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Abstract

We consider the situation in which there are multiple proxies for one unobserved explanatory
variable in a linear regression and provide a procedure by which the coefficient of interest can be
extracted “post hoc” from a multiple regression in which all the proxies are used simultaneously.
This post hoc estimator is strictly superior in large samples to coefficients derived using any
index or linear combination of the proxies that is created prior to the regression. To use an index
created from the proxies that extracts the largest possible signal from them requires knowledge
of information that is not available to the researcher. Using the proxies simultaneously in
a multiple regression delivers this information and the researcher then simply combines the
coefficients in a known way to obtain the estimate of the effect of the unobserved factor. This
procedure is also much more robust than ad hoc index construction to departures from the
assumption of an underlying common factor. We provide some Monte Carlo simulations and
applications to existing empirical problems to show that the reduction in attenuation bias can
be non-negligible, even in finite samples.
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1 Introduction

Measurement error in an independent variable in a regression model and the resulting atten-

uation bias in the coefficient estimate is one of the most well–known problems in empirical work.

While a great deal of attention has been paid to effects of a single mismeasured independent vari-

able, much less is known about the analytics and empirical strategies when more than one measure

or proxy of the variable is available. It stands to reason that when there is more information avail-

able, the problem of attenuation should be reduced. The fundamental question is really how to do

this in the best possible way.

In this paper we show that the way in which additional measures are currently incorporated

in applied work is generally ad hoc and hardly ever optimal. Most commonly, researchers enter in

a regression a single summary measure created from their set of proxy variables. We propose a

superior method in which the proxies are entered separately in the regression and then a summary

measure of their effect is created by combining their coefficients. To motivate this procedure,

consider the following common empirical applications:

Permanent income and intergenerational mobility

One example where the addition of more information seems to make a clear–cut difference is in

the estimation of the effect of parents’ permanent income on the education, health, and subsequent

earnings of their children. Permanent income is not observed; instead, observed income in any year

includes transitory components representing luck, measurement error, and other unanticipated

shocks to income. If parents’ investment in their children is a function of permanent income, then

a regression of children’s outcomes on parents’ observed income will understate the true effect of

permanent income on outcomes. Solon (1992), Zimmerman (1992), and more recently Mazumder

(2001) average parents’ income over several years to arrive at a more precise measure of permanent

income and they show that the estimated regression coefficient increases markedly as more years

of income are included in the average, suggesting that the problem of attenuation is reduced. One

potential problem with this approach is it assumes that income earned at different points in the

lifecycle are equally good measures of permanent income. If income earned earlier in life is a

relatively noisier measure of permanent income, then it would seem a weighted average might do

even better than a simple average, with more weight given to income earned in later years. We will

show below how such weights can be computed and that a more optimal use of annual earnings
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data increases the estimated effect of parents’ permanent income on children’s reading test scores

by over 30 percent.

The effect of wealth on school enrollment when wealth is not observed

A more problematic case occurs when the variable of interest is simply not measured at all. For

instance, the Demographic and Health Surveys are large household data sets with nearly identical

questionnaires in over 40 developing countries, but they contain no information on respondents’

income or wealth. To study many interesting questions about the determinants of health or educa-

tional attainment, therefore, requires income or wealth to be proxied by a variety of asset variables,

such as whether or not the family owns a car or television, and the source of their home drinking

water. Filmer and Pritchett (2001) suggest that the factor that accounts for the largest fraction

of the variance in ownership across the assets is likely to be wealth and thus the first principal

component of 21 such asset variables is a natural measure of household wealth. One problem with

this procedure is that if ownership of each of the assets is a function of wealth plus a function

of tastes or other characteristics of the household, the first principal component will extract part

of both wealth and tastes. There is no reason to believe that this composite will maximize the

predictive power of the asset variables. We show below that a considerably stronger signal can be

extracted, leading to an almost doubling of the regression effect of wealth on the probability of

school enrollment in India, compared to that estimated by Filmer and Pritchett.

The two examples show differing approaches to the question of combining the information

from different variables. These are not the only ways of trying to extract a stronger signal from

various sources of noise, however. Glaeser, Laibson, Scheinkman and Soutter (2000), for instance,

create an index of trust by standardizing (subtracting the mean and dividing by the standard

deviation) responses to several survey questions and then adding them up. Mauro (1995) uses

indices of political and labor stability, “red tape,” corruption, terrorism, and several other outcomes

compiled by Business International, a private consulting firm, to measure institutional efficiency and

corruption. Since he believes many of these indices measure the same underlying phenomena, he

averages the indices together and uses the average as a regressor in models of growth and investment

across countries. Herrnstein and Murray (1994) construct a measure of family socioeconomic status

by averaging standardized values of parents’ education, Duncan occupational scores, and family

income. Similar examples are common in many fields of applied research.

There are several considerations underlying the authors’ strategies to summarize the proxies in
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a single, new variable. Firstly, the measurement error problem may be reduced by taking some

linear combination of the proxies. As Mauro (1995) notes:

Part of the rationale for aggregating the indices into composite subindices is that there

may be measurement error in each individual index, and averaging the individual indices

may yield a better estimate of the determinants of investment and growth.

Secondly, researchers may be worried about multicollinearity. If the different proxies are in

fact all measuring the same underlying phenomenon, then there is only one structural coefficient

to be estimated. Putting multiple proxies in the regression may likely result in many insignificant

individual coefficients.

Thirdly, the coefficient on a single summary of the proxies may be more readily interpretable.

To continue the example from the Demographic and Health Surveys, it is not clear how to infer the

effect of wealth on education from the coefficients on variables indicating ownership of a television

or the availability of running water in the home.

We propose a new estimation method and in doing so show that these concerns are incorrect,

but incorrect in interesting ways. To use an index or summary measure created from the proxies

that extracts the largest possible signal requires the researcher to know the relative degree of noise

contained in each proxy variable, as well as the correlation in noise across variables. Without

knowledge of these magnitudes, it is impossible to create the optimal summary measure from the

proxy variables. Using the proxies simultaneously in a multiple regression delivers this information

as part of the regression coefficients and the researcher then simply combines the coefficients in a

known way to obtain the estimate of the effect of the latent factor.

Our procedure is best thought of as a method to interpret the coefficients in a regression under

the null hypothesis that the variables are all generated by a common latent factor. A virtue of the

procedure is its transparency. If the null hypothesis is not true, then the regression is not invalid,

only some of the inferences that can be drawn from it. By contrast data manipulations done before

the regression can obviously not be undone by a sceptical reader.

The plan of our discussion is as follows. In the following section we will introduce the basic

problem we wish to investigate and the related literature. The main theoretical results are in section

3. We provide some simulation evidence in section 4 and then return to the examples described

above in section 5. We conclude by pointing to a number of open questions, and an appendix

contains the proofs of our main results.
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2 The basic problem

The circumstances that we wish to investigate can be highlighted by means of the following

equations:

yi = βxi + εi (1a)

x1i = xi + u1i (1b)

x2i = ρ2xi + u2i (1c)

where β, relating yi and xi in equation 1a, is the parameter of interest. We assume that xi

is unobserved, but that we have the two proxies x1i and x2i. Furthermore we will make the

assumption that u1i and u2i are independent of xi and εi; that is, the proxy variables do not have

an independent effect on yi.

If we regress y on the first proxy, we have the well–known case of classical measurement error

with the attendant attenuation bias. The OLS estimator b of β will converge asymptotically to

b = β
σ2

x

σ2
x + σ2

1

(2)

where σ2
x = var (x) and σ2

1 = var (u1). The parameter β is not identified. As Aigner, Hsiao,

Kapteyn and Wansbeek (1984) note, we may be able to identify β from higher order moments if

the latent variable x is not normally distributed.

In order to identify the parameter in general we need one more restriction. If we set cov (u1, u2) =

0, then we could use x2 as an instrument for x1 in the regression of y on x1. A different type of

restriction is if we are able to measure σ2
1. This is possible, for instance, if the second proxy vari-

able is actually a repeat measurement, carried out for a sub–set of observations under controlled

conditions. In this case we can obviously also retrieve σ2
x and then correct the OLS estimates. This

is the “errors in variables” estimator (see Fuller 1987).

We might consider whether the relationships between the proxies allow us to identify the com-

mon “factor” x. This is the domain of factor analysis only with even more stringent assumptions.

Not only do we need to impose orthogonality between the error variances u1 and u2, but we also

need to adopt a normalization on the coefficients. The “factors” so isolated are only identified up

to multiplication by an orthogonal matrix.

Principal components analysis achieves a unique decomposition, but does so by the expedient of

identifying the common factor with the linear combination of proxies that maximizes the combined
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variance. It is not clear why this concept should correspond to the structural relationships underly-

ing equations 1a-1c. Indeed, if the assumption of orthogonality between the error components fails,

then this procedure is guaranteed to produce a composite of the factor x and the commonality in

the errors.

Other identification strategies involve adding equations or specifying the process which generates

the latent variable. In the MIMIC (multiple indicators, multiple causes) model, for example (see

inter alia Aigner et al. 1984, Goldberger 1972, Jöreskog and Goldberger 1975), it is assumed that

there is at least one more relationship available between an indicator variable and the latent variable,

parallel to that in equation 1a. The latent variable itself is written as a function of a series of

observable variables, i.e. equations 1b and 1c are replaced by

xi = α1x1i + α2x2i + u3

and the proportionality relationships between the different equations are exploited to achieve iden-

tification. A generalization of this approach is the LISREL model (see Bollen 1989). In this model

the structural parameters are identified by cross–equation restrictions. We assume that these sorts

of strategies are not available for the cases under consideration.

In particular, we assume that the researcher is not willing to make additional assumptions

beyond those already given for equations 1a through 1c, and the empirical problem is how to best

use the proxy variables to minimize the attenuation bias, if not eliminate it. The issue therefore

is how to make the best of a bad situation. Throughout, however, we restrict attention to models

that are linear in the parameters.

Leamer (1983, pp. 314–315) has a discussion of “proxy searches” in which he addresses precisely

this issue. His discussion is, however, exclusively about how to decide which one of the two (or

more) proxies to include in the regression. His advice is to pick the variable which yields a high R2

and which has a low variance. He does not consider whether one could do better by combining the

information from the proxies.

In order to hone our intuition, let us consider the system in equations 1a-1c with ρ2 = 1. The

covariance matrix of x1 and x2 is given by

ΣXX =

 σ2
x + σ2

1 σ2
x + σ12

σ2
x + σ12 σ2

x + σ2
2


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and the covariance matrix of u1 and u2 by

ΣUU =

 σ2
1 σ12

σ12 σ2
2


with σ12 6= 0. By our assumptions cov (y1, x1) = cov (y1, x2) = βσ2

x and hence the coefficients

estimated from regressing y on proxy 1 or proxy 2 are given asymptotically respectively by

b1 = β
σ2

x

σ2
x + σ2

1

and b2 = β
σ2

x

σ2
x + σ2

2

Since the denominator is just the variance of the proxy variable, it is clear that the proxy with the

smaller variance will give the least biased results.

What were to happen if we were to take a simple average of the two proxies? In this case

xi = xi + ui

with var (ui) = 1
4

(
σ2

1 + σ2
2 + 2σ12

)
. There clearly is no necessity that this be smaller than the

minimum of σ2
1 and σ2

2 . In particular, if one proxy is a good one and the other much worse, simply

averaging them is unlikely to be the optimal strategy. Other linear combinations of the variables

are likely to get a much better reduction in the error variance. Indeed let u0 = δ1u1 + δ2u2 be a

linear combination such that δ1 + δ2 = 1, then it is straightforward to show that the choice of δ1

that will minimize the variance of the weighted average is given by δ1 = σ2
2−σ12

σ2
1−2σ12+σ2

2
. The variance

in this case will be σ2
2σ2

1−σ2
12

σ2
1−2σ12+σ2

2
, so that the estimate of β with the minimum attenuation bias is

given asymptotically by

b∗ = β
σ2

x

σ2
x + σ2

2σ2
1−σ2

12

σ2
1−2σ12+σ2

2

(3)

Unfortunately, we do not know the variances and covariance of u1 and u2, and thus cannot compute

this optimally weighted average of the proxies.

What happens if we run the regression of y on both proxies? The multiple regression coefficients

will be given asymptotically by Σ−1
XXΣXy where

ΣXy =

 βσ2
x

βσ2
x


It is straightforward to check that

b1 = β
σ2

x

(
σ2

2 − σ12

)
σ2

xσ2
1 + σ2

xσ2
2 − 2σ2

xσ12 + σ2
1σ

2
2 − σ2

12

(4a)

b2 = β
σ2

x

(
σ2

1 − σ12

)
σ2

xσ2
1 + σ2

xσ2
2 − 2σ2

xσ12 + σ2
1σ

2
2 − σ2

12

(4b)

6



This does not look very promising, but note that

b1 + b2 = β
σ2

x

(
σ2

1 + σ2
2 − 2σ12

)
σ2

xσ2
1 + σ2

xσ2
2 − 2σ2

xσ12 + σ2
1σ

2
2 − σ2

12

(5)

= b∗

so that adding up the coefficients of the two variables yields an estimate that is precisely equal to

the optimal weighting of the proxies. What is even more remarkable is that we did not need to

know anything about the relative magnitudes of error variances and covariances in order to achieve

this result - the regression accomplished this by itself.

We will show in the next section that this result holds true more generally – that the attenuation

bias is always smallest when all the proxies are used in a multiple regression. We need to proceed

with some care, however, in the situation where ρ2 6= 1. In that case we note that a simple average

of the variables is

xi = ρxi + ui

with ρ = 1+ρ2

2 . To avoid this unknown rescaling of the latent variable x, we will generally want to

take a weighted sum of the individual coefficients from the multiple regression.

3 The general case

We now assume that we have k proxies, with

xj = ρjx + uj (6)

We assume that cov (uj, εi) = 0, cov (uj, x) = 0 for all j, but that the covariance matrix of ujs is

unrestricted, i.e.

ΣUU = E
(
U ′U

)
=


σ2

1 σ12 · · · σ1k

σ12 σ2
2 · · · σ2k

...
...

. . .
...

σ1k σ2k · · · σ2
k


where U =

[
u1 u2 . . . uk

]
.
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3.1 Identification

We note that as it stands the ρj terms are not identified. Rescaling the ρs and β would result

in the same observations. Consequently we adopt the normalization (already used in equation 1b)

that ρ1 = 1. This amounts to fixing the scale of the latent variable x in terms of the observable

x1.1

The available information is contained in the covariance matrix

ΣZZ = E
(
Z ′Z

)
=



β2σ2
x + σ2

ε βσ2
x βρ2σ

2
x · · · βρkσ

2
x

βσ2
x σ2

x + σ2
1 ρ2σ

2
x + σ12 · · · ρkσ

2
x + σ1k

βρ2σ
2
x ρ2σ

2
x + σ12 ρ2

2σ
2
x + σ2

2 · · · ρ2ρkσ
2
x + σ2k

...
...

...
. . .

...

βρkσ
2
x ρkσ

2
x + σ1k ρ2ρkσ

2
x + σ2k · · · ρ2

kσ
2
x + σ2

k


(7)

where Z =
[

y x1 x2 . . . xk

]
.

There are altogether k(k+1)
2 unknown parameters in ΣUU , k − 1 parameters in ρ and the pa-

rameters β, σ2
x and σ2

ε . Since there are altogether (k+1)(k+2)
2 + 1 unknown parameters in ΣZZ , but

only (k+1)(k+2)
2 pieces of observable information, we are therefore short one restriction in order to

identify the parameter β.

Observe, however, that the vector ρ is identified from the covariances between the dependent

variable y and the proxies:

ρj =
cov (y, xj)
cov (y, x1)

(8)

As noted above there are several ways in which we could achieve identification of β: any

restriction on the covariance matrix of X =
[

x1 x2 . . . xk

]
will do so in principle. Zero

restrictions on any of σ1j would allow us to use xj as an instrument for x1. More generally, a zero

restriction on σjh would allow us to use xh as an instrument for xj, but the resulting estimate

would need to be rescaled to take account of the fact that xj is not on the same scale as the latent

variable x. Since we have an estimator for ρj this is easily achieved. We have

β =
cov (y, xh)
cov (xj, xh)

cov (y, xj)
cov (y, x1)

The first term is the “instrumental variables” estimator while the second is the GMM estimator of

ρj.
1Other normalizations are possible; e.g. we might fix ||p|| = 1. A problem with such a normalization is that the

resulting scale of the coefficient is difficult to interpret.
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If we know the magnitudes of σ2
x or of any of the error variances or covariances, we could

construct a generalization of the “errors in variables” estimator. As in the previous section, however,

we will assume that we do not have any plausible restrictions. In this case the issue is how to

optimally use the information contained in the proxies in order to minimize the attenuation bias.

3.2 Minimizing attenuation bias

Let

xδ = Xδ (9)

be any linear combination of the proxy variables where X =
[

x1 x2 . . . xk

]
. By assumption

X = xρ′ + U

where ρ′ =
[

1 ρ2 . . . ρk

]
. It follows that

xδ = xρ′δ + Uδ

Unless ρ′δ = 1 this will involve a rescaling, so we will want to multiply our final estimates by ρ′δ

to make all results comparable. The generalization of the discovery we made in the two proxy case

with ρ2 = 1 is contained in the following theorem:

Theorem 1 Let bδ = β̂ (ρ′δ) be the rescaled OLS estimate in the regression of y on xδ, b be the
OLS estimate in the regression of y on X , and ρ̂ be the GMM estimate of ρ. Then

plim bδ = β

(
1− δ′ΣUUδ

σ2
x (δ′ρ)2 + δ′ΣUUδ

)
plim ρ̂′b = β

(
1− |ΣUU |

|ΣXX |
)

(10)

= β

(
1− 1

σ2
xρ′Σ−1

UUρ + 1

)

where ΣXX is the covariance matrix of X . Furthermore for every δ 6= 0 we have

1
σ2

xρ′Σ−1
UUρ + 1

≤ δ′ΣUUδ

σ2
x (δ′ρ)2 + δ′ΣUUδ

Equality holds only if

δ = cΣ−1
UUρ

for some c 6= 0.

9



We note that the appropriate way of aggregating up the coefficients in the multiple regression

is given by the “post hoc” estimator

bp = ρ̂′b =
k∑

j=1

cov (y, xj)
cov (y, x1)

bj (11)

where bj is the coefficient on xj in the multiple regression. We use the term post hoc both because

the estimation happens after the event (the regression), but also because it can be seen as a

rationalization of the data: from the k different regression coefficients on the proxies, the post

hoc estimator gives a way to interpret how changes in the underlying unobserved variable x effect

the dependent variables. The coefficients on the proxies themselves have the less straightforward

interpretation of the effect of a unit change in the proxy holding all other proxies constant.

The theorem proves that no linear combination of the proxies will achieve a greater reduction

in attenuation bias than our process of post hoc inference. The theorem therefore covers all of the

procedures outlined in the introduction: averaging, standardizing and then adding, and construc-

tion of the first principal component. In essence the multiple regression provides the appropriate

reweighting of the variables to minimize the error variance of the aggregate set of proxies.

We note that the formula in equation 10 provides the natural generalization of equation 2, with

the “generalized variances” |ΣUU | and |ΣXX | replacing σ2
1 and σ2

x respectively (see Dhrymes 1974,

p. 56).

3.3 Post hoc inference and index construction

Our procedure obviously depends on the validity of the underlying assumptions. If the proxies

belong in the main regression (equation 1a), then clearly the process of aggregating up the coeffi-

cients will not correspond to any parameter of interest. Nevertheless the procedure is more robust

to departures from the validity of the underlying assumptions than will be index construction prior

to estimating the regression.

One attractive feature is that it is possible to provide the reader with the estimates of the ρs and

the reader can then assess how plausible the assumption of the “common factor” is. For example,

if the latent variable is “wealth,” it would be strange if the number of rooms in one’s house did not

load strongly on to it. Furthermore, given the ρs, it is possible to provide different estimates of β,

depending on whether particular proxies are viewed as having independent effects or not.

Strictly speaking our procedure should therefore not be viewed as an estimation but as an inter-

pretation procedure. Equation 11 tells us how to interpret the coefficients of a multiple regression
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under the null hypothesis that there is a common underlying factor which is generating the separate

coefficients.

Another way in which we can interpret the procedure is as a particular way of constructing a

composite index from the separate proxies. Indeed, as Theorem 1 shows, there will always be one

linear combination of the variables that will provide exactly the same coefficient as the estimator

(11). The multiple regression can therefore be viewed as implicitly constructing an index from the

separate proxies. Our procedure provides the coefficient on this index. Indeed we can make this

implicit index explicit post hoc as well:

xp =
1
bp

k∑
j=1

xjbj (12)

where bj is the j-th regression coefficient. By construction this index is on the same scale as x1

and will reproduce bp as the coefficient in the regression.2

This post hoc index is the common factor in the proxies that best explains y. In a regression

with a different dependent variable, a different index would be selected by the procedure. One

should therefore be cautious in strictly identifying the index with the underlying latent variable.

At the same time a virtue of the index is that it allows us to do various checks on the plausibility of

the procedure, for example, by comparing the correlation structure between other variables and an

index representing wealth with a similar correlation structure estimated from other data utilizing

observed wealth.

If we view the regression as a procedure for implicitly constructing an index, then the individual

regression coefficients have the interpretation as weights. From the final condition in Theorem 1 it

is clear that this reweighting must work so that the weight is proportional to the correlation with

x and (in a sense) inversely proportional to the error variance. The multiple regression procedure

must therefore “parcel out” the overall regression coefficient bp proportional to ρ and inversely

proportional to the error variance. We can show this somewhat more precisely.

Proposition 2 Let bi be the i-th regression coefficient in the multiple regression of y on X , i.e.

bi = e′i
(
X ′X

)−1
X ′y

where ei is the unit vector with one in the i-th position. Then

plim bi = β
σ2

x

∣∣∣Σρ(i)
UU

∣∣∣
|ΣXX | (13)

where Σρ(i)
UU is the matrix obtained by deleting row i of ΣUU and replacing it with the vector ρ′.

2We have δ = 1
bp b with b = (X ′X)

−1
X ′y. Consequently δ′ρ = 1 (since bp = b′ρ) and (δ′X ′Xδ)

−1
δ′X ′y = bp.

11



In the special case where ΣUU is the diagonal matrix, it follows that

plim
bi

bj
=

ρi
∏

k 6=i σ2
k

ρj
∏

k 6=j σ2
k

=
ρiσ

2
j

ρjσ2
i

Several additional points follow from this result. Firstly, if β = 0, then every single proxy

coefficient must be zero. This means that the hypothesis that β = 0 is testable as a joint hypothesis

on all the proxies. Indeed, it is also testable on the sum of the proxies.

Secondly, it follows from our proof about the bias in ρ′b that

|ΣXX | =
k∑

i=1

ρiσ
2
x

∣∣∣Σρ(i)
UU

∣∣∣+ |ΣUU |

There are therefore k + 1 terms in the denominator of equation 13. If the proxies are all of similar

quality, i.e. if the ρs and error variances are not vastly dissimilar, then the individual coefficients

should be of the order of β
k , i.e. as more proxies are added, the individual coefficients should tend

to zero. It is this feature that possibly accounts for researchers apprehension in adding multiple

noisy measures of the same variable into a regression. It should be clear, however, that this is not

the appropriate metric in which to think about the size of the coefficient. It is not the individual

contributions that matter, but the aggregate one.

3.4 The impact of other covariates

It is well–known that the attenuation bias in the OLS coefficient on a mismeasured variable is

increased when correctly measured variables are also included in the model, provided that these

variables are not correlated with the measurement error (Griliches 1986). Furthermore the bias is

transmitted to the coefficients of the correctly measured variables, generally with the opposite sign.

Both of these results also apply to the bias in the post hoc estimator when multiple proxies for an

unobserved variable are included in the regression. The coefficients on the covariates will be biased

as well, the magnitude of which depends on the covariances between the covariates, the unobserved

variable, and the measurement error components in the proxies (uj above).

In this case, however, it is particularly important to be concerned about the correlation between

the measurement error component and the covariates. Adding in proxies that absorb the effects

of the covariates instead of proxying for the latent variable would be particularly damaging. An

important trade–off exists, therefore, in adding additional proxies that may add little information
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about the underlying unobserved variable, but affect the accuracy with which we measure the coef-

ficients on correctly measured variables in the model. The post hoc interpretation procedure should

therefore not be taken as license to throw any and all variables into the regression. Ideally, the

proxies should be correlated with x and their measurement error components should be orthogonal

to the other explanatory variables in the regression.

3.5 Biased instrumental variables estimation

The results above indicate that our post hoc approach is superior to the ad hoc index construc-

tion approaches seen in the literature. Nevertheless it is not clear that it is the best approach

possible. For instance, if the error components in the proxies are mutually independent, then

instrumental variables will deliver an unbiased estimate of the structural parameter. One might

speculate, therefore, that biased IV estimation in cases where the errors in the proxies are only

weakly correlated might still do better than the post hoc approach. Indeed we can investigate under

which circumstances this is likely to be the case.

In the two variable case given in equations 1a-1c, if we use x2 as an instrument for x1, then

asymptotically

biv =
cov (x2, y)
cov (x2, x1)

= β
σ2

x

σ2
x + σ12

ρ2

(14)

It is obvious that the smaller the covariance between u1 and u2 is, the smaller the asymptotic bias.

Unlike in the least squares case, however, the direction of the bias depends on the sign of σ12.

There is no longer a guarantee that the estimate is a lower bound on the true value.

If we let ρ2 = 1 we can compare the absolute value of the IV bias to the bias in the estimate of

b∗ (equation 3). Instrumental variables will yield a smaller absolute bias if, and only if

|σ12| ≤ σ2
2σ2

1 − σ2
12

σ2
1 − 2σ12 + σ2

2

If σ12 > 0 we get the condition

0 ≤ σ2
2σ2

1 −
(
σ2

1 + σ2
2

)
σ12 + σ2

12

This quadratic in σ12 is guaranteed to have real roots. The condition will be satisfied if, and only

if

0 ≤ σ12 ≤ min
(
σ2

1, σ
2
2

)
or σ12 ≥ max

(
σ2

1, σ
2
2

)
13



The latter condition is irrelevant, since the positive definiteness of ΣUU implies that σ12 ≤ σ2
1+σ2

2
2 .

The condition therefore simplifies to

σ12 ≤ min
(
σ2

1, σ
2
2

)
It follows that if the error variances are positively correlated, biased IV will be superior provided

the error variances are of similar magnitudes

If σ12 < 0 we get the condition

3σ2
12 −

(
σ2

1 + σ2
2

)
σ12 − σ2

2σ2
1 ≤ 0

which gives

σ2
1 + σ2

2

6
−
√

σ4
1 + 14σ2

1σ
2
2 + σ4

2

6
≤ σ12 ≤ 0

In the particular case where the error variances are equal, this condition is equivalent to σ12 ≥
−1

3

(
σ2

u

)
where σ2

u is the common error variance.

Combining the two cases we find that biased IV is superior if, and only if,

σ2
1 + σ2

2

6
−
√

σ4
1 + 14σ2

1σ
2
2 + σ4

2

6
≤ σ12 ≤ min

(
σ2

1 , σ2
2

)
(15)

It is evident that in many situations biased IV will improve on ordinary least squares. However,

it is impossible to determine which is the better estimator without knowing the magnitudes of error

variances and covariance.

If we have more than two proxies, there is yet further scope for improvement. In this case,

however, the problem is to find the linear combination of proxies where the error is least correlated

with the error in x1. The conventional two-stage least squares estimate (using all the proxies as

instruments for x1) will definitely fare badly in this regard, since they will seek to explain not only

the part of x1 which is correlated with x, but also the error term u1.

We can put the problem more formally as follows: let γ = [0, γ2, . . . , γk]′ be a column vector of

real numbers with γ1 = 0, so that Xγ is an arbitrary linear combination of x2 . . .xk. Using Xγ as

an instrument for x1 yields asymptotically

bγ
iv = β

σ2
xρ′γ

σ2
xρ′γ +

∑k
i=2 γiσ1i

= β
σ2

x

σ2
x + 1

ρ′γ
∑k

i=2 γiσ1i
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The “best” instrument is that linear combination which yields the smallest absolute value of
1

ρ′γ
∑k

i=2 γiσ1i. We can rewrite this expression as
∑k

i=2 ωi
σ1i
ρi

, where ωi = ρiγiP
ρiγi

, so that we

are looking for a “weighted average” of the terms σ1i
ρi

. Unfortunately neither the weights nor the

terms need to be positive, so the direction of the bias is indeterminate. Furthermore, the informa-

tion necessary to compute the instrument is not estimable. Even if such an instrument could be

constructed, it would yield a smaller absolute bias only if∣∣∣∣∣ 1
ρ′γ

k∑
i=2

γiσ1i

∣∣∣∣∣ ≤ 1
ρ′Σ−1

UUρ
(16)

With the information available to a researcher it is impossible to construct the appropriate

instrument, ascertain whether the condition above is satisfied, or what the direction of the bias is.

Consequently reporting the post hoc least squares estimates jointly with any IV estimates is likely

to be a preferred strategy.

4 A Monte Carlo investigation of finite sample properties

The results above are all asymptotic. In finite samples we are faced by a number of problems.

Firstly, we need to estimate the ρs, and this will increase the noise in our procedure. Secondly, there

are trade-offs between degrees of freedom lost from including too many proxies and the increased

precision gained by putting them all in.

To investigate these issues we run a Monte Carlo simulation. While the relative performance of

different estimators will depend on the parameters we set for the simulations, by knowing the true

data generating process we are able to assess the overall bias in all estimates. More importantly, we

can compare the performance of the post hoc estimator to some of the other approaches commonly

used. In our simulations we find that the coefficient from the post hoc procedure is about 20

percent larger than the coefficients from other procedure, which eliminates about three–quarters of

the overall attenuation bias. In section 5 we take a different approach and compare the estimators

using actual datasets and again find significant increases in the coefficient estimates.

For each of 100 runs in the Monte Carlo simulation, we draw 100 independent observations on

x and ε from N(0, 2), and then create y equal to 10 + 100 ∗ x + ε. We generate 20 proxy variables

for x determined by xj = ρjx + uj with the properties that each proxy has a different correlation

(ρj) with the unobserved factor x, has a different error variance (uj), and the error components

are correlated with each other. Specifically, ρ1 = 1 and for j = 2 to 20, ρj is randomly drawn from
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U(0, 2). Var(uj) = 1.1j−1 and E(ujuk) = 0.5k−jσjσk for j 6= k. ρ and the covariance structure

of the ujs are fixed for the 100 runs. We randomly reorder the proxies before each run to avoid

systematically changing the quality of the proxies as we successively add them to the model. To

ensure that our inferences about different estimators are not driven by the particular ρ vector we

drew, the 100 simulations are repeated ten times with ten different draws of ρ, and the results

averaged together.

Table 1 displays the mean and standard deviation of five estimators. Each row indicates the

number of proxies used in the model. The mean square errors of the final model, which uses all 20

proxies, is given at the bottom of the table. The first column shows results when y is regressed on

all of the proxies and the coefficients are averaged together weighted by the true value of ρ. In the

second column the coefficients are weighted by an estimate of ρ, ρ̂j = cov(y,xj )
cov(y,x1)

. Since ρ1 = 1 the

estimates with only one proxy are identical, 66.77, which is biased downwards by 33 percent. As

more proxies are added, the estimates based on the true ρ and the estimated ρ remain very close

to each other; with 10 proxies the bias is about 10 percent in each and with 20 proxies it 5.7 and

4 percent. Since ρ can be consistently estimated, the only cost in having to do so is the additional

imprecision in the estimate. With 20 proxies the standard error rises from 2.8 to 7.2 as a result of

having to estimate ρ. Note that the bias is slightly smaller in the second column than in the first.

The third through fifth columns implement alternative estimators that have appeared in the

literature. In these we regress y on the unweighted average of the proxies, on the average of proxies

after they have been standardized to have a mean of zero and unit variance, and on the first

principal component of the proxies. We rescale the results for these estimators as appropriate to

be comparable to those in the first two columns. All three of these estimator perform considerably

poorer than the post hoc estimators in the first two columns. Although additional proxies improve

each estimator, with 20 variables the bias in each is 18.5, 20.6, and 14.5 percent respectively. Since

these estimates do not require the additional estimation of the weights placed on each proxy, there

is a small gain in the precision of the estimates, but as the last row shows, the mean squared error is

still between 3.5 and 7 times as large as that in second column. We conclude from these simulations

that in situations where one cannot be confident that the proxies are of similar quality (i.e. similar

ρs and error variances), the reduction in bias from aggregating the coefficients on the proxies can

be considerable, compared to entering a single, essentially arbitrary combination of the proxies in

the regression.
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5 Applications to existing research

We illustrate the procedure with two empirical examples. Though we do not know the true data

generating process and thus cannot compare the alternative estimators against the true parameter

values, the use of actual data allows us to assess whether the alternative estimators themselves

produce qualitatively different results. In the first example we are interested in estimating the

effect of a family’s permanent income on children’s performance on a reading comprehension test.

Permanent income is not observed and we instead have panel data on annual family annual income.

In the second example we use data on assets and housing conditions from the Demographic and

Health Survey of India as proxies for household wealth in a model linking wealth and school

attendance. Filmer and Pritchett (2001) use the first principal component of the asset variables as

their measure of wealth.

A standard model of (log) permanent income specifies observed income at age t as being a

function of unobserved permanent income (yp), lifecycle effects, and transitory or luck components:

yt = ρty
p+ut, where ρt represents the age–earnings profile, capturing the idea that younger workers

tend to earn below their level of permanent earnings. ut reflects deviations from age–adjusted

permanent earnings, which may be serially correlated and heteroscedastic.

If parents’ investment in their children is a function of their permanent income, then the correla-

tion between observed income and child outcomes understates the true correlation. To circumvent

this problem, a general practice in the literature has been to average annual income over several

years. See, for example, Blau (1999), Case, Lubotsky and Paxson (forthcoming), Mayer (1997),

Solon (1992), and Zimmerman (1992).

Using data from the National Longitudinal Survey of Youth (NLSY), we examine the relation-

ship between family income and children’s percentile score on the Peabody Individual Achievement

Test in reading comprehension. The NLSY began in 1979 with a sample of 12,686 individuals aged

14 to 21. Interviews were conducted annually between 1979 and 1994, and biennially since then.

In 1986 a separate biennial survey of the children of the women from the 1979 cohort began (called

the NLSY–Children). Missing data poses a difficulty for including annual incomes separately in the

regression. Therefore, we work with two–year averages of family income taken when the mothers

where between the ages of 22 and 39. Our sample contains 7898 children–year observations of those

aged six to fourteen and who have nonmissing family income during this period. The model also

includes controls for the log of family size, the child’s sex, age, and race, the mother’s age and ed-
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ucation, whether the mother’s spouse is present, and if so, his age and education, year effects, and

the mother’s age–adjusted AFQT score (a test of reading and math skills that was administered to

the mother in 1980). We drop children who have missing data for any of these controls.

Figure 1 plots the results from different models of children’s test scores. Following the common

practice in the literature, our first measure of permanent income is the average log income over

several periods. The line in the figure labeled “Using average income” indicates the coefficients on

this term when it contains income when the mother was aged 22–23 to the age indicated on the

x–axis. The coefficient rises from 0.5 when only income when the mother is 22 and 23 is used, to

1.2 when when income between ages 22 and 31 is used, and finally to 1.6 when income through age

39 is used.

Next we include family income from different periods in the regression separately and average the

coefficients, first unweighted and then weighted by the GMM estimate of ρ. The estimates of ρ are

also given in the table and they show a steady rise over the lifecycle, consistent with earlier incomes

understating permanent income. The unweighted average of the regression coefficients assumes that

the correlation between the test score and family income in all periods are equal, a restriction the

data in fact soundly reject. Compared to entering average income in the regression, the unweighted

average of the income coefficients still allows the variance of the transitory component of income

to vary over the lifecycle. We find that the unweighted average of the income coefficients produces

a total effect that is in some cases 27 percent larger than the effect of average income.

Finally, we optimally weight the income coefficients and this leads to a substantial rise in the

relationship between children’s test scores and permanent income.3 Using family income when the

mother is aged 22 to 39, the effect from using the optimally weighted coefficients is 2.1, compared

to only 1.6 when income is averaged prior to the regression, an increase of 30 percent. Our optimal

estimator implies that a 50 percent rise in permanent income would lead to a 1.1 percentile point

rise in test scores. The key feature of this example is that income earned later in life is a better

measure of permanent income and our estimates incorporate this additional information better

than does the simple average of annual incomes.

Our second empirical application reexamines Filmer and Pritchett’s attempt to estimate the

effect of household wealth on Indian children’s propensity to be enrolled in school. The catch is

that the Demographic and Health Survey of India does not contain any income or wealth data,
3We divide the estimates using the optimally weighted coefficients by the average of the ρs in order to make the

scale comparable to the previous two estimators.
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but it does contain many questions on asset holdings and dwelling quality. Filmer and Pritchett

propose to use the first principal component of these asset variables as their measure of wealth.

We use data on 109,973 children aged 4 to 16 with nonmissing data for all variables. The

dependent variable in the regression is an indicator that the child is enrolled in school. The

asset variables are the number of rooms in the house, indicators for whether the household has a

refrigerator, clock or watch, sewing machine, VCR, radio, television, fan, bicycle, car, motorcycle,

electric lighting, a flush toilet or latrine, livestock; whether the kitchen is in a separate room in

the house, whether the primary cooking fuel is wood, cow dung, or coal, and whether the drinking

and nondrinking water comes from a pump or an open source (as opposed to being piped into the

home).

The first column of Table 2 displays our estimates of ρ, the ratios of the bivariate correlations

between each asset and the school enrollment indicator, to the correlation between the number of

rooms in the house and the indicator. Thus the units of our unobserved wealth index is the number

of rooms in the house. Assets that are more common among poorer households, such as obtaining

water from pumps or an open source, using wood, cow dung, or coal as cooking fuel, or owning

livestock, have negative correlations with children’s school enrollment. The number of rooms in the

house has the largest correlation. The assets one would associate with the relatively best–off in the

data – having a car, VCR, or refrigerator – are only owned by a small proportion of the household,

and thus do very poorly in accounting for enrollment rates among the whole population.

The next six columns show results when all or some of the asset variables are entered separately

into the regression. The model also controls for the child’s sex and age, the head of the household’s

sex, age, and education, and the log family size. Nearly all of the asset variables are statistically

significant, although some, such as refrigerator, car, and VCR ownership, and using wood, dung, or

coal as cooking fuel, have a different sign (the bjs) than their raw correlation with school enrollment

(the ρjs). One might be tempted to drop these variables from the model, thinking they are capturing

something other than the effect of wealth on school enrollment. As illustrated in equation 4, a proxy

that is highly correlated with another, better measured proxy may well have a different sign than

the true effect to be measured (β). Dropping the variables discards useful information and is thus

counterproductive.

When all 18 asset variables are used, the estimated effect of the assets is 0.170.4 To see how
4Although there are 21 separate variables, we label the two indicating toilet types, and the sources of drinking

and nondrinking water as each being one, rather than two, proxies.
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sensitive the estimate is to using fewer proxies, in the next five columns we break the 18 proxies

into two groups of nine and then three groups of six. When nine are used, the effects are 0.136

and 0.132; when six are used the effects are 0.129, 0.105, and 0.116. The attenuation bias in the

estimates clearly increases as less proxies are used. The estimates that utilize the same number of

proxies are remarkably close to each other, suggesting the assumption of a single unobserved factor

is plausible.

The last column of Table 2 displays the scoring vector used to weight the asset variables for

the first principal component. These have been divided by the weight for the number of rooms in

the house, so their magnitudes are comparable to the ρs estimated below. The coefficient on the

principal component asset index is 0.050. We rescale this coefficient by multiplying it by ρ′δ
σpc

to

make it comparable to the estimates where the assets are entered separately. In this formula ρ is the

bivariate correlations between each asset and school enrollment, δ are the scoring factors, and σpc

is a vector of the standard deviations of the asset variables. The adjusted coefficient on the asset

index is 0.098, over 40 percent smaller than the effect estimated when all the proxies are entered

separately and their coefficients recombined. Indeed, the estimate of the first principal component

from all 18 asset variables has more attenuation bias than any of the post hoc estimators that use

only six of the assets.

6 Conclusion

We have proposed a new estimator for the case where the researcher has multiple proxies for a

single, unobserved independent variable. Numerous previous studies have dealt with the problem

either by using the proxies one at a time, or by averaging or otherwise aggregating the proxies

together and using that single measure as an independent variable. We show that attenuation bias

is maximally reduced when the proxies are entered simultaneously in a multiple regression, and

the coefficients on them optimally combined after the fact to yield an estimate of the effect of the

unobserved variable. To optimally weight the proxies prior to the regression requires knowing the

variances and covariances between the error components in the proxies, information that is simply

unavailable to the researcher. The improved performance of the post hoc estimator is due to the

fact that the regression coefficients on the proxies precisely reflect this unknown information. This

method is also more transparent than ad hoc index construction because a reader who believes

some proxies have independent effects on the dependent variable has the information available to
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create alternative estimates based on a subset of the proxies.

We have put off discussion of the asymptotic or finite–sample distribution of the estimators

compared in this paper. The need to estimate ρ, the covariances between the proxies and the

unobserved factor, introduces additional noise into the estimates that is not present in an ad

hoc index variable. The Monte Carlo simulation presented in Section 4 suggest that this source

of variance may not be particularly large and is outweighed by the large reduction in bias in the

estimates themselves. More generally, the analytic distribution of the estimators is quite difficult to

compute and researchers are probably better off using bootstrap methods to calculate the standard

error of their estimates.
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A Proofs

Lemma A.1

1. |A + aa′| = |A| (1 + a′A−1a
)
, if A is nonsingular.

2. (A + ab′)−1 = A−1 − A−1ab′A−1

1+b′A−1a
, if 1 + b′A−1a 6= 0.

Proof. Part 1 is Theorem A.16(x)in Rao and Toutenburg (1995, p.358). Part 2 is Theorem

A.18(iv) of Rao and Toutenburg (1995, p.358).

Proof of Theorem 1. We have

plimβ̂ =
β

δ
′
ρ

(
1− δ

′
ΣUUδ

σ2
x (δ′ρ)2 + δ

′ΣUUδ

)

i.e.

bδ = β

(
1− δ

′
ΣUUδ

σ2
x (δ′ρ)2 + δ′ΣUUδ

)

By contrast

plimb = βσ2
x (ΣXX)−1 ρ

Since ΣXX = ΣUU + σ2
xρρ′, we can apply lemma A.1 It follows that

Σ−1
XXρ =

Σ−1
UUρ

1 + σ2
xρ′Σ−1

UUρ
(17)

Hence

plimρ̂
′
b = β

(
1− 1

1 + σ2
xρ′Σ−1

UUρ

)

Observe that we can apply lemma A.1 again to show that

1
1 + σ2

xρ
′Σ−1

UUρ
=

|ΣUU |
|ΣXX | (18)

We want to compare 1
σ2

xρ′Σ−1
UU ρ+1

and δ
′
ΣUUδ

σ2
x(δ

′
ρ)2

+δ
′
ΣUUδ

, so we need to show that

ρ
′
Σ−1

UUρ ≥
(
δ
′
ρ
)2

δ′ΣUUδ

for any non-zero choices of ρ and δ.
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Since ΣUU is a non-singular covariance matrix, by the spectral theorem for symmetric matrices

it can be decomposed as

ΣUU = PDP
′

where P is an orthogonal matrix of eigenvectors

P =
[

p1 p2 . . . pk

]
and D = diag (λ1, . . . , λk) is the matrix of eigenvalues, with λi > 0, ∀i. This is equivalent to writing

ΣUU = λ1p1p
′
1 + . . . + λkpkp

′
k

and it follows that

Σ−1
UU =

1
λ1

p1p
′
1 + . . . +

1
λk

pkp
′
k

Hence

ρ
′
Σ−1

UUρ =
∑

i

1
λi

(
p
′
iρ
)2

δ
′
ΣUUδ =

∑
i

λi

(
p
′
iδ
)2

Now let p
′
iρ = wi and p

′
iδ = vi. Correspondingly define the vectors w and v as

w = P
′
ρ, v = P

′
δ

Note that

δ
′
ρ = v

′
w

(since P is orthogonal), i.e.

(
δ
′
ρ
)2

=

(∑
i

viwi

)2

≤
(∑

i

√
λi |vi| 1√

λi
|wi|
)2

≤
(∑

i

λiv
2
i

)(∑
i

1
λi

w2
i

)
(Cauchy-Schwarz inequality)

=
(
δ
′
ΣUUδ

)(
ρ
′
Σ−1

UUρ
)
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Equality holds only if √
λivi =

c√
λi

wi

for some real number c, i.e.

λivi = cwi

δ = cPD−1P
′
ρ

= cΣ−1
UUρ

Proof of proposition 2.

plimbi = e
′
iΣ

−1
XXβρσ2

x

and by using equations 17 and 18

e
′
i (ΣXX)−1 ρσ2

x =
|ΣUU |
|ΣXX |

(
σ2

xe
′
iΣ

−1
UUρ

)
Now

Σ−1
UU =

1
|ΣUU |


S11 S12 · · · S1k

S21 S22 · · · S2k

...
...

. . .
...

Sk1 Sk2 · · · Skk


where Sij is the ij-th cofactor of ΣUU . Consequently

e
′
iΣ

−1
UU =

1
|ΣUU |

[
Si1 Si2 . . . Sik

]
i.e.

e
′
iΣ

−1
UUρ =

1
|ΣUU |

∑
j

Sijρj

The term
∑

j Sijρj, however, is identical to the value of the determinant if row i of matrix ΣUU

were replaced by ρ
′
, i.e. ∑

j

Sijρj =
∣∣∣Σρ(i)

UU

∣∣∣
Consequently

e
′
i (ΣXX)−1 ρβσ2

x =
βσ2

x

∣∣∣Σρ(i)
UU

∣∣∣
|ΣXX |
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Average of 
Number of    true   estimated Average of standardized First principal 

proxies p's p's proxies proxies component
1 66.77 66.77 66.77 66.77 66.77

(4.69) (4.69) (4.69) (4.69) (4.69)

2 73.14 73.52 62.62 63.71 63.45
(7.26) (7.88) (16.00) (16.19) (16.65)

3 77.67 78.37 66.26 66.12 69.72
(7.39) (8.40) (14.96) (15.01) (15.10)

4 80.95 81.85 69.57 68.74 73.48
(6.91) (8.27) (13.70) (13.73) (12.98)

5 83.37 84.40 71.97 70.58 75.94
(6.18) (8.06) (12.12) (12.36) (11.14)

10 89.58 91.10 77.56 75.57 81.78
(4.21) (7.29) (8.37) (8.68) (7.09)

15 92.53 94.18 80.16 78.00 84.23
(3.26) (7.21) (6.71) (7.13) (5.50)

20 94.26 96.00 81.46 79.36 85.47
(2.76) (7.18) (5.99) (6.35) (4.89)

MSE [40.57] [67.55] [379.75] [466.25] [235.08]

Table 1: Monte Carlo Simulation Results

Note: The table shows the mean and standard deviation of each estimator. The 
mean square error for the models with 20 proxies are given in the last line. See 
text for details.

Post hoc estimator



Principal components
Rho 1 2 3 4 5 6 relative weights

# Rooms in house 1.000 0.009 0.011 0.013 1.000
(0.001) (0.001) (0.001)

Refrigerator 0.121 -0.035 -0.035 -0.029 0.546
(0.006) (0.006) (0.005)

Clock or watch 0.452 0.089 0.123 0.132 0.429
(0.003) (0.003) (0.003)

Type of toilet
    Flush 0.275 0.046 0.074 0.113 0.077

(0.004) (0.004) (0.004)

   Latrine 0.091 0.052 0.069 0.094 1.007
(0.004) (0.004) (0.004)

Sewing machine 0.291 0.039 0.067 0.098 0.922
(0.003) (0.003) (0.003)

VCR 0.038 -0.014 -0.033 -0.025 0.662
(0.008) (0.008) (0.008)

Radio 0.353 0.034 0.054 0.084 1.249
(0.003) (0.003) (0.003)

Drinking water from
   Pump -0.226 0.002 -0.032 -0.028 -0.154

(0.011) (0.004) (0.004)

   Open source -0.001 0.023 0.010 0.025 -0.694
(0.012) (0.005) (0.005)

Cooking fuel is wood/ -0.243 0.004 -0.008 -0.017 -1.097
   dung/coal (0.004) (0.004) (0.004)

Television 0.332 0.005 0.034 0.038 0.962
(0.004) (0.004) (0.004)

Non-drinking water from
   Pump -0.203 -0.014 -0.023 -0.038 -0.283

(0.011) (0.004) (0.004)

   Open source -0.028 0.021 0.029 0.007 1.099
(0.012) (0.005) (0.005)

Fan 0.414 0.022 0.053 0.097 1.216
(0.004) (0.004) (0.003)

Bicycle 0.188 0.019 0.036 0.046 0.934
(0.003) (0.003) (0.003)

Car 0.019 -0.062 -0.064 -0.062 -0.839
(0.010) (0.010) (0.010)

Kitchen in separate room 0.311 0.064 0.085 0.097 0.666
(0.003) (0.003) (0.003)

Motorcycle 0.129 -0.004 0.000 0.013 1.055
(0.005) (0.005) (0.005)

Electric lighting 0.447 0.114 0.137 0.162 0.616
(0.003) (0.003) (0.003)

Livestock -0.179 -0.007 -0.009 -0.006 -0.573
(0.003) (0.003) (0.003)

Number of proxies 18 9 9 6 6 6 18
Estimated "wealth" effect 0.170 0.136 0.132 0.129 0.105 0.116 0.098

Table 2: Measuring the Effect of Wealth on Children's School Attendance In India

Note: Data is from the Demographic and Health Survey of India. Sample size is 109,973. The dependent variable is an 
indicator that the child is enrolled in school. The model also controls for the child's sex and age, the head of household's 
sex, age and education, and the log family size. 

Proxy set 



Note: Data is from the NLSY-Children, 1979-1998. All models also include controls for the log family size, the child's sex, age, and race, the mother's age and 
education, whether the mother's spouse is present, and if so, his age and education, year effects, and the mother's AFQT score. The estimates using the 
optimal p have been divided by the average of the p s in order to be on the same scale as the other two estimators. 

Figure 1: The Effect of Family Income on Children's Reading Comprehension Score
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