Name:
E-mail: @uiuc.edu

All questions must be answered on this test form!
For each question you must show your work and (or) provide a clear argument.
All graphs must be accurate to get credit.

Question 1 Suppose that $p_1 = 6$ and that both $(10, 4)$ and $(8, 7)$ are on the budget line. Then the equation of the budget line is given by

$$
.
$$

8 points

Question 2 Suppose that a linear demand function has a price elasticity of -0.5 at $P = 10$. Furthermore, at a price of $P = 20$ demand is 300 units. Then the equation of the demand curve is given by

$$
Q_D(P) =
$$

10 points
(a) A utility function is \(u(x_1, x_2) = \min\{3x_1 + 2x_2, x_1 + 4x_2\} \). Graph the indifference curve through (10,5) using the grid above. The MRS at (10,5) is 6 points.

(b) Suppose prices are \(p_1 = 2, p_2 = 1, \) and \(I = 20. \) Determine the optimal consumption graphically. Clearly indicate the budget set by shading it and draw the indifference curve through the optimal consumption. The optimal consumption is \(x_1 = \), \(x_2 = \). 6 points
Question 4 Suppose the demand for a good is $Q_D(P) = 200 - 2P$ while supply is $Q_S(P) = 100 + 3P$. Suppose the government provides a subsidy of 5 Dollars per unit to producers, resulting in a supply function of $Q_S(P) = 100 + 3(P + 5)$. Then the equilibrium price before the subsidy is introduced is $\boxed{\quad}$. After the subsidy consumers by the product at a price of $\boxed{\quad}$. The government spends $\boxed{\quad}$ on the subsidy.

10 points

Question 5 A firm use two inputs x_1, x_2 in production and wants to minimize costs subject to a number of technological constraints. In particular, the firm solves

$$
\min_{x_1, x_2} 4x_1 + x_2 \text{ subject to }
$$

(1) $x_1 + 3x_2 \geq 30$;
(2) $2x_1 + x_2 \geq 30$;
(3) $x_1 + x_2 \geq 12$;
(4) $x_1 - 7x_2 \leq 0$;
(5) $4x_1 - 3x_2 \geq 0$;
(6) $x_1 \geq 0$;
(7) $x_2 \geq 0$;

Determine the optimal optimal choice of x_1 and x_2, graphically (using the grid on the next page). Clearly indicate the feasible set by shading it. You must also graph three lines that represent the objective, including the line through the solution.

The solution is $x_1 = \boxed{\quad}, x_2 = \boxed{\quad}$.

13 points
Question 6 Solve the questions below graphically using the preferences in the grid.

(a) Suppose that $p_1 = 4$, $p_2 = 1$ and income is $I = 36$. Then optimal consumption is $x_1 = \ldots , x_2 = \ldots$. 5 points

(b) Now suppose that the price of good 2 increases to $p_2 = 4$. Then the least costly consumption bundle that gives the person the same utility as in (a) is $x_1 = \ldots , x_2 = \ldots$. 5 points
Question 7 Income offer curves and indifference curves are depicted below

(a) Suppose prices are $p_1 = p_2 = 2$ and income $I = 80$. Then optimal consumption is $x_1 = \underline{\hspace{2cm}}$, $x_2 = \underline{\hspace{2cm}}$.

(b) Then the government imposes a tax of 6 Dollars per unit of good 2, raising the price of good 2 to $p_2 = 8$. The optimal consumption after the tax is $x_1 = \underline{\hspace{2cm}}$, $x_2 = \underline{\hspace{2cm}}$.

(c) Solve the expenditure minimization problem for prices $p_1 = p_2 = 2$ that gives the person the same utility as in (b). Then $x_1 = \underline{\hspace{2cm}}$, $x_2 = \underline{\hspace{2cm}}$.

4 points
and \(I = \) .

(d) The government’s tax revenue is \(\) and the deadweight loss of the tax is therefore \(\) .

(e) Solve the expenditure minimization problem for prices \(p_1 = 2, p_2 = 8 \) that gives the person the same utility as in (a). Then \(x_1 = \), \(x_2 = \) . Then the government’s tax revenue is \(\) . Thus, the required subsidy exceeds the tax revenue by \(\) .
Question 8 Suppose that in a particular country the demand for gasoline is $Q_D(P) = 1,000 - 100P$, and supply is $Q_S(P) = 100 + 50P$. Each year more people in the country buy cars, and as a consequence, the demand function is expected to shift up by 10% next year, i.e., next year’s demand is $1.1Q_D(P)$. The government wants to provide a subsidy s for consumers, so that the price including the subsidy remains constant (i.e., if P_1 and P_2 are the equilibrium prices for this year and next year, respectively, then $P_1 = P_2 - s$). Note that after the subsidy, demand is $1.1Q_D(P - s)$ (where P is the price).

The government provides a subsidy $s = 0$, and the government spends 12 on the subsidy.