The homework is due on Wednesday, October 14 at 4pm. Each question is worth 0.8 points.

Question 1 A person’s utility function is \(u(x_1, x_2) = x_1 + \ln(x_2) \). Prices are \(p_1 = p_2 = 1 \), and income is \(I \).

1. Specify the Lagrangean using all three constraints.
2. We know that constraint \(x_2 \geq 0 \) must be slack, else if \(x_2 = 0 \) utility would be negative infinity. Specify the first order conditions taking this into account.
3. Using the Lagrangean determine value of \(I \) and \(x_1 \) where constant \(x_2 \geq 0 \) just becomes slack. Note that it this point that Lagrange multiplier of the constraint must be zero and of course \(x_2 = 0 \). Using this information you can solve the first order conditions for \(x_2 \) and \(I \).

Question 2 A person has an income of \(m_0 \) this year, and \(m_1 \) next year, and can save or borrow money at a fixed interest rate \(r \). The person’s consumption in the two years is denoted by \(x_0 \) and \(x_1 \). Utility of consumption in each period is \(\ln(x) \), and next period’s utility is discounted by a factor of \(\delta \). Let \(y \) be the amount of money the person saves or borrows in the first period. Then, the person solves

\[
\max_{x_0, x_1, y} \ln(x_0) + \delta \ln(x_1)
\]

subject to

1. \(x_0 + y \leq m_0 \);
2. \(x_1 \leq m_1 + (1 + r)y \).

(a) Determine the Lagrangean (assume that both constraints bind), and denote the Lagrange multipliers by \(\lambda_1 \) and \(\lambda_2 \).

(b) Determine the solution, i.e., determine how \(x_0 \) and \(x_1 \) depend on \(\delta \) and \(r \).

(c) What condition must \(\delta \) and \(r \) satisfy such that consumption in both periods is the same?

(d) Suppose the government wants to stimulate the economy by providing a tax rebate that increases the person’s income to \(m_0(1 + s) \). This rebate costs the government \(m_0s \) Dollars. In period 1 the government’s debt is therefore \(m_0s(1 + r) \) which must be recovered by taxing the consumer at period 1, thereby reducing income from \(m_1 \) to \(m_1 - m_0s(1 + r) \).

What is the effect of this policy? Does the policy increase consumption at \(t = 0 \)?
(e) Finally suppose that the consumer can only save but not borrow money, i.e., $y \geq 0$. Find a numerical example in which the government’s policy raises consumption at $t = 0$.

Question 3 Using the CES utility function for $\alpha = \rho = 0.5$ compute the deadweight loss of taxation using the compensating variation for the example on slide 66 of lecture 7. (Note: in the lecture we computed the deadweight loss using the equivalent variation.)

Question 4 Using the same numbers as in question 3, i.e., income $I = 64$, prices $p_1 = 4$, $p_2 = 1$, and a tax of 3 Dollars on good 2 raising the price to $p_2 = 3$, determine the deadweight loss using the equivalent compensation, and the deadweight loss using the compensating variation for the CES utility with $\alpha = 0.5$, $\rho = -1$. Is the deadweight loss larger or smaller than in the case where $\rho = 0.5$? Explain your answer.

Question 5 We want to check whether the following are legitimate demand functions, in the sense that they are derived from utility maximization.

$$x_1(p_1, p_2, I) = I - 2p_1 + p_2, \quad x_2(p_1, p_2, I) = \frac{I(1 - p_1) + p_1(2p_1 - p_2)}{p_2}, \quad (1)$$

around $p_1 = p_2 = 0.5$ and $I = 10$.

First determine the substitution matrix by using the Slutzky equation. Then check whether or not all properties for the substitution matrix are satisfied.

Note: To determine the actual derivatives, it is ok to use the Mathematica, Wolfram alpha or a similar program.