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Abstract

Macroeconomists have long been concerned with the causal effects of monetary policy. When

the identification of causal effects is based on a selection-on-observables assumption, non-causality

amounts to the conditional independence of outcomes and policy changes. This paper develops

a semiparametric test for conditional independence in time series models linking a binary policy

variable with unobserved potential outcomes. Our approach to conditional independence testing

is motivated by Romer and Romer’s (1989, 1994, 2004) tests for causal effects of monetary policy.

The procedure developed here is semiparametric in the sense that we model the process deter-

mining treatment — the policy propensity score — but leave the model for outcomes unspecified.

A propensity-score approach seems especially attractive in the macro time series context, where

there is typically better prior information about the policy determination process than about the

macro-economy. A conceptual innovation is that we adapt the cross-sectional potential outcomes

framework to a time series setting. This leads to a generalized definition of Sims (1980) causal-

ity. A technical contribution is the development of root-T consistent distribution-free inference

methods for full conditional independence testing, appropriate for dependent data and allowing

for first-step estimation of the propensity score.

Keywords: Potential outcomes, conditional independence, functional martingale difference

sequences, Khmaladze transform, empirical Rosenblatt transform



1 Introduction

The possibility of a causal connection between monetary policy and real economic variables is one

of the most important and widely studied questions in macroeconomics. Most of the evidence on

this question comes from regression-based statistical tests. That is, researchers regress an outcome

variable such as industrial production on measures of monetary policy, while controlling for lagged

outcomes and contemporaneous and lagged covariates, with the statistical significance of policy

variables providing the test results of interest. Two of the most influential empirical studies in

this spirit are by Sims (1972, 1980), who discusses conceptual as well as empirical problems in the

money-income nexus.

The foundation of regression-based causality tests is a simple conditional independence as-

sumption. The core null hypothesis is that conditional on lagged outcomes and an appropriate

set of control variables, the absence of a causal relationship should be manifest in a statistically

insignificant connection between policy variables and contemporaneous and future outcomes. In

the language of cross-sectional program evaluation, policy variables are assumed to be ”as good

as randomly assigned” after appropriate regression conditioning, so that conditional effects have

a causal interpretation. While this is obviously a strong assumption, it seems like a natural place

to begin empirical work, at least in the absence of a randomized trial or a compelling exclusion

restriction. The analogy between a time series causal inquiry and a cross-sectional selection-on-

observables argument is even stronger when the policy variable can be coded as a binary treatment.

For example, we can consider the causal effect of exposure to a discrete monetary shock, with the

latter viewed as a binary treatment. This is the essence of the approach taken in Romer and

Romer’s (1989) seminal analysis of the federal reserve’s open market committee decisions, an

application that motivates the econometric framework discussed in this paper.

While providing a flexible tool for the analysis of causal relationships, an important drawback of

regression-based conditional independence tests is that they typically require an array of auxiliary

assumptions that are hard to assess and interpret, especially in a time series context. In addition to

the focus on linear relations, researchers must choose conditioning variables, lag lengths, and invoke

assumptions that imply some sort of stationarity. Thus, regression tests rely on a model of the
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process determining GDP growth or other macroeconomic outcomes. The principal contribution

of this paper is to develop an alternative approach to time series causality testing that shifts

the focus away from modelling the relatively mysterious process determining outcomes towards

a model of the process determining policy decisions. That is, we develop tests for causality

that rely on a model for the conditional probability of a policy shift, which we call the ”policy

propensity score”, leaving the model for outcomes unspecified. This approach seems especially

appealing for the sort of time series applications we have in mind: In many of these cases there is

some agreement — and even some evidence — as to what the conditioning variables used by policy

makers are. Moreover, the binary nature of some policy variables provides a natural guide as to

the choice of functional form. A second contribution of our paper is the outline of a potential-

outcomes framework for causal research using time series data. In particular, we show that a

generalized Sims-type definition of dynamic causality provides a coherent conceptual basis for time

series causal inference.

Propensity score methods, introduced by Rosenbaum and Rubin (1983), are now widely used

for cross-sectional causal inference in applied econometrics. Important empirical examples include

Dehejia and Wahba (1999) and Heckman, Ichimura and Todd(1998), both of which are concerned

with evaluation of training programs. Heckman, Ichimura, and Todd (1997), Heckman, et al

(1998), and Abadie (2005) also develop propensity score strategies for differences-in-differences

estimators. The differences-in-differences framework often has a dynamic element since these

models typically involve intertemporal comparisons. Similarly, Robins, Greenland and Hu (1999),

Lok et.al. (2004) and Lechner (2004) have considered panel-type settings with time-varying treat-

ments and sequential randomized trials. At the same time, few, if any, studies have considered

propensity score methods for a pure time series application. This in spite of the fact that the

dimension-reducing properties of propensity score estimators would seem especially attractive in

a time series context.

Implementation of our semiparametric test for conditional independence in time series data

generates a number of inference problems. First, as in the cross-sectional and differences-in-

differences settings discussed by Hahn (1999), Heckman, Ichimura and Todd (1998), Hirano, Im-
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bens, and Ridder(2003), and Abadie (2005), inference should allow for the fact that in practice

the propensity score is unknown and must be estimated. First-step estimation of the propensity

score changes the limiting distribution of our Kolmogorov-Smirnov (KS) and von Mises (VM) test

statistics.

A second and somewhat more challenging complication arises from the fact that non-parametric

tests of distributional hypotheses such as conditional independence may have a non-standard limit-

ing distribution, even in a relatively cross-sectional setting. For example, in a paper closely related

to ours, Linton and Gozalo (1999) consider KS- and VM-type statistics, as we do, but the limiting

distributions of their test statistics are not asymptotically distribution-free, and must therefore

be bootstrapped.1 Moreover, these distributions are also difficult to bootstrap in a time series

context. More recently, Su and White (2003) propose a nonparametric conditional independence

test for time series data based on orthogonality conditions obtained from an empirical likelihood

specification. The Su and White procedure converges at a less-than-standard rate due to the need

for nonparametric density estimation. In contrast, we present new Kolmogorov-Smirnov (KS) and

von Mises (VM) statistics that provide distribution-free tests for full conditional independence,

suitable for dependent data, and which converge at the standard rate.

The key to our ability to improve on previous tests of conditional independence, and an added

benefit of the propensity score, is that we are able to reduce the problem of testing for conditional

distributional independence to a problem of testing for a martingale difference sequence (MDS)

property of a certain functional of the data. This is related to the problem of testing for the MDS

property of simple stochastic processes, which has been analyzed by, among others, Bierens (1982,

1990), Bierens and Ploberger (1997), Chen and Fan (1999), Stute, Thies and Zhu (1998) and Koul

and Stute (1999). Our testing problem is more complicated because we simultaneously test for

the MDS property of a continuum of processes indexed in a function space. Earlier contributions

propose a variety of schemes to find critical values for the limiting distribution of the resulting

test statistics but most of the existing procedures involve nuisance parameters.2 Our work extends

1See also Abadie (2002), who proposes a bootstrap procedure for nonparametric testing of hypotheses about

the distribution of potential outcomes, when the latter are estimated using instrumental variables.
2In light of this difficulty, Bierens and Ploberger (1997) propose asymptotic bounds, Chen and Fan (1999) use a
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Koul and Stute (1999) by allowing for more general forms of dependence, including mixing and

conditional heteroskedasticity. These extensions are important in our application because even

under the null hypothesis of no causal relationship, the observed time series are not Markovian

and do not have a martingale difference structure. Most importantly, direct application of the

Khmaladze (1988,1993) method in a multivariate context appears to work poorly in practice. We

therefore use a Rosenblatt (1952) transformation of the data in addition to the Khmaladze trans-

formation3. This combination of methods seems to perform well, at least for the low-dimensional

multivariate systems explored here.

The paper is organized as follows. The next section outlines our conceptual framework,

while section 3 provides a heuristic derivation of the testing strategy. Section 4 discusses the

construction of feasible critical values using the Khmaladze and Rosenblatt transforms. Finite-

sample properties of the new statistics are explored in a Monte Carlo study discussed in Section

5. Finally, the empirical behavior of alternative causality concepts and test statistics is illustrated

through a re-analysis of the Romer and Romer (1989, 1994) data in Section 6. The last section of

the paper concludes and suggests directions for further work.

2 Notation and Framework

Causal effects are defined here using the Rubin (1974) notion of potential outcomes. The potential

outcomes concept originated in experimental studies where the investigator has control over the

assignment of treatments, but is now widely used in observational studies. See, e.g. Rosenbaum

and Rubin (1983), who introduced the propensity score as a tool for causal inference in the

potential-outcomes framework.

Our basic definition of causality relies on distinguishing the potential outcomes that would be

bootstrap and Koul and Stute (1999) apply the Khmaladze transform to produce a statistic with a distribution-free

limit. The univariate version of the Khmaladze transform was first used in econometrics by Bai (2002) and Koenker

and Xiao (2002) .
3In recent work, independent of ours, Delgado and Stute (2005) discuss a specification test that also combines

the Khmaladze and Rosenblatt transforms.
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realized with and without treatment, denoted by Y1t and Y0t. The observed outcome in period t can

then be written Yt = Y1tDt+(1−Dt)Y0t, whereDt is treatment status. In the absence of any serial

correlation or covariates, the causal effect of a treatment or policy action is unambiguously defined

as Y1t − Y0t. It is clear that this effect can never be measured in practice. Researchers therefore

focus on either the average effect E(Y1t−Y0t), or the effect in treated periods, E(Y1t−Y0t|Dt = 1).

We refer to both of these as the average causal effect of policy actionDt, since under our identifying

assumptions they are the same.

In a dynamic setting, the definition of causal effects is complicated by the fact that potential

outcomes are determined not just by current policy actions but also by past actions and covariates.

To capture dynamics, we assume the economy can be described by the observed vector stochastic

process χt = (Yt, Xt,Dt) , defined on the probability space (Ω,F ,P), where Yt is a vector of

outcome variables, Dt is a vector of policy variables, and Xt is a vector of other exogenous and

(lagged) endogenous variables that are not part of the null hypothesis of no causal effect of Dt.

Let X̄t = (Xt, ..., Xt−k, ...) denote the covariate path, with similar definitions for Ȳt and D̄t. We

assume that the information used by policy makers at time t, denoted Ft, is contained in the public

record or otherwise available to researchers. Formally, the relevant information is assumed to be

described by Ft = σ (zt) where zt = Πt(X̄t, Ȳt, D̄t−1) is a sequence of finite dimensional functions

Πt :
Ndim(χt)

i=1 R∞ → Rk2 of the entire observable history of the joint process. For the purposes of

empirical work, the mapping Πt is assumed to be known.

Decisions about policy are assumed to be determined by a time-varying summary of observed

random variables, denoted D = D(Ft, t). The function D(Ft, t) summarizes the role played by

observable variables in the policymakers’ decision-making process. In addition, policymakers are

assumed to react to unobserved and idiosyncratic information, represented by the scalar εt, that

is not observed by researchers. The policy Dt is determined by both observed and unobserved

variables according to Dt = ψ(D(Ft, t), εt), where ψ is a general mapping. Without loss of

generality we can assume that εt has a uniform distribution on [0, 1] . This is because ψ(a, b)

can always be defined as ψ̃(a, F−1(b)) where F is any parametric or non-parametric distribution

function. We assume that ψ takes values in the set of functions Dt. For identification purposes we
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will also assume that εt is independent of potential outcomes, though this assumption is distinct

from the policy model itself and therefore discussed separately, below. Given this setup, we can

now define potential outcomes as the possibly counterfactual realizations of Yt that would arise

in response to a hypothetical change in policy. The definition allows for counterfactuals to vary

with changes in policy realizations for a given policy rule, or for a changing policy rule:

Definition 1 Potential outcomes Y ψ
t,j (d) are defined as the value the observed outcome variable

Yt+j would have taken if Dt = ψ(D(Ft, t), εt) = d for all ψ ∈ Dt and all possible realizations d of

Dt.

The sharp null hypothesis of no causal effects for potential outcomes is Y ψ0
t,j (d

0) = Y ψ
t,j (d) , j > 0

for all d, d0 and for all possible policy functions ψ, ψ0 ∈ Dt. This coincides with the hypothesis of

no causal effects in the simple situation studied by Rubin (1974), where we would write Y0t = Y1t.4

Our approach to causal testing allows Y ψ
t,j (d) to be unspecified. On the other hand, it is

common practice in econometrics to model χt as a function of its own lags and possibly exogenous

variables or innovations in variables, and so it is worth thinking about what potential outcomes

would be in this case. Given such a functional relationship, Y ψ
t,j (d) can be constructed in an

obvious way; a simple but common example is given below:

Example 1 Suppose that Yt =
P∞

k=0 ckεt−k where εt are iid innovations. This model could be one

equation from a structural VAR. In this simple example there is no structural change in the policy,

so that ψ is constant. Then potential outcomes are given by

Y ψ
t,j (d) =

P∞
k=0,k 6=j ckεt+j−k + cjd.

The sharp null hypothesis of no causal effect holds if and only if cj = 0 for all j. If there are no

changes in d then this is the familiar restriction that the impulse response function be identically

equal to zero.

4In a study of sequential randomized trials, Robins, Greenland and Hu (1999) define potential outcome Y (0)
t as

the outcome that would be observed in the absence of any current and past interventions, i.e. when Dt = Dt−1 =

... = 0. They denote by Y
(1)
t the set of values that could have potentially been observed if for all i ≥ 0, Dt−i = 1.

This approach seems too restrictive to fit the macroeconomic policy experiments we have in mind.
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Definition 1 extends the conventional potential outcome framework in a number of important

ways. A key assumption in the cross-sectional causal framework is "non-interference" between

units, or what Rubin (1978) calls ’Stable Unit Treatment Value Assumption’ (SUTVA). Thus, in a

cross-sectional context, the treatment received by one subject is assumed to have no causal effect

on the outcomes of others. The overall proportion treated is also taken to be irrelevant. For a

number of reasons, SUTVA may fail in a time series, general equilibrium setup where people react

to the decision-making process as well as to individual decisions. First, because the "units" in a

time series context are serially correlated, current outcomes depend on past policies. This problem

is accounted for by statistically conditioning on the history of observed policies, covariates and

outcomes, so that in practice when we discuss potential outcomes, we have in mind alternative

states of the world that might be realized for a given history. Second, and more importantly,

potential outcomes also depend on the distribution — and hence all possible realizations — of

the unobserved component of policy decisions, εt. The dependence on the distribution of εt is

captured by ψ. Finally, the fact that potential outcomes depend on ψ allows them to depend

directly on the decision-making rule used by policymakers even when policy realizations are fixed.

Potential outcomes can therefore be defined in a rational-expectations framework where both the

distribution of shocks and policymakers reaction to these shocks matter. This point is illustrated

by the following example.

Example 2 This example of an economy with information asymmetry is based on Blanchard and

Fischer’s (1989, pp.356-359) account of Lucas (1973). Producers in isolated markets adjust their

output after observing their own relative price and using Bayesian updating to infer the aggregate

price level pt. In equilibrium, real output yt and the aggregate price level pt are determined as a

function of money supply mt by

yt =
β

1 + β
(mt −E (mt|Ft)) (1)

pt = (1 + β)−1 (βE (mt|Ft) +mt) (2)

where β is the parameter that measures information asymmetry of the aggregate price level and

Ft is the full information set across all markets at time t. The Fed decides on monetary policy by
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setting mt according to

mt = E (mt|Ft) + σuut. (3)

where ut is independent and normally distributed with variance 1. In the notation of Definition

1, D(Ft, t) = E (mt|Ft) and ψ(D(Ft, t), ε) = D(Ft, t) + σuF
−1(ε) where F is the cumulative

distribution function of the standard normal distribution and ε is uniformly distributed on the unit

interval. Information updating and the form of monetary policy in (3) imply that β = b σ2z
(1+β)−1σ2u+σ2z

where b is the supply elasticity which is assumed to be common across all markets, σ2z is the

variance of the idiosyncratic variation in the relative price pit in market i. In other words, a

change in the variance σ2u affects real output yt through the effect on β. The only way the Fed

can systematically change policy in this model is to change σu. The notation ψ (E (mt|Ft) , εt)

indicates that the policy is not just determined by the value of the policy innovation, ut = F−1(εt),

but its entire distribution, in particular, σu. It is in this way that ψ completely determines the

conditional distribution of mt, which in this case is N(E (mt|Ft) , σ
2
u). The potential outcome,

defined as yψt (d) =
β
1+β

(d− E (mt|Ft)), also depends on the distribution of the shocks and the

policy function, as well as on policy values, since β is a function of σu and thus ψ.

So far, we have focused on a conceptual foundation for causality based on unrealized potential

or counter-factual outcomes. In practice, of course, we obtain only one realization each period, and

therefore cannot directly test the non-causality null. Our tests therefore rely on the identification

condition below, referred to in the cross-section treatment effects literature as "ignorability" or

"selection-on-observables." This condition allows us to establish a link between potential outcomes

and the distribution of observed random variables.

Condition 1 Selection on observables:

Y ψ
t,j (d)⊥Dt|Ft for all j > 0 and for all d and ψ ∈ Dt.

Implicit in this assumption is the notion that even after conditioning on observables, there

is stochastic variation in policy decisions. Note also that Condition 1 is equivalent to saying

that Y ψ
t,j (d)⊥εt|Ft. The variation in εt is shorthand for idiosyncratic factors such as those
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detailed for monetary policy by Romer and Romer (2004). These factors include the variation

over time in policymakers’ beliefs about the workings of the economy, decision-makers’ tastes

and goals, political factors, and the temporary pursuit of objectives other than changes in the

outcomes of interest (e.g., monetary policy that targets exchange rates instead of inflation or

unemployment), and finally harder-to-quantify factors such as the mood and character of decision-

makers. Conditional on observables, this idiosyncratic variation is taken to be independent of

potential future outcomes.

Substituting using Y ψ0
t,j (d

0) = Y ψ
t,j (d) = Yt+j, the key testable conditional independence as-

sumption can now be written in terms of observable distributions as:

Yt+1, ..., Yt+j, ... ⊥ Dt|Ft. (4)

In other words, conditional on observed covariates and lagged outcomes, there should be no

relationship between treatment and outcomes Of course, Condition 1 is a strong restriction.

But this condition is imposed in the rational expectations models outlined by Lucas (1973) and

Sims (1980). In particular, when there are no informational asymmetries between the public

and monetary authorities these models also imply that Equation 4 holds. The following example

describes another assignment mechanism from the applied macro literature that satisfies this

condition:

Example 3 Suppose policies are determined by Dt = ψ(D(Ft, t), εt), where ψ is a general mapping

as discussed above. For example, Shapiro (1994) postulates Dt = 1 {z0tθ + F−1(εt) > 0} where εt
has a uniform distribution and F is the cumulative distribution function of the standard normal

distribution. In this case D(Ft, t) = z0tθ, ψ(a, b) = 1 {a+ F−1(b) > 0} and Dt = {0, 1} . If εt is

independent of Y ψ
t,j (d) , Condition 1 is satisfied. This means we can view εt as essentially randomly

assigned, with no direct effect on outcomes.

Tests based on Condition 4 can be seen as testing a generalized version of Sims causality.

A natural question is how this relates to the Granger causality tests widely used in empirical

work. Note that if Xt can be subsumed into the vector Yt, Sims non-causality simplifies to

Yt+1, ..., Yt+k, ... ⊥ Dt|Ȳt, D̄t−1. Chamberlain (1982) and Florens and Mouchart (1982, 1985) show
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that under plausible regularity conditions this is equivalent to generalized Granger non-causality,

i.e.,

Yt+1 ⊥ Dt, D̄t−1|Ȳt. (5)

In the more general case, however, where Dt potentially causes Xt+1, so X̄t can not be subsumed

into Ȳt, (4) does not imply

Yt+1 ⊥ Dt, D̄t−1|X̄t, Ȳt. (6)

This result was shown for the case of linear processes by Dufour and Tessier (1993), but seems

to have received little attention in the literature.5 We summarize the non-equivalence of Sims and

Granger causality in the following theorem:

Theorem 1 Let χt be a stochastic process defined on a probability space (Ω,F ,P) as before, as-

suming also that conditional probability measures P (Yt+1, Dt|Ft) are well defined ∀t except possibly

on a set of measure zero. Then (4) does not imply (6) and (6) does not imply (4).

The intuition for the Granger/Sims distinction is that while Sims causality looks forward only

at outcomes, the Granger causality relation is defined by conditioning on potentially endogenous

responses to policy shocks and other disturbances. To prove the nonequivalence theorem, it is

enough to give a counterexample. We do this for linear Gaussian processes since discrete variables

can be defined as functions of underlying linear indices.

Example 4 Assume that the vector χt = (yt, xt,Dt) takes values in R3 and that χt has a represen-

tation in terms of an overidentified structural VAR where yt = bxt−1+ cDt−1+ εyt, xt = fDt+ εxt

and Dt = εDt where εt = (εyt, εxt, εDt) is such that εt˜N (0, I3) and I3 is the 3× 3 identity matrix.

The impulse response function of yt is yt = εyt + bεxt−1 + (c+ bf) εDt−1. Sims non-causality holds

if c + bf = 0 which occurs if c = 0 and either b = 0 or f = 0 or if c = −bf. On the other hand,
5Many authors have studied the relationship between Granger and Sims-type conditional independence restric-

tions. See, for example, Dufour and Renault (1998) who consider a multi-step forward version of Granger causality

testing, and Robins, Greenland, and Hu (1999) who state something like theorem 1 without proof. Robins, Green-

land and Hu also present restrictions on the joint process of wt under which (4) implies (6) but these assumptions

are unrealistic for applications in macroeconomics.
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Granger non-causality requires that c = 0. We therefore can have Sims non-causality but Granger

causality when c 6= 0 and c = −bf. On the other hand, we have Granger non-causality but Sims

causality when c = 0 and both b and f are non-zero

A scenario with Granger non-causality but Sims causality is of potential relevance in the debate

over money-output causality. Suppose yt is output, xt is inflation and Dt is a proxy for monetary

policy. Then this stylized model captures a direct effect of monetary policy on inflation and an

indirect effect on output through the effect of inflation on output. In this case, Granger tests

will fail to detect a causal link between monetary policy and output while Sims tests will detect

this relationship. One way to understand this difference is through the impulse response function,

which shows that Sims looks for an effect of structural innovations in policy (i.e., εDt). In contrast,

Granger non-causality is formulated as a restriction on the relation between output and all lagged

variables, including covariates that themselves have responded to the policy shock of interest.

Granger causality therefore provides an incorrect answer to a question that Sims causality tests

answer correctly: will output change in response to a random manipulation if we randomly shock

monetary policy?

This example raises the question of how important time-varying, policy-sensitive covariates

are in practice. In research on monetary policy, Shapiro (1994) and Leeper (1997) argue that it is

important to include inflation in the conditioning set when attempting to isolate the causal effect

of monetary policy innovations. This point is illustrated in Figure 1, which marks the Romer dates

on the time series of inflation. In most cases, Romer dates are followed by an inflationary peak.

This acceleration in inflation is both a cause of monetary policy and a response to earlier policy

changes. Moreover, inflation may have effects on real variables. Thus, the causal relationship

between monetary policy and activity in the real sector may be more appropriately analyzed in a

framework that incorporates inflation and other nominal variables that respond to policy.

In the remainder of the paper, we assume the policy variable of interest is binary, although our

conceptual framework applies more generally. We focus here on binary policy decisions because

we are interested in exploiting parallels with the cross-sectional treatment effects literature and
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Figure 1: The vertical lines indicate Romer Dates.

because this leads naturally to a setup relying on the propensity score.6 To develop this setup, we

assume that models for the policy function can be written in the parametric form P (Dt = 1|zt) =

p(zt, θ0) for some function p(., .) and an unknown parameter vector, θ0. Under the null hypothesis

it follows that P (Dt = 1|zt, Yt+1, ..., Yt+j, ...) = P (Dt = 1|zt). A test of the null hypothesis can

therefore be obtained by augmenting the policy function p(zt, θ0) with future outcome variables.

This test has correct size though it will not have power against all alternatives. In the Monte

Carlo and empirical parts of the paper, we explore simple Sims-type tests based on augmenting

the policy function with future outcomes. But our main objective is to develop a more flexible class

of semiparametric causality (conditional independence) tests that can be used to direct power in

specific directions or to construct tests with power against general alternatives. A major advantage

of our approach is that we do not have to attempt to identify and estimate a fully specified model

6The recent empirical literature on the effects of monetary policy has focused on developing policy models for the

federal funds rate. See, e.g., Bernanke and Blinder (1992), Christiano, Eichenbaum, and Evans (1996), and Romer

and Romer (2004). In future work, we hope to develop an extension for mutli-valued or continuous causal variables

like the Federal funds rate. For a recent extension of cross-sectional propensity-score methods to multi-valued

treatments, see Hirano and Imbens (2004).
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of the entire macroeconomy or even the money-output relation. This saves the need to impose

identifying restrictions on a complete structural VAR as in, e.g., Bernanke and Blinder (1992).

A natural substantive question at this point is what should go in the conditioning set for the

policy propensity score and how this should be modeled. In practice, Fed policy is commonly

modeled as being driven by a few observed variables like inflation and lagged output growth.

Examples include papers by the Romers and others inspired by their work.7 The fact that Dt is

binary in our application also suggests Logit or similar models provide a natural functional form. A

motivating example that seems especially relevant in this context is Shapiro (1994), who develops

a parsimonious Probit model of Fed decision-making as a function of net present value measures

of inflation and unemployment8. Finally, we note that while it is impossible to know for sure

whether a given set of conditioning variables is adequate, diagnostic tests such as those proposed

by Rosenbaum and Rubin (1985) can help decide when the model for the policy propensity score

is an adequate representation of the role of the chosen set of covariates. A key technical advantage

of reliance on the relatively tractable problem of modeling fed decision-making through the policy

propensity score, is that this allows us to derive a semi-parametric test statistic with a limiting

distribution that depends only on the marginal distribution of outcome and conditioning variables

(as opposed to the full joint distribution of the entire underlying process).

3 Semiparametric Conditional Independence Tests Using

the Propensity Score

We are interested in testing the conditional independence restriction yt⊥Dt|zt where yt takes values

in Rk1 and zt takes values in Rk2 with k1 + k2 = k finite. Typically, yt = (Y 0
t+1, ..., Y

0
t+m)

0 but it

is also possible to focus on particular future outcomes, say, yt = Y 0
t+m, when causal effects are

7Stock and Watson (2002a, 2002b) propose the use of factor analysis to construct a low-dimensional predictor of

inflation rates from a large dimensional data set. This approach has been used in the analysis of monetary policy

by Bernanke and Boivin (2003) and Bernanke, Boivin and Eliasz (2004).
8Also related are Eichengreen, Watson and Grossman (1985), Hamilton and Jordà (2002) , and Genberg and

Gerlach (2004), who use ordered probit models for central bank interest rate targets.
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thought to be delayed by m periods. Assuming that Dt is binary, the conditional independence

hypothesis can be written

P (yt ≤ y,Dt = i|zt) = P (yt ≤ y|zt)P (Dt = i|zt) for i = {0, 1} . (7)

We use the short hand notation p(zt) = P (Dt = i|zt) and assume that p(zt) = p(zt, θ) is known

up to a parameter θ.

Linton and Gozalo (1999) develop a fully nonparametric test of (7). Their test statistic is

based on the empirical joint and marginal distributions of yt,Dt, zt. The resulting procedure is

more flexible than ours but does not have a distribution-free limit distribution, a fact that leads

Linton and Gozalo to bootstrap. In our setting, application of the bootstrap is complicated by

the need to account for serial dependence and to impose the null while resampling. The bootstrap

is also complicated by the fact that even under the null hypothesis the joint process of yt, Dt, zt

is not Markovian and does not have a martingale difference sequence property. More recently,

Su and White (2003) propose a nonparametric test based on estimates of conditional densities.

Their procedure is asymptotically normal but converges more slowly than a n−1/2 rate since their

statistic involves non-parametric density estimates.

A convenient representation of the hypotheses we are interested in testing can be obtained by

noting that under the null,

P (yt ≤ y,Dt = 1|zt)− P (yt ≤ y|zt)p (zt) = E [1 (yt ≤ y) (Dt − p(zt)) |zt] = 0. (8)

This leads to a simple interpretation of test statistics based on this moment condition as looking

for a relation between policy innovations, Dt − p(zt), and the distribution of future outcomes.

Note also that, like the Hirano, Imbens and Ridder (2000) and Abadie (2005) propensity-score-

weighted estimators and the Robins, Mark, and Newey’s (1992) partially linear estimator, test

statistics constructed from moment condition (8) work directly with the propensity score; in

particular, no matching step or nonparametric smoothing is required once estimates of the score

have been constructed.9

9Hirano, Imbens and Ridder (2003) show in a somewhat different context that non-parametric estimation of the
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We now define Ut = (yt, zt) so that the null hypothesis of conditional independence can be

represented very generally in terms of moment conditions for functions of Ut. Let φ(., .) : Rk×Rk →

R be a function of Ut and some index v. Under the null we then haveE [φ(Ut, v)(Dt − p(zt))|zt] = 0.

Examples are φ(Ut, v) = 1 {Ut ≤ v} or φ(Ut, v) = exp(iv0Ut) where i =
√
−1, as suggested by

Bierens (1982) and Su and White (2003).

Equation (8) shows that the hypothesis of conditional independence, whether formulated di-

rectly or for conditional moments, is equivalent to a martingale difference sequence (MDS) hy-

pothesis for a certain empirical process. In particular, the moment condition in (8) implies that

for any fixed y, 1 (yt ≤ y) (Dt − p(zt)) is a MDS. Our test is a joint test of whether the set of all

processes indexed by y ∈ Rk1 have the MDS property. We use the terminology of a functional

martingale difference hypothesis to distinguish the hypothesis being tested here from the simple

MDS hypothesis usually covered in the literature. The functional MDS hypothesis is an extension

of the case analyzed by Koul and Stute (1999). The functional nature of the MDS hypothesis

implies that the test statistic depends on the parameter v ∈ Rk where for k it is necessary that

k ≥ 2 while Koul and Stute only consider the case k = 1.10

To move from population moment conditions to the sample, we start by defining the empirical

process

Vn (v) = n−1/2
nX
t=1

m(yt,Dt, zt, θ0; v)

with

m(yt,Dt, zt, θ; v) = [Dt − p(zt, θ)]φ(Ut, v).

Under regularity conditions that include stationarity of the observed process, we show in Appendix

A that Vn(v) converges weakly to a limiting mean-zero Gaussian process V (v) on the space of

propensity score may lead to more efficient inference. Based on their insight it is possible that a test based on a

non-parametric estimate of the propensity score would be more powerful than our semiparametric test. We do not

consider this type of procedure because the sample size in our application does not lend itself to non-parametric

estimation of the propensity score.
10Another important difference is that in our setup, the process 1 (yt ≤ y) (Dt − p(zt)) is not Markovian even

under the null hypothesis. This implies that the proofs of Koul and Stute do not apply directly for our case.
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cadlag functions11 denoted by D [−∞,∞]k with covariance function Γ(v, τ), defined as

Γ(v, τ) = E [Vn(v)Vn(τ)
0]

where ν, τ ∈ Rk.12 Using the fact that under the null E [Dt|zt, yt] = E [Dt|zt] = p (zt) and

partitioning u = (u1, u2) with u2 ∈ [−∞,∞]k2 we define H(v ∧ τ) with

H(v) =

Z v

−∞

¡
p(u2)− p(u2)

2
¢
dFu (u) (9)

where Fu(u) is the cumulative marginal distribution function of Ut and ∧ denotes the element by el-

ement minimum. The covariance function Γ(v, τ) can now be written as Γ(v, τ) =
R
φ(u, v)φ(u, τ)dH (u) .

Note that if φ(Ut, v) = 1 {Ut ≤ v} then Γ(v, τ) = H(v ∧ τ). This is the case we consider in the

empirical application. The statistic Vn(v) can be used to test the null hypothesis of conditional

independence by comparing the value of KS = supv |Vn (v)| or VM =
R
(Vn (v))

2 dFu(v) with the

limiting distribution of these statistics under the null hypothesis.

Implementation of statistics based on Vn(v) requires a set of appropriate critical values. Con-

struction of critical values is complicated by two factors affecting the limiting distribution of

Vn(v). One is the dependence of Vn(v) on φ (Ut, v), which induces data-dependent correlation in

the process Vn(v). Hence, the nuisance parameter Γ(v, τ) appears in the limiting distribution. This

is handled in two ways: first, critical values for the limiting distribution of Vn(v) are computed

numerically conditional on the sample in a way that accounts for the covariance structure Γ (v, τ) .

We discuss this procedure at the end of Section 4.1. An alternative to numerical computation

is to transforms Vn(v) to a standard Gaussian process on the k-dimensional unit cube, follow-

ing Rosenblatt (1952). The advantage of this approach is that asymptotic critical values can be

based on standardized tables that only depend on the dimension k and the function φ, but not

11Cadlag functions are functions which are continuous from the right with left limits.
12It seems likely that stationarity can be relaxed to allow for some distributional heterogeneity over time. But

unit root and trend nonstationarity cannot be handled in our framework because the martinagle transformations

in Section 4.1 rely on Gaussian limit distributions. Park and Phillips develop a powerful limiting theory for the

binary choice model when the explanatory variables have a unit root. Hu and Phillips (2002a, 2002b) extend Park

and Phillips to the mulitnomial choice case and apply it to the fed funds target rate. The quesiton of how to adapt

these results to the problem of conditional independence testing is left for future work.
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on the distribution of Ut and thus not on the sample. We discuss how to construct these tables

numerically in Section 5.

The second factor that affects the limiting distribution of Vn(v) is the fact that the unknown

parameter θ needs to be estimated. We use the notation V̂n(v) to denote test statistics that are

based on an estimate θ̂ for θ. Section 4 discusses a martingale transform proposed by Khmaladze

(1988, 1993) to remove the effect of variability in V̂n(v) stemming from estimation of θ. The

resulting corrected test statistic then has the same limiting distribution as Vn(v), and thus, in a

second step, critical values that are valid for Vn(v) can be used to carry out tests based on the

transformed version of V̂n(v).

4 Implementation

As a first step, let V̂n(v) denote the empirical process of interest where p(zt, θ) is replaced by

p(zt, θ̂) and the estimator θ̂ is assumed to satisfy the following asymptotic linearity property:

n1/2
³
θ̂ − θ0

´
= n−1/2

nX
t=1

l (Dt, zt, θ0) + op(1).

A more formal statement of this assumption is contained in Condition 7 in Appendix A. In our

context, l (Dt, zt, θ) is the score for the maximum likelihood estimator of the propensity score

model. To develop a structure that can be used to account for the variability in V̂n (v) induced by

the estimation of θ, define the function m̄(v, θ) = E [m(yt+k,Dt, zt, θ; v)] and let

ṁ(v, θ) = −∂m̄(v, θ)
∂θ

.

It therefore follows that V̂n (v) can be approximated by Vn (v)− ṁ(v, θ0)
0n−1/2

Pn
t=1 l (Dt, zt, θ0).

The empirical process V̂n(v) converges to a limiting process V̂ (v) with covariance function

Γ̂(v, τ) = Γ (v, τ)− ṁ(v, θ0)
0L(θ0)ṁ(τ , θ0),

as shown in Appendix A. Next we turn to details of the transformations. Section 4.1 discusses

a Khmaladze-type martingale transformation that corrects V̂ (v) for the effect of estimation of θ.

Section 4.2 then discusses the problem of obtaining asymptotically distribution free limits for the
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resulting process. This problem is straightforward when v is a scalar, but extensions to higher

dimensions are somewhat more involved.

4.1 Khmaladze Transform

The object here is to define a linear operator TV̂ (v) with the property that the transformed

process, W (v) = T V̂ (v), is a mean zero Gaussian process with covariance function Γ(v, τ).While

V̂ (v) has a complicated data-dependent limiting distribution (because of the estimated θ), the

transformed process W (v) has the same distribution as V (v) and can be handled more easily in

statistical applications. Khmaladze (1981, 1988, 1993) introduced the operator T in a series of

papers exploring limiting distributions of empirical processes with possibly parametric means.

When v ∈ R, the Khmaladze transform can be given some intuition. First, note that V (v) has

independent increments ∆V (v) = V (v+δ)−V (v) for any δ > 0. On the other hand, because V̂ (v)

depends on the limit of n−1/2
Pn

t=1 l (Dt, zt, θ0) this process does not have independent increments.

Defining Fv = σ
³
Ṽ (s), s ≤ v

´
, we can understand the Khmaladze transform as being based on

the insight that, because V̂ (v) is a Gaussian process, ∆W (v) = ∆V̂ (v) − E
³
∆V̂ (v) |Fv

´
has

independent increments. The Khmaladze transform thus removes the conditional mean of the

innovation ∆V̂ .When v ∈ Rk with k > 1 as in our application, this simple construction cannot be

trivially extended because increments of V (v) in different directions of v are no longer independent.

As explained in Khmaladze (1988), careful specification of the conditioning set Fv is necessary to

overcome this problem.

Following Khmaladze (1993), let {Aλ} be a family of measurable subsets of [−∞,∞]k, indexed

by λ ∈ [−∞,∞] such that A−∞ = ∅, A∞ = [−∞,∞]k, λ ≤ λ0 =⇒ Aλ ⊂ Aλ0 and Aλ0\Aλ → ∅

as λ0 ↓ λ. Define the projection πλf(v) = 1 (v ∈ Aλ) f(v) and π⊥λ = 1− πλ such that π⊥λ f(v) =

1 (v /∈ Aλ) f(v).We then define the inner product hf(.), g (.)i :=
R
f(u)g(u)0dH (u) and the matrix

Cλ =
­
π⊥λ l̄(., θ), π

⊥
λ l̄(., θ)

®
=

Z
π⊥λ l̄(u, θ)π

⊥
λ l̄(u, θ)

0dH(u).

We note that the process V (v) can be represented in terms of a Gaussian process b(v) with

covariance function H(v ∧ τ) as V (φ(., v)) = V (v) =
R
φ(u, v)db(u). Using the same notation the
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transformed statistic W (v) is given by

TV̂ (v) :=W (v) = V̂ (v)−
Z ­

φ (., v) , d
¡
πλl̄(., θ)

¢®
C−1λ V̂ (π⊥λ l̄(., θ)) (10)

where d
¡
πλl̄(., θ)

¢
is the total derivative of πλl̄(., θ) with respect to λ and

l̄(v, θ) =
1

(p(v2, θ)− p(v2, θ)
2)

∂p(v2, θ)

∂θ
.

We show in Appendix A that the processW (v) is zero mean Gaussian and has covariance function

Γ(v, τ).

The transform above differs from that in Khmaladze (1993) in that l̄(v, θ) is different from

the optimal score function that determines the estimator θ̂. The reason is that here H(v) is not

a conventional cumulative distribution function as in these papers. It should also be emphasized

that unlike Koul and Stute (1999), we make no conditional homoskedasticity assumptions. 13

To construct the test statistic proposed in the theoretical discussion we must deal with the

fact that the transformation T is unknown and needs to be replaced by an estimator Tn where

Ŵn(v) = TnVn (v) = V̂n (v)−
Z µZ

φ(u, v)d
¡
πλl̄(u, θ)

¢
dĤn(u)

¶
Ĉ−1λ V̂n(π

⊥
λ l̄(., θ̂)) (11)

with V̂n(π⊥λ l̄(., θ̂)) = n−1/2
Pn

s=1 π
⊥
λ l̄(Us, θ̂)

³
Ds − p(zs, θ̂)

´
and the empirical distribution Ĥn(v) is

defined in Appendix B.

The transformed test statistic depends on the choice of the sets Aλ. Here we focus on sets

Aλ = [−∞, λ]× [−∞,∞]k−1 , which turns out to be convenient in this context. Denote the first

element of yt by y1t. Then (11) can be expressed more explicitly as

Ŵn(v) = V̂n(v)− n−1/2
nX
t=1

"
φ {Ut, v}

∂p(zt, θ̂)

∂θ0
Ĉ−1y1t

n−1
nX

s=1

1 {y1s > y1t} l̄(Us, θ̂)
³
Ds − p(zs, θ̂)

´#
(12)

13Stute, Thies and Zhu (1998) analyze a test of conditional mean specification in an independent sample allow-

ing for heteroskedasticity by rescaling the equivalent of our m(yt,Dt, zt, θ0; v) by the conditional variance. But

their approach does not work for our problem because the relevant conditional variance depends on the unknown

parameter θ. Instead of correcting m(yt,Dt, zt, θ0; v) we adjust the transformation T in the appropriate way.

19



Critical values for Ŵn(v) can be computed numerically as follows: Draw U∗t randomly from the

empirical distribution F̂u(v). Let ε∗t be an iid(0,1) random variable independent of U∗t . Then

W ∗
n(v) = n−1/2

nX
t=1

ε∗t1 {U∗t ≤ v} (13)

has the same limiting distribution as Ŵn(v) by standard arguments (see Van der Waart and

Wellner, 1996). Critical values for Ŵn (v) can therefore be computed by repeatedly drawing from

the distribution of W ∗
n(v). In Section 5 we report Monte Carlo results based on critical values

obtained numerically from W ∗
n(v). These results show some size distortions. We therefore turn

in the next section to a further transformation that leads to a distribution free limit for the test

statistics.

4.2 Rosenblatt Transform

The implementation strategy discussed above has improved operational characteristics when the

data are modified using a transformation proposed by Rosenblatt (1952). This transformation

produces a multivariate distribution that is i.i.d on the k-dimensional unit cube, and therefore

leads to a test that can be based on standardized tables such as Table 2. Let Ut = [Ut1, ..., Utk]

and define the transformation w = TR (v) component wise by w1 = F1(v1) = P (Ut1 ≤ v1) ,

w2 = F2 (v2|v1) = P (Ut2 ≤ v2|U1t = v1),..., wk = Fk (vk|vk−1, ..., v1) where Fk (vk|vk−1, ..., v1) =

P (Utk ≤ vk|Utk−1 = vk−1, ..., Ut1 = v1) . The inverse v = T−1R (w) of this transformation is obtained

recursively as v1 = F−11 (u1) ,

v2 = F−12
¡
w2|F−11 (w1)

¢
, ....

Rosenblatt (1952) shows that the random vector wt = TR (Ut) has a joint marginal distribution

which is uniform and independent on [0, 1]k .

Using the Rosenblatt transformation we define

mw(wt,Dt, θ|v) =
£
Dt − p(

£
T−1R (wt)

¤
z
, θ)
¤
φ(wt, w)

where w = TR(v) and zt =
£
T−1R (wt)

¤
z
denotes the components of T−1R corresponding to zt.
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The null hypothesis is now that E [Dtφ(wt, w)|zt] = E [φ(wt, w)|zt] p(zt, θ), or equivalently,

E [mw(wt,Dt|v)|zt] = 0.

Also, the test statistic Vn(v) becomes the marked process

Vw,n(w) = n−1/2
Pn

t=1mw(wt,Dt, θ|w).

Rosenblatt (1952) notes that tests using TR are generally not invariant to the ordering of

the vector wt because TR is not invariant under such permutations. Of course, our test statistic

also depends on the choice of φ(., .). This sort of dependence on the details of implementation

is a common feature of consistent specification tests. From a practical point of view it seems

natural to fix φ(., .) using judgements about features of the data where deviations from conditional

independence are likely to be easiest to detect (e.g., moments). In contrast, the wt ordering is

inherently arbitrary. As a strategy for dealing with this arbitrariness, Justel, Pẽna and Zamar

(1997) propose the use of tests di indexed by all possible k! permutations of the elements of wt

and consider summary statistics such as maxi di. We investigate the performance of this strategy

in the Monte Carlo and empirical sections below.

We denote by Vw (v) the limit of Vw,n (v) and by V̂w (v) the limit of V̂w,n (v) which is the process

obtained by replacing θ with θ̂ in Vw,n (v) . Define the transform TwV̂w(w) as before by14

TwV̂w (w) :=Ww(w) = V̂w (w)−
Z ­

φ (., w) , dπλl̄w(., θ)
®
C−1λ V̂w(π

⊥
λ l̄w(., θ)). (14)

Finally, to convertWw(w) to a process which is asymptotically distribution free we apply a modified

version of the final transformation proposed by Khmaladze (1988, p. 1512) to the process W (v).

In particular, using the notation Ww(φ(., w)) = Ww(w) to emphasize the dependence of W on φ,

it follows from the previous discussion that

Bw(w) =Ww

¡
φ(., w)/(hw(.))

1/2
¢

is a Gaussian process with covariance function
R 1
0
· · ·
R 1
0
φ(u,w)φ(u,w0)du, where

hw(.) = p(
£
T−1R (wt)

¤
z
, θ)(1− p(

£
T−1R (wt)

¤
z
, θ)).

14For a more detailed derivation see Appendix B.
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In practice, wt = TR(Ut) is unknown because TR depends on unknown conditional distribution

functions. In order to estimate TR we introduce the kernel function Kk(x) where Kk(x) is a higher

order kernel satisfying Conditions (9) of Section A.2. A simple way of constructing higher order

kernels is given in Bierens (1987). Let Kk(x) = (2π)−k/2
Pω

j=1 θj |σj|
−k exp

¡
−1/2x0x/σ2j

¢
withPω

j=1 θj = 1 and
Pω

j=1 θj |σj|
2c = 0 for c = 1, 2, ..., ω − 1. Let mn = O(n−1/(2+k)) be a bandwidth

sequence and define

F̂1(x1) = n−1
nX
t=1

1 {Ut1 ≤ x1}

...

F̂k(xk|xk−1, ..., x1) =
n−1

Pn
t=1 1 {Utk ≤ xk}Kk−1((xk− − Utk−) /mn)

n−1
Pn

t=1Kk−1((xk− − Utk−) /mn)

where xk− = (xk−1, ..., x1)
0 and Utk− = (Utk−1, ..., Ut1)

0 . An estimate ŵt of wt is then obtained from

the recursions

ŵt1 = F̂1(Ut1)

...

ŵtk = F̂k(Utk|Utk−1, ..., Ut1).

We define Ŵw,n (w) = Tw,nV̂w,n (w) where Tw,n is the empirical version of the Khmaladze transform

applied to the vector wt. Let Ŵŵ,n (w) denote the process Ŵw,n(w) where wt has been replaced

with ŵt. For a detailed formulation of this statistic see Appendix B. An estimate of hw(w) is

defined as

ĥw(.) = p(., θ̂)
³
1− p(., θ̂)

´
.

The empirical version of the transformed statistic is

B̂ŵ,n (w) = Ŵŵ,n

³
φ(., w)/ĥw(.)

1/2
´

= n−1/2
nX
t=1

ĥw(zt)
−1/2

h
Dt − p(zt, θ̂)− Ân,t

i
φ (ŵt, w) (15)

where Ân,s = n−1
Pn

t=1 1 {ŵt1 > ŵs1}
³
Dt − p(zt, θ̂)

´
∂p(zs,θ̂)
∂θ0 Ĉ−1ŵ1s

l̄(zt, θ̂). Finally, Theorem 7 in Ap-

pendix A formally establishes that the process B̂ŵ,n (v) converges to a Gaussian process with

covariance function equal to the uniform distribution on [0, 1]k .
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Note that the convergence rate of B̂ŵ,n (v) to a limiting random variable does not depend on the

dimension k or the bandwidth sequence m. Theorem 7 shows that B̂ŵ,n(w)⇒ Bw(w) on D
£
Υ[0,1]

¤
where Bw(w) is a standard Gaussian process and Υ[0,1] =

n
w ∈ [0, 1]k |w = πxw

o
. It thus follows

that transformed versions of the VM and KS statistics converge to functionals of Bw(w). These

results can be stated formally as

VMw =

Z
Υ[0,1]

³
B̂ŵ,n(w)

´2
dw⇒

Z
Υ[0,1]

(Bw(w))
2 dw (16)

and

KSw = sup
v∈Υ[0,1]

¯̄̄
B̂ŵ,n(w)

¯̄̄
⇒ sup

v∈Υ[0,1]
|Bw(w)| . (17)

Here VMw and KSw are the VM and KS statistics after both the Khmaladze and Rosenblatt

transforms have been applied to V̂n(v). In practice the integral in (16) and the supremum in

(17) can be computed over a discrete grid. The asymptotic representations (16) and (17) make

it possible to use asymptotic statistical tables. For the purposes of the Monte Carlo below, we

computed critical values for the VM statistic in the special case where φ (., v) = 1 {. ≤ v} These

critical values, reported in Table 2, depend only on the dimension k and are thus distribution

free.15 Table 2 is also used to construct critical values in our empirical application in Section 6.

5 Monte Carlo Evidence

We evaluated the performance of our semiparametric tests using a simple data generating process

that captures important features of the empirical applications we have in mind. The process is

yt = βyt−1 + γDt + εt

Dt = 1 {yt−1 − α+ ηt > 0} ,

where εt and ηt are independent, ηt has a logistic distribution, and εt ∼ N(0, 1). The parameter α

is set to 3, so as to generate a probability of treatment of 5 percent. This is about the proportion of

15See Section 5 for a more detailed discussion of how Table 2 was constructed.
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treated periods in our empirical sample. The simulated model has a standard lagged-dependent-

variable structure that captures serial correlation in the outcome. The policy assignment is also

correlated with lagged outcomes.

The simulation used samples of 100 and 200 observations in 500 replications. The reported

results are rejection rates for the test statistics derived above and for a conventional t-test for

the significance of γ in a regression of yt on yt−1 and Dt. To construct the semiparametric

test statistics, we used a Logit model for the propensity score and the test function φ(Ut, v) =

1 {(yt, yt−1) ≤ v}.

Table 1 reports results for several implementations of our semiparametric test. These results are

for the statistic VM =
R ³

V̂n (v)
´2

dFu(v) and differ only in the way in which V̂n(.) is implemented

and the method by which critical values were obtained. We choose a bandwidth ofm = 10n−1/(2+k)

to implement the Rosenblatt transform corresponding to the theoretical rate obtained in Section

4.2. We have found that the resulting tests are not very sensitive to the choice of m.

We begin with statistics and significance levels calculated using numerical methods to deter-

mine critical values, as described in Section 4.1. In particular, Column (1) in Table 1 reports

results for the statistic Ŵn(v) defined by (12), with critical values obtained by numerical simu-

lation conditional on the sample as described by equation (13). The test statistic reported here

can therefore be written
R ³

Ŵn (v)
´2

dF̂u(v), where F̂u(v) is the empirical distribution of Ut. This

statistic relies on the Khmaladze transformation alone to adjust inference for estimation of the

propensity score.16

Test’s based on the asymptotic critical values reported in Table 2 and using the Rosenblatt

transformation as in (15), were constructed as follows. Let di =
R h

B̂ŵ,n (w)
i2
dw be the statistic

based on the i-th permutation of the elements in Ut before the Rosenblatt transform is applied

to Ut. Column (2) in Table 1 reports results for the statistic md ≡ maxi di where the maximum

statistic is taken over all permutations of the elements in Ut and uses critical values from Column

16We also simulated test statistics that ignore estimation of θ. In other words, we used the process V̂n(v) to

construct test statistics but based inference on critical values for V (v). The resulting tests tend to be markedly

undersized and show a substantial power loss relative to tests that do account for estimation of θ.
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(1) of Table 2.17 We use the notation mda to denote results for the md statistic that are based on

asymptotic critical values.

Column (3) of Table 1 was calculated using upper bounds for the asymptotic critical values

of the md statistic proposed by Justel, Peña and Zamar (1997). We use the notation mdb to

denote results for the md statistic that are based on upper bounds. Upper bounds are based

on P (md > cα) ≤
P

i P (di > cα) = k!α such that αmd = α/k! leads to a critical value with

P (md > cα/k!) ≤ α. When α = .05 is the desired significance level, we use the critical value

corresponding to d for k = 2 and 1 − α = .975 in Table 2. Columns (4) and (5) of Table 1

report corresponding results based on asymptotic critical values for d1 and d2. Since in this case

Ut = {yt, yt−1} these two tests are based on the two permutations of Ut, {yt, yt−1} and {yt−1, yt} .

As predicted by the theoretical discussion, the results in Table 1 show the tests d1 and d2

to have similar properties, with accurate size at all degrees of serial correlation in yt that we

investigated. When compared with a t-test, reported in Column (6), which in this scenario is both

asymptotically optimal and has good finite sample size properties, the tests di fare quite well. It is

especially encouraging to see that the semiparametric test statistics have good power properties,

though these naturally fall somewhat short of the power for the parametric t-test.

The semiparametric tests have most accurate size when the asymptotic critical values for the

statistic md are used, as can be seen in column (2) of Table 1. The resulting test is only slightly

oversized for most values of β. Power is also quite good in this case, and the mda test is at least

as powerful as the individual statistics, di, although the differences are very small. This may be

due in part to small size distortions of the mda test. The mdb test based on upper bound critical

values, reported in Column (3), is somewhat undersized for models with larger values of β and

17Note that the asymptotic critical values for di do not depend on the permutation chosen. For this reason we only

distinguish between the maximum statistic md and d in Table 2. Critical values do depend on the dimension k of

the vector Ut. Table 2 was obtained by randomly drawing U∗∗t from a Gaussian distribution with a randomly drawn

covariance matrix and then applying the Rosenblatt transform to the generated random variables U∗∗t .Note that

here the Rosenblatt transform TR is known because U∗∗t is Gaussian. We thus compute d∗∗i = n−1
Pn

t=1 ε
∗
tT
−1
R (U∗∗t )

for the i-th permutation of U∗∗t where εt is iid standard Gaussian. The sample size is set to n = 100 and 100, 000

replications of d∗∗i are used to approximate the distributions of md and d.
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consequently has less power. This version of the test therefore leads to a conservative test of the

null hypothesis.

Finally, the version of the test based on simulated critical values conditional on the sample in

Column 1 of Table 1 has size distortions somewhat larger than the distortion for the individual

tests di based on asymptotic critical values in Columns 4-5 when β is low to moderate, i.e. β ≤ .5.

At the same time, with simulated critical values, power is somewhat lower, a feature which clearly

makes this implementation less attractive. Moreover, when β = .9 this version of the test displays

fairly large size distortions, unlike the other implementations of the test. Overall, the mda test

using asymptotic critical values seems to provide the best combination of accuracy and power.

The mdb test using upper bound critical values leads to a more conservative version of the test.

We therefore used both test statistics for the empirical work described in the next section.

6 Causal Effects of Monetary Policy Shocks Revisited

In an influential study of the effects of monetary policy, Romer and Romer (1989) constructed

a monetary policy shock variable derived using what they call the narrative approach, inspired

by Friedman and Schwartz’ classic monetary history. The narrative approach uses Federal Open

Market Committee minutes to construct a dummy variable, Dt, to indicate episodes where the

Fed took a marked anti-inflationary stance. Thus, Dt indicates periods that are now known as

"Romer dates." The Romer dates mark Fed decisions to change short term interest rates, discount

rates, or reserve requirements. There were six such dates in the original Romer sample, running

from 1948-1987, with a 7th date added when the sample was extended through 1991 in Romer

and Romer (1994). The link between Romer Dates and later economic activity provides a natural

setting for propensity-score based estimates of the effects of monetary policy.

The key identifying assumption in the Romer papers is that, conditional on lagged outcomes,

the Romer dates are as good as randomly assigned in the sense that regressions of future output

growth on (lagged) dummies for these dates have a causal interpretation. A substantial literature

has developed challenging this premise. Examples include Leeper (1997), who argues the Romer

dates are determined in part by the Fed’s (nonlinear) forecast of future output and Shapiro (1994)
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who similarly argues that monetary policy is forward-looking in a way that induces omitted vari-

ables bias in the Romers’ regressions. Both of these critiques are consistent with the modeling

strategy outlined here in that we focus attention on models for the policy-determination process.

Romer and Romer (1997) defend the notion that, after appropriate conditioning, the dates can

be seen as exogenous. Romer and Romer (2004) provide new estimates of the dates of monetary

shocks using a somewhat more systematic version of the narrative approach. We focus on the orig-

inal Romer dates because they correspond to our binary-policy-variable setup, though in future

work we hope to address the more general policy evaluation problem.

Our re-analysis of the Romer data begins with Granger-style regressions of the growth of

industrial production (IP) on contemporaneous and lagged dummies for Romer dates (”Romer

dummies”), controlling for lags of IP growth. This is similar to the Romer’s econometric approach,

with two modifications. First, we aggregate monthly data to the quarterly level since there is

probably little additional information in the higher-frequency series. Romer quarters are identified

as quarters with a Romer month.18 This also serves to increase the proportion of the sample coded

as a Romer date, making it easier to estimate the policy propensity score. Second, the Romers

assess the role of monetary policy variables by looking at the impulse response function, while we

focus initially on F-statistics for the Romer dummies.

Controlling for 8 lags of output and no other covariates, a test for the joint significance of the

Romer dummies generates a p-value of about .01. This result, consistent with the Romers’ original

findings, can be seen in the first two columns of Table 3.19 We report both robust F-statistics based

18Quarterly series for all variables were constructed by averaging monthly series. Growth rates were constructed

as the first differences of the log of the quarterly averages. All quarterly series were deseasonalized by recursive

regressions on quarter dummies. The regressions are recursive in that coefficients were estimated using only

information available prior to each observation. This procedure allows us to ignore the estimation error arising

from this de-seasonalization. The series used in this section are listed in the last table. The original monthly series

were obtained from the Wharton/DRI Global Insight service. Although standard and widely available, these series

differ somewhat from the Romers’ original as they have since been revised. We us the 1952-91 sample period used

by Shapiro (1994).
19The specification includes 12 lagged Romer dummies (3 years worth). This corresponds to the Romers’ original

equation which included 3 years worth of lagged Romer dummies.
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on White standard errors as well as non-robust standard errors. Significance levels using robust

standard errors tend to be higher, especially in models with additional covariates. Non-robust

standard errors may be more reliable in these cases since increased precision with robust standard

errors is often an artifact of finite sample bias and the consequent size distortion (Chesher and

Jewitt, 1987).

Much of the debate over the Romer’s empirical approach focuses on whether it is enough to

control for lagged output when assessing the causal effect of Romer dates on output. An especially

important control variable in this context is inflation, since the Fed presumably looks at this when

making monetary policy decisions. On the other hand, inflation clearly responds to monetary

policy and therefore need not be an exogenous control in this context. This possibility was

highlighted in the discussion of Granger-testing pitfalls in Example 4. To explore the consequences

of adding inflation controls, we fit a version of the Romer’s principal estimating equation after

adding eight lags of inflation to the list of covariates. These results, reported in Columns 3

and 4 of Table 3, show that the addition of inflation reduces the significance level of the Romer

dummies somewhat, though some effects are still significant, as is the overall F. Similarly, adding

controls for lagged unemployment rates further reduces the significance of the joint F test for the

Romer dummies. These results appear in columns 5 and 6 of the table. The p-value for the joint

significance of the Romer dummies in this specification is .09 for the non-robust version of the

F-statistic.

Finally, we explore Sims-type semiparametric tests of conditional independence in this context

using the transformed VM and KS statistics described above. For purposes of comparison, results

from a parametric analog of the semiparametric tests are also reported. The semiparametric test

results are for tests of conditional distributional independence where φ(Ut, v) = 1 {Ut ≤ v}, and

the policy propensity score was estimated using Logit, as for the Monte Carlos in the previous

section. The semiparametric tests were implemented using the same bandwidth as used for the

simulations.

The foundation of our semiparametric testing procedure is a parsimonious model for the policy

propensity score. Following Shapiro (1994), we develop a parsimonious model based on the
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notion, also discussed by Romer and Romer (2004), that the systematic component of Fed policy

decisions is driven by forecasts of inflation and unemployment. In particular, we first fit a vector

autoregressive model (VAR) to unemployment and inflation. We then used predictions up to 100

periods ahead to construct a forecast of the ”present value” of future inflation and unemployment

in each period, similar to the present value forecasts used by Shapiro. The idea is that the Fed

sets monetary policy based on this measure, or other summary forecasts that are highly correlated

with this one. A detail here, however, is that because Shapiro’s forecasting parameters were

estimated on the entire sample, the resulting present value measures are not part of the relevant

information set of the Fed. To avoid this conceptual ( if not practical) problem, we also used a

true out-of-sample forecasting procedure to construct the present value measures by estimating

the VAR parameters on the sample prior to the forecast period only. The present value inflation

and unemployment forecasts are the main covariates in the model for the policy propensity score,

though some estimates also include lagged dependent variables.20

The semiparametric mdb tests were constructed for three specifications, with results reported

in columns 1-3 of Table 4. The first two specifications use full-sample and out-of-sample forecasts.

The third specification adds lagged dependent variables to the model using out-of-sample forecasts

for the present value calculation. Results in different rows are for different lead lengths, e.g., causal

effects on output growth one period ahead, two periods ahead, and so on. We look at each lead

one at a time because the number of permutations required for the Rosenblatt transform grows

rapidly with the dimensionality of a joint test. The upper bound method was used to obtain

critical values for the semiparametric tests.21

20Lagged Romer dummies were also used as explanatory variables in the forecasting equations. The discount rate

was set at 2%. The forecasting equation has eight lags for inflation and unemployment and 16 lags for the Romer

dummies. When constructing out-of-sample forecasts, lag length for all covariates was reduced to four periods at

the beginning of the sample.
21The p-values reported in the table were obtained by translating the p-values in Table 2 into p-values for the

upper bound test according to the method described in Section 5. There we show that the significance level αmd

of the md test is bounded above by αk! In our application k = 3, so α = .05/6 gives an approximate significance

level of 5%. This implies a critical value corresponding to 1− α = .9916 should be used in Column 4 of Table 2 to

achieve a significance level of 5%.
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Results from the first specification offer some evidence of a money-output relation at some

horizons. In particular, semiparametric tests reject non-causality at one, three to five, seven and

eight quarter leads. These results may be misleading, however because full sample estimation of

zt invalidates the semiparametric tests. Significance levels are reduced considerably when out-

of-sample forecasts are used to construct control variables, but there are still rejections at third

and eight quarter leads and a weakly significant result at the first lead. Adding lagged output

growth does not change these findings, which can be seen in column 3. In Table 5 we report

the same statistic but now judged against asymptotic critical values from Column (3) of Table

2. The results are essentially the same except that the first lead is now statistically significant.

On balance, it seems fair to say that a forward-looking Sims test provides weak support for the

Romers’ original conclusion, at least as far the correlation between Romer dates and future output

growth as concerned. Not surprisingly, however, given the paucity of Romer dates that form the

essence of the "natural experiment" that lies behind this inquiry, the evidence for money-output

causality can fairly be described as "mixed".22

To gauge the extent to which our semiparametric test results have reduced power relative

to similar parametric tests, we added future output growth to the present value variables (and

possibly lagged output growth variables) already in the policy propensity score. The significance

level of future output variables in the policy propensity score provides a parametric Sims-type

test of a particular version of the conditional independence hypothesis that is at the heart of

the semiparametric tests. In particular, we report significance levels for the coefficient θ3 in the

Due to numerical limitations we compute critical values for a grid of significance levels in Table 2. As a con-

sequence we can not report exact significance levels for our tests. Table 4 therefore reports intervals for p-values.

These were constructed by reporting the two critical values in our grid of Table 2 for which the test statistic would

have either just rejected or failed to reject. For example, if the test statistic is md = .4, then the test would be

rejected at a critical value of .33 which corresponds to a significance level of αmd = k! · .01 = 0.06. On the other
hand, the smallest critical value in Table 2 for which the test rejects is .42 corresponding to αmd = .15. We would

therefore report an interval of significance levels of [.06, .15] for this example.
22The Romer’s original findings showed statistical significance for Romer dummies at particular groups of lags in

Granger-style regressions. These effects were large enough to induce a clear shift in the impulse response function,

a relation analogous to the one checked by our forward-looking Sims tests.

30



following choice equation of a Logit model for Fed action

Dt = 1 {θ0 + θ1u
pv
t + θ2π

pv
t + θ3Yt+j + εt > 0} .

where zt = [upvt , πpvt ]
0 are the present value measures for unemployment and inflation discussed

earlier. The variable Yt+j is the change in industrial production at lead j.Under the null hypothesis,

the parameter θ3 should be zero. The parametric version of this test has the advantage that,

subject to having correctly specified the policy propensity score, the model is correct under the

null hypothesis of non-causality. On the other hand, this specification need not be correct under

the alternative, even if the policy propensity score is correctly specified, and may therefore have

reduced power in some directions.

As it turns out, results from the parametric analog of our semiparametric tests are generally

in line with the semiparametric results, especially for the out-of-sample forecast case. This can

be seen in columns 4-6 of Table (4). In particular, there is some evidence of causality at the

first and eighth lead, while two of the specifications also show something at an intermediate lead,

in this case the third. The fact that the semiparametric and parametric models generate results

with the same patterns of significance suggests that power is similar for both the parametric and

semiparametric approaches.

7 Conclusions and Directions for Further Work

This paper develops a causal framework for time series data using the notion of potential outcomes

commonly used in cross-sectional evaluation research. This leads to a definition of causality similar

to the one proposed by Sims. For models with covariates, Sims causality is not the same as Granger

causality, and the distinction between these two concepts turns out to be conceptually important.

In particular, Granger causality may confuse system dynamics with the causal effects of isolated

policy actions. In contrast, Sims causality hones in on the effect of isolated policy shocks relative

to a well-defined counter-factual baseline.

A major part of our agenda is to develop a causality test that focuses on the policy assignment

mechanism, which we call the policy propensity score. In particular, we develop a new semipara-
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metric test of conditional independence, valid under the selection-on-observables null hypothesis

that is at the heart of much of the empirical work on time series causal effects. A major advantage

of this approach is that it does not require researchers to model the process determining the out-

comes of interest. The resulting tests have power against all alternatives but are necessarily joint

tests of the null of no causality and correct specification of the policy propensity score. Although

we have not emphasized this, it is also worth noting that the testing framework developed here is

easily adapted to construct tests for specific alternative hypotheses, such as mean-independence.

The development here is limited to binary treatments but it seems likely our approach can

be extended to multivalued or continuous treatments, perhaps along the lines explored in recent

work by Hirano and Imbens (2004) and Abadie (2005). Of course, it is an open question whether

the technical machinery used here, such as the Khmaladze transform, transfers to a more general

setting. This is a question we hope to address in future work. We also plan to explore the question

of whether tests for conditional mean and second-order moment independence have advantages

over omnibus tests.

32



A Asymptotic Critical Values

This Appendix provides formal results on the distribution of the test statistics described above and forms

the basis for the construction of asymptotic critical values. The theorems and proofs use the additional

notation outlined below.

A.1 Additional Notation and Assumptions

We focus initially on the process Vn(v) and the associated transformation T. Results for Vw,n(w) and the

transformed process TwVw,n(w) then follow as a special case.

Let χt = [y0t, z
0
t,Dt]

0 be the vector of observations. Assume that {χt}∞t=1 is strictly stationary with
values in the measurable space

¡
Rk+1,Bk+1

¢
where Bk+1 is the Borel σ-field on Rk+1 and k is fixed with

2 ≤ k <∞. Let Al
1 = σ (χ1, ..., χl) be the sigma field generated by χ1, ..., χl. The sequence χt is β-mixing

or absolutely regular if

βm = sup
l≥1

E

"
sup

A∈A∞l+m

¯̄̄
Pr
³
A|Al

1

´
− P (A)

¯̄̄#
→ 0 as m→∞.

A sequence is called α-mixing if

αm = sup
l≥1

E

⎡⎣ sup
A∈Al

1,B∈A∞l+m
|Pr (A ∩B)− P (A)P (B)|

⎤⎦→ 0 as m→∞

and it is well known that αm ≤ βm.

Condition 2 Let χt be a stationary, absolutely regular process such that for some 2 < p <∞ the β-mixing

coefficient of χt satisfies m
p/(p−2) (logm)2(p−1)/(p−2) βm → 0.

Condition 3 Let Fu(u) be the marginal distribution of Ut. Assume that Fu (.) is absolutely continuous

with respect to Lebesgue measure on Rk and has a density fu(u)

Condition 4 The function φ(., .) belongs to a VC subgraph class of functions with envelope M(χt) such

that E |M(χt)|2+δ <∞ for some δ > 0.

We note that |m(yt,Dt, zt, θ0|v)| ≤ 2 for φ(., v) = 1 {. ≤ v} such that by Pollard (1984) Theorem II.25,

mv(Wt) = m(yt,Dt, zt, θ0|v) is a VC subgraph class of functions indexed by v with envelope 2.

Condition 5 Let H(v) be as defined in (9) . Assume that H(v) is absolutely continuous in v with respect

to Lebesgue measure and for all v, τ such that v ≤ τ with vi < τ i for at least one element vi of v it follows

that H(v) < H(τ). Let h(v) = ∂kH(v)/∂v1...∂vk and assume that h(v) > 0 for all v ∈ Rk.

Remark 1 A sufficient condition for Condition (5) is that 0 < p(zt, θ0) < 1 almost surely.
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A.2 Limiting Distributions

Let D [−∞,∞]k be the space of functions that are continuous from the right with left limits (Cadlag)

mapping [−∞,∞]k → R. We consider weak convergence on D [−∞,∞]k equipped with the sup norm.
Here [−∞,∞]k denotes the k-fold product space of the extended real line equipped with the metric q(v, τ) =³Pk

i=1 |Φ(vi)− Φ(τ i)|
2
´1/2

where Φ is a fixed, bounded and strictly increasing function. It follows that

[−∞,∞]k is totally bounded. The function space F =
n
m(., v)|v ∈ [−∞,∞]k

o
of functions m indexed by

v then is a subset of the space of all bounded functions on [−∞,∞]k denoted by l∞([−∞,∞]k).

Proposition 2 Assume that Conditions 2, 3 and 5 are satisfied. Let vi ∈ [−∞,∞]k for i = 1, ..., s be a
finite collection of points. Then, for all finite s, Vn (v1) , ...., Vn (vs) converges in distribution to a Gaussian

limit with mean zero and covariance function Γ(vi, vj). Moreover, Vn (v) converges in D [−∞,∞]k to a
Gaussian process V (v) with covariance kernel Γ(v, τ) with v, τ ∈ [−∞,∞]k and V (−∞) = 0, H(v) is

positive with H(v) increasing in v.

Proof of Proposition 2. As noted before, under H0, mv(χt) is a martingale difference sequence such

that E (mv(χt)|zt) = 0. Let λ = (λ1, ..., λs)
0 with kλk = 1. For finite dimensional convergence we apply

Corollary 3.1 of Hall and Heyde (1980) to Yt = λ1mv1(χt) + λ2mv2(χt) + ...+ λsmvs(χt). Then, clearly Yt

is also a martingale difference sequence. Consider Ynt = Yt/
√
n. Then, for all ε > 0,X

t

E
¡
Y 2nt1 {|Ynt| ≥ ε} |At−1

1

¢
≤
X
t

E
¡
Y 2nt1

©
2
P

i |λi| ≥
√
nε
ª
|At−1
1

¢
→ 0 a.s.

because EY 2+δnt is bounded for some δ > 0. Also,X
t

E
£
Y 2nt|At−1

1

¤
= n−1

nX
t=1

E
£
Y 2t |At−1

1

¤
= n−1

nX
t=1

E
h
p(zt, θ0) (1− p (zt, θ0)) (λ1φ (ut, v1) + λ2φ (ut, v2) + ...+ λsφ(ut, vs))

2 |At−1
1

i
p→
X
i,j

λiλjΓ(vi, vj)

where the last line is a consequence of Theorem 2.1 in Arcones and Yu (1994). By the Cramer-Wold theorem

this establishes finite dimensional convergence. The functional central limit theorem again follows from

Theorem 2.1 in Arcones and Yu (1994).

The next proposition establishes a linear approximation to the process V̂n (v) evaluated at the estimated

parameter value θ̂. The fact that l (Dt, zt, θ0) is a martingale difference sequence is critical to the develop-

ment of a distribution free test statistic. The next condition states that the propensity score p(zt, θ) is the

correct parametric model for the conditional expectation of Dt and lists a number of additional regularity

conditions.
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Condition 6 Let θ0 ∈ Θ where Θ ⊂ Rd is a compact set and d < ∞. Assume that E [Dt|zt] = p(zt|θ0)
and for all θ 6= θ0 it follows E [Dt|zt] 6= p(zt|θ). Assume that p(zt|θ) is differentiable a.s. for θ ∈
{θ ∈ Θ| kθ − θ0k ≤ δ} := Nδ(θ0) for some δ > 0. Let N(θ0) be a compact subset of the union of all

neighborhoods Nδ (θ0) where ∂p(zt|θ)/∂θ, ∂2p(zt|θ)/∂θi∂θj exists and assume that N(θ0) is not empty. Let
∂pi(zt|θ)/∂θ be the i-th element of the vector of partial derivatives ∂p(zt|θ)/∂θ and let l̄i(zt, θ) be the i-th
element of l̄ (zt, θ) . Assume that there exists a function B(x) and a constant α > 0 such that¯̄

∂pi(x|θ)/∂θ − ∂pi(x|θ0)/∂θ
¯̄
≤ B(x)

°°θ − θ0
°°α ,¯̄

∂2p(x|θ)/∂θi∂θj − ∂2p(x|θ)/∂θi∂θj
¯̄
≤ B(x)

°°θ − θ0
°°α and ¯̄∂l̄i(x|θ)/∂θ − ∂l̄i(x|θ0)/∂θ

¯̄
≤ B(x)

°°θ − θ0
°°α

for all i and θ, θ0 ∈ intN (θ0), E |B(zt)|2+δ <∞, E |∂pi(zt|θ0)/∂θ|4+δ <∞,

E
h
(p(zt, θ0) (1− p(zt, θ0)))

−(4+δ)
i
<∞

and

E
¯̄̄
(∂pi(zt|θ0)/∂θ)2 / (p(zt, θ0) (1− p(zt, θ0)))

¯̄̄ 4+δ
2

<∞

for all i and some δ > 0.

Remark 2 By Pakes and Pollard (1989, Lemma 2.13) the uniform Lipschitz condition for the derivatives

∂p(zt|θ)/∂θ guarantees that the functions ∂p(zt|θ)/∂θ indexed by θ form a Euclidian class for the envelope

B(zt)
³
2
√
d supN(θ0)

°°θ − θ0
°°´α + |∂pi(zt|θ0)/∂θ| .

Condition 7 Let

l (Dt, zt, θ) = Σ
−1
θ

(Dt − p(zt, θ)) ∂p (Dt|zt, θ) /∂θ
p (Dt|zt, θ) (1− p (Dt|zt, θ))

(18)

where

Σθ = E

∙
∂ log p (Dt|zt, θ) /∂θ∂ log p (Dt|zt, θ) /∂θ0

p (Dt|zt, θ) (1− p (Dt|zt, θ))

¸
. (19)

Assume that Σθ is positive definite for all θ in some neighborhood N ⊂ Θ such that θ0 ∈ intN and

0 < kΣθk < ∞ for all θ ∈ N. Let li (Dt, zt, θ) be the i-th element of l (Dt, zt, θ) . Assume that there

exists a function B(x1, x2) and a constant α > 0 such that
°°∂li (x1, x2, θ) /∂θj − ∂li

¡
x1, x2, θ

0¢ /∂θj°° ≤
B(x)

°°θ − θ0
°°α for all i and θ, θ0 ∈ intN , EB(zt) <∞ and E |l (Dt, zt, θ)| <∞ for all i.

Proposition 3 Assume that Conditions 2, 3,4, 5, 6 and 7 are satisfied. Then

sup
v∈[−∞,∞]k

°°°°°V̂n (v)− Vn (v) + ṁ(v, θ0)n
−1/2

nX
t=1

l (Dt, zt, θ0)

°°°°° = op(1) (20)

and if l (Dt, zt, θ0) is as defined in 18 and 19 then V̂n (v) converges weakly in D[ − ∞,∞]k equipped
with the sup norm to a limiting Gaussian process with mean zero and covariance function Γ̂(v, τ) =

Γ (v, τ)− ṁ(v, θ0)L(θ0)ṁ(τ , θ0)
0 where L(θ0) = Σ−1θ0 defined in 19.
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Proof of Proposition 3. Note that V̂n (v) − Vn (v) = n−1/2
Pn

t

h
p(zt, θ0)− p(zt, θ̂)

i
φ(Ut, v) such

that we can approximate

V̂n (v)− Vn (v) = n1/2
³
θ̂ − θ0

´0 1
n

nX
t

∙
∂p(zt, θn)

∂θ
− ∂p(zt, θ0)

∂θ

¸
φ(Ut, v)

+n1/2
³
θ̂ − θ0

´0 1
n

nX
t

∂p(zt, θ0)

∂θ
φ(Ut, v)

where kθn − θ0k ≤
°°°θ̂ − θ0

°°° by the mean value theorem. Let ṁ (θ, v) = E
h
∂p(zt,θ)

∂θ φ(Ut, v)
i
and ṁ(Ut, θ, v) =

∂p(zt,θ)
∂θ φ(Ut, v) − ṁ (θ, v) . From Pakes and Pollard (1989, Lemmas 2.13 and 2.14) and Condition (6)

it follows that ṁ(., θ, v) is a Euclidian class of functions indexed on N(θ0) × [−∞,∞]k with envelope
(B(zt)

³
2
√
d supN(θ0)

°°θ − θ0
°°´α + |∂pi(zt|θ0)/∂θ|)M(χt). Then°°°°° 1n

nX
t

∙
∂p(zt, θn)

∂θ
− ∂p(zt, θ0)

∂θ

¸
φ(Ut, v)

°°°°°
≤ sup

kθ−θ0k≤δ
sup
v

°°°°° 1n
nX
t

[ṁ(zt, θ, v)− ṁ(zt, θ0, v)]

°°°°°+ sup
kθ−θ0k≤δ

kṁ(θ, v)− ṁ(θ0, v)k+ op(1) = op(1)

since supkθ−θ0k≤δ supv
°° 1
n

Pn
t [ṁ(ztθ, v)− ṁ(zt, θ0, v)]

°° = op(1) by Lemma 2.1 of Arcones and Yu (1994).

This completes the proof of 20.

The second part of the result follows from the fact that the class of functions F = mv(.)+ṁ (θ, v) l(., ., θ0)

is a Euclidian class by Lemma 2.14 of Pakes and Pollard (1989). Since mv(Xt) + ṁ (θ, v) l(Dt, zt, θ0) is

a martingale difference sequence with respect to the filtration At−1
1 finite dimensional convergence to a

Gaussian random variable with zero mean and covariance function Γ̂(v, τ) follows from the martingale

CLT (Hall and Heyde, Corollary 3.1) and the fact that 0 < kΣθ0k <∞ by Condition 7. Convergence to a

weak limit in D [−∞,∞]k then follows again by Lemma 2.1 of Arcones and Yu (1994).
We now establish that the process T V̂ (v), defined in (10) is zero mean Gaussian with covariance

function Γ(v, τ). This establishes that the process T Ṽ (v) = W (v) can be transformed to a distribution

free process via Lemma 3.5 and Theorem 3.9 of Khmaladze (1993).

In order to define the transform T we choose a grid −∞ = λ0 < λ1 < ... < λN = ∞ on [−∞,∞] , let
∆πλi = πλi+1 − πλi and set

cN(V ) =
NX
i=1

­
φ (., v) ,∆πλi l̄(., θ)

®
C−1λi

V (π⊥λi l̄(ϑ, θ)). (21)

This construction is the same as in Khmaladze (1993) except that we work on [−∞,∞] rather than [0, 1] .
In Proposition (4) we show that cN(V ) converges as N → ∞ and maxi (Φ(λi+1)−Φ (λi)) → 0. Let the

limit of cN(V ) be denoted as c(V ) =
R ­

φ (., v) , dπλl̄(., θ)
®
C−1λ V

¡
π⊥λ l̄(., θ)

¢
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Condition 8 Let {Aλ} be a family of measurable subsets of [−∞,∞]k, indexed by λ ∈ [−∞,∞] such that
A−∞ = ∅, A∞ = [−∞,∞]k, λ ≤ λ0 =⇒ Aλ ⊂ Aλ0 and Aλ0\Aλ → ∅ as λ0 ↓ λ. Assume that the sets
{Aλ} form a V-C class (polynomial class) of sets as defined in Pollard (1984, p.17). Define the projection

πλf(v) = 1 (v ∈ Aλ) f(v) and π⊥λ = 1− πλ such that π⊥λ f(v) = 1 (v /∈ Aλ) f(v). We then define the inner

product hf(.), g(.)i :=
R
f(u)g(u)0dH(u) and the matrix

Cλ =
D
π⊥λ l̄(., θ), π

⊥
λ l̄(., θ)

E
=

Z
π⊥λ l̄(u, θ)π

⊥
λ l̄(u, θ)

0dH(u).

Assume that hf(v), πλg(v)i is absolutely continuous in λ and Cλ is invertible for λ ∈ [−∞,∞).

Proposition 4 Assume condition 8 holds. Define Υx =
n
v ∈ [−∞,∞]k |v = πxv

o
for some x < ∞. Let

cN (v) be defined as in 21. Then cN (v) converges with probability 1 to c(v) for all v ∈ Υx. Let T V̂ (v) be

as defined in 10. Then T V̂ (v) is a Gaussian process with zero mean and covariance function Γ(v, τ) for

all v, τ ∈ Υx.

Proof of Proposition 4. The proof of this result follows closely Khmaladze (1993) with the necessary

adjustments pointed out. First, let V (v) be a Gaussian process on [−∞,∞]k with zero mean and covariance
function Γ(v, τ) and V (−∞) = 0. See Kallenberg (1997, p. 201) for the construction of such a process.

Then, V (π⊥λ l̄(., θ)) is a process with trajectories that are continuous in λ by essentially the same argument

as in Lemma 3.2 of Khmaladze. To see this fix α ∈ Rk such that α0V (π⊥λ l̄(., θ)) is a Wiener process on

[−∞,∞] with mean zero, α0V (π⊥∞l̄(., θ)) = 0 and variance α0Cλα with almost all trajectories continuous in

λ on [−∞,∞]. To show that cN (v)→ c(v) almost surely we adapt the proof of Lemma 3.3 of Khmaladze

(1993). As there, define ρ1(ξ) = |ξ1|+ ...+ |ξk| for any vector ξ = (ξ1, ..., ξk) ∈ Rk and ρ∞ (ξ) = maxi |ξi| .
Set ξ =

­
φ,∆πµl̄(., θ)

®
and η (µ, λ) = C−1µ V (π⊥µ l̄(., θ)) − C−1λ V (π⊥λ l̄(., θ)). By Condition 8 the matrix Cλ

is invertible on [−∞,∞) and C−1λ is continuous in λ. Then, since V (π⊥λ l̄(., θ)) is continuous in λ almost

surely, we have

sup
|Φ(λ)−Φ(µ)|<δ
λ,µ∈[−∞,x]

ρ∞ (η (µ, λ))→ 0

with probability 1 for any fixed x <∞. The remainder of the proof in Khmaladze (1993) then goes through

without change.

We first represent V̂ (v) in terms of V (v). Let V (l (., θ0)) =
R
l(u, θ0)db(u) as before for any function

l(v, θ) and b(v) a zero mean Gaussian process with covariance function H(v ∧ τ) and note that V̂ (v) =
V (φ(.,v))−ṁ(v, θ)Σ−1θ V (l̄(., θ0)). In order to establish a corresponding result to Lemma 3.4 of Khmaladze

(1993) we first show that V̂ (v) = V (φ(.,v))− ṁ(v, θ)Σ−1θ V (l̄(., θ0)) is a valid representation of the limiting

distribution of V̂n(v) which was derived in Proposition 3. Clearly, V̂ (v) is zero mean Gaussian and the
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covariance function is

EV (v)V (τ)− ṁ(v, θ0)Σ
−1
θ

Z
φ (u, τ) l̄(u, θ0)H(du)−

Z
φ (u, v) l̄(u, θ0)H(du)Σ

−1
θ ṁ(τ , θ0)

+ṁ(v, θ0)
0Σ−1θ

Z
l̄(u, θ0)l̄(u, θ0)

0H(du)Σ−1θ ṁ(τ , θ0).

Note that dH(u) =
¡
p(u2)− p(u2)

2
¢
dFu (u) such thatZ

φ (u, τ) l̄(u, θ0)dH(u) =

Z
φ (u, τ)

1

(p(u2)− p(u2)2)

∂p(u2, θ0)

∂θ
dH(u)

=

Z
φ (u, τ)

∂p(u2, θ0)

∂θ
dFu(u) = ṁ(τ , θ0)

and Z
l̄(u, θ0)l̄(u, θ0)

0dH(u)

=

Z
1

(p(u2)− p(u2)2)
2

∂p(u2, θ0)

∂θ

∂p(u2, θ0)

∂θ0
dH(u)

=

Z
1

(p(u2)− p(u2)2)
2

∂p(u2, θ0)

∂θ

∂p(u2, θ0)

∂θ0
dFu(u) = Σθ

such that EV̂ (v)V̂ (τ)0 = H(v ∧ τ)− ṁ(v, θ0)
0Σ−1θ ṁ(τ , θ0) as required.

We now verify that the transformation T has the required properties. Note that

­
φ(.,v), l̄(., θ)

®
=

Z
φ (u, v)

1

(p(u2)− p(u2)2)

∂p(u2, θ0)

∂θ
dH(u)

= ṁ(v, θ0)

such that V̂ (v) = V (φ (., v))−
­
φ (., τ) , l̄(., θ)

®
C−1−∞V (l̄(v, θ)).

In order to establish T V̂ (v) = V̂ (v) −
R ­

φ (., v) , dπλl̄(., θ)
®
C−1λ V̂ (π⊥λ l̄(., θ)) has covariance function

Γ(v, τ) we first consider E (TV (v))2 where

E

µ
V (v)−

Z ­
φ (., v) , dπλl̄(., θ)

®
C−1λ

Z
π⊥λ l̄(ϑ, θ)db(u)

¶2
= Γ(v, v)− 2

Z ­
φ (., v) , dπλl̄(., θ)

®
C−1λ

D
φ (., v) , π⊥λ l̄(., θ)

E
+

Z Z ­
φ (., v) , dπλl̄(., θ)

®
C−1λ

Z
π⊥λ l̄(u, θ)π

⊥
µ l̄(u, θ)

0dH(u)C−1µ

­
φ (., v) , dπµ l̄(., θ)

0®
= Γ(v, v)− 2

Z ­
φ (., v) , dπλl̄(., θ)

®
C−1λ

D
φ (., v) , π⊥λ l̄(., θ)

E
+

Z Z ­
φ (., v) , dπλl̄(., θ)

®
C−1λ Cλ∨µC

−1
µ

­
φ (., v) , dπµ l̄(., θ)

0® .
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Note that
­
φ (., v) , dπλl̄(., θ)

®
C−1λ Cλ∨µC−1µ

­
φ (., v) , dπµl̄(., θ)

0® is symmetric in λ and µ such thatZ Z ­
φ (., v) , dπλl̄(., θ)

®
C−1λ Cλ∨µC

−1
µ

­
φ (., v) , dπµl̄(., θ)

0®
= 2

Z ­
φ (., v) , dπλl̄(., θ)

®
C−1λ

Z ∞

λ

­
φ (., v) , dπµl̄(., θ)

0®
=

Z ­
φ (., v) , dπλl̄(., θ)

®
C−1λ

D
φ (., v) , π⊥λ l̄(., θ)

E
such that E

¡
V (v)−

R ­
φ (., v) , dπλl̄(., θ)

®
C−1λ V (π⊥λ l̄(., θ))

¢2
= Γ (v, v) . By the same arguments it follows

that E [TV (v)TV (τ)] = Γ (v, τ) .

That the result then also holds for T V̂ (v) follows from Khmaladze (1993, Theorem 3.9).

Khmaladze (1993, Lemmas 3.2-3.4) shows that the argument need not be limited to all v such that

v ∈ Υx. As noted by Koul and Stute, however, once T is replaced by Tn convergence can only be shown on

the subset πxv of [−∞,∞]k for some finite x due to the instability of the estimated matrix Cλ as λ→∞.

The next step is to analyze the transform T when applied to the empirical processes Vn(v) and V̂n(v)

and in particular to show convergence to the limiting counterpart, T V̂ (v).

Proposition 5 Assume Conditions 2, 3, 4, 5, 6, 7 and 8 are satisfied. Fix x < ∞ arbitrary and define

Υx =
n
v ∈ [−∞,∞]k |v = πxv

o
. Then,

sup
v∈Υx

¯̄̄
T V̂n(v)− TVn(v)

¯̄̄
= op(1)

and TVn(v)⇒ TV (v) in D [Υx] where ⇒ denotes weak convergence.

Proof of Proposition 5. By Theorem 3 we have uniformly on [−∞,∞]k that V̂n (v) − Vn (v) =

ṁ(v, θ0)n
−1/2Pn

t=1 l (Dt, zt, θ0) + op(1). Thus consider the difference

T V̂n − TVn (22)

= −ṁ(v, θ0)n−1/2
nX
t=1

l (Dt, zt, θ0)

−
Z ­

φ (., v) , dπλl̄(., θ0)
®
C−1λ

³
V̂n

³
π⊥λ l̄(., θ0)

´
− Vn

³
π⊥λ l̄(., θ0)

´´
+ op (1)
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where Ĥn and Hn are defined in Appendix B.1 for kθn − θ0k ≤
°°°θ̂ − θ0

°°° it follows by the mean value
theorem that

V̂n

³
π⊥λ l̄(., θ0)

´
− Vn

³
π⊥λ l̄(., θ0)

´
= n−1/2

nX
t=1

1 {Ut /∈ Aλ} l̄(zt, θ0)
³
p(zt, θ0)− p(zt, θ̂)

´
= n−1/2

nX
t=1

1 {Ut /∈ Aλ} l̄(zt, θ0)
µ
∂p(zt, θn)

∂θ
− ∂p(zt, θ0)

∂θ

¶³
θ̂ − θ0

´
+n−1/2

nX
t=1

1 {Ut /∈ Aλ} l̄(zt, θ0)
∂p(zt, θ0)

∂θ

³
θ̂ − θ0

´
: = R1 (λ) +R2 (λ) .

Let ṁ (θ) = E
h
∂p(zt,θ)

∂θ

i
and ṁ(zt, θ) =

∂p(zt,θ)
∂θ − ṁ (θ) . First consider

sup
λ
kR1 (λ)k ≤ n1/2

°°°θ̂ − θ0

°°°n−1 nX
t=1

°°l̄(zt, θ0)°°°°°°∂p(zt, θn)∂θ
− ∂p(zt, θ0)

∂θ

°°°°
≤ n1/2

°°°θ̂ − θ0

°°°n−1 nX
t=1

°°l̄(zt, θ0)°° kṁ(zt, θn)− ṁ(zt, θ0)k

+n1/2
°°°θ̂ − θ0

°°°n−1 nX
t=1

°°l̄(zt, θ0)°° kṁ (θn)− ṁ (θ0)k

≤ n1/2
°°°θ̂ − θ0

°°°Ãn−1 nX
t=1

°°l̄(zt, θ0)°°2!1/2Ãn−1 nX
t=1

kṁ(zt, θn)− ṁ(zt, θ0)k2
!1/2

where the third inequality follows from Hölder’s inequality. Since kθn − θ0k = op(1) it follows from the con-

tinuous mapping theorem that kṁ (θn)− ṁ (θ0)k = op(1). Together with the fact that E
°°l̄((yt, zt) , θ0)°° <

∞ and Lemma 2.1 of Arcones and Yu (1994) this implies that

n1/2
°°°θ̂ − θ0

°°°n−1 nX
t=1

°°l̄((yt, zt) , θ0)°° kṁ (θn)− ṁ (θ0)k = op(1).

By Condition 6 it follows that

kṁ(zt, θn)− ṁ(zt, θ0)k2 ≤ k |B(zt)|2 kθn − θ0k2α

for some α > 0 such that

n−1
nX
t=1

kṁ(zt, θn)− ṁ(zt, θ0)k2 ≤ k kθn − θ0k2α n−1
nX
t=1

|B(zt)|2 = op(1).
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This establishes supλ kR1 (λ)k = op(1) such that uniformly on Υx°°°°Z ­
φ (., v) , dπλl̄(., θ0)

®
C−1λ R1 (λ)

°°°° ≤ sup
λ
kR1 (λ)k sup

λ:πλ∈Υx

kCλk−1
Z ¯̄­

φ (., v) , dπλl̄(., θ0)
®¯̄
= op (1) .

Next consider R2 (λ)−
R
π⊥λ l̄(ϑ, θ0)ṁ(dϑ, θ0)n

1/2
³
θ̂ − θ0

´
. Note that

E

∙
1 {Ut /∈ Aλ} l̄(zt, θ0)

∂p(zt, θ0)

∂θ0

¸
=

Z
π⊥λ l̄(ϑ, θ0)ṁ(dϑ, θ0)

and

sup
λ

°°°°1 {Ut /∈ Aλ} l̄(zt, θ0)
∂p(zt, θ0)

∂θ0

°°°°
≤

°°°°l̄(zt, θ0)∂p(zt, θ0)∂θ0

°°°°
=

°°°°∂p(zt, θ0)∂θ

∂p(zt, θ0)

∂θ0
1

p(zt, θ0) (1− p(zt, θ0))

°°°°
≤

°°°°°∂p(zt, θ0)∂θ

1

[p(zt, θ0) (1− p(zt, θ0))]
1/2

°°°°°
2

=
dX

i=1

µ
∂pi(zt, θ0)

∂θ

¶2 1

[p(zt, θ0) (1− p(zt, θ0))]

≤ d−(1−
2

2+δ )

Ã
dX
i=1

µ
∂pi(zt, θ0)

∂θ

¶4+δ 1

[p(zt, θ0) (1− p(zt, θ0))]
(4+δ)/2

!2/(4+δ)
with

E

"
dX

i=1

µ
∂pi(zt, θ0)

∂θ

¶4+δ 1

[p(zt, θ0) (1− p(zt, θ0))]
(4+δ)/2

#
<∞

by Condition 6. This shows that (1− 1 {(yt, zt) ∈ Aλ}) l̄(zt, θ0)∂p(zt,θ0)∂θ0
is a Euclidian class with integrable

envelope
°°°l̄(zt, θ0)∂p(zt,θ0)∂θ0

°°° such that by Lemma 2.1 of Arcones and Yu it follows that
sup
λ

°°°°R2 (λ)− Z π⊥λ l̄(ϑ, θ0)ṁ(dϑ, θ0)n
−1/2

³
θ̂ − θ0

´°°°° = op(1).

It then follows that uniformly on ΥxZ ­
φ (., v) , dπλl̄(., θ0)

®
C−1λ

∙
R2 (λ)−

Z
π⊥λ l̄(ϑ, θ0)ṁ(dϑ, θ0)n

−1/2
³
θ̂ − θ0

´¸
= op (1) .

Now note that
R
π⊥λ l̄(ϑ, θ0)ṁ(dϑ, θ0) = Cλ such thatZ ­

φ (., v) , dπλl̄(., θ0)
®
C−1λ

Z
π⊥λ l̄(ϑ, θ0)ṁ(dϑ, θ0)n

−1/2
³
θ̂ − θ0

´
=

Z ­
φ (., v) , dπλl̄(., θ0)

®
n−1/2

³
θ̂ − θ0

´
= ṁ(v, θ0)n

−1/2
³
θ̂ − θ0

´
.
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Substituting back in 22 then shows that supv∈Υx

¯̄̄
T V̂n (v)− TVn (v)

¯̄̄
= op(1).

For the second part of the proposition consider

TVn (v) = Vn (v)−
Z ­

φ (., v) , dπλl̄(., θ0)
®
C−1λ n−1/2

nX
t=1

1 {Ut /∈ Aλ} l̄(zt, θ0) (Dt − p(zt, θ0)) .

Under H0 it follows that

E
£
1 {Ut /∈ Aλ} l̄(zt, θ0) (Dt − p(zt, θ0)) |zt

¤
= E [(Dt − p(zt, θ0)) |zt]E [1 {Ut /∈ Aλ} |zt] l̄(zt, θ0) = 0

such that Vn (v) is a martingale. The finite dimensional distributions can therefore be obtained from a

martingale difference CLT. Let

g(yt, zt, v) =

Z ­
φ (., v) , dπλl̄(., θ0)

®
C−1λ 1 {Ut /∈ Aλ} l̄(zt, θ0)

such that TVn(v) = n−1/2
Pn

t=1 (φ (Ut, v)− g(yt, zt, v)) (Dt − p(zt, θ0)) . Then let

Y1t (v) = φ (Ut, v) (Dt − p(zt, θ0)) ,

Y2t (v) = g(yt, zt, v) (Dt − p(zt, θ0)) ,

Yt (v) = Y1t (v)− Y2t (v) and Ynt (v) = n−1/2Yt (v) . It follows that

EY 21t = Γ(v, v),

EY2t (v)
2 = E

Z Z ©­
φ (., v) , dπλl̄(., θ0)

®
C−1λ

× E

∙
1 {Ut /∈ Aλ}1 {Ut /∈ Aµ}

∂ log pt (zt, θ0) /∂θ∂ log pt (zt, θ0) /∂θ
0

pt (zt, θ0) (1− pt (zt, θ0))

¸
C−1µ

­
φ (., v) , dπµl̄(., θ0)

0®¾
=

Z ­
φ (., v) , dπλl̄(., θ0)

®
C−1λ Cµ∨λC

−1
µ

­
φ (., v) , dπµl̄(., θ0)

0®
= 2

Z ­
φ (., v) , dπλl̄(., θ)

®
C−1λ

D
φ (., v) , π⊥λ l̄(., θ)

E
,

and

EY1t (v)Y2t (v) =

Z ­
φ (., v) , dπλl̄(., θ0)

®
C−1λ E [1 {Ut /∈ Aλ}φ (Ut, v) ∂ log pt (zt, θ0) /∂θ]

=

Z ­
φ (., v) , dπλl̄(., θ)

®
C−1λ

D
φ (Ut, v) , π

⊥
λ l̄(., θ)

E
which shows that EYt (v)

2 = Γ(v, v). Also, EY1t (v)Y1t (τ) = Γ (v, τ) ,

EY2t (v)Y2t (τ) = 2

Z ­
φ (., v) , dπλl̄(., θ)

®
C−1λ

D
φ (., τ) , π⊥λ l̄(., θ)

E
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and

EY1t (v)Y2t (τ) =

Z ­
1 (. ≤ v) , dπλl̄(., θ)

®
C−1λ

D
1 (. ≤ τ) , π⊥λ l̄(., θ)

E
such that EYt (v)Yt (τ) = Γ (v, τ) . It also follows that EY 2t < ∞ such that the conditional Lindeberg

condition of the CLT is satisfied. We conclude that the finite dimensional distributions of TVn(v) converge

to a Gaussian limit with mean zero and covariance function Γ(v, τ). For weak convergence in the function

space note that

|g(yt, zt, v)| ≤
Z ¯̄­

φ (., v) , dπλl̄(., θ0)
®
C−1λ l̄(zt, θ0)

¯̄
≤

Z °°­φ (., v) , dπλl̄(., θ0)®C−1λ

°°°°l̄(zt, θ0)°°
where

R °°­φ (., v) , dπλl̄(., θ0)®C−1λ

°° is uniformly bounded on Υx and
°°l̄(zt, θ0)°°2 =Pd

i=1

¯̄
l̄i(zt, θ0)

¯̄2 such
that by the Hölder inequality

°°l̄(zt, θ0)°°2+δ ≤ dδ/2
Pd

i=1

¯̄
l̄i(zt, θ0)

¯̄2+δ where¯̄
l̄i(zt, θ0)

¯̄
≤ |∂pi(zt, θ0)/∂θ|

¯̄
(p(zt, θ0) (1− p(zt, θ0)))

−1¯̄ .
By the Cauchy Schwartz inequality it then follows that

E
¯̄
l̄i(zt, θ0)

¯̄2+δ ≤ ³E |∂pi(zt, θ0)/∂θ|4+2δ´1/2 ³E ¯̄(p(zt, θ0) (1− p(zt, θ0)))
−1¯̄4+2δ´ <∞

which is bounded for some δ by Condition (6). This shows that g(yt, zt, v) is a Euclidian class of functions

and by Lemma 2.14 of Pakes and Pollard it follows that Yt(v) is a Euclidian class of functions. Lemma

2.1 of Arcones and Yu then can be used to establish weak convergence on D [Υx] .

Our main formal result is established next.

Theorem 6 Assume Conditions 2, 3, 4, 5,6, 7 and 8 are satisfied. Fix x < ∞ arbitrary and define

Υx =
n
v ∈ [−∞,∞]k |v = πxv

o
. Then,

sup
v∈Υx

¯̄̄
TnV̂n(v)− TVn(v)

¯̄̄
= op(1).

Proof of Theorem 6. We start by considering Ĉλ − Cλ. Let

Cλ (θ) = E

∙
1 {Ut /∈ Aλ} l̄(zt, θ)

∂p(zt, θ)

∂θ0

¸
such that Cλ = Cλ (θ0) and

Ĉλ − Cλ = n−1
nX
t=1

1 {Ut /∈ Aλ} l̄(zt, θ̂)
∂p(zt, θ̂)

∂θ0
− Cλ (θ0)

= n−1
nX
t=1

1 {Ut /∈ Aλ} l̄(zt, θ̂)
∂p(zt, θ̂)

∂θ0
− Cλ

³
θ̂
´
+Cλ

³
θ̂
´
− Cλ (θ0) .
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Note that Cλ (θ) =
R
(1− 1 (u ∈ Aλ)) l̄(u, θ)l̄(u, θ)

0H(du) such that for any λ, θ it follows that

°°Cλ0
¡
θ0
¢
−Cλ (θ)

°° ≤
°°°°Z (1 (u ∈ Aλ0)− 1 (u ∈ Aλ)) l̄(u, θ

0)l̄(u, θ0)0dH(u)

°°°°
+

°°°°Z 1 (u ∈ Aλ)
¡
l̄(u, θ0)l̄(u, θ0)0 − l̄(u, θ)l̄(u, θ)0

¢
dH(u)

°°°°
where |1 (u ∈ Aλ0)− 1 (u ∈ Aλ)| ≤ 1

³
u ∈ Amax(λ,λ0)\Amin(λ,λ0)

´
→ 0 as λ0 → λ by Condition 8. Continuity

of l̄(u, θ)l̄(u, θ)0 and integrability of the envelope function
°°l̄(u, θ0)°°2 then establish uniform continuity of

Cλ(θ) on Υx × N(θ0) by use of the dominated convergence theorem. By continuity of Cλ (θ) and the

continuous mapping theorem it now follows that
°°°Cλ

³
θ̂
´
− Cλ (θ0)

°°° = op(1) uniformly on Υx × N(θ0).

Let vn(θ, λ) = n−1
Pn

t=1 1 {Ut /∈ Aλ} l̄(zt, θ)∂p(zt,θ)∂θ0
− Cλ (θ) . We note that°°°°1 {Ut /∈ Aλ} l̄(zt, θ)

∂p(zt, θ)

∂θ0

°°°° ≤ 2°°l̄(zt, θ)l̄(zt, θ)0°° |p(zt, θ) (1− p(zt, θ))| ≤ 2
°°l̄(zt, θ)°°2

where l̄i(zt, θ) has the integrable Envelope B(zt)
³
2
√
d supN(θ0)

°°θ − θ0
°°´α + ¯̄l̄i(zt, θ0)¯̄ on N (θ0) by Con-

dition 6. By Condition 8 the functions 1 {(yt, zt) ∈ Aλ} form a Euclidian class. It now follows from Lemma
2.1 of Arcones and Yu (1994) that, because n1/2vn(θ, λ) converges weakly to a Gaussian limit, a tightness

condition must hold, i.e. for any ε, η > 0, ∃δ > 0 such that

lim sup
n

P

Ã
sup

λ,θ∈Υx×N(θ0)
sup

λ0,θ0:d((λ,θ),(λ0,θ0))<δ

¯̄
vn(θ

0, λ0)− vn(θ, λ)
¯̄
> ε

!
< η. (23)

Property 23 together with the boundedness of the space Υx × N(θ0) now implies by a conventional ap-

proximation argument, that

sup
λ,θ∈Υx×N(θ0)

|vn (θ, λ)| = op(1).

It now follows that

P
³°°°Ĉλ − Cλ

³
θ̂
´°°° > ε

´
≤ P

Ã
sup

λ,θ∈Υx×N(θ0)
|vn (θ, λ)| > ε

!
+ P

³
θ̂ /∈ N(θ0)

´
p→ 0 (24)

such that supλ∈Υx

°°°Ĉλ − Cλ

°°° = op(1).

Then

TnV̂n(v)− TVn(v) = −ṁ(v, θ0)n−1/2
nX
t=1

l (Dt, zt, θ0) + op(1)

−
Z

d

µZ
φ (u, v)πλl̄(., θ̂)dĤn(u)

¶
Ĉ−1λ V̂n(π

⊥
λ l̄(., θ̂))

+

Z ­
φ (., v) , dπλl̄(., θ0)

®
C−1λ Vn(π

⊥
λ l̄(., θ0)).
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From before we have Z
d

µZ
φ (u, v)πλl̄(., θ̂)dĤn(u)

¶
Ĉ−1λ V̂n(π

⊥
λ l̄(., θ̂))

=

Z
d

µZ
φ (u, v)πλl̄(., θ̂)dĤn(u)

¶³
Ĉ−1λ − C−1λ

´
V̂n(π

⊥
λ l̄(., θ̂))

+

Z
d

µZ
φ (u, v)πλl̄(., θ̂)dĤn(u)

¶
C−1λ V̂n(π

⊥
λ l̄(., θ̂))

where °°°°Z d

µZ
φ (u, v)πλl̄(., θ̂)dĤn(u)

¶³
Ĉ−1λ − C−1λ

´
V̂n(π

⊥
λ l̄(., θ̂))

°°°°
≤ sup

λ∈[−∞,x]

°°°Ĉ−1λ − C−1λ

°°°Z °°°°dµZ φ (u, v)πλl̄(., θ̂)dĤn(u)

¶°°°°°°°V̂n(π⊥λ l̄(., θ̂))°°° = op(1)

by 24. Next we consider

V̂n(π
⊥
λ l̄(., θ̂)) = n−1/2

nX
t=1

1 {Ut /∈ Aλ} l̄(Ut, θ̂)
³
Dt − p(zt, θ̂)

´
= n−1/2

nX
t=1

1 {Ut /∈ Aλ} l̄(Ut, θ0) (Dt − p(zt, θ0))

+

"
n−1/2

nX
t=1

1 {Ut /∈ Aλ}
∂l̄(Ut, θn)

∂θ0
(Dt − p(zt, θ0))

#³
θ̂ − θ0

´
−
"
n−1/2

nX
t=1

1 {Ut /∈ Aλ} l̄((yt, zt) , θ0)
∂p(zt, θn)

∂θ0

#³
θ̂ − θ0

´
−
³
θ̂ − θ0

´0 "
n−1/2

nX
t=1

1 {Ut /∈ Aλ}
∂l̄(Ut, θn)

∂θ

∂p(zt, θn)

∂θ0

#³
θ̂ − θ0

´
≡ R1 (λ) +R2 (λ)

³
θ̂ − θ0

´
+R3 (λ)n

1/2
³
θ̂ − θ0

´
+ n1/2

³
θ̂ − θ0

´0
R4 (λ)

³
θ̂ − θ0

´
where kθn − θ0k ≤

°°°θ̂ − θ
°°° and we have used the mean value theorem. Note that R1 = R π⊥λ l̄(ϑ, θ0)dVn(u),

R2 (λ) = n−1/2
nX
t=1

1 {Ut /∈ Aλ}
∂l̄(Ut, θ0)

∂θ0
(Dt − p(zt, θ0))

+n−1/2
nX
t=1

1 {Ut /∈ Aλ}
µ
∂l̄(Ut, θn)

∂θ0
− ∂l̄(Ut, θ0)

∂θ0

¶
(Dt − p(zt, θ0))

≡ R21 (λ) +R22 (λ, θn)

satisfies ER21 (λ) = 0 because

E

∙
1 {Ut /∈ Aλ}

∂l̄((yt, zt) , θ0)

∂θ0
(Dt − p(zt, θ0)) |zt

¸
= E

∙
1 {Ut /∈ Aλ}

∂l̄((yt, zt) , θ0)

∂θ0
|zt
¸
E [(Dt − p(zt, θ0)) |zt] = 0
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under H0 such that finite dimensional convergence follows by the martingale difference CLT and uniform

convergence follows from the fact that 1 {Ut /∈ Aλ} ∂l̄(Ut,θ0)
∂θ0

(Dt − p(zt, θ0)) is a Euclidian class of functions

by Condition 8. It thus follows that supλR21(λ) = Op(1) and R21(λ)
³
θ̂ − θ0

´
= op(1) uniformly in λ. For

the term R22 (λ, θn) we note that

E

∙
1 {Ut /∈ Aλ}

∂l̄(Ut, θ)

∂θ0
(Dt − p(zt, θ0)) |zt

¸
= 0

for any θ. By Lemma 2.1 of Arcones and Yu it thus follows that R22 (λ, θ) converges to a Gaussian limit

process uniformly in λ and θ. Consequently, a tightness condition implied by this result can be used to show

that lim supP
h
supθ:d(θ,θ0)≤δ |R22 (λ, θ)| > ε

i
< η for all ε, η > 0 and some δ > 0. Use root-n convergence

of θn to conclude from this that R22 (λ, θn) = op(1). The terms involving θn in the remainder terms R3

and R4 containing θn can be handled in similar form and we therefore only consider the leading terms

where θn is replaced by θ0. For R4 (λ) where

R4 (λ) = n−1
nX
t=1

1 {Ut /∈ Aλ}
∂l̄(Ut, θ0)

∂θ

∂p(zt, θ0)

∂θ0

we note that n1/2 (R4 (λ)−ER4 (λ)) satisfies the conditions of Lemma 2.1 of Arcones and Yu (1994)

such that it follows by similar arguments as before that supλR4 (λ) = Op(1). Then conclude that

n1/2
³
θ̂ − θ0

´0
R4 (λ)

³
θ̂ − θ0

´
= op(1) uniformly in λ.

For R3 (λ) note that

R3 (λ) = n−1
nX
t=1

1 {Ut /∈ Aλ} l̄(Ut, θ0)
∂p(zt, θ0)

∂θ0

uniformly converges to

ER3 (λ) = E

∙
1 {Ut /∈ Aλ} l̄(Ut, θ0)

∂p(zt, θ0)

∂θ0

¸
= Cλ.

We have thus established that

sup
λ

°°°V̂n(π⊥λ l̄(., θ̂))− Vn(π
⊥
λ l̄(., θ0))− Cλ

³
θ̂ − θ0

´°°° = op (1) .

Using this result we obtainZ
d

µZ
φ (u, v)πλl̄(u, θ̂)dĤn(u)

¶
C−1λ

³
V̂n(π

⊥
λ l̄(., θ̂))− Vn(π

⊥
λ l̄(., θ0))

´
=

Z
d

µZ
φ (u, v)πλl̄(u, θ̂)dĤn(u)

¶³
θ̂ − θ0

´
+ op(1).

The leading term is thenZ
d

µZ
φ (u, v)πλl̄(u, θ̂)dĤn(u)

¶
=

Z
d

µZ
φ (u, v)πλl̄(u, θ0)dHn(u)

¶
(25)

+

Z
d

µZ
φ (u, v)πλ

∂2p(zt, θn)

∂θ∂θ0
dF̂u(u)

¶³
θ̂ − θ0

´
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where F̂u(u) is defined in (27) in Appendix B.1 and°°°°Z d

Z
φ (u, v)πλ

∂2p(zt, θn)

∂θ∂θ0
dF̂u(u)

°°°° ≤ n−1
nX
t=1

°°°°1 {Ut ≤ v}1 {Ut ∈ Aλ}
∂2p(zt, θn)

∂θ∂θ0

°°°°
≤ n−1

nX
t=1

°°°°∂2p(zt, θ0)∂θ∂θ0

°°°°+ n−1
nX
t=1

°°°°∂2p(zt, θn)∂θ∂θ0
− ∂2p(zt, θ0)

∂θ∂θ0

°°°°
≤ n−1

nX
t=1

°°°°∂2p(zt, θ0)∂θ∂θ0

°°°°+ C kθn − θ0kα n−1
nX
t=1

B(zt) = Op(1)

where C is a finite constant, the third inequality uses Condition (6) and the last equality follows from a

standard law of large numbers for strong mixing sequences. The first term in 25 then isZ
d

µZ
φ (u, v)πλl̄(u, θ0)dHn(u)

¶
= n−1

nX
t=1

φ (Ut, v)1 {Ut ∈ Aλ}
∂p(zt, θ0)

∂θ

where E
h
φ (Ut, v)1 {Ut ∈ Aλ} ∂p(zt,θ0)

∂θ

i
= ṁ(v, θ0) for v ∈ Υx. It thus follows again by a law or large

numbers that
R
d
¡R

φ (u, v)πλl̄(u, θ0)dHn(u)
¢
= ṁ(v, θ0) + op (1) uniformly on Υx.

Finally we need to show thatZ µ
d

µZ
φ (u, v)πλl̄(u, θ0)dHn(u)

¶
−
­
φ (., v) , dπλl̄(., θ0)

®¶
C−1λ Vn(π

⊥
λ l̄(u, θ0)) = op(1). (26)

Let g(zt, λ, v) = φ (Ut, v)1 {Ut ∈ Aλ} ∂p(zt,θ0)
∂θ . We first note that uniformly in λ on [−∞, x] and v ∈ Υx,Z

φ (., v)πλl̄(., θ0)dHn(v)−
­
φ (., v) , πλl̄(., θ0)

®
= n−1

nX
t=1

g(zt, λ, v)−E (g(zt, λ, v))→ 0 a.s.

Weak convergence of C−1λ Vn(π
⊥
λ l̄(u, θ0)) uniformly in λ on [−∞, x] can be established by the same methods

as for TVn(v)⇒ TV (v) in the second part of the proof of Proposition 5. We can thus proceed in the same

way as Koul and Stute (1999, Lemma 4.2). Let Gn(λ, v) = n−1
Pn

t=1 g(zt, λ, v), G(λ, v) = E (g(zt, λ, v))

and let ζn(λ) = C−1λ Vn(π
⊥
λ l̄(u, θ0)). Then each component ζni(λ) of the vector ζn(λ) is asymptotically

tight by Prohorov’s Theorem. In other words there exists a compact set H such that ζni(λ) ∈ H with

probability no less than 1− η for any η > 0. Following the proof of Lemma 3.1 of Chang (1990) we choose

step functions a1, a2, ..., ak ∈ D [−∞, x] such that for any ζ ∈ H, sup |ai − ζ| < ε for some i, 1 ≤ i ≤ k. The

right hand side of 26 can now be written as
R x
−∞ ζn (λ)

0 (Gn(dλ)−G(dλ)) such that for any δ > 0

P

µ¯̄̄̄Z x

−∞
ζn (λ)

0 (Gn(dλ)−G(dλ))

¯̄̄̄
> η

¶
≤ P

Ã
sup

ζ∈H,v∈Υx

¯̄̄̄Z x

−∞
ζ (λ)0 (Gn(dλ, v)−G(dλ, v))

¯̄̄̄
> δ

!
+P (ζn /∈ H) .
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Since ζ ∈ H it follows that

sup
ζ∈H,v∈Υx

¯̄̄̄Z x

−∞
ζ (λ)0 (Gn(dλ, v)−G(dλ, v))

¯̄̄̄
≤ sup

ζ∈H
kζ (λ)k

µ
sup
v∈Υx

Z x

−∞
kG(dλ, v)k+ sup

v∈Υx

Z x

−∞
kGn(dλ, v)k

¶
where

R x
−∞ kG(dλ, v)k = kG(x, v)k and

R x
−∞ kGn(dλ, v)k = kGn(x, v)k . Since G(x, v) → 0 uniformly in v

as x→ −∞ and Gn(λ, v) converges uniformly to G(x, v) we can focus on a subset [xu, x] ⊂ [−∞, x] where

xu is such that

sup
ζ∈H,v∈Υx

¯̄̄̄Z xu

−∞
ζ (λ)0 (Gn(dλ, v)−G(dλ, v))

¯̄̄̄
< δ

with probability tending to one. Now, for any component i, there exists a strictly increasing, con-

tinuous mapping κ of [−∞, x] onto itself, depending on ζi such that sup−∞≤λ≤x |κ (λ)− λ| < ε and

sup−∞≤λ≤x |ζi (λ)− ai(κ(λ))| < ε. Then¯̄̄̄Z x

xu

ζi (λ) (Gni(dλ, v)−Gi(dλ, v))

¯̄̄̄
≤

¯̄̄̄Z x

xu

(ζi (λ)− ai(κ(λ))) (Gni(dλ, v)−Gi(dλ, v))

¯̄̄̄
+

¯̄̄̄Z x

xu

ai(κ(λ)) (Gni(dλ, v)−Gi(dλ, v))

¯̄̄̄

which implies that for some N0 and all n > N0,
¯̄̄R x
−∞ ζi (λ) (Gni(dλ, v)−Gi(dλ, v))

¯̄̄
< 3ε uniformly on

H ×Υx by the arguments of Chang (1994, p.396) which establishes 26. This now implies that TnV̂n(v)−
TVn(v) = op(1).

Theorem 6 together with Propositions 5 and 4 implies that Ŵn(v)−Vn(v) = op(1) uniformly in v ∈ Υx.

This in turn means that the limiting distribution of Ŵn(v) is a zero mean Gaussian process with covariance

function H(v, τ). This distribution is not nuisance parameter free but can be computed conditional on the

sample relatively easily as pointed out in Section 4.

Section 4.2 introduced the distribution free statistic B̂w,n(w), defined as B̂w,n(w) = Ŵw,n

¡
φ(., w)/hw(.)

1/2
¢
.

By the arguments preceding Theorem 6, it follows that B̂w,n(w) =⇒ Bw(w) on Υ[0,1]. The only adjustments

necessary are a restriction of [−∞,∞]k to [0, 1]k. What remains to be shown is that

sup
v∈Υ[0,1]

¯̄̄
B̂ŵ,n(w)− B̂w,n(w)

¯̄̄
= op(1).

This is done in the next Theorem. We impose the following assumptions on the kernel function and density.

Condition 9 The density fu(u) is continuously differentiable to some integral order ω ≥ max(2, k) on

Rk with supx∈Rk |Dµh(x)| < ∞ for all |µ| ≤ ω where µ = (µ1, ..., µk) is a vector of non-negative inte-

gers, |µ| =
Pk

j=1 µj , and Dµf(x) = ∂|µ|h(x)/∂x
µ1
1 ....∂x

µk
k is the mixed partial derivative of order |µ| .

The kernel K(.) satisfies i)
R
K(x)dx = 1,

R
xµK(x)dx = 0 for all 1 ≤ |µ| ≤ ω − 1,

R
|xµK(x)| dx < ∞

for all µ with |µ| ≤ ω, K(x) → 0 as kxk → ∞ and supx∈ Rk (1 + kxk) |DeiK(x)| < ∞ for all i ≤ k
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and ei is the i-th elementary vector in Rk. ii) K(x) is absolutely integrable and has Fourier transform

Ψ(r) = (2π)k
R
exp(ir0x)K(x)dx that satisfies

R
|Ψ(r)| dr <∞ where i =

√
−1.

Theorem 7 Assume Conditions 2, 3, 4, 5,6, 7, 8 and 9 are satisfied. Fix x < 1 arbitrary and define

Υ[0,1] =
n
w ∈ [0, 1]k |w = πxw

o
. Then,

sup
w∈Υ[0,1]

¯̄̄
B̂ŵ,n(w)− B̂w,n(w)

¯̄̄
= op(1).

Proof of Theorem 7:. By Theorem 1 of Andrews (1995) it follows that

sup
x

¯̄̄
F̂k(xk|xk−1, ..., x1)− Fk(xk|xk−1, ..., x1)

¯̄̄
= Op(T

−1/2m−kn ) +Op(m
ω
n).

By Pakes and Pollard (1989, Lemma 2.15) it follows that the composition of a function from a Euclidian

class with envelopeM and a measurable map with envelopeM1 forms another Euclidian class with envelope

M ◦M1. Since Fk(xk|xk−1, ..., x1) is takes values in [0, 1] it clearly has an envelope M1. It follows that

Ŵw,n is a sample average over functions that belong to a Euclidian class plus remainder terms that vanish

by similar arguments as before. It thus follows by the same arguments as before that for all ε, δ > 0 there

exists an η > 0 such that

lim sup
n

P

⎛⎜⎜⎜⎝ sup
w,w0∈Υ[0,1],kw−w0k<η,

w1,w01∈[0,1]
k,kw1−w01k<η

¯̄̄
B̂w1,n(w)− B̂w01,n

(w0)
¯̄̄
> ε

⎞⎟⎟⎟⎠ < δ.

It then follows that B̂n(s)⇒ B(s).

This result allows us to conduct inference using critical values that do not depend on nuisance para-

meters. Although these critical values must be calculated numerically, they are invariant to the sample

distribution for a given design.
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B Implementation Details

B.1 Details for the Khmaladze Transform

To construct the test statistic proposed in the theoretical discussion we must deal with the fact that the

transformation T is unknown and needs to be replaced by an estimator. In this section, we discuss the

details that lead to the formulation in (12). We also present results for general sets Aλ. We start by

defining the empirical distribution

F̂u(v) = n−1
nX
t=1

{Ut ≤ v} , (27)

and let

Hn(v) =

Z v

−∞

¡
p(u2, θ0)− p(u2, θ0)

2
¢
dF̂u (u)

= n−1
nX
t=1

¡
p(zt, θ0)− p(zt, θ0)

2
¢
1 {Ut ≤ v}

as well as

Ĥn(v) =

Z v

−∞

³
p(u2, θ̂)− p(u2, θ̂)

2
´
dF̂u (u)

= n−1
nX
t=1

³
p(zt, θ̂)− p(zt, θ̂)

2
´
1 {Ut ≤ v} .

We now use the sets Aλ and projections πλ as defined in Section 4.1. Let

Ĉλ =

Z
π⊥λ l̄(v, θ̂)π

⊥
λ l̄(v, θ̂)

0dĤn(v)

= n−1
nX
t=1

(1− 1 {Ut ∈ Aλ}) l̄(Ut, θ̂)l̄(Ut, θ̂)
0
³
p(zt, θ̂)− p(zt, θ̂)

2
´

such that

TnV̂n (v) = V̂n (v)−
Z

d

µZ
φ(u, v)πλl̄(u, θ)dĤn(u)

¶
Ĉ−1λ V̂n(π

⊥
λ l̄(u, θ̂))

where Z
φ {u, v}πλl̄(., θ̂)dĤn(u) = n−1

nX
t=1

φ(Ut, v)1 {Ut ∈ Aλ}
∂p(zt, θ̂)

∂θ
.

Finally, write

V̂n(π
⊥
λ l̄(u, θ̂)) = n−1/2

nX
t=1

(1− 1 {Ut ∈ Aλ}) l̄(Ut, θ̂)
³
Dt − p(zt, θ̂)

´
.
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We now specialize the choice of sets Aλ to Aλ = [−∞, λ]× [−∞,∞]k−1 . Denote the first element of yt
by y1t. Then

Ĉλ = n−1
nX
t=1

1 {y1t > λ} l̄(zt, θ̂)l̄(zt, θ̂)0
³
p(zt, θ̂)− p(zt, θ̂)

2
´
, (28)

V̂n(π
⊥
λ l̄(u, θ̂)) = n−1/2

nX
t=1

1 {y1t > λ} l̄(Ut, θ̂)
³
Dt − p(zt, θ̂)

´
(29)

and Z
φ(u, v)πλl̄(u, θ̂)dĤn(u) = n−1

nX
t=1

φ {Ut, v}1 {y1t ≤ λ} ∂p(zt, θ)
∂θ

(30)

Combining 28, 29 and 30 then leads to the formulation 12.

B.2 Details for the Rosenblatt Transform

As before implementation requires replacement of θ with an estimate. We therefore work with the process

V̂w,n (v) = n−1/2
Pn

t=1mw(wt,Dt, θ̂;w). Define

E [mw(wt,Dt, θ);w)] =

Z 1

0
· · ·
Z 1

0
φ(u,w)

¡
p
¡£
T−1R (u)

¤
z
, θ0
¢
− p(

£
T−1R (u)

¤
z
, θ)
¢
du

such that ṁ(w, θ) evaluated at the true parameter value θ0 is

ṁw(w, θ0) = E [∂p(zt, θ0)/∂θφ(Ut, w)]

=

Z
[0,1]k

∂p(
£
T−1R (u)

¤
z
, θ0)

∂θ
φ(u,w)du

It therefore follows that V̂w,n (v) can be approximated by Vw,n (v) − ṁw(w, θ0)
0n−1/2

Pn
t=1 l (Dt, zt, θ0).

This approximation converges to a limiting process V̂w (v) with covariance function

Γ̂w(w, τ) = Γw (w, τ)− ṁw(w, θ0)
0L(θ0)ṁw(τ , θ0)

where

Γw (w, τ) =

Z
[0,1]k

φ(u,w)φ(u, τ)
¡
p(
£
T−1R (u)

¤
z
)− p(

£
T−1R (u)

¤
z
)2
¢
du.

We represent V̂w in terms of Vw. Let Vw(lw (., θ0)) =
R
lw(w, θ0)bw(dv) where bw(v) is a Gaussian

process on [0, 1]k with covariance function Γw (v, τ) as before, for any function lw(w, θ). Also, define

l̄w(w, θ) =
∂p(
£
T−1R (w)

¤
z
, θ)

∂θ

¡
p(
£
T−1R (w)

¤
z
, θ)
¡
1− p(

£
T−1R (w)

¤
z
, θ)
¢¢−1

such that V̂w(w) = Vw(w)− ṁw(w, θ0)Vw
¡
l̄w(w, θ)

¢
as before.
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Let {Aw,λ} be a family of measurable subsets of [0, 1]k, indexed by λ ∈ [0, 1] such that Aw,0 = ∅,
Aw,1 = [0, 1]

k, λ ≤ λ0 =⇒ Aw,λ ⊂ Aw,λ0 and Aw,λ0\Aw,λ → ∅ as λ0 ↓ λ. We then define the inner product
hf(.), g(.)iw :=

R
[0,1]k f(w)g(w)

0dHw(w) where

Hw(w) =

Z
u≤w

¡
p(
£
T−1R (u)

¤
z
, θ)− p(

£
T−1R (u)

¤
z
, θ
¢2
)du

and the matrix

Cw,λ =
D
π⊥λ l̄w(., θ), π

⊥
λ l̄w(., θ)

E
w
=

Z
π⊥λ l̄w(w, θ)π

⊥
λ l̄w(w, θ)

0dHw(w).

and define the transform TwVw(w) as before by

TwV̂w (w) :=Ww(w) = V̂w (w)−
Z ­

φ (., w) , dπλl̄w(., θ)
®
C−1λ V̂w(π

⊥
λ l̄w(., θ)).

Finally, to convertWw(w) to a process which is asymptotically distribution free we apply a modified version

of the final transformation proposed by Khmaladze (1988, p. 1512) to the process W (v). In particular,

using the notation Ww(φ(., w)) = Ww(w) to emphasize the dependence of W on φ, it follows from the

previous discussion that

Bw(w) =Ww

³
φ(., w)/(hw(.))

1/2
´

with hw(.) = p(
£
T−1R (.)

¤
z
, θ)
¡
1− p(

£
T−1R (.)

¤
z
, θ)
¢
and Bw(w) is a Gaussian process on [0, 1]

k with covari-

ance function
R 1
0 · · ·

R 1
0 φ(u,w)φ(u,w

0)du.

The empirical version of Ww(w), denoted by Ŵw,n(w) = T̂wV̂w,n(w), is obtained as before from

Ŵw,n(w) = n−1/2
nX
t=1

"
mw(wt,Dt, θ̂|w)− φ {wt, w}

∂p(zt, θ̂)

∂θ0
Ĉ−1wt1n

−1
nX

s=1

1 {ws1 > wt1} l̄(zs, θ̂)
³
Ds − p(zs, θ̂)

´#

where Ĉws1 = n−1
Pn

t=1 1 {wt1 > ws1} l̄(zt, θ̂)l̄(zt, θ̂)0
³
p(zt, θ̂)− p(zt, θ̂)

2
´
.
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Rejection Probabilities
VM-MC mda mdb d1 d2 t-test

γ β (1) (2) (3) (4) (5) (6)

A. Sample Size = 100

0 -0.5 0.096 0.070 0.036 0.070 0.042 0.072
0.5 -0.5 0.140 0.148 0.064 0.080 0.170 0.178
1 -0.5 0.394 0.468 0.292 0.226 0.496 0.574
2 -0.5 0.810 0.888 0.780 0.456 0.906 0.960

0 0 0.082 0.064 0.026 0.046 0.056 0.050
0.5 0 0.154 0.162 0.070 0.068 0.182 0.188
1 0 0.438 0.500 0.328 0.298 0.506 0.570
2 0 0.814 0.906 0.834 0.612 0.862 0.952

0 0.5 0.098 0.060 0.030 0.042 0.060 0.048
0.5 0.5 0.264 0.188 0.088 0.096 0.194 0.202
1 0.5 0.548 0.534 0.360 0.406 0.486 0.616
2 0.5 0.872 0.930 0.868 0.840 0.822 0.970

0 0.9 0.210 0.064 0.010 0.040 0.060 0.042
0.5 0.9 0.436 0.252 0.122 0.180 0.200 0.276
1 0.9 0.766 0.744 0.606 0.616 0.664 0.804
2 0.9 0.928 0.252 0.186 0.158 0.244 0.402

B. Sample Size = 200

0 -0.5 0.096 0.058 0.018 0.064 0.054 0.052
0 0 0.084 0.072 0.020 0.052 0.080 0.058
0 0.5 0.104 0.066 0.024 0.050 0.066 0.078
0 0.9 0.226 0.044 0.012 0.034 0.050 0.062

Table 1: Rejection Probabilities from a dynamic Logit Model
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k=2 k=3 k=4
md d md d md d

1-α (1) (2) (3) (4) (5) (6)
0.5 0.17555 0.13877 0.1224 0.079614 0.08127 0.045061
0.8 0.36124 0.29359 0.21503 0.14446 0.12871 0.073065
0.9 0.51805 0.43536 0.28873 0.20363 0.16503 0.097858
0.95 0.68209 0.58862 0.36511 0.26808 0.20114 0.12482
0.975 0.85668 0.7454 0.44198 0.33422 0.23826 0.15462
0.99 1.081 0.96801 0.5486 0.42748 0.28919 0.19535
0.995 1.2597 1.1296 0.62995 0.4994 0.32922 0.22667
0.999 1.6911 1.573 0.8238 0.68994 0.4225 0.30895
0.9995 1.9174 1.7816 0.91185 0.77078 0.46407 0.33938
0.9999 2.2286 2.1684 1.083 0.99037 0.53436 0.40949

Table 2: Critical Values based on 100,000 Simulation Replications
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Control variables (lagged)
output output output

inflation inflation
unemployment

estimate p-value estimate p-value estimate p-value
Lagged Romer Dummies (1) (2) (3) (4) (5) (6)
RD(-1) 0.0129 0.093 0.0125 0.057 0.0150 0.035

(0.0076) (0.0065) (0.0070)
RD(-2) -0.0218 0.037 -0.0210 0.022 -0.0176 0.063

(0.0104) (0.0091) (0.0094)
RD(-3) -0.0176 0.123 -0.0145 0.219 -0.0146 0.159

(0.0113) (0.0117) (0.0103)
RD(-4) -0.0089 0.292 -0.0043 0.644 -0.0020 0.801

(0.0084) (0.0093) (0.0079)
RD(-5) 0.0013 0.895 0.0042 0.724 -0.0001 0.99

(0.0101) (0.0119) (0.0109)
RD(-6) -0.0057 0.278 -0.0031 0.543 -0.0078 0.279

(0.0052) (0.0051) (0.0072)
RD(-7) -0.0182 0.105 -0.0142 0.214 -0.0118 0.216

(0.0112) (0.0114) (0.0095)
RD(-8) -0.0248 0.011 -0.0238 0.029 -0.0143 0.179

(0.0096) (0.0108) (0.0105)
RD(-9) -0.0122 0.386 -0.0157 0.235 -0.0122 0.371

(0.0140) (0.0131) (0.0136)
RD(-10) -0.0228 0.014 -0.0221 0.02 -0.0235 0.002

(0.0092) (0.0094) (0.0074)
RD(-11) -0.0107 0.199 -0.0075 0.336 -0.0060 0.383

(0.0083) (0.0078) (0.0068)
RD(-12) 0.0019 0.847 0.0035 0.743 0.0056 0.613

(0.0099) (0.0106) (0.0111)

R2 0.3888 0.4358 0.5243
F 2.42 2.05 1.63
(p-val) (0.0069) (0.0250) (0.0908)
F-robust 2.27 2.0900 1.99
(p-val) (0.0115) (0.0215) (0.0303)

Table 3: Granger Causality Tests using Quarterly Data. Models include 8 lags of the control variables indicated in
the column headings. Robust standard errors are reported in brakets. The F-statistic is for the joint significance
of the lagged Romer Dummies. The robust F-Statistic was computed using White standard errors. The sample
includes 160 quarters from 1952-91.
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Future Output mda
Variable (1) (2) (3)
yn(1) [0.025, 0.05] [0.025, 0.05] [0.025, 0.05]

yn(2) [0.1, 0.2] [0.2, 0.5] [0.2, 0.5]

yn(3) [0.001, 0.005] [0.01, 0.025] [0.01, 0.025]

yn(4) [0.0001, 0.0005] [0.05, 0.1] [0.2, 0.5]

yn(5) [0.0001, 0.0005] [0.1, 0.2] [0.1, 0.2]

yn(6) [0.025, 0.05] [0.2, 0.5] [0.2, 0.5]

yn(7) [0.001, 0.005] [0.1, 0.2] [0.2, 0.5]

yn(8) [0, 0.0006] [0.0005, 0.001] [0.0005, 0.001]

Forecasts full sample out-of-sample out-of-sample
Lagged IP controls No No Yes

Table 5: P-values for the md-statistic. Square brakets indicate that actual p-value lies in the interval of values
reported in the table. p-values for the md-statistic are based on simulated critical values reported in Table 2 for
the md-statistic. In particular, we use critical values for md and k=3 from Table 2. We report a confidence level
interval because the quantiles of the distribution need to be computed numerically.

Variable Definition
IPN Industrial Production, total Index not seasonally adjusted, revised 1990
output Growth Rate Industrial Production New : ∆ ln(IPN)
RD Original Romer Dummy
CPU Consumer Price Index, all urban consumers, not seasonally adjusted
inflation Inflation rate: ∆ln(CPUt)

Table 6: Data Source and Variable Definitions
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