the opposite occurs if the output effect

dominates the network one.

The previous note shows that we can not globally define the direction of the extremal

equilibrium prices as a function of n; for similar reasons we can neither conclude about

the direction of the change in the maximal and minimal selections of per-firm equilibrium

outputs xn and xn nor profits πn and πn. To make inferences about them we need to add

some extra conditions. Doing this, Theorems 4.2 and 4.3 extend the results; but before

introducing them we need to define a new function

f (z) =
£
P (z, z)− C0 (z/n)

¤
[P11 (z, z) + P12 (z, z)]− P1 (z, z) [P1 (z, z) + P2 (z, z)] .

Theorem 4.2. Under assumptions A1-A5, we have:
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(a) If f (z) ≥ 0 over [Zn, Zn+1] and [Zn, Zn+1], then xn+1 ≥ xn and xn+1 ≥ xn;

(b) If f (z) ≤ 0 over £Zn, Zn+1

¤
and

£
Zn, Zn+1

¤
, then xn+1 ≤ xn and xn+1 ≤ xn.

The implication of part (b) is well-known as "business-stealing effect," since the strategic

response of existing firms to new entry results in lowering their volume of sales. In other

words, the new entrant "steals business" from incumbent firms.

Alternatively, we can call the phenomenon in part (a) "business-enhancing effect," be-

cause in this case the new entry encourages the incumbent firms to produce more. When

f (z) ≥ 0 the inverse demand function decreases at a rapidly decreasing rate as aggregate
output increases at the equilibrium path, i.e. at z = Z = S. This leads to a surprising

situation where a given increase in own output generates more (extra) revenue for a firm

when the rival firms are producing at a higher joint output.

It can be shown that if the inverse demand function is log-convex in aggregate output,

then f (z) ≥ 0. As a consequence, log-convexity is a sufficient but not necessary condition
for the extremal per-firm equilibrium outputs to increase after new entry. Theorem 2.3

in Amir and Lambson (2000) requires log-convexity and C (.) ≡ 0 to guarantee the same
result for the standard analysis. This means that the "business-enhancing effect" arises

easier when network effects are present.

It is important to note that these results do not hold globally. They depend on the sign

of the function f (z) over the extremal equilibrium levels of aggregate output and expected

networks. This means that the extremal equilibrium per-firm outputs xn and xn can be

increasing for some values of n and decreasing for some others.

Based on Theorem 4.2, Theorem 4.3 displays a quite interesting result. It concludes

about the direction of change of the extremal per-firm equilibrium profits πn and πn when

an extra firm enters the market.

Theorem 4.3. Under assumptions A1-A5, we have:

(a) If P
¡
Zn+1, Zn+1

¢ ≥ P
¡
Zn, Zn

¢
, P

¡
Zn+1, Zn+1

¢ ≥ P (Zn, Zn) and f (z) ≥ 0 over£
Zn, Zn+1

¤
and

£
Zn, Zn+1

¤
, the extremal per-firm equilibrium profits πn and πn increase

when an extra firm enters the market;
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(b) If P
¡
Zn+1, Zn+1

¢ ≤ P
¡
Zn, Zn

¢
, P

¡
Zn+1, Zn+1

¢ ≤ P (Zn, Zn) and f (z) ≤ 0 over£
Zn, Zn+1

¤
and

£
Zn, Zn+1

¤
, the extremal per-firm equilibrium profits πn and πn decrease

when an extra firm enters the market.

Theorem 4.3 has a surprising implication; it gives sufficient conditions under which the

incumbent firms in the market prefer to see further entry by new firms. Although unusual,

this result follows directly from the fulfilled expectations condition: When one extra firm

enters the market not only aggregate output increases but also expectations are higher,

thus if the network effect is important enough and the inverse demand function is not too

log-concave (at equilibrium) it is possible that the extremal equilibrium prices and per-firm

outputs go up and per-firm profits increase. This possibility is discussed but not proved in

Katz and Shapiro (1985) and formalized under different assumptions in Economides (1995).

The proof of Theorem 4.3 is quite simple; it involves only a few steps based on the

comparison of the profit function under different levels of its arguments. It is important

to remark that, as it happens with Theorem 4.2, these results do not hold globally, they

depend on the value of n.

We end this section with an interesting example that highlights the implications of

Theorem 4.3.

Example 3. Consider the symmetric Cournot oligopoly with no production costs, and

inverse demand function given by

P (Z,S) = max{a+ bSα −Z, 0} Z ≥ 0, S ≥ 0, a ≥ 0, b > 0, 0 < α < 1.

The reaction function is x (y, S) = max
½
a + bSα − y

2
, 0

¾
, for y, S ≥ 0. Following a simple

computation, we get that the (unique) aggregate equilibrium output is implicitly defined

by the equality

−Zn (1 + n) + na+ nbZα
n = 0, Zn ≥ 0.

It is readily verified that when a = 10, b = 5 and α = 4
5 , per-firm equilibrium profits for

1, 2, 3, 4 and 5 firms in the market are

π1 ≈ 14, 437, π2 ≈ 49, 123, π3 ≈ 67, 280, π4 ≈ 70, 651, π5 ≈ 67, 288.
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Since π1 < π2 < π3 < π4, we note that when the number of firms is very small, n = 1, 2

or 3, they are better off if an extra firm joins them, but the opposite is true when n ≥ 4
(π4 > π5). N

5 Social Welfare, Consumer Surplus and Industry Profits

In this section we analyze the effects of entry on industry performance as reflected in

social welfare, consumer surplus and industry profits. Our purpose is to give sufficient

conditions that guarantee the validity of the following inequalities at the extremal equilibria:

Wn+1 ≥Wn, CSn+1 ≥ CSn and (n+ 1)πn+1 ≥ nπn.

Since network effects introduce new features into the analysis, we first explore the

general consequences of new entry. For this purpose we decompose the effects of entry in

three key terms:

1.

Z Zn+1

0
P (t, Zn+1) dt−

Z Zn

0
P (t, Zn) dt;

2. Zn+1P (Zn+1, Zn+1)−ZnP (Zn, Zn) ;

3. Zn+1A (xn+1)− ZnA (xn) .

The first term reflects the change of the area below the inverse demand function, until the

equilibrium aggregate output corresponding to (n+ 1) firms. This area increases with n via

two different channels: First, the change in expectations causes an upward displacement of

the whole inverse demand function; second, since Zn+1 ≥ Zn (at the extremal equilibria),

the area also increases because more people buy the good. Figure 3 shows these two effects

(the first effect is in light grey and the second one in dark grey). Based on this analysis,

Term 1 is always positive.

The second and the third terms reflect the changes in industry costs of production and

total expenditures, respectively. These two terms can not be signed a priori because the

direction of change of the extremal equilibrium per-firm outputs and prices are not globally

defined.
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Figure 3: Inverse demand function, expectations and n.

We now present the main results of this section. The three theorems that follow are

based on different comparisons of the three terms just described.

Theorem 5.1 gives sufficient conditions for social welfare to increase after the entry of a

new firm.

Theorem 5.1. In addition to A1-A5, suppose that condition (5.1) is satisfied at the

extremal equilibriaZ Zn

0
[P (t, Zn+1)−A (xn+1)] dt ≥

Z Zn

0
[P (t, Zn)−A (xn)] dt. (5.1)

Then, Wn+1 ≥Wn for any n ∈ N (at the extremal equilibria).

Proof. For an extremal equilibrium, consider

Wn+1 −Wn =

Z Zn+1

0
[P (t, Zn+1)− A (xn+1)] dt−

Z Zn

0
[P (t, Zn)−A (xn)] dt

≥
Z Zn

0

[P (t, Zn+1)−A (xn+1)] dt−
Z Zn

0

[P (t, Zn)−A (xn)] dt

The inequality follows directly from Theorem 4.1. Theorem 5.1 just says that if the RHS

of this inequality is positive, then Wn+1 ≥Wn at the extremal equilibria. ¥

Note: Since, by A1,
Z Zn

0
[P (t, Zn+1)− P (t, Zn)] dt ≥ 0, A (xn+1) ≤ A (xn) is also a suffi-

cient condition for Wn+1 ≥Wn.
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Theorem 5.1 suggests that if firms display economies of scale, or if the diseconomies are

lower than the increase in willingness to pay of consumers due to the higher network size,

then social welfare increases after new entry.

To guarantee the same result in the standard Cournot competition we need to assume

A (xn) ≥ A (xn+1), that is, the sufficient condition mentioned in the previous note [Propo-

sition 6, Amir (2003)]. Since this condition is stronger than condition (5.1) we conclude

that, keeping everything else equal, the number of firms that maximizes social welfare is

higher when network effects are present.

Theorem 5.2 gives sufficient conditions for consumer surplus to increase after the entry

of a new firm.

Theorem 5.2. In addition to A1-A5 suppose that either (a) P (Zn+1, Zn+1) ≤ P (Zn, Zn)

or (b) P12 (Z,S) ≤ 0 ∀Z, S is satisfied. Then, CSn+1 ≥ CSn for any n ∈ N (at the extremal

equilibria).

The proof of part (a) is obvious, so we omit it. The following steps prove part (b).

Proof. For an extremal equilibrium, consider

CSn+1 − CSn =

Z Zn+1

0
[P (t, Zn+1)− P (Zn+1, Zn+1)] dt−

Z Zn

0
[P (t, Zn)− P (Zn, Zn)] dt

≥
Z Zn

0
[P (t, Zn+1)− P (Zn+1, Zn+1)] dt−

Z Zn

0
[P (t, Zn)− P (Zn, Zn)] dt

=

Z Zn

0

[P (Zn, Zn)− P (Zn+1, Zn)] dt+Z Zn

0
[P (t, Zn+1)− P (t, Zn)] dt−

Z Zn

0
[P (Zn+1, Zn+1)− P (Zn+1, Zn)] dt

≥
Z Zn

0
[P (Zn, Zn)− P (Zn+1, Zn)] dt

≥ 0

The first inequality follows directly from A1 and Theorem 4.1. The third expression is

obtained from the second one by adding and subtracting
R Zn
0 P (Zn+1, Zn)dt, and re-

arranging terms. The second inequality follows because P12 (Z, S) ≤ 0 is sufficient for
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R Zn
0 [P (t, Zn+1)− P (t, Zn)] dt ≥

R Zn
0 [P (Zn+1, Zn+1)− P (Zn+1, Zn)] dt and the last one is

true by A1.

Thus, under A1-A5, P12 (Z, S) ≤ 0 ∀Z,S is sufficient for CSn+1−CSn ≥ 0, or CSn+1 ≥
CSn, at the extremal equilibria. ¥

It is important to note that condition (a) in Theorem 5.2 is always satisfied in the

standard Cournot competition. As a consequence, consumer surplus always increases with

n in the standard analysis. Example 4, at the end of this section, shows that the opposite

sometimes happens in network industries.

Katz and Shapiro (1985) clearly explain why this surprising result can occur: "If the

network externality is strong for the marginal consumer, then the increase in the expected

network caused by the change in the number of firms will raise his or her willingness to pay

for the good by more than that of the average consumer. As a consequence, the firms will

be able to raise the price by more than the increase in the average consumer’s willingness

to pay for the product and consumer’s surplus will fall." Note that this explanation is fully

related to the violation of conditions (a) and (b) in Theorem 5.2.

The last theorem deals with industry profits; as the previous two theorems, it gives

sufficient conditions for aggregate profits to increase after the entry of a new firm.

Theorem 5.3. In addition to A1-A5, assume that condition (5.2) is satisfied at the ex-

tremal equilibria

P (Zn+1, Zn+1)− P (Zn, Zn) > A (xn+1)−A (xn) . (5.2)

Then, (n+ 1)πn+1 ≥ nπn for any n ∈ N (at the extremal equilibria).

Proof. For an extremal equilibrium, consider

(n+ 1)πn+1 − nπn = Zn+1 [P (Zn+1, Zn+1)−A (xn+1)]− Zn [P (Zn, Zn)−A (xn)]

≥ Zn [P (Zn+1, Zn+1)−A (xn+1)]−Zn [P (Zn, Zn)−A (xn)]

= Zn {[P (Zn+1, Zn+1)− P (Zn, Zn)]− [A (xn+1)−A (xn)]}
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By the optimization principle, P (Zn+1, Zn+1)−A (xn+1) ≥ 0. Then, the second step follows
by Theorem 4.1. Theorem 5.3 says that if the last term is positive, then (n+ 1)πn+1 ≥ nπn

at the extremal equilibria. ¥

Theorem 5.3 can be easily interpreted: If market price increases more (or decreases less)

than average cost of production, then industry profits increase after new entry.

Example 4 ends this section. It shows an appealing situation where consumer surplus

decreases after new entry but industry profits are higher.

Example 4. Consider the symmetric Cournot oligopoly with no production costs and inverse

demand function given by

P (Z, S) = max{a−ZS−3, 0} nK ≥ Z ≥ 0, S ≥ 0, α > 0.

The reaction function is x (y, S) = max

½
aS3 − y

2
, 0

¾
for y, S ≥ 0. Thus, we have three

possible equilibria

Zn =
n
0,
p
(n+ 1) (na)−1,nK

o
.

From a simple computation, consumer surplus is 0 at the smallest equilibrium and, assuming a ≥
(nK)−2 , it equals the following expression at the highest one

CSn = (2nK)
−1 .

Since this expression is decreasing in n, consumer surplus decreases with new entry at the

highest equilibrium. This result holds because conditions (a) and (b) in Theorem 5.2 are

not satisfied, i.e. the highest equilibrium price is increasing in n and P12 (Z,S) = 3S−4 >

0 ∀Z,S.
Note that the opposite is true for aggregate profits. The following expression shows

that they increase with n at the highest equilibrium

nπn = nK

·
a− 1

(nK)2

¸
.

These two results point out some of the relevant differences between the standard analysis

and Cournot competition with network effects. N
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6 Equilibria Comparisons

We observed before that even restricting attention to rational expectations equilibrium,

FECE still allows multiple equilibria to occur. In this section we fix n and compare the

extremal equilibria from the perspective of firms and consumers. Our main findings are

that social welfare is always maximized at the highest equilibrium aggregate output and

that this equilibrium is also preferred by the firms when demand-side economies of scale are

important enough. In addition to these, if the cross-effect on the inverse demand function

is negative or the market price is minimized at the highest equilibrium, consumer surplus

is also maximized at Zn.

Theorem 6.1 shows that social welfare is always maximized at the highest equilibrium.

Theorem 6.1. Let Zn and Z
0
n denote two distinct equilibrium aggregate output with

corresponding social welfare levels Wn and W
0
n. Under assumptions A1-A5, if Zn < Z

0
n,

then Wn < W
0
n. Hence, Zn is the social welfare maximizer among all equilibrium aggregate

output.

This result is also true for the standard Cournot competition. However, in our case,

the network effects act increasing the difference betweenW
0
n and Wn. Therefore, the loss in

social welfare by lack of coordination is much higher in these industries than in the regular

ones.

Theorem 6.2 compares the extremal equilibria from the perspective of consumers. It

gives sufficient conditions such that consumer surplus is also maximized at the highest equi-

librium. This second result clearly differs with the standard analysis.

Theorem 6.2. Let Zn and Z
0
n denote two distinct equilibrium aggregate outputs with cor-

responding consumer surplus levels CSn and CS
0
n, such that Zn < Z

0
n. If A1-A5 hold and

either (a) P
³
Z
0
n, Z

0
n

´
≤ P (Zn, Zn) or (b) P12 (Z,S) ≤ 0 is satisfied, then CS

0
n ≥ CSn for

any n ∈ N.

Condition (a) is always true in the standard Cournot competition, and then consumer
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surplus is always maximized at the highest equilibrium in the regular case. As it was men-

tioned before, this result changes when network effects are present. Theorem 6.2 suggests

that if P12 (Z,S) > 0 for some Z and S, and the price is significantly larger at the highest

equilibrium, consumer surplus could be maximized at a smaller one.

The last theorem compares industry profits. Again, the results we obtain differ with

the standard analysis. In the regular Cournot competition, industry profits are always

maximized at the minimal equilibrium; Theorem 6.3 shows that when network effects are

present it is possible that firms prefer the highest equilibrium.

Theorem 6.3. Let Zn and Z
0
n denote two distinct equilibrium aggregate outputs with

corresponding industry profits levels nπn and nπ
0
n. Under A1-A5, if Zn < Z

0
n, we have:

(a) If P

µ
Zn−Z0n

n + Z
0
n, Z

0
n

¶
≥ P (Zn, Zn) , then nπ

0
n ≥ nπn;

(b) If P

µ
Z
0
n−Zn
n +Zn, Zn

¶
≥ P

³
Z
0
n, Z

0
n

´
, then nπn ≥ nπ

0
n.

We end this section with an interesting example that highlights the main results in

this section and has relevant public policy implications. In Example 5 industry profits and

consumer surplus are maximized at the highest equilibrium.

Example 5. Consider the symmetric Cournot oligopoly with no production costs and inverse

demand function given by

P (Z,S) = Se−Z S ≥ 0, Z ≥ 0.

The first order condition of the optimization problem is Se−(x+y) (1− x) = 0. Thus, this

example has two possible equilibria: An interior equilibrium (in dominant strategies) and

the trivial no-trade equilibrium. After a simple computation, the (symmetric) Cournot

equilibria aggregate output, total profits and consumer surplus are, respectively

Zn = {0, n} nπn =
©
0, n2e−n

ª
, CSn = {0, n [1− e−n (1 + n)]} .

We observe that in this game the highest equilibrium, which is also the stable one,

maximizes both consumer surplus and industry profits. Katz and Shapiro (1994) has an
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interesting analysis of this issue; they discuss how different public and private institutions

can help to facilitate coordination when, as in this case, one equilibrium is clearly preferred

with respect to the other one. N

7 Conclusion and Further Extensions

The network industries clearly differ from the other, more traditional, ones. Recall that the

main aim of the present paper is to thoroughly examine the implications of these differences

as reflected in market behavior and performance. The general methodology of lattice-

theoretic comparative statics allows us to unify in a common setting all the results in the

literature on network goods (related to the perfect compatible case) weakening considerably

the required assumptions. As a consequence, we provide clear economic interpretations of

the forces behind them.

Many historical events, e.g. fax machines and phones [Shapiro and Varian (1998)], point

out the relevance of the start-up difficulty in network goods. The current explanation for

the start-off phenomenon is based on the positive feedback idea. We complement this expla-

nation by showing the role of market structure; this extension is based on the dependence

of the stability condition of the no-trade equilibrium on the number of firms in the market.

We show that, assuming specific conditions, it is possible that the no-trade equilibrium

is stable for a small number of firms in the market but it becomes unstable when more firms

decide to enter. This means that the market could never emerge with a few firms, but it

could easily converge to a higher equilibrium for a larger n. This finding has an interesting

implication for patent law in new network industries: If one firm gets the rights for the

good in that context, it would rather prefer to give it for free to other potential firms than

to keep it for itself.

In addition to the previous outcome, we confirm other interesting results. For example,

the possibility that per-firm profits increase with the number of firms in the market and

consumer surplus decreases with the same parameter. In the same direction, we observe

that when the game has multiple equilibria, it is possible that both consumers and firms
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strictly prefer the highest equilibrium. This result is particularly useful for policy-makers:

When the highest equilibrium is most preferred by both sides of the market, i.e. firms and

consumers, specific policies should be implemented to facilitate coordination.

The perfect compatible case is just the start of a continuum that ends at the opposite

extreme with the perfect incompatible analysis. Given that we restricted the analysis to

the former, many questions are still open. We believe that the same methodology can be

used to study them. Another promising extension to this paper is the study of the negative

network case. Although many interesting examples fit this framework, e.g. vaccine market,

only a few papers have studied it.

8 Proofs

Notation

We begin by formalizing some of the concepts previously mentioned. A firm’s best-response

correspondence is defined [for 0 ≤ y ≤ (n− 1)k and 0 ≤ S ≤ nk] by

ex (y, S) = argmax{xP (x+ y, S)−C (x) : 0 ≤ x ≤ k} . (8.1)

It will often be convenient to think of a firm as choosing cumulative output Z, given the

other (n− 1) firm’s total output y and the expected size of the network S, instead of simply
choosing its own output x. With Z , x+ y, a best-response correspondence is now defined

by eZ (y, S) = argmax {(Z − y)P (Z, S)−C (Z − y) : y ≤ Z ≤ y + k} . (8.2)

The following mapping, which can be thought of as a normalized cumulative best-

response correspondence, is the key element in dealing with symmetric equilibria for any

n

Bn : [0, (n− 1)K]× [0, nK] −→ 2[0,(n−1)K]×[0,nK]

(y, S) −→ £
n−1
n (ex+ y) , ex+ y

¤
.

It is readily verified that the (set-valued) range of Bn is as given, i.e. if ex ∈ [0, k] and
y ∈ [0, (n− 1) k], then n−1

n (ex+ y) ∈ [0, (n− 1)k] and ex+ y ∈ [0, nK] . Also, a fixed-point
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of Bn is easily seen as a symmetric equilibrium, for it must satisfy both y∗ = n−1
n (ex∗ + y∗) ,

or ex∗ = 1
n−1y

∗, and S∗ = ex∗+y∗, which says that the responding firm produces as much as

each of the other (n− 1) firms and the expected size of the network is fulfilled at equilibrium.
The proof of Theorem 3.1 requires an intermediate result. Lemma 3.2 shows that, under

A5, eπ (Z, y, S) , as defined in equation (2.2), has the single-crossing property on the lattice
ϕ2 , {(Z,S) : Z ≥ 0, S ≥ 0} . This condition is needed for Bn to be an increasing mapping.

Lemma 3.2. If ∆2 (Z,S) ≥ 0, eπ (Z, y, S) has the single-crossing property on the lattice
ϕ2 , {(Z,S) : Z ≥ 0, S ≥ 0}.

Proof of Lemma 3.2. By definition,

∆2 (Z,S) = P (Z, S)P12 (Z,S)− P1 (Z,S)P2 (Z,S) =
∂2 lnP (Z, S)

∂Z∂S
P (Z, S)2 .

Thus, ∆2 (Z,S) ≥ 0 is equivalent to assume that ∂
2 lnP (Z,S)

∂Z∂S
≥ 0. We need to show that

this last condition is sufficient for eπ (Z, y, S) to have the single-crossing property on the
lattice ϕ2; in formal terms, considering Z

0 > Z and S 0 > S, this means

eπ ¡Z0, y, S¢ ≥ eπ (Z, y, S) =⇒ eπ ¡Z 0, y, S0¢ ≥ eπ ¡Z, y, S 0¢ . (8.3)

Since
∂2 lnP (Z, S)

∂Z∂S
≥ 0, the following hold

lnP
¡
Z0, S 0

¢− lnP ¡Z,S0¢ ≥ lnP
¡
Z0, S

¢− lnP (Z,S) (8.4)

P (Z0, S 0)
P (Z,S0)

≥ P (Z0, S)
P (Z,S)

. (8.5)

Additionally, the LHS of (8.3) can be rewritten as¡
Z0 − y

¢
P
¡
Z 0, S

¢−C
¡
Z0 − y

¢ ≥ (Z − y)P (Z,S)− C (Z − y) . (8.6)

Substituting (8.5) in the LHS of (8.6) we obtain¡
Z0 − y

¢
P
¡
Z0, S0

¢ P (Z,S)
P (Z,S 0)

− C
¡
Z0 − y

¢ ≥ (Z − y)P (Z,S)− C (Z − y) . (8.7)

Multiplying both sides of (8.7) by
P (Z,S0)
P (Z, S)

we get

¡
Z0 − y

¢
P
¡
Z 0, S 0

¢− P (Z,S0)
P (Z, S)

C
¡
Z0 − y

¢ ≥ (Z − y)P
¡
Z,S 0

¢− P (Z,S 0)
P (Z,S)

C (Z − y) . (8.8)
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Since, by A1,
P (Z,S 0)
P (Z,S)

≥ 1 and, by A2, C (Z0 − y) ≥ C (Z − y) (8.8) implies that the

following inequality hols¡
Z0 − y

¢
P
¡
Z0, S0

¢−C
¡
Z 0 − y

¢ ≥ (Z − y)P
¡
Z,S0

¢−C (Z − y) . (8.9)

Note that (8.9) is equal to the RHS of (8.3). The proof of Lemma 3.2 follows because

this means that inequality (8.6) implies inequality (8.9), which is equivalent to say that

condition (8.3) is satisfied. ¥

Proof of Theorem 3.1. The cross-partial derivative of the maximand in (8.2) with respect to

Z and y is given by ∆1 (Z, y), which is assumed > 0 here. Hence, the maximand in (8.2) has

strictly increasing differences on the lattice ϕ1 , {(Z, y) : 0 ≤ y ≤ (n− 1) k, y ≤ Z ≤ y + k} .
Furthermore, the feasible correspondence (y, S) −→ [y, y + k] is ascending in y. Then, by

Topki’s theorem (Theorem A.1), every selection from the arg max,
∼
Z, of (8.2) is increasing

in y.

Additionally, by Lemma 3.2, ∆2 (Z,S) ≥ 0 implies that eπ has the single-crossing

property on the lattice ϕ2 , {(Z,S) : Z ≥ 0, S ≥ 0}. Since the feasible correspondence
(y, S) −→ [y, y + k] does not depend on S, every selection from the arg max, eZ, is also
increasing in S (Theorem A.2).

Since eZ (y, S) = ex (y, S) + y, the previous two paragraphs imply that, for any fixed

n, every selection of Bn is increasing in (y, S). Hence, by Tarski’s fixed-point theorem

(Theorem A.3), Bn has a fixed point. As argued before, a fixed point in Bn is a symmetric

equilibrium.

Next we show that no asymmetric equilibrium exists.

To this end, it suffices to show that the best response mapping (y, S) −→ eZ is strictly

increasing (in the sense that all its selections are strictly increasing) in y for all S. Thus, for

all possible S, to each eZ corresponds (at most) one y such that eZ = ex+ y with eZ being a

best-response to y and S. In other words, for the arg max eZ, each firm must be producing

the same ex = eZ − y, with y = (n− 1) ex.
We noted before that, by A4, the maximand in (8.2) has strictly increasing differences

on the lattice ϕ1 , {(Z, y) : 0 ≤ y ≤ (n− 1)k, y ≤ Z ≤ y + k} . Theorem 2.8.5 in Topkis
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(1998), based on Amir (1996), states that this condition is sufficient for eZ to be strictly

increasing in y for all S. Theorem 3.1 follows because, as it was argued in the previous

paragraph, this condition guarantees that no asymmetric equilibria exist. ¥

Proof of Theorem 3.2. Under A1-A4 and A6 there exists only one arg max, eZ (y, S) , of
(8.2) that satisfies

n

n− 1y =
eZ (y, S) [Theorem 2.3, Amir and Lambson (2000)]; in Section

2, this arg max was denoted Z∗ (S, n). If Z∗ is an interior arg max of (8.2), it should satisfy

the First Order Condition (FOC), then

P (Z∗, S) + (Z∗/n)P1(Z∗, S)−C 0 (Z∗/n) = 0. (8.10)

Multiplying both sides of (8.10) by n we get

nP (Z∗, S) +Z∗P1(Z∗, S)− nC 0 (Z∗/n) = 0. (8.11)

Since Z∗ is a function of S and n, we can use the Implicit Function Theorem to obtain

∂Z∗ (S, n)
∂S

=
− [nP2(Z∗, S) + Z∗P12(Z∗, S)]

(n+ 1)P1(Z∗, S) + Z∗P11(Z∗, S)− C 00(Z∗/n)
. (8.12)

As we already assumed interiority, we can substitute in (8.12) Z∗ by its FOC and simplify

the expression to get

∂Z∗ (S, n)
∂S

=
−n {P1(Z∗, S)P2(Z∗, S) + [C 0(Z∗/n)− P (Z∗, S)]P12(Z∗, S)}

(n+ 1)P 21 (Z
∗, S) + n [C 0(Z∗/n)− P (Z∗, S)]P11(Z∗, S)− P1(Z∗, S)C 00(Z∗/n)

.

(8.13)

At (fulfilled expectations) equilibrium, Z∗ = S. Additionally, by A5, ∂Z∗ (S, n) /∂S ≥ 0.
Since g (z, n) is equal to the RHS of (8.13) evaluated at z = Z∗ (S, n) = S, Theorem 3.2

just says that if ∂Z∗ (S, n) /∂S < 1 at the 450 diagonal, i.e. at z = Z∗ = S, the equilibrium

is stable; and the opposite is true if ∂Z∗ (S, n) /∂S > 1 at the diagonal. ¥

Proof of Theorem 3.3. We will show only part (a), part (b) follows direcly form these

results. Assuming constant marginal costs, equation (8.12) can be expressed as

∂Z∗ (S, n)
∂S

=
− [nP2(Z∗, S) + Z∗P12(Z∗, S)]
(n+ 1)P1(Z∗, S) + Z∗P11(Z∗, S)

. (8.14)
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When n increases, the value of (8.14) changes via two channels: Directly trough n and

because n affects the value of Z∗ (S, n) . Since Theorem 3.3 analyzes the change of the

slope of Z∗ (S, n) at the no-trade equilibrium, i.e. at 0 = Z∗ = S, and this equilibrium

is not affected by n, we only need to consider the direct effect of one extra firm in the

market9. Since P (Z,S) is twice continuously differentiable, i.e. P11(Z,S), P12(Z, S) <∞,
the following steps show the sufficient conditions for this effect to be positive

∂Z∗ (0, n+ 1) /∂S ≥ ∂Z∗ (0, n) /∂S (8.15)

− (n+ 1)P2(0, 0)
(n+ 2)P1(0, 0)

≥ −nP2(0, 0)
(n+ 1)P1(0, 0)

. (8.16)

Rearranging terms,

P1(0, 0)P2(0, 0) ≤ 0. (8.17)

By A1, condition (8.17) is always true. Theorem 3.3 follows because this implies that

∂Z∗ (0, n+ 1) /∂S ≥ ∂Z∗ (0, n) /∂S. ¥

Proof of Theorem 3.4. The proof of this theorem is based on the proof of Theorem 3.2.

In fact, to guarantee uniqueness all we need is that the condition for stability holds along

the equilibrium path. In other terms, we need g (z, n) to be lower than 1 ∀z, with g (z, n)

defined as in Theorem 3.2. Condition (3.1) in Theorem 3.4 reflects this restriction. ¥

Proof of Theorem 4.1. The maximal and minimal selections of Bn denoted, respectively,

Bn and Bn, exist by Topki’s theorem (Theorem A.1). Furthermore, the largest equilibrium

output of (n− 1) firms and the largest equilibrium aggregate output,
¡
yn, Zn

¢
, constitute

the largest fixed point of Bn, denoted Bn. Since
(n− 1)

n
is increasing in n, Bn is increasing

in n for all (y, S). Hence, the largest fixed point of Bn,
¡
yn, Zn

¢
, is also increasing in n

(Theorem A.4). A similar argument, using the selection Bn, establishes that
³
y
n
, Zn

´
is

increasing in n. ¥

Proof of Theorem 4.2. Lets consider the following mapping

Mn : [0, nK]→ [0,K]

9Note that, under the assumptions of Theorem 3.3, the no-trade equilibrium exists by Lemma 3.1.

32



z → ex = {x : P (z, z) + xP1 (z, z)−C 0 (x) = 0} .

Mn maps aggregate output into the best response per-firm output, when the profit function

of the firm is evaluated at the equilibrium path, i.e. at z = Z = S. If we totally differentiate

Mn with respect to n, we obtainn
P1 (z, z) + P2 (z, z) +

∼
x [P11 (z, z) + P12 (z, z)]

o dz

dn
. (8.18)

WLG lets substitute in (8.18) x by its FOC and rearrange terms, to get

− 1

P1 (z, z)

©£
P (z, z)−C 0 (z/n)

¤
[P11 (z, z) + P12 (z, z)]− P1 (z, z) [P1 (z, z) + P2 (z, z)]

ª dz

dn
.

(8.19)

Lets define a new function

f (z) =
£
P (z, z)− C0 (z/n)

¤
[P11 (z, z) + P12 (z, z)]− P1 (z, z) [P1 (z, z) + P2 (z, z)] .

Substituting f (z) in (8.19), we get

− 1

P1 (z, z)
f (z)

dz

dn
. (8.20)

By A1 − 1

P1 (z, z)
> 0. Additionally, by Theorem 4.1, at the extremal equilibria

dz

dn
≥ 0.

Then, if f (z) ≥ 0 over £Zn, Zn+1

¤
and

£
Zn, Zn+1

¤
the mapping Mn is increasing in n at

the extremal equilibria, and the opposite holds whenever f (z) ≤ 0 over £Zn, Zn+1

¤
and£

Zn, Zn+1

¤
. Theorem 4.2 follows, because if Mn increases [decreases] in n at the extremal

equilibria, then xn and xn also increase [decrease] with this parameter (Theorem A.4). ¥

Proof of Theorem 4.3.

(a) By Theorem 4.2, under A1-A5, f (z) ≥ 0 over £Zn, Zn+1

¤
and

£
Zn, Zn+1

¤
is sufficient

for the extremal per-firm equilibrium outputs to be increasing in n, i.e. xn+1 ≥ xn and

xn+1 ≥ xn. Using this result, the following steps prove the first part of Theorem 4.3

πn+1 =

= xn+1P
¡
xn+1 + yn+1, Zn+1

¢−C (xn+1)

≥ xn P
¡
xn + yn+1, Zn+1

¢−C (xn ) , by the Cournot property
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≥ xn P
¡
xn+1 + yn+1, Zn+1

¢−C (xn ) , as xn+1 ≥ xn and P1 (Z,S) < 0 by (A1)

≥ xn P
¡
xn + yn, Zn

¢− C (xn ) = πn, since P
¡
Zn+1, Zn+1

¢ ≥ P
¡
Zn, Zn

¢
.

Therefore, under the aforementioned assumptions, πn+1 ≥ πn, i.e. the highest per-firm

equilibrium profits increase when an extra firm enters the market. By a similar argument

it can be shown that this is also true for the lowest equilibrium per-firm profits.

(b) We omit this proof because is similar to the previous one. ¥

Proof of Theorem 6.1. By A4, −P1 (Z,S)+C00 (Z − y) > 0 on ϕ1 , {(Z, y) : y ≥ 0, Z ≥ y} .
Thus, Un (Z,S) ,

Z Z

0

P (t, S) dt − nC (Z/n) is strictly concave in Z as Un11 (Z,S) =

P1 (Z,S)− 1
nC

00 (Z/n) < 0. Now consider,

W
0
n −Wn =

=

Z Z
0
n

0
P
³
t, Z

0
n

´
dt− nC(Z

0
n/n)−

·Z Zn

0
P (t, Zn)dt− nC (Zn/n)

¸
≥
Z Z

0
n

0
P
³
t, Z

0
n

´
dt− nC(Z

0
n/n)−

·Z Zn

0
P
³
t, Z

0
n

´
dt− nC (Zn/n)

¸
, by A1

= Un

³
Z
0
n, Z

0
n

´
− Un

³
Zn, Z

0
n

´
> Un1

³
Z
0
n, Z

0
n

´³
Z
0
n −Zn

´
, since Un (Z,S) is strictly concave in Z and Z

0
n > Zn

=
h
P
³
Z
0
n, Z

0
n

´
−C 0(Z0

n/n)
i³

Z
0
n − Zn

´
≥ 0, since Z 0

n > Zn and P
³
Z
0
n, Z

0
n

´
≥ C0(Z

0
n/n).

The second part of the proof follows directly from this result because Zn is, by definition,

the highest aggregate equilibrium output. ¥

Proof of Theorem 6.2. We omit this proof because is similar to the proof of Theorem 5.2.

¥

Proof of Theorem 6.3.

(a) Assume that (xn, yn, Zn) and (x0n, y0n, Z0n) are two equilibria that satisfy (x0n, y0n, Z0n) >

(xn, yn, Zn) , and consider the following steps:

π0n =
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= x0nP (x0n + y0n, Z0n)−C (x0n) ,

≥ xnP (xn + y0n, Z0n)−C (xn) , by the Cournot property

≥ xnP (xn + yn, Zn)−C (xn) if P (xn + y0n, Z0n) ≥ P (xn + yn, Zn)

= πn

These inequalities imply that, if P (xn + y0n, Z0n) ≥ P (xn + yn, Zn) then nπ0n ≥ nπn. The

proof of Theorem 6.3 follows because P (xn + y0n, Z 0n) =
µ

Zn−Z 0n
n +Z

0
n, Z

0
n

¶
and P (xn + yn, Zn) =

P (Zn, Zn) .

(b) We omit this proof because it is similar to the previous one. ¥

APPENDIX

The content of this appendix is based on the appendix of Amir and Lambson (2000) and the survey

of Amir (2005).

In an attempt to make this paper self-contained, we provide a summary of all lattice-theoretic

notions and results used here. Since this paper deals with real decision and parameter spaces, every

theorem that follows is a special case of the original one.

A function F : R2+ → R is supermodular [submodular] if, for x1 ≥ x2, y1 ≥ y2

F (x1, y1)−F (x2, y1)≥ [≤]F (x1, y2)−F (x2, y2) . (1.1)

If is twice continuously differentiable, Topki’s (1978) Characterization Theorem says that super-

modularity [submodularity] is equivalent to
∂2F

∂x∂y
≥ [≤] 0, for all x, y. Furthermore, ∂2F

∂x∂y
> [<] 0

implies that F is strictly supermodular [submodular], the latter notion being defined by a strictly

inequality in (1.1). Supermodularity is usually interpreted as a complementariety property: Having

more of one variable increases the marginal returns to having more of the other variable.

F has the single-crossing property or SCP (dual SCP) in (x, y) if

F (x1, y1)−F (x2, y2)≥ [≤] 0 =⇒ F (x1, y2)−F (x2, y1)≥ [≤] 0 (1.2)

Note that [1.1] implies [1.2], while the converse is generally not true. Additionally, (1.1) is a cardinal

notion while (1.2) is ordinal. Thus, the SCP is sometimes also referred to as ordinal supermodularity.
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For x ∈ R+, let A (x) = [a1 (x) , a2 (x)] ⊂ R+, with a1 (.) and a2 (.) being real-valued

functions. A (.) is ascending [descending] (in x) if a1 and a2 are increasing [decreasing] in x. The

following results on monotone maximizers are central to our approach.

Theorem A.1. [Topkis (1978)]. Assume that (i) F is upper-semi continuous (or u.s.c.) and super-

modular [submodular] in (x, y) and (ii) A (.) is ascending [descending]. Then, the maximal and

minimal selections of y∗ (x) , argmaxy∈A(x) F (x, y) are increasing [decreasing] functions. Fur-
thermore, if F is strongly supermodular [submodular], then every selection of y∗ (.) is increasing

[decreasing].

Theorem A.2. [Milgron and Shanon (1994)]. Assume that (i) F is u.s.c. and has the SCP [DSCP]

in (x, y) and (ii) A (.) is ascending [descending]. Then, the conclusion of Theorem A.1. holds.

The theorem that follows is well known as Tarski’s Fixed Point Theorem.

Theorem A.3. Let C ⊂ R+ be a compact interval, and B : C → C be an increasing function.

Then B has a fixed point.

Our equilibrium comparisons are based on the following result due to Milgrom and Roberts

(1990, 1994) and Sobel (1988).

Theorem A.4. Let C ⊂ R+ be a compact interval, and Bt : C → C be an increasing function

(∀t ≥ 0), such that Bt (x) is also increasing in t, ∀x. Then the minimal and maximal fixed-points
of Bt are increasing in t.
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