Question 1 (a) The equilibrium price and quantity are
\[P^* = 9 \text{ and } Q^* = 11 \] .

(b) The new equilibrium price and quantity are
\[P^* = 6 \text{ and } Q^* = 8 \] .

Question 2 If demand is \(Q_D = a - bP \), then \(\epsilon^D_P = -bP/Q \). Thus, \(-0.2 = -bP/Q = -20b/40 = 0.5b\), i.e., \(b = -0.4 \). Thus, \(Q_D = a - 0.4P \). Since \(Q_D(20) = 40 \), we get \(40 = a - 8 \) and hence \(a = 48 \). Thus, the demand function is given by
\[Q_D(P) = 48 - 0.4P \] .

Question 3 Changing consumption from \((4, 12)\) to \((6, 6)\) means that \(\Delta x_1 = 2 \) and \(\Delta x_2 = -6 \). The slope of the budget line is therefore \(\Delta x_2/\Delta x_1 = -3 \). We know that the slope of the budget line is also given by \(p_1/p_2 \). Thus,
\[p_2 = 4 \].

Question 4 (a) In equilibrium, \(Q_D(P) = 100 - P - \tau = 10 + P = Q_S(P) \). Thus,
\[P = 45 - 0.5\tau. \]
The quantity is
\[Q^*(\tau) = 55 - 0.5\tau. \]
(b) The tax revenue is \(R(\tau) = 55\tau - 0.5\tau^2 \). This is maximized if \(R'(\tau) = 0 \).
Thus,
\[55 - \tau = 0. \]
The revenue maximizing tax is given by \(\tau^* = 55 \).

Question 5
\[x_S = 20, \ x_C = 10. \]
Question 6

\[x_1 = 16, x_2 = 16. \]
Question 7 (b) \(x_1 = 5, x_2 = 20. \)

(c) \(x_1 = 40, x_2 = 0. \)

Question 8 (a) \(\epsilon_P^D = \frac{-AP \cdot 1000}{1-AP}. \)

Taking the derivative of \(\epsilon_P^D \) with respect to \(A \) we get (recall that \(\left(\frac{u}{v} \right)' = \frac{u'v - uv'}{v^2} \)).

\[\frac{\partial \epsilon_P^D}{\partial A} = -\frac{P}{1.00 - AP}. \]

This derivative is negative.
(b) In equilibrium \(Q_S(P + s) = 0.2(P + s) = 1,000 - AP \). Thus,

\[
P^* = \frac{5,000 - S}{5A + 1}.
\]

(c) Note that \(\frac{\partial P^*(A,s)}{\partial s} = -\frac{25,000 - 5S}{(5A + 1)^2} < 0 \) since the subsidy decreases the price. Note that \(A \) appears only in the denominator. In particular, if \(A \) is increased then the denominator becomes larger, i.e., \(\left| \frac{\partial P^*(A,s)}{\partial s} \right| \) is decreased. Thus, a more elastic demand result in a smaller price response when the subsidy is introduced.