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What is Quantile Regression?

Quantiles Efficiently Describe Marginal Distributions
I Proportion τ of students perform better than the τth quantile.

Regression Quantiles Describe Conditional Distributions
I Given characteristics X, proportion τ of students of type X perform

better than τth conditional quantile.

Quantiles minimize asymmetric linear loss
I Sorting can be replaced by convex optimization.

Regression Quantiles also minimize asymmetric linear loss
I Optimization generalizes nicely to the regression setting, unlike sorting.

Roger Koenker (U. of Illinois) Gentle QR Fordham: 19.6.2009 2 / 26



What is Quantile Regression?

Quantiles Efficiently Describe Marginal Distributions
I Proportion τ of students perform better than the τth quantile.

Regression Quantiles Describe Conditional Distributions
I Given characteristics X, proportion τ of students of type X perform

better than τth conditional quantile.

Quantiles minimize asymmetric linear loss
I Sorting can be replaced by convex optimization.

Regression Quantiles also minimize asymmetric linear loss
I Optimization generalizes nicely to the regression setting, unlike sorting.

Roger Koenker (U. of Illinois) Gentle QR Fordham: 19.6.2009 2 / 26



What is Quantile Regression?

Quantiles Efficiently Describe Marginal Distributions
I Proportion τ of students perform better than the τth quantile.

Regression Quantiles Describe Conditional Distributions
I Given characteristics X, proportion τ of students of type X perform

better than τth conditional quantile.

Quantiles minimize asymmetric linear loss
I Sorting can be replaced by convex optimization.

Regression Quantiles also minimize asymmetric linear loss
I Optimization generalizes nicely to the regression setting, unlike sorting.

Roger Koenker (U. of Illinois) Gentle QR Fordham: 19.6.2009 2 / 26



What is Quantile Regression?

Quantiles Efficiently Describe Marginal Distributions
I Proportion τ of students perform better than the τth quantile.

Regression Quantiles Describe Conditional Distributions
I Given characteristics X, proportion τ of students of type X perform

better than τth conditional quantile.

Quantiles minimize asymmetric linear loss
I Sorting can be replaced by convex optimization.

Regression Quantiles also minimize asymmetric linear loss
I Optimization generalizes nicely to the regression setting, unlike sorting.

Roger Koenker (U. of Illinois) Gentle QR Fordham: 19.6.2009 2 / 26



Sample Quantiles via Optimization

The τth sample quantile can be defined as any solution to:

α̂(τ) = argmina∈<

n∑
i=1

ρτ(yi − a)

where ρτ(u) = (τ− I(u < 0))u as illustrated below.

ττ − 1

ρτ(u)

Biases the argmin toward making the lower cost error; e.g. forecasting
flood levels.
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The Least Squares Meta-Model

The unconditional mean solves

µ = argminmE(Y −m)2

The conditional mean µ(x) = E(Y|X = x) solves

µ(x) = argminmEY|X=x(Y −m(x))2.

Similarly, the unconditional τth quantile solves

ατ = argminaEρτ(Y − a)

and the conditional τth quantile solves

ατ(x) = argminqEY|X=xρτ(Y − q(x))
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Parametric Quantile Regression

Linear parametric models are simplest:

QY(τ|x) = q(x) = x>β(τ)

estimable by solving the linear program:

β̂(τ) = argminb

n∑
i=1

ρτ(yi − x>i b)

Solutions have p zero residuals when β ∈ |Rp.

Nonlinear (in parameters) models can also be estimated:

β̂(τ) = argminb

n∑
i=1

ρτ(yi − g(xi,b))

for some fully specified function, g.
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Four Introductory Applications

Engel’s Law: A Classical Economic Example

CEO Pay: Boxplots as nonparametric Quantile Regression

Infant Birthweight: A Public Health Example

Melbourne Daily Temperature: A Time Series Example
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Engel’s Food Expenditure Data
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Engel Curves for Food: This figure plots data taken from Engel’s (1857) study of the de-

pendence of households’ food expenditure on household income. Seven estimated quantile

regression lines for τ ∈ {.05, .1, .25, .5, .75, .9, .95} are superimposed on the scatterplot.

The median τ = .5 fit is indicated by the darker solid line; the least squares estimate of

the conditional mean function is indicated by the dashed line.
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Engel Curves for Food: This figure plots data taken from Engel’s (1857) study of the de-

pendence of households’ food expenditure on household income. Seven estimated quantile

regression lines for τ ∈ {.05, .1, .25, .5, .75, .9, .95} are superimposed on the scatterplot.

The median τ = .5 fit is indicated by the darker solid line; the least squares estimate of

the conditional mean function is indicated by the dashed line.
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Boxplot of CEO Pay by Firm Size
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A Model of Infant Birthweight

Reference: Abrevaya (2001), Koenker and Hallock (2001)

Data: June, 1997, Detailed Natality Data of the US. Live, singleton
births, with mothers recorded as either black or white, between 18-45,
and residing in the U.S. Sample size: 198,377.

Response: Infant Birthweight (in grams)

Covariates:
I Mother’s Education
I Mother’s Prenatal Care
I Mother’s Smoking
I Mother’s Age
I Mother’s Weight Gain
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Quantile Regression Birthweight Model I
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Quantile Regression Birthweight Model II
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AR(1) Model of Melbourne Daily Temperature
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The plot illustrates 10 years of daily maximum temperature data for Melbourne,

Australia as an AR(1) scatterplot. Superimposed are estimated conditional quantile

functions for τ ∈ {.05, .10, ..., .95}. parameterized via B-splines.
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Predictive Densities for Melbourne Temperature
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Quantile Autoregression and Irrational Exuberance

Simple linear QAR models

QYt|Yt−1
(τ|yt−1) = α(τ) + β(τ)yt−1

can exhibit strong unit-root or even explosive episodic tendencies, but
still be stationary, and mean reverting, provided that β(τ) is square
integrable, K and Xiao (2006).

Copulas offer a rich source of convenient nonlinear specifications of
QAR models, Chen, K and Xiao (2009).

Similar methods yield more flexible GARCH type models, K and Xiao
(2009).
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Nonparametric Quantile Regression
Locally Polynomial (Kernel) Method

α̂(τ, x) = argminα

n∑
i=1

ρτ(yi − α0 − α1(xi − x) − ... −
1

p!
αp(xi − x)p)

ĝ(τ, x) = α̂0(τ, x)

Series Methods

α̂(τ) = argminα

n∑
i=1

ρτ(yi −
∑
j

ϕj(xi)αj)

ĝ(τ, x) =

p∑
j=1

ϕj(x)α̂j

Penalty Methods

ĝ(τ, x) = argming

n∑
i=1

ρτ(yi − g(xi)) + λP(g)
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Total Variation Regularization I

There are many possible penalties, but total variation of the first derivative
of g is particularly attractive:

P(g) = V(g ′) =

∫
|g ′′(x)|dx

As λ→ ∞ we constrain g to be closer to linear in x. Solutions of

ming∈G

n∑
i=1

ρτ(yi − g(xi)) + λV(g ′)

are continuous and piecewise linear, K, Ng and Portnoy (1994)
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Total Variation Regularization II

For bivariate functions we consider the analogous problem:

ming∈G

n∑
i=1

ρτ(yi − g(x1i, x2i)) + λV(∇g)

where the total variation variation penalty is now:

V(∇g) =

∫
‖∇2g(x)‖dx

Solutions are again continuous, but now they are piecewise linear on a
triangulation of the observed x observations. Again, as λ→ ∞ solutions
are forced toward linearity, K and Mizera (2004).

Roger Koenker (U. of Illinois) Gentle QR Fordham: 19.6.2009 18 / 26



Additive Models: Putting it all together

We can combine such models:

ming∈G

n∑
i=1

ρτ(yi −
∑
j

gj(xij)) +
∑
j

λjV(∇gj)

Components gj can be univariate, or bivariate, but beyond lies
dragons.

Additivity is intended to muffle the curse of dimensionality.

Linear terms are easily allowed.

And shape restrictions like monotonicity and convexity/concavity can
also be imposed.
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Implementation in R

Problems are typically large, very sparse linear programs.

Optimization via interior point methods are quite efficient,

Provided sparsity of the linear algebra is exploited, quite large
problems can be estimated.

The nonparametric qss components can be either univariate, or
bivariate

Each qss component has its own λ specified

Linear covariate terms enter formula in the usual way

The qss components can be shape constrained.

fit <- rqss(y ∼ qss(x1,3) + qss(x2,8) + x3, tau = .6)
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Tuning Parameter Selection

One way to interpret λ parameters is to note that they control the number
of effective parameters of the fitted model.

p(λ) = ‖β̂(λ)‖0 = card{i : β̂i(λ) = 0}

This is equivalent to the number of interpolated observations, the number
of zero residuals.

p(λ) = div ĝλ,τ(y1, ...,yn) =

n∑
i=1

∂ŷi/∂yi
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Childhood Malnutrition in India

A larger scale problem illustrating the use of these methods is a model of
childhood malnutrition considered by Fenske, Kneib and Hothorn (2009).

They motivate the use of models for low conditional quantiles of
height as a way to explore influences on malnutrition,

They employ boosting as a model selection device,

Their model includes six univariate nonparametric components and 15
other linear covariates.

There are 37,623 observations on children’s heights
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R Formulation

rqss(stunting ∼ csex + ctwin + cbirthorder + munemployed +

mreligion + mresidence + deadchildren + wealth + electricity +

radio + television + frig + bicycle + motorcycle + car +

qss(cage, lambda = lamss[1]) + qss(bfed, lambda = lamss[2]) +

qss(mbmi, lambda = lamss[3]) + qss(mage, lambda = lamss[4]) +

qss(medu, lambda = lamss[5]) + qss(fedu, lambda = lamss[6]) +

tau = 0.10, method = "lasso", lambda = lambda, data = india)

The six coordinates of lamss control the smoothness of the
nonparametric components,

lambda controls the degree of shrinkage in the linear (lasso)
coefficients.

The estimated model has roughly 40,000 observations, including the
penalty contribution, and has 2201 parameters.

Fitting the model for a single choice of λ’s takes approximately 5
seconds.
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Nonparametric Components
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Lasso Shrinkage of Linear Components
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Of the 15 original covariates that were introduced linearly, the lasso
selection with λ chosen to be 100 selects four: the gender of the child,
whether the mother is employed, her religion, and whether she is “urban”
or “rural.” The final selected model has dimension p(λ) = 43.

Roger Koenker (U. of Illinois) Gentle QR Fordham: 19.6.2009 25 / 26



Conclusions

Quantile regression provides a unified approach to the estimation of
conditional quantile functions just as least squares and related robust
methods estimate models for conditional central tendency.

In some applications it is useful to focus attention on covariate effects
at low (or high) conditional quantiles of the response without
assuming that these effects are the same at other quantiles.

There are challenging new approaches to time-series analysis using
quantile regression methods,

Total variation roughness penalties offer an attractive approach to
nonparametric quantile regression, and additive models are easily
implemented combining nonparametric and linear parametric
components.

Conventional lasso penalties can be used as a model selection device
for linear components, and AIC-like methods used to select model
dimension.
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