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Abstract
We consider the estimation of sample selection (type II Tobit) models that exhibit

spatial dependence. Attention is focused mainly on the spatial error dependence model
(or spatial autoregressive error model, SAE), but our method can also be used to
estimate the spatial lag dependence model (or spatial autoregressive model, SAL).
The method considered is motivated by a two-step strategy analogous to the popular

heckit model. The first step of estimation is based on a spatial probit model following
a methodology proposed by Pinkse and Slade (1998) that yields consistent estimates.
The consistent estimates of the selection equation are used to estimate the inverse Mills
ratio (IMR) to be included as a regressor in the estimation of the outcome equation
(second step). Since the appropriate IMR turns out to depend on a parameter from
the second step under SAE, we propose to estimate the two steps jointly within a
generalized method of moments (GMM) framework.
We explore the large sample properties of the proposed estimator and undertake a

Monte Carlo experiment to assess its performance in finite samples. Finally, we discuss
the importance of the spatial sample selection model in applied work and illustrate
its application by estimating the relative spatial efficiency of the production process
within a fishery, using catch-per-unit-effort (CPUE) as a measure of efficiency.
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1 Introduction

Econometric models taking into account spatial interactions among economic units have

been increasingly used by economists over the last several years.1 The different approaches

for undertaking estimation and inference in linear regression models with spatial effects are

well developed and have been summarized in the work by Anselin (1988, 2001), Anselin and

Bera (1998), and other researchers.

The estimation of nonlinear models that include spatial interactions, in particular limited

dependent variable models, is not as well developed as that of linear models. In fact, only

recently have methods for estimating and conducting statistical inference in spatial models

with limited dependent variables been proposed. This literature has concentrated mainly

on the probit model with spatial effects, as in Case (1992), Beron and Vijverberg (1999),

Fleming (2002), LeSage (2000), McMillen (1992), and Pinkse and Slade (1998). In this

paper we contribute to this literature by introducing a sample selection model with spatial

dependence and proposing a method for its estimation. The type of sample selection model

considered is the widely used heckit model (Heckman, 1976, 1979), also known as the Tobit

type II model in the terminology of Amemiya (1985). As for spatial dependence, we focus our

attention mainly on the spatial autoregressive error (SAE) model, but we point out that our

method can also be applied to another type of spatial dependence, the spatial autoregressive

lag (SAL) model.

Our estimation strategy can be thought of as a two-step procedure analogous to the

popular heckit model that is estimated jointly as a "pseudo" sequential estimator using GMM

(Newey, 1984). The first step of estimation is based on a spatial probit model following a

methodology by Pinkse and Slade (1998), which yields consistent, although not fully efficient,

estimates of the selection equation. As in the heckit procedure, the consistent estimates of

the selection equation are used to estimate the inverse Mills ratio (IMR) to be included in

the estimation of the outcome equation to correct for selectivity bias. Since in the presence

of spatial error dependence the IMR depends upon unknown parameters from the outcome

equation, we propose to estimate the model jointly within a GMM framework.

The estimation of a probit model with spatial dependence introduces a non-spherical

variance-covariance matrix that renders the simple probit estimator inconsistent. In turn,

to obtain consistent and fully efficient estimates, one has to deal with multidimensional

1Some examples are Case (1991), Fishback, Horrace and Kantor (2002), Topa (2001), among many others.
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integrals. To obtain consistent and efficient parameter estimates of the spatial probit model,

LeSage (2000) and Beron and Vijverberg (1999) employ simulation methods to approximate

these multidimensional integrals. Unfortunately, the simulation of multidimensional integrals

is computationally intensive, restricting estimation to moderate sample sizes. This same

limitation applies to the estimation of sample selection models with spatial dependence

using simulation methods to approximate the multidimensional integrals in the likelihood

function.2

In an attempt to avoid approximating multidimensional integrals but still achieve consis-

tency of the probit estimates (at the expense of efficiency), some authors propose to ignore

the off-diagonal elements of the variance-covariance matrix and focus on the heteroskedas-

ticity induced by the spatial dependence (Case (1992), McMillen (1992) and Pinkse and

Slade (1998)). We use Pinkse and Slade’s estimator in the first step of the sample selection

model for the following reasons. First, it yields consistent estimates of the selection equation

that are necessary to obtain consistent estimates of the parameters in the outcome equation.

Second, it is computationally simpler than both of the other estimators that approximate

multidimensional integrals. Third, it has been developed in the framework of GMM, the

same framework we employ in the joint estimation of our sample selection models.

The consistent estimates obtained in the first step are used to construct the IMR used in

the outcome equation to correct for selectivity bias (Heckman, 1979). In practice, both the

selection and outcome equations are likely to exhibit spatial dependence, and generally the

spatial autoregressive parameters will be different in each equation. In this case, the IMR

under SAE turns out to be a function of the unknown spatial parameter in the outcome

equation (second step). In order to increase the efficiency of the estimator and to obtain

its variance-covariance matrix directly, we propose to estimate all parameters of the model

simultaneously. For this, we employ the sequential estimation framework proposed by Newey

(1984) to jointly estimate the sample selection model with SAE. In addition, building on

Pinkse and Slade’s (1998) asymptotic results for their spatial probit model and standard

GMM theory, we derive the asymptotic properties of our estimator.

As for the sample selection model with SAL dependence, we show that the corresponding

IMR depends only upon parameters from the selection equation and thus can be estimated in

two steps, similar to the traditional heckit model. However, we point out that the estimation

2For an example of a likelihood function for a sample selection model under independent observations see
Heckman (1979) or Maddala (1983).
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of this model using the sequential estimation GMM framework has the advantage of directly

yielding the appropriate variance-covariance matrix of the estimated parameters.

Our estimators have two potential disadvantages. First, they have lower efficiency as

compared to the computationally intensive simulation methods. However, given the fact

that the multidimensional integration is in the order of the number of observations, the

computational simplicity of our method is preferable in many relevant instances when the

amount of data available to researchers is large. Second, our estimators require the availabil-

ity of at least one instrumental variable in addition to the common "exclusion restriction"

desirable in the heckit model. Nevertheless, the instrumental variables proposed by Kelejian

and Prucha (1998) can be employed. These instruments are always available to the prac-

titioner since they are constructed from polynomials of available variables. In our Monte

Carlo simulations, we find that the Kelejian and Prucha instruments work well in practice.

To our knowledge, there is only one other paper attempting to specify and estimate a

sample selection model with spatial effects. McMillen (1995) first specifies a model similar

to the heckit model with spatial effects presented in our paper and proposes an estimator

based on the EM algorithm. However, this estimator is not actually employed since it is

impractical due to its computational intensity. Next, McMillen (1995) specifies and estimates

an extension of the spatial expansion model of Casetti (1972) that is used in geography.

However, this model is not explicitly spatial since additional variables are required to control

for the spatial effects, and the consistency of the proposed estimator depends heavily on

correctly assuming the functional form of the underlying heteroskedasticity induced by the

spatial dependence. Compared to McMillen (1995), we propose a feasible estimator for the

heckit model with spatial effects.

The paper is organized as follows. Section 2 presents the sample selection model with

spatial autoregressive errors (SAE), which is the main focus of our paper, and also outlines

the spatial autoregressive lag (SAL) model with sample selection. Section 3 introduces our

proposed method of estimation (the "spatial heckit") and states its large-sample properties.

Particular attention is devoted to the model with SAE, since the model with SAL can be

analyzed with more standard asymptotic methods. Section 4 presents the results of a Monte

Carlo experiment for the SAE model. Section 5 discusses the practical importance of both

spatial sample selection models and presents an empirical application of the SAE model

with sample selection. Concluding remarks are provided in the last section of the paper, and
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proofs of the asymptotic properties of the estimators are presented in the Appendix.

2 The Sample Selection Models with Spatial Depen-
dence

Our main focus is the estimation of a sample selection (Tobit type II) model with spatial

autoregressive errors (SAE), since this model is slightly more challenging than the model

exhibiting spatial autoregressive lags (SAL). We present here both models, which include

spatial effects in both the selection and the outcome equations separately.

The spatial autoregressive error (SAE) model specifies spatially autocorrelated distur-

bances:

y∗1i = α0 + x01iα1 + u1i, u1i = δ
X
j 6=i

ciju1j + ε1i (1)

y∗2i = β0 + x02iβ1 + u2i, u2i = γ
X
j 6=i

ciju2j + ε2i (2)

where y∗1i and y∗2i are latent variables with the following relationship with the observed

variables: y1i = 1 if y∗1i > 0 and y1i = 0 otherwise, and y2i = y∗2i ∗ y1i. Therefore, (1) is
the selection equation while (2) is the outcome equation. Note that each of these equations

exhibit spatial dependence, as u1i and u2i depend on other u1j and u2j through their location

in space, as given by the spatial weights cij and the spatial autoregressive parameters δ and

γ. Typically, the spatial weights are specified by the econometrician based on some function

of contiguity or (economic) distance (Anselin, 1988; Anselin and Bera, 1998). Note also that,

in general, one will specify different spatial autoregressive parameters for the selection and

outcome equations.3 It is assumed that:

Assumption A The errors ε1i and ε2i, i = 1, ...N , are iid N(0,Σ) with

Σ =

∙
σ21 σ12
σ12 σ22

¸
.

The model in (1)-(2) can also be presented in a reduced form:

y∗1i = α0 + x01iα1 +
X
j

ω1ijε1j (3)

y∗2i = β0 + x02iβ1 +
X
j

ω2ijε2j (4)

3Without loss of generality, we specify the same spatial weights in each of the two equations.
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where the weights ω1ij and ω2ij are the (i, j) elements of the inverse matrices (I − δC)−1 and

(I − γC)−1, respectively, with C the matrix of spatial weights cij. Note that both sets of

weights, ω1ij and ω2ij, depend upon the unknown parameters δ and γ, respectively.

The spatial autoregressive lag (SAL) model specifies that the dependent variable of each

unit is spatially dependent on the value of the dependent variable in all (or some) of the

other units:

y∗1i = α0 + x01iα1 + δ
X
j 6=i

cijy
∗
1j + ε1i (5)

y∗2i = β0 + x02iβ1 + γ
X
j 6=i

cijy
∗
2j + ε2i (6)

where y∗1i and y∗2i are latent variables with the following relationship with the observed

variables: y1i = 1 if y∗1i > 0 and y1i = 0 otherwise, and y2i = y∗2i ∗ y1i. Assumption A is
applied here as well to the error terms ε1i and ε2i. The spatial dependence implied by the

SAL model is given by the spatial weights cij and the spatial autoregressive lag parameters

δ and γ. A reduced form of the SAL model similar to equations (3) and (4) is:

y∗1i = α0
X
j

ω1ij + α1
X
j

ω1ijx
0
1j +

X
j

ω1ijε1j (7)

y∗2i = β0
X
j

ω2ij + β1
X
j

ω2ijx
0
2j +

X
j

ω2ijε2j (8)

where the weights ω1ij and ω2ij are as defined in the reduced form of the SAE model, and

we note again that these weights are functions of the unknown spatial parameters δ and γ,

respectively, in both the SAL and SAE models.

3 Estimation of the Sample SelectionModels with Spa-
tial Dependence

We now describe our proposed estimation method for the sample selection models with

spatial dependence presented in the previous section. As previously described, we follow a

two-step procedure in the spirit of Heckman (1976, 1979) that is estimated jointly in a GMM

framework. The selection equation is estimated using Pinkse and Slade’s (1998) GMM esti-

mator for the spatial probit model, while the outcome equation is estimated with the spatial

methods for linear models developed by Kelejian and Prucha (1998), although other methods

can be employed as well. An estimate of the inverse Mills ratio is included in the outcome
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equation to correct for selectivity bias. To estimate these two parts simultaneously, the cor-

responding moment conditions are stacked, and a GMM criterion function is minimized with

respect to all parameters in the model. In what follows, we consider each type of spatial

dependence separately.

3.1 Estimation of the SAE sample selection model

To motivate the estimation of the SAE model in (1)-(2), we start with the following calcu-

lations:

var(u1i) = σ21
X
j

(ω1ij)
2 (9)

var(u2i) = σ22
X
j

(ω2ij)
2 (10)

E(u1i, u2i) = σ12
X
j

ω1ijω
2
ij. (11)

In the typical heckit model, a probit model is employed in the first step to estimate the

probability of each observation being included in the observed sample. The presence of SAE

errors, however, induces heteroskedasticity in the error terms in (9), resulting in inconsistent

probit estimates. Pinkse and Slade (1998) propose a consistent estimator for this spatial

probit model by taking into account the known form of the induced heteroskedasticity.

Define θ1 = {α0, α01, δ} as the parameters to be estimated in the spatial probit model,
and ψi(θ1) =

α0+x01iα1√
var(u1i)

the index function of the probit model weighted by the standard

deviation of the residual. The corresponding generalized residuals of this model are:

ũ1i(θ1) = {y1i − Φ [ψi(θ1)]} ·
φ [ψi(θ1)]

Φ [ψi(θ1)] {1− Φ [ψi(θ1)]}
. (12)

The GMM estimates for θ1 can be obtained as follows:

θ̂1,GMM = argmin
θ1∈Θ1

SN(θ1)
0MNSN(θ1) (13)

where SN = 1
N
z0N ũ1N(θ1), zN is a matrix of regressors plus at least one instrument (to identify

the extra parameter δ), and MN is a positive definite matrix such that MN
p→ M . Pinkse

and Slade (1998) show that this estimator is consistent and asymptotically normal.

The consistent estimates of θ1 will be used in the construction of the inverse Mills ratio

(IMR) to correct for sample selection bias. Note that the conditional regression function for
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the outcome equation (2) has the following form:

E[y2i|y1i > 0] = β0 + x02iβ1 +E[u2i|u1i > −(α0 + x01iα1)]

= β0 + x02iβ1 +
E(u1i, u2i)p
var(u1i)

· φ [−ψi(θ1)]

{1− Φ [−ψi(θ1)]}

= β0 + x02iβ1 +

σ12
P
j

ω1ijω
2
ijr

σ21
P
j

(ω1ij)
2
· φ [−ψi(θ1)]

{1− Φ [−ψi(θ1)]}

= β0 + x02iβ1 +
σ12
σ1
·

P
j

ω1ijω
2
ijrP

j

(ω1ij)
2
· φ [−ψi(θ1)]

{1− Φ [−ψi(θ1)]}

Therefore, the selectivity correction implies the following "adjusted" IMR:

λi ≡

P
j

ω1ijω
2
ijrP

j

[ω1ij]
2
· φ [−ψi(θ1)]

{1− Φ [−ψi(θ1)]}
. (14)

Once estimated, the "adjusted" IMR may be included as an additional regressor in the

outcome equation, which in turn could be estimated with any of the spatial methods de-

veloped for this linear equation.4 We illustrate our estimator in this section by employing

feasible generalized least squares (FGLS) to estimate the augmented outcome equation:

y2i = β0 + x02iβ1 + µbλi + v2i.

However, note that the "adjusted" IMR in (14) depends on a parameter that is not

estimated in the first step: γ, which is included in the weights ω2ij. In order to increase the

efficiency of the estimator and directly obtain its variance covariance matrix, we propose

using GMM to estimate simultaneously all parameters of the sample selection model by

rewriting it as a sequential estimator (Newey, 1984) composed of the Pinkse and Slade (1998)

and FGLS estimators. More specifically, we stack their corresponding moment conditions:

g(z, θ) = [s(z1N , θ)
0,m(z2N , θ)

0]
0 , θ = {α0, α01, δ, β0, β01, µ, γ}

with

s(z1N , θ) = z01N ũ1N(θ), ũ1N(θ) as in (12),

m(z2N , θ) = [y1N · z2N ]0ũ2N(θ), ũ2N(θ) = y2N − β0 − x02Nβ1 − µbλ(δ, γ)
4The linear SAE model could be estimated, for instance, using the methods by Kelejian and Prucha

(1998), Lee (2001a), or maximum likelihood (see Anselin 1988).
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and z1N includes the regressors of the selection equation plus at least one instrument, and

z2N includes the regressors of the outcome equation, the estimated "adjusted" IMR, and at

least one instrument.5 Both instruments could in principle be the same. We note that the

instruments proposed by Kelejian and Prucha (1998) can be used if no other instruments

are available.6

Define z0N = (z01N , [y1N · z2N ]0)0 and ũN(θ) = (ũ
0
1N(θ), ũ

0
2N(θ))

0. Then, all parameters of

the SAE sample selection model can be estimated as:

θ̂GMM = argmin
θ∈Θ

gN(θ)
0MNgN(θ) (15)

where gN = N−1z0N ũN(θ), for a positive definite MN such that MN
p→M .

We show in the appendix that, under conditions similar to those in Pinkse and Slade

(1998), θ̂GMM is consistent and asymptotically normal. We call it the "spatial heckit" esti-

mator for the SAE model.

Proposition 1 Under assumptions A1 to A8 (stated in the appendix), θ̂GMM
p→ θ0.

The following two propositions concern the asymptotic distribution and the estimation

of the variance-covariance matrix of the spatial heckit estimator for the SAE model.

Proposition 2 Under assumptions A1 to A11 (stated in the appendix),

√
N(θ̂GMM − θ0)

d→ N(0, [Ψ2(θ0)]
−1[∂g0(θ0)/∂θ]MΨ1(θ0)M [∂g(θ0)/∂θ

0][Ψ2(θ0)]
−1)

where Ψ1(θ0) = lim
N→∞

E{NgN(θ0)gN(θ0)
0}, and Ψ2(θ0) = [∂g

0(θ0)/∂θ]M [∂g(θ0)/∂θ
0].

Proposition 3 Under assumptions A1 to A14 (stated in the appendix), then

Ψ1N(θ̂GMM)
p→ Ψ1(θ0) and Ψ2N(θ̂GMM)

p→ Ψ2(θ0), where

Ψ1N(θ̂GMM) = NE{gN(θ̂GMM)gN(θ̂GMM)
0} and

Ψ2N(θ̂GMM) = [∂g0N(θ̂GMM)/∂θ]MN [∂gN(θ̂GMM)/∂θ
0].

5Kelejian and Prucha (1999) propose a set of three moment conditions for the estimation of the spatial
autoregressive parameter in a SAE model, which are based on second-order moments of the residuals. These
moments are included in both s(z1N , θ) andm(z2N , θ), although they are not explicitly shown here to simplify
the exposition.

6In the context of a linear SAL model, Kelejian and Prucha (1998) show that the optimal set of instruments
in a linear equation is approximated by the linearly independent columns of [x,Cx,C2x, ...], where x is the
set of exogenous independent variables and C is the spatial weighting matrix. These instruments can also
be used in our context because they are exogenous.
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Finally, the following corollary gives the (efficient) asymptotic variance of our estimator

when the optimal GMM weighting matrix is used.

Corollary 1 If MN = [Ψ1N(θ̂GMM)]
−1 is chosen, such that MN

p→ [Ψ1(θ0)]
−1, then the

asymptotic distribution of θ̂GMM simplifies to:

√
N(θ̂GMM − θ0)

d→ N(0, [Ψ2(θ0)]
−1).

To end this subsection, we point out that the SAE sample selection model can also be

estimated using a two-step procedure. In the first step of this procedure, consistent estimates

of the parameters in θ1 are obtained from (13). In the second step, nonlinear least squares

(NLLS) is employed to estimate the parameters in y2i = β0 + x02iβ1 + µbλi + v2i, in which

the parameter γ enters nonlinearly in the "adjusted" IMR (bλi). This procedure is attractive
since it preserves the two-step intuition of the heckit model, however, to estimate the correct

standard errors for the second-step estimates one must adjust for the fact that the parameters

in θ1 are estimated in a first step, and also employ a heteroskedasticity-consistent variance-

covariance estimator for NLLS since v2i is non-spherical. We avoid the extra steps to obtain

correct standard errors by employing the sequential GMM estimator in (15).

3.2 Estimation of the SAL sample selection model

We start by noting that in the sample selection model with SAL dependence the IMR does

not depend on parameters from the outcome equation (second step). To see this, note that

from (5) and (6):

var(ε1i) = 1, var(ε2i) = σ22, and E(ε1i, ε2i) = σ12. (16)

and the conditional regression function for the outcome equation (6) becomes:

E[y2i|y1i > 0] = β0 + x02iβ1 + γ
X
j 6=i

cijy2j +E[ε2i|ε1i > −(α0 + x01iα1 + δ
X
j 6=i

cijy1j)]

= β0 + x02iβ1 + γ
X
j 6=i

cijy2j +
E(ε1i, ε2i)p
var(ε1i)

· φ [−ϕi(θ1)]

{1− Φ [−ϕi(θ1)]}

= β0 + x02iβ1 + γ
X
j 6=i

cijy2j +
σ12
σ1
· φ [−ϕi(θ1)]

{1− Φ [−ϕi(θ1)]}

where ϕi(θ1) ≡ α0 + x01iα1 + δ
P

j 6=i cijy1j. The second multiplicand in the last term is the

usual IMR that only depends on parameters from the selection equation. We suggest the
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use of the same sequential estimation framework as with the SAE model to directly obtain

the appropriate variance-covariance matrix of the estimated parameters (Newey, 1984). In

addition, we note that under the assumptions maintained for the SAL model and regularity

conditions on the spatial dependence process (such as A6 and A9 in the appendix), standard

GMM asymptotic results apply, and thus the spatial heckit estimator for the SAL model is

consistent and asymptotically normal.7

For completeness, we outline the moment conditions upon which the spatial heckit esti-

mator for the SAL model is based. First, consider the selection equation in (5) that implies a

binary choice model for the observed variable y1i, which under assumption A can be rewritten

as:

P (y1i = 1) = Φ(α0 + x01iα1 + δ
X
j 6=i

cijy1j) = Φ(ϕi). (17)

Note that this probit model contains both endogenous and exogenous variables, and thus

a nonlinear two-stage least-squares (NL2SLS) procedure (Amemiya, 1974) can be used to

estimate the parameters of interest. Let z1i be a vector of variables that contains a constant,

x01i, plus at least one instrument.
8 Replacing ϕi for ψi in the definition of the generalized

residuals in (12), the NL2SLS estimator can be obtained by solving the following moment

conditions:

s(z1, θ1) = z01N ũ1N(θ1) = 0

where θ1 = {α0, α01, δ}.
The outcome equation, now expanded by the inclusion of the IMR, can be estimated with

any of the spatial methods developed for this linear equation.9 We illustrate our estimator

employing 2SLS. Define

m(z2N , θ) = [y1N · z2N ]0 ũ2N(θ), ũ2N(θ) = y2N − β0 − x02Nβ1 − µbλ(θ1)− γCy2N

where z2N includes the regressors of the outcome equation, the estimated IMR, and at least

one instrument, which could be in principle the same instrument(s) contained in z1. Defining

z0N = (z
0
1N , [y1N · z2N ]

0)0 and ũN(θ) = (ũ
0
1N(θ1), ũ

0
2N(θ))

0. Then, all parameters of the sample

selection model with SAL dependence can be estimated as:

θ̂GMM = argmin
θ∈Θ

gN(θ)
0MNgN(θ)

7For a review of the asymptotic properties of GMM sequential estimators see Newey (1984).
8In particular, the same instruments proposed by Kelejian and Prucha (1998) can be used.
9The linear SAL model could be estimated, for instance, with 2SLS, using the methods by Lee (2001b),

or maximum likelihood (see Anselin 1988).

10



where gN = N−1z0N ũN(θ), for a positive definite MN such that MN
p→M .

4 Monte Carlo Experiment

We conduct a Monte Carlo experiment to explore the finite-sample performance of the spatial

heckit estimator for the sample selection model with spatially autoregressive errors (SAE).

The spatial heckit estimator is compared to three other estimators: the Kelejian and Prucha

(1998) estimator for the SAE model that ignores sample selection but accounts for spatial

dependence; the simple heckit estimator that accounts for sample selection but ignores spatial

dependence; and finally the ordinary least squares (OLS) estimator that ignores both sample

selection and spatial dependence. We compare these estimators in terms of their finite sample

bias and root-mean square error.

Given that we combine features of a sample selection model with a spatial dependence

specification, we pay close attention to previous simulation studies in specifying each of

the two features of our models, such as Cosslett (1991) and Leung and Yu (1996) for the

sample selection model, and Beron and Vijverberg (1999) and Kelejian and Prucha (1999)

for spatially dependent models.

Our data generating process (DGP) is as follows :

y∗1i = α0 + α1x1i + α2x2i + u1i, u1i = δ
X
j 6=i

ciju1j + ε1i (18)

y∗2i = β0 + β1x3i + β2x1i + u2i, u2i = γ
X
j 6=i

ciju2j + ε2i. (19)

Each of our models consists of three uncorrelated exogenous variables, one of which is

common to both equations, as in Cosslett’s (1991) experimental design. These exogenous

variables are generated as xk ∼ U(0, 1), k = 1, 2, 3. The innovations ε1i and ε2i are generated

bivariate normal as follows: ∙
ε1i
ε2i

¸
v N

µ∙
0
0

¸
,

∙
1 ρ
ρ 1

¸¶
(20)

where we set ρ = 0.5 for the correlation between the innovations in each of the two equations.

The parameters of the model that are not related to the spatial dependence feature are set

at α1 = α2 = β1 = β2 = 1 and β0 = 0. The parameter α0 is used to control the amount

of sample selection, for which we consider two cases: 25% censoring (α0 = −0.3) and 40%
censoring (α0 = −.77). We consider in the experiment three different sample sizes: N = 100,
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225, and 400 observations. Importantly, these sample sizes refer to the uncensored sample,

that is, the average number of observations available for estimation of the outcome equation

is 75, 168, and 300, respectively, for the case of 25% sample selection; and 60, 135, and 240,

respectively, for the case of 40% sample selection.

Regarding the spatial autoregressive parameter, we consider three different values: 0.25,

0.5, and 0.75. In addition, we consider two different types of instruments in our simulations

to gauge their relative performance: the Kelejian and Prucha (KP) instruments, which are

always available to the researcher;10 and two artificially generated exogenous instruments

that mirror a situation in which the researcher has available additional instruments. These

generated instruments are specified to have a correlation of about 0.2 with the exogenous

included variables in the model. Due to computational constraints, 250 replications are

undertaken for the models with N = 100, 150 replications for the models with N = 225,

whereas 50 replications are undertaken for the models with N = 400.

The matrix of spatial weights has to be specified. For this, we create three grids of 10

by 10, 15 by 15 and 20 by 20 for the observation matrices of 100, 225 and 400, respectively.

Each grid is assigned an X and Y coordinate centered on the grid such that the bottom left

corner of the grid had a value of (0.5, 0.5). We use these grids to create a weighting matrix

that is based on the square of the inverse Euclidean distance between any two points. After

creating the location specific weights for each grid, the matrix is row standardized so that the

diagonal elements of the weighting matrix are all zeros and the sum of any one row is equal

to 1. Finally, a band is used to determine the number of observations that may influence a

centered observation. Such band is set with a lower bound of 0 and an upper bound equal

to
√
5. As a result, there exists spatial dependence for all the observations, and, on average,

each observation has 4 neighbors.11 This way of specifying the spatial weighting matrix is

widely used within the literature, see, for instance, Anselin (1988).

Tables 1 through 3 present simulation results for the outcome equation of the SAE model

for samples of size 100, 225 and 400, respectively. In addition to presenting simulation results

for OLS, heckit and Kelejian and Prucha’s (1998) estimator for the SAE model (KP-SAE),

Table 1 also shows simulation results for the two different versions of our spatial heckit

estimator: one in which the generated instruments discussed above are used (Spheck Gen)

10More specifically, in the simulations we use the independent columns of [x,Cx,C2x].
11We note that Kelejian and Prucha (1999) find that controlling or not for the number of neighbors per

unit when specifying a weighting matrix does not lead to significantly different results in their simulation
study.
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and another in which the Kelejian and Prucha instruments are employed (Spheck KP).12 The

first column in each table indicates the extent of sample selection (sel) and spatial dependence

(δ = γ) for the models considered. For each of these models, up to four parameters of interest

are reported, which are listed in the second column of each table. The remaining columns

in the table are arranged in two blocks that correspond to the average bias (BIAS) and the

root-mean squared error (RMSE) of the different estimators.

The first estimator reported is OLS, which ignores both features of the data: sample

selection and spatial dependence. As a result, OLS is inconsistent, which is reflected in

the fact that it has large bias and RMSE that increase as the amount of sample selection

or spatial dependence increases. In addition, neither the bias nor the RMSE decrease as

the sample size increases. In general, though, OLS is able to estimate β1 (the coefficient

on the variable that does not appear in the selection equation) with relatively small bias

compared to the other coefficients. This is due to the fact that the variables xk (k = 1, 2, 3)

are generated independently, and thus there is little effect of the sample selection on the

coefficient on x3 (β1).

The second estimator reported is the heckit estimator, which accounts for sample selection

but ignores spatial dependence. The consequence of spatial dependence on this estimator

is inconsistency, as explained above, since the probit model that is estimated in the first

step is heteroskedastic due to the spatial dependence. Therefore, we might expect that the

bias and RMSE of the heckit will increase as the amount of spatial dependence increases.

This is typically the case in Table 1, except for the bias of the parameter β1. In addition,

the bias also frequently increases as the amount of sample selection increases, except for the

same parameter β1. Compared to OLS, the heckit estimator shows a great improvement,

even though it is also inconsistent in theory. While the average bias and RMSE of β1 is very

small and comparable to that of OLS, the other two coefficients (β0 and β2) have larger bias:

in the case of β2, the bias has the interpretation of percentage and ranges from 3.9-13.3,

1.5-9.7 and 2.2-4.2 percent for sample sizes 100, 225 and 400, respectively. In the case of β0
the bias (not interpreted as percentage) ranges from -1.32 to -0.22, -0.16 to 0.003 and -0.12

to -0.07 for sample sizes 100, 225 and 400, respectively. Thus, the range of the bias on these

coefficients decreases across model specifications as the sample size increases. Interestingly,

12The spatial heckit estimators require starting values. Both in the simulations and in the empirical
application presented below, we employ starting values that are available in practice. In particular, the
staring values employed for all parameters except δ and γ are the heckit parameter estimates. The starting
values employed for δ and γ are equal to the KP-SAE estimate of γ.
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the bias of these two coefficients is of opposite sign compared to the bias in OLS, with only

a few exceptions within the models with 100 observations. Finally, the RMSE of the heckit

estimator for the coefficients β0 and β2 is much larger than that of OLS.

The third estimator reported is KP-SAE that accounts for spatial dependence but ignores

the sample selection feature of the data, which would result in inconsistent parameter esti-

mates. In agreement with this notion, the bias and RMSE increase as the amount of sample

selection increases, but they also typically increase as the amount of spatial dependence in-

creases. Compared to the previous two estimators, with the exception of β1, the KP-SAE

shows a bias in the coefficients β0 and β2 of about the same magnitude as that of the OLS

estimator, which is significantly larger than that of the heckit estimator. In the same way,

the RMSE of the KP-SAE estimator is of about the same magnitude as that of OLS and

thus smaller than that of heckit. The similarity between the results of OLS and KP-SAE

might not be surprising since in theory the latter offers only a gain in efficiency over OLS in

the absence of sample selection.

KP-SAE is the first estimator that produces an estimate of the SAE parameter γ, which

shows bias and RMSE that increase with both the amount of sample selection and spatial

dependence. The bias of γ ranges from 21.6 to 53.2 percent of the true γ in the models with

sample size of 100, while in the models with sample size of 225 and 400 the bias ranges from

17.6 to 73 and 36.4 to 79.7 percent of the true γ, respectively. Therefore, the bias in the

KP-SAE estimate of γ appears not to vanish as the sample size increases. Finally the RMSE

does not become smaller as more observations are available, as it ranges from 0.075 to 0.407,

0.051 to 0.548 and 0.091 to 0.599 for sample sizes 100, 225 and 400 respectively.

The last two estimators are the two versions of the spatial heckit estimator, Spheck

Gen and Spheck KP, which are consistent for all parameters in the model. Reporting these

two versions allows the comparison of the spatial heckit using potentially available external

instruments and using the always available instruments proposed by Kelejian and Prucha

(KP).

In Table 1 (N = 100), the Spheck Gen estimator of β0 and β2 possesses smaller bias than

OLS and KP-SAE, but typically larger bias than heckit, especially when the sample selection

is 25%. In fact, Spheck Gen performs much better than all other three estimators (including

heckit) in the model with the highest sample selection (40%) and spatial dependence (0.75).

In terms of the RMSE of β0 and β2, however, Spheck Gen has typically the highest among
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all estimators across all models.13 In terms of β1, Spheck Gen has low bias and RMSE,

comparable to that of other estimators. Comparing the KP-SAE estimate of γ with that of

Spheck Gen, the latter estimator has smaller bias and RMSE than the former in all models,

except those with low spatial dependence (γ = 0.25). Finally, comparing the two versions of

Spheck using N = 100, the version that employs generated instruments clearly outperforms

in most models the version that uses the KP instruments. Nevertheless, as we show below,

this difference in performance vanishes as the sample size increases.

As the sample size is increased to 225 observations in Table 2, the performance of the

Spheck Gen estimates of β0 and β2 improve in terms of bias, possessing now a smaller bias

than the estimates of all other estimators including heckit. At the same time, however, the

bias of the Spheck Gen estimator of β1 is typically slightly higher than that of the other

three estimators (although this bias is small in absolute terms), and the RMSE for this

parameter is small and comparable to that of the other estimators. In terms of RMSE of

β0 and β2, the Spheck Gen estimator shows a great improvement over the smaller sample

size, now having a comparable RMSE to the heckit estimator, but still larger than the other

two estimators (OLS and KP-SAE). Regarding the estimate of γ, the comparison between

KP-SAE and Spheck Gen is similar to the one with the smaller sample size: Spheck Gen has

smaller bias and RMSE in all models, except those with low spatial dependence (γ = 0.25).

Nevertheless, while the RMSE of Spheck Gen generally decreases as we move from 100 to

225 observations, that of KP-SAE actually increases. Finally, the results using N = 225

show that, while Spheck Gen still outperforms Spheck KP, the two estimators are now more

comparable in terms of bias and RMSE.

Table 3 presents simulation results for a sample size of N = 400. In terms of bias of

β0 and β2, Spheck Gen still outperforms all other estimators in all models (except for the

heckit in two cases in which the two estimators are very close). The bias of β1 using the

Spheck Gen estimator, however, is typically higher than that of the other estimators. In

terms of RMSE and in contrast to the simulations with smaller sample sizes, the Speck Gen

estimator now has similar RMSE to the other estimators considered (most notably OLS and

heckit) for all three parameters β1, β2, and β3. This may be attributed to the larger sample

size (N = 400), which indicates that in this case the finite sample properties of the spatial

13Recall that even though N = 100 in these models, only about 75 (25% selection) or 60 (40% selection)
observations are available to estimate the outcome equation. The small number of observations likely causes
the Spheck estimators to have higher variance compared to the other estimators.

15



heckit estimator are reasonably good for a sample as small as 400 observations. In terms of

the spatial autoregressive parameter γ, Spheck Gen outperforms KP-SAE in terms of both

bias and RMSE, except again in the models with low spatial dependence (γ = 0.25). As

before, we note that the RMSE of γ for Spheck Gen further decreases with the larger sample

size, while that for KP-SAE increases. Finally, comparing the performance of Spheck Gen

with that of Spheck KP in the models with N = 400 corroborates the previously noted trend

that the two estimators become more similar in terms of bias and RMSE as the sample

size increases. This lends support to the notion that as more observations are available, the

version of the spatial heckit estimator that employs KP instruments yields similar results to

employing exogenous instruments (if available).14

Table 4 presents simulation results for the selection equation. This equation is only

estimated in the heckit (using a probit model) and the two versions of Spheck. However,

given their similar performance and to save space, only the results for Spheck Gen are

presented.15 Even though we present results for the two cases of 25% and 40% censoring,

the same number of observations are employed in each case since it is the selection equation.

However, the value of the constant term is different in each case.

It is evident from Table 4 that the spatial heckit estimator (Spheck Gen) typically out-

performs the heckit estimator in terms of bias, while the reverse is true in terms of RMSE.

However, the RMSE of the Spheck Gen estimator is comparable to that of the heckit model

even in a sample as small as 100 observations. In addition, the improvement in RMSE of

the Spheck Gen estimator as the sample size increases is larger than the one observed in the

heckit model. As a result, the Spheck Gen estimator achieves a RMSE essentially identi-

cal to that of the heckit estimator in the models with 400 observations. Finally, it should

be pointed out that the estimate of the spatial parameter δ by the Spheck Gen estimator

shows considerable bias across model specifications, with a relatively large bias for models

with lower spatial dependence. Importantly, however, the bias and RMSE of this parameter

estimate decreases substantially as more observations are available.

14Recall that the current comparison uses exogenously generated insrumental variables with a correlation
of 0.2 with the included regressors. Depending on the application, such correlation could be considered high,
which lends further support to the notion that the KP instruments are a good alternative to use in practice
when the quality of other instruments is doubtful.
15The results for the selection equation for the Spheck KP estimator are available upon request. In

summary, the results for Spheck Gen are only slightly better than for the Spheck KP model. It is worth
noting that, contrary to the outcome equation, the two versions of the spatial heckit estimator are very
similar, even in the models with the smallest sample size.
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In summary, we regard the simulation results as encouraging with respect to the finite

sample properties of the spatial heckit estimator. In particular, the fact that the advantages

of our estimator are evident in the simulations despite using relatively small sample sizes is

worth pointing out. Finally, the simulations also show that as more observations become

available the two different sets of instruments considered for the spatial heckit estimator

produce very similar results in terms of both bias and RMSE in all four parameters. This

finding is important for in practice researchers might find it hard to find quality instrumental

variables, whereas the KP instruments are always available.

5 The Sample Selection Models with Spatial Depen-
dence in Practice

In this section we discuss the empirical importance of taking into account sample selection

bias when estimating models that exhibit spatial dependence. Furthermore, we illustrate

the application of the spatial heckit estimator for the sample selection model with SAE

dependence using a data set from a fishery, which is censored for confidentiality reasons.

McMillen (1995) motivates the pervasiveness of sample selection problems in spatial data,

in particular in urban economics and regional science. His main example deals with data on

land use and values in the city of Chicago during the 1920s (see references in McMillen, 1995).

In this case, unobserved variables that make a parcel more likely to receive residential zoning

may increase the value of residential land (McMillen, 1995). Other applications of sample

selection models with spatial data discussed in McMillen (1995) include models of housing

prices, rent and tenure choice (Goodman, 1988), office rents and lease provisions (Benjamin

et al., 1992), and home improvement choice (Montgomery, 1992) in urban economics; the

choice between central city and suburban employment (McMillen, 1993), and analysis of

earnings and migration (Borjas et al., 1992) in labor economics. In fact, the increasing

availability of geo-coded data makes even more relevant the availability of methods to deal

with sample selection when spatial dependence is present.

Our application in this section is in the area of natural resource economics, in particular

fisheries economics. We employ a sample selection model with SAE dependence to estimate

the spatial efficiency of production within a fishery, using a data set from the Pacific cod

fishery within the Eastern Bering Sea that is censored for reasons of confidentiality. As in

the previous section, we compare the performance of the spatial heckit estimator for the
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SAE with OLS, the traditional heckit model and Kelejian and Prucha’s SAE estimator.

Within fisheries management there has been a strong push to expand the suite of man-

agement regimes implemented and economic models used to evaluate them, to incorporate

the spatial and temporal structure of the bioeconomic model. This has even lead some to

draw the conclusion that future spatial management regimes will be defined not only over

time, technology and location but also over depth and degree of implementation (Wilen,

2004). Therefore, the challenge for fisheries economists is to expand their models, both em-

pirical and theoretical, to reflect this frontier in fisheries management. An initial interest

is to investigate the production process within fisheries over the spatial region defined by

the distribution of the metapopulation harvested. The catch-per-unit-effort (CPUE) has

been traditionally implemented to analyze the productivity and efficiency of the production

process within fisheries, where CPUE is defined as the catch per a "haul" executed. A "haul"

represents the technology used such as a trawl device, pot vessel, hook-and-line, jig, etc.

Previous empirical work has been focused on investigating the technical efficiency present

within a fishery in an effort to determine the factors that explain deviations from the produc-

tion frontier (Kirkley et al. 1995, 1998; Sharma and Leung 1998; Squires and Kirkley 1999;

Pascoe and Coglan 2002; Viswanathan et al. 2002; Garcia del Hoyo et al. 2004). Applying

the results of the previous investigations to the current front line of spatial fisheries man-

agement would be inappropriate because the spatial processes present are not incorporated

into the model. Therefore, a spatial efficiency model is needed to determine the fleet’s level

of efficiency across space and time. Ignoring the spatial distribution of fleet efficiency may

have an adverse impact on the welfare of fishermen. For instance, should a managing body

decide to close a given spatial region within the fishery with a low level of spatial technical

efficiency this will displace fishing effort into the surrounding areas. If these areas possess a

higher level of spatial technical efficiency, it will force them to more exhaustively push the

frontier of their production capabilities to capture the same amount of the target species.

This will invariably yield a higher cost of harvesting and lower rents for the fishermen, more

so than if a high efficiency area is closed instead.

The primary method utilized in previous studies of technical efficiency within a fishery is

the stochastic frontier production function model developed by Aigner, Lovell and Schmidt

(1977). This method is conducted on a vessel-by-vessel basis and specifies an error term with

two components: the first is a symmetric (normally distributed) disturbance that allows the
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production frontier to be stochastic; while the second error component is one-sided and

reflects the inefficiency of individual vessels. The model we employ in this application is

similar to Zellner, Kmenta and Dreze (1966) in that we allow the production frontier to be

stochastic but ignore the potential inefficiency with respect to the frontier. We choose this

specification for two reasons. First, we are not interested in the vessel specific characteristics

over space but the total fleet’s level of spatial technical efficiency over space, and thus it

seems more natural to focus on the average production function. Secondly, an extension of

our methods to a model such as that of Aigner, Lovell and Schmidt (1977) is beyond the

scope of the current paper. Our main purpose with this empirical application is to illustrate

the use of the spatial heckit estimator.

Determining the spatial rates of technical efficiency requires a very fine resolution of

data revelation. Often times this data is screened for confidentiality reasons to preserve

the privacy of the fishermen within the fleet. The current publicly available data set on

fishing effort within the Eastern Bering Sea of Alaska is compiled by the National Oceanic

and Atmospheric Administration (NOAA) from the observer and log-book data collected by

the National Marine Fisheries Service (NMFS). This data set is censored by not reporting

the CPUE within a location unless 4 or more vessels, possessing similar characteristics, fish

within that region. Therefore, the use of this data by researchers is limited unless they

employ an empirical method that can control for this censorship, which justifies the use of

the spatial sample selection model developed within this paper. Within our data set, there

are 320 observations, of which we observe 208, which equates to a sample selection rate of

35%.

Although the data set does not contain vessel identifiers, it is still possible to determine

the overall level of the fleet’s spatial efficiency using this data set. Should one decide to refine

the analysis by focusing on inter and intra vessel differences in the spatial distribution of

technical efficiency, vessel specific data would be necessary. This ultimately may appear to be

a more interesting question. However, given that a researcher will invest a substantial amount

of time and effort prior to obtaining this information, it may be beneficial to investigate the

fleet performance to test for spatial heterogeneity in the fleets’ spatial rate of technical

efficiency before investigating the vessel specific model.

Our analysis is conducted on the Pacific cod fishery within the Eastern Bering Sea of

Alaska for the year 1997 using the NOAA data and the spatial heckit model outlined within

19



this paper. Pacific cod (Gadus macrophalus) is a demersal species targeted in the Alaskan

groundfish fishery. Estimating the fleets’ spatial efficiency with regard to this species is bene-

ficial due to its broad distribution within the Eastern Bering Sea which makes it susceptible

to recent regulations targeted to protect the Stellar sea lion rookeries and the even more

recent concerns of essential fish habitat (EFH) management.

To conduct the spatial efficiency estimation, the spatial resolution of what is deemed a

"location" must be defined. The spatial resolution utilized are the Alaska Department of

Fish and Game’s (ADF&G) statistical reporting units. This unit of measure divides the

Eastern Bering Sea into a grid with each cell being one-half degree latitude by one degree

longitude. For the year analyzed this divides the fishery into 90 spatially different locations

within the fishery. This resolution is a finer resolution than has been used by many studies

within the location choice literature (for example, Bockstael and Opaluch 1983; Eales and

Wilen 1986; Dupont 1993; Holland and Sutinen 1999, 2000; Mistiaen and Strand 2000; Smith

2000).

The CPUE for the Pacific cod fishery is defined as the metric tons of fish caught during

the year within the ADF&G statistical reporting regions. This measure is the average of

all vessels that fished within this region of like vessel characteristics. Vessels were grouped

according the size of vessel, gear utilized and type of vessel (catcher-processor vs. catcher-

vessel) by NOAA. Therefore, each observation represents a relatively homogeneous micro-

fleet within the Pacific cod fishery that fished within the ADF&G region. Given that these

observations are spatially defined, it is plausible that they are spatially correlated, and

therefore a spatial econometric method must be utilized to obtain appropriate estimates

of the spatial efficiency. Indeed, two different Moran-I tests employed soundly reject the

null hypothesis of zero spatial autocorrelation on the data. The first Moran-I test uses

the residuals resulting from an OLS regression on the observed data, while the second test

employs the residuals from the heckit model (Kelejian and Prucha 2001). The tests’ statistics

and p-values are reported in Table 5.

To allow comparison among the four estimators employed in the Monte Carlo experi-

ment in the previous section, the relative spatial efficiency is estimated with each of them.

We note that given the documented spatial error dependence and the sample selection in

the data, a sample selection model with SAE dependence is likely the appropriate model.

The OLS and SAE models are estimated using only the observations that are not censored,
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while the heckit model accounts for the sample selection in the data but ignores the spatial

dependence. These features most likely render the estimates of these three models incon-

sistent. The sample selection model with spatial dependence in (1)-(2) is estimated with

y2 as the natural logarithm of CPUE and x2 containing the log-transformed bathymetric

measurements corresponding with the maximum and minimum depth within a ADF&G sta-

tistical reporting area, the stock assessment data resulting from the NMFS annual biomass

trawl survey, and dummy variables for the following vessel characteristics that determine

the homogenized unit observed: catcher-vessel (CV), hook-and-line gear (HAL), non-pelagic

trawl gear (NPT), and vessel at least 125 feet long (Large). As for the selection equation,

x1 contains the same variables as x2 along with an additional variable, a one-year lagged

biomass trawl survey observation, under the assumption that this lagged variable influences

the probability that four or more vessels will fish in a given statistical reporting location but

not the amount of "hauls" that will be conducted. A lower stock signal in the previous year

will presumably reduce the attractiveness of revisiting this location in the upcoming year

and therefore reduce the total number of vessels that fish within the location.

In order to determine the spatial weighting matrix, we use the following common speci-

fication to assign spatial weights among the statistical reporting units we use as locations:

cij =
1
d2ij
, where cij is the spatial weight assigned to the distance between location i and

location j, and dij is the Euclidian distance between locations i and j. The spatial weights,

cij, are row standardized such that the diagonal elements of the spatial weighting matrix are

all zero and the sum of any one row is one.

The results from the four models are presented in Table 5.16 These coefficients can be

used to determine the relative spatial technical efficiency by conducting a corrected residuals

procedure (Richmond 1974, Greene 1980). To implement this method the largest residual

from the estimation procedure is added to the constant term of the regression to obtain

corrected residuals that provide a benchmark for the level of efficiency present relative to the

observation with the largest positive residual. To estimate efficiency, the following transfor-

mation of the modified errors is utilized (Russel and Young 1983): Effi = exp{−εi}, where
εi represents the transformed residuals. Following the estimation of the efficiency levels for

the different statistical reporting areas, they are ordered to determine the relative rates of

16We note that the numerical optimizations needed to estimate the spatial heckit make it computationally
intensive relative to the other three estimators. In the currrent application, it takes 134 minutes to compute
the spatial heckit estimator in a computer with a 1.69 GHz processor.
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efficiency that each of the four models predicts. Table 7 provides a list of the top ten statisti-

cal reporting areas in terms of their relative spatial technical efficiency rates. Because there

are more observations than statistical reporting areas, we often observe more than one class

of vessels fishing within a geographic region. To account for this, the technical efficiency

levels for each of the 90 locations are averaged across each class of vessels.

Analyzing the results in Table 5 for the outcome equation, the estimated coefficients from

each of the models are somewhat similar in sign and magnitude. The primary exceptions are

the "Max. Depth" and "Dum HAL" coefficient in the heckit model and the "Dum Large"

coefficient in the spatial heckit model. Within the heckit model, the coefficient on "Max.

Depth" is negative and statistically insignificant in contrast to the positive and statistically

significant estimates of the other models, whereas the coefficient on "Dum HAL" is negative

and statistically significant, contrary to the positive and statistically significant estimates

of the other three models. Regarding the latter coefficient, given that the hook-and-line

(HAL) technology is one of the most effective technologies within the Pacific cod fishery,

it is likely that this estimate in the heckit model is misleading.17 The coefficient on “Dum

Large” within the spatial heckit model is not statistically significant, contrary to the positive

and statistically significant estimates from the other three models. This might be the due to

the spatial heckit model correctly accounting for the nature of the data, although it could

also be due to other factors. In addition, the estimated spatial autocorrelation parameter

(γ) is substantially different in the KP-SAE and spatial heckit models. The magnitude of

the estimate of γ in the KP-SAE (0.09) is smaller than that within the spatial heckit model

(0.79). This may be attributed to the KP-SAE’s model inability to correctly capture the

spatial autocorrelation in the data due to the sample selection.

Table 6 presents the estimated coefficients for the selection equation using the heckit

and the spatial heckit estimators. The estimates obtained from each of these two estimators

are fairly similar with the exception of the coefficient on "Dum Large", which is negative

and statistically significant in the heckit model, but positive and statistically insignificant in

the spatial heckit model. This is consistent with the result for the spatial heckit model in

the outcome equation. It is also worth noting that the spatial heckit model yields smaller

standard errors for all of the coefficients. Perhaps surprisingly, even though the estimate of

17The three primary production technologies used to harvest Pacific cod in the Bering Sea in 1997 are
HAL, NPT, and pelagic trawl gear (PTR). They account for approximately 91% of the "unique hauls"
deployed. Among these three primary production technologies, HAL is more productive per haul executed.

22



the spatial autoregressive parameter (δ) of the selection equation is positive (0.1827), it is

statistically insignificant.

Finally, with regard to the ranking of the statistical reporting areas in terms of their

relative spatial technical efficiency rates, reported in Table 7, the results are substantially

different across the four models considered. The OLS, heckit, and KP-SAE models yield a

similar ranking of spatial efficiency, yet they include only 4 of the 10 regions ranked using

the spatial heckit estimator. Given the documented nature of the data set, it is likely that

the spatial heckit estimator is more appropriate to use than the other estimators, which

would suggest that inaccurate inferences may be drawn regarding spatial efficiencies using

the alternative estimation techniques. This said, all four models do possess the same highest

ranked location. Therefore, the benchmark utilized for the spatial efficiency calculations is

identical.

Although a more complete analysis would be required before any concrete policy recom-

mendations are made from this exercise, they do suggest that there exists heterogeneity in

the spatial efficiency rates within the Pacific cod fishery. This may be attributed to a number

of different factors such as climatic conditions, skipper ability, and interactions with other

fisheries (to name a few) which are all lumped into the corrected residual used to estimate

efficiency.

More importantly for the purposes of the present paper, these results are indicative of the

potential benefits of accounting simultaneously for both sample selection and spatial depen-

dence. Failing to account simultaneously for both of these features can result in inaccurate

inferences and thus potentially misleading policy recommendations.

6 Conclusion

This paper proposes a method of estimation for two sample selection models with spatial

dependence that differ in terms of the type of spatial correlation present. The first, a model

with spatial autoregressive errors (SAE), is slightly more challenging than the second, a

model with spatial autoregressive lags (SAL), and thus more attention is devoted to the

former model.

The method of estimation for both models is analogous to the popular heckit model (and

thus we call our estimator the "spatial heckit"), in which consistent estimates of the proba-

bility of observing a particular unit (selection equation) are estimated using a modification
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of the probit model (Pinkse and Slade 1998). Then, the odds of observing each unit are

calculated (the inverse Mills ratio) and used as an additional regressor that controls for the

selection bias in the equation of interest (outcome equation). Importantly, in the method of

estimation we propose for the sample selection model with SAE dependence, the appropriate

inverse Mills ratio depends on the SAE parameter of the outcome equation. Therefore, to

increase efficiency of the resulting estimator and to obtain directly its variance-covariance

matrix, we propose to estimate the model jointly by nesting the two equations into a sequen-

tial GMM framework (Newey, 1984).

We explore the properties of the spatial heckit for the model with SAE dependence

by deriving its asymptotic properties, conducting simulations, and applying it to actual

data. The estimator is consistent and asymptotically normally distributed. The simulations

show the potential biases incurred by other estimators that ignore sample selection, spatial

dependence, or both, and also show that our estimator is valuable when the data exhibits

both of these characteristics. Importantly, the finite sample properties of our estimator

are shown to be acceptable even for relatively small sample sizes. Finally, the empirical

application section illustrates that sample selection is a common occurrence in spatial data

sets typically available to researchers, and shows that our estimator is both feasible and

valuable to use in practice.

To our knowledge, the proposed estimator is among the first to account for sample se-

lection and spatial dependence simultaneously. Nevertheless, some shortcoming are worth

mentioning. First, our estimator relies on a distributional assumption (joint normality) of the

error terms in selection and outcome equations, just as the heckit estimator does. This short-

coming indicates an area for future research. Second, is the relatively greater computational

intensity of our estimator compared to the available methods for spatial models without

sample selection. However, our estimator still compares favorably in this respect with other

estimation methods that would require approximation of multidimensional integrals.
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(sel, δ=γ) OLS Heckit KP-SAE Spheck 
Gen

Spheck 
KP OLS Heckit KP-SAE Spheck 

Gen
Spheck 

KP
(25%,0.25) 0.280 0.038 0.290 0.134 -0.900 0.447 1.204 0.464 2.682 4.674

0.024 0.026 0.028 0.028 0.005 0.418 0.417 0.426 0.436 0.457
-0.198 -0.039 -0.212 -0.159 0.489 0.469 0.848 0.488 1.807 3.221

0.054 0.115 0.101 0.075 0.180 0.178
(25%,0.5) 0.295 -0.015 0.311 0.239 -0.988 0.475 1.959 0.566 3.035 3.978

0.023 0.027 0.034 0.033 0.010 0.421 0.421 0.520 0.446 0.468
-0.204 -0.073 -0.231 -0.107 0.527 0.485 1.044 0.621 1.754 2.694

-0.188 -0.007 -0.020 0.196 0.135 0.140
(25%,0.75) 0.370 0.220 0.415 0.217 -1.254 0.641 2.267 1.175 3.250 5.237

-0.014 -0.009 0.013 0.004 -0.013 0.467 0.469 1.231 0.501 0.535
-0.225 -0.077 -0.308 -0.138 0.526 0.577 1.298 1.389 1.870 2.757

-0.399 -0.105 -0.128 0.407 0.163 0.180
(40%,0.25) 0.423 -0.107 0.435 0.223 -1.016 0.567 2.397 0.582 2.304 6.295

0.007 0.017 0.000 -0.088 -0.150 0.448 0.453 0.471 0.456 0.666
-0.239 0.127 -0.244 -0.117 0.498 0.525 1.316 0.530 1.308 3.139

0.084 0.255 -0.084 0.107 0.280 0.149
(40%,0.5) 0.448 -0.193 0.447 0.232 -0.738 0.609 2.107 0.689 2.382 4.223

-0.007 0.004 -0.004 -0.077 -0.116 0.449 0.453 0.604 0.472 0.530
-0.245 0.066 -0.219 -0.071 0.288 0.567 1.193 0.660 1.063 2.139

-0.138 0.086 0.091 0.152 0.136 0.135
(40%,0.75) 0.516 -1.321 0.546 -0.033 -0.961 0.768 16.853 1.221 3.243 6.246

-0.034 -0.028 -0.001 -0.089 -0.158 0.504 0.506 1.225 0.544 0.670
-0.259 0.133 -0.266 0.005 0.492 0.637 1.554 1.306 1.790 3.136

-0.360 -0.077 -0.089 0.373 0.141 0.152
Note: Simulation results are based on 250 replications.

Table 1. Simulation Results for N=100
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(sel, δ=γ) OLS Heckit KP-SAE Spheck 
Gen

Spheck 
KP OLS Heckit KP-SAE Spheck 

Gen
Spheck 

KP
(25%,0.25) 0.296 -0.056 0.297 -0.010 -0.187 0.373 0.718 0.378 0.769 1.350

0.005 0.007 -0.008 -0.042 -0.069 0.279 0.280 0.283 0.274 0.290
-0.206 0.037 -0.203 0.010 0.117 0.328 0.562 0.328 0.587 1.076

-0.065 0.141 0.125 0.068 0.168 0.157
(25%,0.5) 0.304 -0.058 0.312 0.003 -0.323 0.396 0.828 0.432 0.899 1.888

0.008 0.010 0.000 -0.019 -0.056 0.284 0.285 0.357 0.291 0.295
-0.209 0.038 -0.217 0.000 0.054 0.331 0.624 0.387 0.684 1.012

-0.313 0.023 0.009 0.313 0.084 0.085
(25%,0.75) 0.357 -0.156 0.362 -0.065 -0.398 0.504 1.419 0.841 1.376 2.406

0.006 0.007 0.063 -0.029 -0.065 0.332 0.332 0.960 0.337 0.345
-0.226 0.097 -0.282 0.023 0.057 0.371 0.891 0.954 0.920 0.983

-0.547 -0.060 -0.075 0.548 0.093 0.105
(40%,0.25) 0.435 -0.032 0.430 0.065 0.205 0.511 1.191 0.508 1.441 1.095

0.004 0.011 0.003 -0.144 -0.182 0.321 0.324 0.320 0.338 0.351
-0.260 0.015 -0.251 -0.058 -0.104 0.383 0.749 0.390 0.753 0.606

-0.044 0.279 0.264 0.051 0.288 0.273
(40%,0.5) 0.458 -0.071 0.443 0.063 -0.028 0.546 1.154 0.553 1.244 1.107

0.004 0.017 0.007 -0.105 -0.159 0.333 0.329 0.399 0.339 0.365
-0.268 0.040 -0.255 -0.044 0.012 0.409 0.779 0.450 0.840 0.751

-0.288 0.108 0.097 0.289 0.125 0.115
(40%,0.75) 0.503 0.003 0.459 -0.006 -0.316 0.620 2.273 0.812 1.379 3.055

0.012 0.027 0.114 -0.050 -0.138 0.338 0.367 0.860 0.363 0.391
-0.246 0.058 -0.254 -0.033 0.100 0.423 0.952 0.793 0.794 1.305

-0.525 -0.035 -0.046 0.527 0.071 0.077
Note: Simulation results are based on 150 replications.

Table 2. Simulation Results for N=225

BIAS RMSE
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(sel, δ=γ) OLS Heckit KP-SAE
Spheck 

Gen
Spheck 

KP OLS Heckit KP-SAE
Spheck 

Gen
Spheck 

KP
(25%,0.25) 0.327 -0.065 0.327 -0.057 -0.220 0.358 0.441 0.359 0.439 0.492

-0.004 -0.007 0.023 -0.048 -0.033 0.189 0.187 0.207 0.196 0.167
-0.250 0.022 -0.269 0.015 0.104 0.309 0.320 0.323 0.320 0.346

-0.105 0.129 0.129 0.106 0.143 0.143
(25%,0.5) 0.333 -0.068 0.356 -0.062 -0.120 0.369 0.458 0.398 0.466 0.486

-0.006 -0.009 0.003 -0.040 -0.040 0.199 0.198 0.283 0.211 0.210
-0.242 0.030 -0.290 0.025 0.054 0.300 0.309 0.353 0.313 0.320

-0.356 0.022 0.019 0.356 0.054 0.053
(25%,0.75) 0.365 -0.111 0.490 -0.119 -0.162 0.430 0.702 0.623 0.733 0.728

0.029 -0.017 -0.011 -0.046 -0.056 0.227 0.242 0.713 0.253 0.250
-0.268 0.042 -0.429 0.032 0.035 0.333 0.377 0.594 0.374 0.354

-0.598 -0.048 -0.051 0.599 0.059 0.063
(40%,0.25) 0.459 -0.086 0.453 0.075 0.013 0.484 0.542 0.476 0.520 0.548

-0.004 -0.001 0.018 -0.156 -0.153 0.213 0.212 0.220 0.264 0.260
-0.287 0.037 -0.301 -0.037 0.003 0.344 0.352 0.360 0.343 0.355

-0.091 0.278 0.276 0.091 0.281 0.279
(40%,0.5) 0.479 -0.103 0.495 0.079 0.071 0.511 0.612 0.531 0.592 0.673

0.003 0.006 -0.017 -0.125 -0.131 0.244 0.242 0.309 0.265 0.278
-0.302 0.040 -0.310 -0.042 -0.020 0.363 0.377 0.394 0.377 0.423

-0.342 0.113 0.110 0.342 0.121 0.119
(40%,0.75) 0.541 -0.121 0.636 -0.050 -0.061 0.599 0.777 0.728 0.766 0.816

0.001 -0.001 -0.005 -0.089 -0.130 0.296 0.315 0.628 0.317 0.350
-0.301 0.033 -0.455 0.002 0.010 0.375 0.399 0.690 0.384 0.387

-0.584 -0.025 -0.031 0.584 0.045 0.052
Note: Simulation results are based on 50 replications.

Table 3. Simulation Results for N=400
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(sel, δ=γ) Heckit Spheck Heckit Spheck Heckit Spheck Heckit Spheck Heckit Spheck Heckit Spheck
(25%,0.25) 0.015 0.010 0.431 0.482 0.018 -0.046 0.292 0.319 0.007 -0.031 0.180 0.189

0.059 0.082 0.538 0.596 0.017 0.035 0.363 0.394 0.039 0.053 0.218 0.225
-0.060 -0.022 0.562 0.619 0.006 0.059 0.377 0.407 -0.053 -0.019 0.214 0.218

-0.204 0.313 -0.169 0.240 -0.143 0.193
(25%,0.5) 0.011 0.021 0.459 0.524 0.022 -0.029 0.312 0.334 0.012 -0.012 0.198 0.208

0.011 0.041 0.533 0.598 -0.020 0.005 0.366 0.388 0.000 0.018 0.219 0.235
-0.070 -0.043 0.565 0.622 -0.030 0.017 0.367 0.384 -0.081 -0.051 0.211 0.211

-0.281 0.356 -0.237 0.288 -0.196 0.223
(25%,0.75) 0.020 -0.032 0.539 0.601 0.046 -0.021 0.359 0.387 0.031 0.002 0.264 0.288

-0.112 0.008 0.534 0.620 -0.124 -0.066 0.383 0.410 -0.120 -0.070 0.271 0.277
-0.170 -0.065 0.560 0.596 -0.156 -0.074 0.389 0.380 -0.197 -0.141 0.285 0.276

-0.280 0.337 -0.235 0.270 -0.199 0.223
(40%,0.25) -0.045 -0.168 0.545 0.512 -0.018 -0.115 0.309 0.351 -0.014 -0.105 0.171 0.203

0.069 0.138 0.538 0.575 0.011 0.046 0.351 0.388 0.020 0.029 0.221 0.240
0.005 0.124 0.572 0.577 0.003 0.083 0.371 0.403 0.007 0.075 0.214 0.232

-0.188 0.298 -0.143 0.214 -0.111 0.159
(40%,0.5) 0.007 -0.105 0.458 0.522 -0.009 -0.080 0.320 0.354 0.031 -0.052 0.179 0.188

0.010 0.095 0.517 0.585 -0.013 0.022 0.357 0.390 -0.024 0.006 0.232 0.255
-0.067 0.065 0.526 0.565 -0.018 0.054 0.374 0.405 -0.068 0.004 0.209 0.205

-0.238 0.320 -0.204 0.245 -0.159 0.194
(40%,0.75) 0.109 -0.009 0.545 0.620 0.079 -0.011 0.371 0.383 0.112 0.031 0.257 0.260

-0.126 0.022 0.538 0.733 -0.136 -0.069 0.388 0.402 -0.140 -0.077 0.247 0.239
-0.208 -0.030 0.572 0.601 -0.141 -0.026 0.379 0.374 -0.187 -0.106 0.274 0.252

-0.248 0.307 -0.218 0.250 -0.166 0.184
Notes: Simulation results are based on 250 replications for N=100, 150 for N=225, and 50 for N=400.
The spatial heckit estimator (Spheck) is computed using generated instruments. See text for details.

Table 4. Simulation Results for the Selection Equation
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Table 5. Estimated Coefficients for the Outcome Equation  
Variable OLS Heckit KP-SAE Spatial Heckit1 

     
Constant 7.5491 8.8629 7.559 6.4013 
 (0.196) (0.514) (0.129) (0.047) 
Max. Depth 0.0788 -0.0017 0.0801 0.1324 
 (0.004) (0.074) (0.003) (0.009) 
Min. Depth 0.0101 0.0328 0.0028 0.0149 
 (0.003) (0.049) (0.002) (0.037) 
Biomass 0.1959 0.1779 0.1977 0.0495 
 (0.003) (0.057) (0.002) (0.003) 
Dum CV 1.309 1.549 1.331 1.442 
 (0.044) (0.216) (0.030) (0.102) 
Dum HAL 0.1081 -0.4813 0.1163 0.1585 
 (0.041) (0.236) (0.027) (0.101) 
Dum NPT -0.5448 -0.8001 -0.5326 -0.5297 
 (0.054) (0.270) (0.037) (0.082) 
Dum Large 0.5898 0.5422 0.5890 -0.2168 
 (0.016) (0.157) (0.011) (0.179) 
IMR ------ -0.9636 ------ 1.6881 
 ------ (0.247) ------ (0.137) 
SAE parameter (γ) ------ ------ 0.09912 0.7909 
 ------ ------ ------ (0.001) 
     
Moran-I Test (p-value) 13.26 (0.00) 10.51 (0.00) ------ ------ 

Notes: Dependent variable is catch-per-unit-effort (CPUE). Standard errors in parentheses. 
1 The spatial heckit is estimated using the Kelejian and Prucha (KP) instruments. 
2 The KP-SAE method does not provide a standard error for the SAE parameter since it is treated as a nuisance 
parameter. For details, see Kelejian and Prucha (1998, 1999). 
 

Table 6. Estimated Coefficients for the Selection Equation 
Variable  Heckit Spatial Heckit 

    
Constant  0.9015 0.4699 
  (0.236) (0.091) 
Max. Depth  0.0020 0.0024 
  (0.002) (0.0001) 
Min. Depth  -0.0024 -0.0029 
  (0.002) (0.002) 
Biomass  -0.0025 -0.0042 
  (0.003) (0.002) 
Lag Biomass  -0.0032 -0.0009 
  (0.002) (0.0001) 
Dum CV  -0.8356 -0.3121 
  (0.179) (0.167) 
Dum HAL  0.5765 0.2701 
  (0.195) (0.114) 
Dum NPT  0.0442 -0.1126 
  (0.259) (0.238) 
Dum Large  -0.4313 0.2288 
  (0.163) (0.143) 
SAE parameter (δ)  ------ 0.1827 
  ------ (0.503) 

Notes: Dependent variable is whether or not CPUE is observed for that observation. Standard errors in parentheses. 



 
Table 7. Top Ten Statistical Reporting Areas in Terms of Their Relative Spatial Technical 

Efficiency  
 

      
Rank  OLS KP-SAE Heckit Spatial Heckit 

1  58 58 58 58 
2  19 19 62 54 
3  9 9 28 51 
4  28 28 9 48 
5  79 62 19 46 
6  62 79 24 19 
7  71 71 71 57 
8  24 24 6 53 
9  3 3 3 28 

10  6 6 59 9 
Notes: Relative spatial technical efficiency is estimated using the coefficient from Table 5 and a corrected residuals 
procedure. See text for details. The entries are the individual identifiers of the 90 statistical reporting areas. 

 
 
 



7 Appendix
The parameter estimate of the sample selection model with SAE dependence is obtained
from the solution to (15), where gN (θ) = 1

N
z
0
N

∼
uN (θ). Denote g(θ) ≡ lim

n→∞
E[gn(θ)]. Then,

the unknown parameter vector θ0 satisfies lim
n→∞

E[gN(θ0)] = 0. Further, define the objective

function as QN = g
0
N(θ)MNgN (θ), where MN

p→M, and Q = g0 (θ)Mg (θ).
The proof of all three propositions follow closely Pinkse and Slade (1998). The main

difference is that some extra conditions have to be verified in for the additional moments
stacked in gN (θ) and the estimated inverse-Mills ratio (IMR).

Assumptions

A1 θ0 is in the interior of the parameter space Θ,which is a compact set.

A2 Q is uniquely minimized at θ0

A3 The vector valued function g (θ) is continuous.

A4 The density of observations in any region whose area exceeds a fixed minimum is
bounded.

A5 The elements of zN are uniformly bounded.18

A6 Let dij denote the distance between location i and j, then

sup
Nij
|cov(y1i, y1j)| ≤ α (dij) ,

sup
Nij
|cov(y2i, y2j)| ≤ α (dij) and

α (d) → 0 as d→∞.

A7 Themoments var (uij) = σ21
P
j

£
ω1ij
¤2
, var (u2i) = σ22

P
j

£
ω2ij
¤2
, andE [u1i,u2i] = σ12

P
j

ω1ijω
2
ij

are uniformly bounded , bounded away from zero, and boundedly differentiable (with
respect to θ).

A8 As N →∞, MN
p→M for some positive definite matrix M .

A9 As d→∞, d2α (dd∗) /α (d∗)→ 0, for all fixed d∗ > 0.

A10 The area in which the observations are located grows at a rate of
√
N in both directions.

A11 Ψ1(θ0) = lim
N→∞

E{NgN(θ0)g
0
N(θ0)} and Ψ2(θ0) = [∂g0(θ0)/∂θ]M [∂g(θ0)/∂θ

0] are posi-

tive definite matrices.

A12 Let ρNij(θ) be the covariance between
uNi√

var(uNi)
and uNj√

var(uNj)
. For some fixed N∗ > 0,

ρNij(θ) is boundedly differentiable , uniformly in θ ∈ Θ, N > L, and i 6= j.

18λ(δ, γ) is an element of zN which will be shown below to be uniformly bounded, as well as its first
derivative.
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A13 | ρNij(θ) | is boundedly away from one from below, uniformly in θ ∈ H(θ0), N > N∗,
and i 6= j, with H(θ0) some neighborhood of θ0.

A14 As N →∞, 1
N

P
ij

| ρNij(θ) | is uniformly bounded in θ ∈ H(θ0).

A discussion of the implications of these assumptions can be found in Pinkse and Slade
(1998).

Proof of Proposition 1

By assumption A2, Q is uniquely minimized at θ0. Thus, we only need to establish that
QN converges uniformly to Q over the parameter space Θ.
To show that QN converges uniformly to Q over Θ, it suffices to show that
(a) QN

p→ Q at all θ ∈ Θ⇐⇒ gN (θ)
p→ g (θ) at all θ ∈ Θ.

(b) QN is stochastically equicontinuous and Q is continuous on Θ⇐⇒ gN (θ)
p→ g (θ) is

stochastically equicontinuous.

For (a), note that g (θ) ≡ lim
N→∞

E [gN (θ)], that is , E [gN (θ)]
p→ g (θ) . If gN (θ)

p→
E [gN (θ)], then gN (θ)

p→ g (θ) , so we show the former.
Define the functions

τ 1i (ψi (θ)) ≡ φ (ψi (θ)) /{Φ (ψi (θ)) [1− Φ (ψi (θ))]}

such that eu1i (θ) = τ 1i (ψi (θ)) (yi − Φ (ψi (θ))).
Let τ i (ψi (θ)) ≡ (τ 1i (ψi (θ)))

0
,1) where 1 is a conformable vector of ones such thateuN (θ) = ((τ 1 (ψ (θ)) (y − Φ (ψ (θ))))
0
,1u

0
2N (θ))

0
.

Then,

lim
n→∞

E|gN (θ)−E [gN (θ)] |2

= lim
n→∞

1

N2

X
ij

z
0
iτNiτNjzjcov [yi,yj]

≤ lim
N→∞

1

N2
C
X
ij

α (dij) by assumptions A5-A7

= 0

since α (dij) → 0 as d → ∞ by assumption A6. Therefore, since gN (θ)
p→ E [gN (θ)] then

gN (θ)
p→ g (θ).

For (b), given that by assumption A3 g(θ) is continuous, we need to show that gN (θ) is
stochastically equicontinuous.
Using the mean value theorem for θ∗ between θ and θ̃ we rewrite

gN(θ)− gN
³
θ̃
´
=
1

N
z
0
N{eu0N − euN(θ̃)} = 1

N
z
0
i

∂euNi (θ
∗)

∂θ
0 (θ − θ̃).
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Following Andrews(1992), stochastic equicontinuity is implied by

sup
θ∈Θ

¯̄̄̄
¯ 1NX

i

z
0
i

∂euNi (θ)

∂θ
0

¯̄̄̄
¯ = Op (1) .

Recall that τ i (ψ (θ)) ≡ (τ 1i (ψ (θ))
0
,1)

0
with τ 1i (ψi (θ)) ≡ φ[ψi (θ)]/Φ[ψi (θ)] {1− Φ (ψi (θ))}.

Similarly, define hi (θ) ≡ ((yi − Φ(ψi (θ)))
0
, eu2i (θ)0)0, such that uNi (θ) = τ i (ψi (θ))hi (θ) and

the derivative becomes:

∂euNi (θ)

∂θ
0 =

∙
∂τ i (ψi (θ))

∂θ
hi (θ)−

∂hi (θ)

∂θ
τ i (ψi (θ))

¸
∂ψi (θ)

∂θ

where

∂τ i (ψi (θ))

∂θ
=

∂

∂θ

∙
τ 1i (ψi (θ))

0

1

¸
=

"
∂
∂θ

h
Φ[ψi(θ)]

Φ[ψi(θ)]{1−Φ(ψi(θ))}

i0
0

#

∂hi (θ)

∂θ
=

∂

∂θ

"
[y1 − Φ[ψi (θ)]]

0£
y2 − β0 − x

0
2iβ1 − µλi (δ, γ)

¤0 # =
⎡⎣ [−Φ[ψi (θ)]]

0

−
h
1− x

0
2i − µ∂λi(δ,γ)

∂θ
− λi (δ, γ)

i0 ⎤⎦
∂ψi (θ)

∂θ
=

∂

∂θ

⎡⎢⎢⎣ αo + x
0
1iα1rP

j

£
ω1ij (θ)

¤2
⎤⎥⎥⎦

=

⎡⎢⎢⎣sX
j

£
ω1ij (θ)

¤2 ³
1 + x

0
1i

´
− (α0 + x1iα1)

∂
rP

j

£
ω1ij (θ)

¤2
∂θ

⎤⎥⎥⎦ · ∙Σj £ω1ij (θ)¤2
¸

Then the task is to show that each of the parts of ∂uNi(θ)

∂θ
0 is bounded uniformly. Following

Pinkse and Slade (1998), we first establish

sup
yi∈0,1;t∈R,y2∈R

¯̄̄̄
∂τ (t)

∂t
h (t)− ∂h (t)

∂t
τ (t)

¯̄̄̄
<∞

for which it is enough to show (i)∂τ(θ)
∂θ

and (ii) ∂h(t)
∂θ

τ (t) are bounded uniformly in t.
For (i), given that the only non-zero components of ∂τ(θ)

∂θ
are those of ∂τ1(t)

∂θ
, we concentrate

on those. These components are the same as in Pinkse and Slade (1998) setup and thus their
same arguments apply. Note that:

∂τ 1 (θ)

∂θ
=

1

Φ (t)

∙
φ (t)

1− Φ (t)

½
φ (t)

1− Φ (t)
− t

¾¸
− φ2 (t)

Φ2 (t) (1− Φ (t))

and the only places it can be unbounded are at ±∞. Since the expression is an even function,
it suffices to check t→∞. Define Υ (t) = φ(t)

1−Φ(t) and rewrite the above expression as:

∂τ 1 (t)

∂t
=
(Υ (t)− t)2 + t(Υ (t)− t)− φ (t) (Υ (t)− t)/Φ (t)− tφ (t) /Φ (t)

Φ (t)
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and noting that as t→∞, Φ (t)→ 1 and tφ (t)→ 0, and that

1− Φ (w) =

Z ∞

w

φ (t) dt =

Z ∞

w

tφ (t)

t
dt =

φ (w)

w

½
1 +

1

w2
+O

¡
w−4

¢¾
as w→∞, the remaining term is

Υ (t)− t =
t

1 + 1/t2 +O (t−4)
− t =

1

t
+O(t−3)

as t→∞.
Thus, analyzing

∂τ 1 (t)

∂t
=
[1
t
+O(t−3)]2 + t

£
1
t
+O(t−3)

¤
− φ (t)

£
1
t
+O(t−3)

¤
/Φ (t)− tφ (t) /Φ (t)

Φ (t)
→ 1

and hence ∂τ1(θ)
∂θ

is bounded.

For (ii), that is, ∂h(t)
∂θ

τ (t), recall that

∂h (t)

∂t
=

⎡⎣ [−φ (t)]0

−
h
1− x

0
2 − µ∂λ(δ,γ)

∂θ
− λ (δ, γ)

i0 ⎤⎦ and τ (t) =

∙
τ 1 (t)

0

1

¸
and note it can be written as

∂h (t)

∂t
τ (t) =

"
−φ (t) τ 1 (t)

−
h
1− x

0
2 − µ∂λ(t)

∂t
− λ (t)

i #
=

"
−φ (t) 1

Φ(t)
[Υ (t)− t+ t]

−
h
1− x

0
2 − µ∂λ(t)

∂t
− λ (t)

i # .
The first component, φ (t) 1

Φ(t)
[Υ (t)− t+ t] is bounded by the same arguments above:

Φ (t) → 1, (Υ(t) − t) = t−1 + O (t−3) and φ (t) → 0. So that it remains to check that the

second component is bounded:
h
1− x

0
2 − µ∂λ(t)

∂t
− λ (t)

i
.

Take λ (t) =
Σ
j
ω1ijω

2
ij

Σ
j
[ω1ij ]

2 · φ(t)
{1−Φ(t)} =

Σ
j
ω1ijω

2
ij

Σ
j
[ω1ij ]

2 Υ (t).

Since Υ (t) = 1
1/t+1/t3+(1/t)O(t−4) as t→∞ and by assumption A7, λ (t) is bounded.

Taking∂λ(t)
∂t

=
Σ
j
ω1ijω

2
ij

Σ
j
[ω1ij ]

2 · ∂Υ(t)∂t
, by assumption A7 the first term is bounded, while using

results above, the second term:

∂

∂t

∙
φ (t)

1− Φ (t)

¸
=

{1− Φ (t)}φ (t) (−t)− φ (t) (−φ (t))
[{1− Φ (t)}]2

=
φ2 (t)− φ (t) t (1− Φ (t))

[{1− Φ (t)}]2

=
φ2 (t)

φ2 (t) [1/t+ 1/t3 + (1/t)0 · (t−4)]2
− [1/t+ 1/t2 + 0 · (t−4)]
[1/t+ 1/t3 + (1/t)0 · (t−4)]2

and thus ∂
∂t
Υ (t) is bounded and therefore ∂λ(t)

∂t
is bounded and the expression ∂h(t)

∂t
is also

bounded.
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Note also that the term h (t) =

∙
y1 − Φ (t)£

y2 − βo − x
0
2β1 − µλ (t)

¤ ¸ is also bounded as Φ (t)→
1 and λ (t) is bounded.
By assumption A5 the elements of zN are bounded and thus for some constant C:

sup
θ∈Θ

¯̄̄̄
¯ 1N X

i

z
0
i

∂euNi (θ)

∂θ
0

¯̄̄̄
¯ ≤ Csup

θ∈Θ

1

N

NX
i=1

°°°°∂ψi (θ)

∂θ

°°°° .
Finally, checking ∂ψi(θ)

∂θ
with previous results,

∂ψi (θ)

∂θ
=

⎡⎢⎢⎣sX
j

£
ω1ij (θ)

¤2 ³
1 + x

0
2i

´
− (α0 + x

0
1iα1)

∂
rP

j

£
ω1ij (θ)

¤2
∂θ

⎤⎥⎥⎦ ·
"X

j

£
ω1ij (θ)

¤2#
.

Since x1i is bounded by A5 and the terms in the sums are also bounded by A7, then

sup
θ∈Θ

1
N

NP
i=1

°°°∂ψi(θ)∂θ

°°° is bounded by A6 and A1. QED
Proof of Proposition 2

The first order conditions based on the objective function QN = gN 0 (θ)MNgN (θ) are

given by
∂QN

³
θ̂
´

∂θ
= 0. Using the mean value theorem for θ∗ between θ̂ and θ0 we can write:

³
θ̂GMM − θ0

´
=

∙
∂2QN (θ

∗)

∂θ∂θ0

¸−1
∂QN (θ0)

∂θ
(21)

The expression that corresponds to the second derivative of the objective function QN
can be written as:

∂2QN (θ)

∂θ∂θ0
=

2

N2

"
NX
i=1

∂2euNi (θ)

∂θ∂θ0
z0iMNzjeuNj (θ) +

NX
i=1

∂euNi (θ)

∂θ
z0iMNzj

∂euNj (θ)

∂θ0

#
.

We start by analyzing the convergence properties of this second derivative of the objective
function. The following lemma will be useful.

Lemma 1 (Pinkse and Slade (1998) Lemma A3)

For any θ̃ consistent for θ0, i.e. θ̃
p−→ θ0 :

(a)
∂gN

³
θ̃
´

∂θ0
p−→ ∂g (θ0)

∂θ0

(b) gN
³
θ̃
´

p−→ gN (θ0)

33



Proof:

(a) Need to show that for ω such that kωk = 1,

ω0

⎡⎣∂gN
³
θ̃
´

∂θ0
− ∂gN (θ0)

∂θ0

⎤⎦ p−→ 0

as lim
N−→∞

∂gN (θ0)

∂θ0
=

∂g (θ0)

∂θ0
follows from gN (θ0)

p−→ g (θ0) and A3.

Setting z̄i = ω0zi and using the mean value theorem, the above expression can be
written as

=
1

N

NX
i=1

z̄i

⎡⎣∂euNi

³
θ̃
´

∂θ0
− ∂euNi (θ0)

∂θ0

⎤⎦ = ³θ̃ − θ0
´0 1

N

NX
i=1

z̄i
∂2euNi (θ

∗)

∂θ∂θ0

where θ∗ is between θ̃ and θ0.

Analyzing the last expression,
1

N

NP
i=1

z̄i
∂2euNi (θ

∗)

∂θ∂θ0
is bounded since by A5 z̄i is uni-

formly bounded (including λ (δ, γ), which was shown in the proof of proposition 1)

and
∂2euNi (θ

∗)

∂θ∂θ0
is also bounded. Therefore, since θ̃

p−→ θ0,
³
θ̃ − θ0

´
p−→ 0 and thus

ω0

⎡⎣∂gN
³
θ̃
´

∂θ0
− ∂gN (θ0)

∂θ0

⎤⎦ p−→ 0 ¥

(b) The proof is analogous to part (a).

Now returning to analyzing the second derivative of QN (θ), note that
NP
j=1

zjeuNj(θ) =

op(N) from (a) in the proof of proposition 1. Furthermore, by lemma 1 gN (θ
∗)

p−→ gN (θ0)

and also 1
N

NP
i=1

∂2euNi (θ
∗)

∂θ∂θ0
z0iω is bounded in probability in probability ∀ kωk = 1. Then, the

first term inside the square brackets will vanish asymptotically.

Considering the remaining term of ∂2QN (θ)
∂θ∂θ0 , looking at

1
N

NP
i=1

zi
∂euNi

³
θ̃
´

∂θ0
, it will converge

in probability to
∂g (θ0)

∂θ0
by lemma 1. Finally, since MN

p→ M by A8,
∂2QN (θ

∗)

∂θ∂θ0
p→∙

∂g0 (θ0)

∂θ

¸
M

∙
∂g (θ0)

∂θ0

¸
≡ Ψ2 (θ0).

Now we turn to the term
∂QN (θ0)

∂θ
in equation (21), which is equal to

∂QN (θ0)

∂θ
=

2
∂g0N (θ0)

∂θ
MNgN (θ0) and it follows from previous results that

∂g0N (θ0)

∂θ

p−→ ∂g0 (θ0)

∂θ
.

34



The remaining task is to show that gN (θ0)→ N (0,Ψ1 (θ0)). To do this, we follow again
closely Pinkse and Slade (1998)’s strategy and employ Berenstein (1927) blocking method
using McLeish (1974) central limit theorem for dependent processes in Davison’s (1994,
chapter 24).

Start by defining Y0N = ω0 {E [NgN (θ0) g
0
N (θ0)]}

− 1
2
√
NgN (θ0) =

1√
N

NP
t=1

ANt for implic-

itly defined ANt and ∀ kωk = 1, and thus the task is to show Y0N
d→ N (0, 1).

Following Davison (1994, chapter 24), split the region in which the observations are
located into aN areas of size c1

√
bN × c2

√
bN each, where aN and bN are integers such that

aNbN = N .
Without loss of generality, set c1 = c2 = 1 and let aN and bN be such that α (bN) aN → 0

and N l−( 12)bN < 1 uniformly in N for some fixed 0 < l < 1
2
.

Define the set of indices ΛNj that correspond to observations in area j. By assumption,
a number c > 0 exists such that max

j
|ΛNj| < CbN , where |·| applied to sets denotes the

cardinality of that set. Define DNj =
1√
N

P
t∈ΛNj

ANt such that Y0N =
aNP
j=1

DNj.

Following Davison’s (1994) theorem 24.1, McLeish’s (1974) CLT requires that the follow-
ing conditions hold.

(a) TNaN =
aN
Π
j=1
(1 + iλDNj) is uniformly integrable in N > N∗ for some fixed N∗ and

λ > 0.

(b) E [TNaN ]− 1→ 0

(c)
aNP
j=1

D2
Nj − 1

p→ 0

(d) max
j
|DNj|

p→ 0

Before establishing each of these conditions, we note that for sufficiently large N , ANt is
bounded, since Ψ1 (θ0) is positive definite (p.d.) and thus E [NgN (θ0) g

0
N (θ0)] is p.d. and

its inverse is bounded. We establish each of the above conditions in turn.

(a) It needs to be shown that for some fixed N∗,

sup
N>N∗

E |TNaN I {|TNaN | > K}|→ 0 as K →∞

where I is an indicator function.

Following Pinkse and Slade (1998), we begin by showing that P
∙
sup
N>N∗

|TNaN | > K

¸
= 0

for some K > 0 which will imply the above condition.
Note that

P

∙
sup
N>N∗

|TNaN | > K

¸
= P

∙
sup
N>N∗

¯̄̄̄
aN
Π
j=1
(1 + iλDNj)

¯̄̄̄
> K

¸
≤ P

∙
sup
N>N∗

aN
Π
j=1

¡
1 + λ2D2

Nj

¢ 1
2 > K

¸
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= P

"
sup
N>N∗

aN
Π
j=1

¡
1 + λ2D2

Nj

¢ 1
2 > K | sup

N>N∗j

N l |DNj| ≤ C

#
· P
∙
max
j

N l |DNj| ≤ C

¸
+

P

"
sup
N>N∗

aN
Π
j=1

¡
1 + λ2D2

Nj

¢ 1
2 > K | sup

N>N∗j

N l |DNj| > C

#
· P
"
sup
N>N∗j

N l |DNj| > C

#

≤ P

"
sup
N>N∗

aN
Π
j=1

¡
1 + λ2D2

Nj

¢ 1
2 > K | sup

N>N∗j

N l |DNj| ≤ C

#
+ P

"
sup
N>N∗j

N l |DNj| > C

#
with C a uniform upper bound to the ANt0s. Nothing that the first summand is bounded

by sup
N>N∗

I
©¡
1 + λ2CN−2l¢an/2 > K

ª
which is zero for sufficiently large K, and that the

second summand is bounded by P

∙
sup

N>N∗,l
N l−( 12)bN |ANt| > C

¸
= 0 since N l−( 12)bN < 1 by

construction. Therefore, P
∙
sup
N>N∗

|TNaN | > K

¸
= 0 for some K > 0, which in turn implies

sup
N>N∗

E |TNaN I {|TNaN | > K}|→ 0 as K →∞ and thus condition (a) holds.

(b) From Davison (1994) we can write TNaN = (iλ)
aNP
j=1

DNjTN,j−1. Then, it is enough to

show that the max
j
|E [DNjTN,j−1]| = o

¡
a−1N
¢
.

Writing TN,j−1 = Π
k∈ΞNj1

(1 + iλDNk) · Π
k/∈ΞNj1

(1 + iλDNk) = Π
k∈ΞNj1

(1 + iλDNk)TRNj

where TRNj is implicitly defined and ΞNj1 is the set of blocks adjacent to block j.

Thus, TN,j−1 = (iλ)
P

γ∈ΓNj

µ
Π

k∈ΞNj1

Dγk
Nk

¶
TRNj with ΓNj the set of vectors of size equal to

|ΞNj1| whose elements are all either zero or one. Because the number of elements in ΓNj

is finite, it is enough to show that max
j,γ

¯̄̄̄
E

∙
DNjTRNj Π

k∈ΞNj1

Dγk
Nk

¸¯̄̄̄
= o

¡
a−1N
¢
. To show

this, we show that (i) max
j
|E [DNjTRNj]| = o

¡
a−1N
¢
and (ii) max

j 6=k
|E [DNjDNkTRNj]| =

o
¡
a−1N
¢
.

For (i), note that the observations in TRNj are located at least a distance b
1
2
N away

from those in DNj by construction. Therefore, max
j
|E [DNjTRNj]| is bounded by

C1max
j

E |DNjTRNj|α
¡√

bN
¢
for large C1 > 0 given the conditions on the covariances

and that E [DNj] = 0. Using the properties of the constructed aN , bN and the proper-
ties of α in A6:

C1max
j

E |DNjTRNj|α
¡√

bN
¢
= o

³
N−1

2 bNα
¡√

bN
¢´
= o

³
a
−1
2

N b
− 1
2

N α
¡√

bN
¢´
= o

¡
a−1N
¢

for large N , as required.

For (ii),max
j 6=k

|E [DNjDNkTRNj]| ≤ max
j 6=k

N− 1
2 bN |E[DNjTRNj]| by the boundedness prop-

erty of the ANt0s. The maximum is thus of order O
³
N− 1

2 bNa
−1
N

´
which is o

¡
a−1N
¢
.

Repeating the argument for the remaining elements in ΓNj completes the proof.

Therefore, condition (b) E [TNaN ]→ 1 is demonstrated.
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(c) We start by showing that
aNP
j=1

¡
D2

Nj −E
£
D2

Nj

¤¢ p→ 0

Take
aNP
i,j=1

E
©¡
D2

Nj −E
£
D2

Nj

¤¢ ¡
D2

Nj − E
£
D2

Nj

¤¢ª
≤ C2

C1
√
aNP

l=0

(l + 1)α
¡√

bN l
¢
max

i
E [D4

Ni]

where C1, C2 > 0 are sufficiently large constants, and the inequality is a result of the
conditions on the covariances and locations in assumptions A6 and A9. The right hand
side of the inequality is of order 0 (N−2b3NaN) since it follows from the conditions in
A6 and A9 that max

i
E [D4

Ni] is bounded by

1
N2max

i

P
t1,t2,t3,t4∈ΛNi

|E [ANt1ANt2ANt3ANt4 ] | ≤

C1
1
N2max

i

P
t1,t2,t3,t4∈ΛNi

{α (dt1,t2) + . . .+ α (dt3,t4)} ≤ C2
1
N2 b

2
Nmax

i

P
t1,t2∈ΛNi

α (dt1,t2) ≤

C4
1
N2 b

2
Nmax

i

P
t1∈ΛNi

C3b
1/2
NP

l=0

lα (l) for some C1, C2, C3, C4 > 0, and since
∞P
l=0

lα (l) is bounded

by A6, the last term is of order O (N−2b3NaN).

Finally, C2
C1
√
aNP

l=0

(l + 1)α
¡√

bN l
¢
max

i
E [D4

Ni] = O (N−2b3NaN) = o (1) as n → ∞ by the

properties of aN and bN . Thus we have shown that
aNP
j=1

¡
D2

Nj −E
£
D2

Nj

¤¢ p→ 0 and condition

(c) can be written as:
aNP
j=1

D2
Nj − 1 =

aNP
j=1

E
£
D2

Nj

¤
− 1 + op (1) which can be further rewritten

as
aNP
j=1

E
£
D2

Nj

¤
− 1 + op (1) = E [Y 2

0N ]− 1−
P
i6=j

E [DNiDNj] + op (1) .

To check the order of convergence we need only to analyze the term
P
i6=j

E [DNiDNj]. For

this it is enough to analyze max
i

P
i6=j
|E [DNiDNj] | since each of the summations over i and

j contain terms with aN or aN−1. Take ΞNil as previously defined, then, for some C1 > 0,
max

i

P
i6=j
|E [DNiDNj] | can be bounded by

max
i

C1
√
aNX

l=1

X
j∈ΞNil

|E [DNiDNj]| ≤ max
i

X
j∈ΞNil

|E [DNiDNj]|+max
i

C1
√
aNX

l=2

X
j∈ΞNil

|E [DNiDNj]|

(22)
and we analyze each of the terms in the right-hand side .

For the first term, note that max
i6=j

|E [DNiDNj]| = max
i6=j

¯̄̄̄
¯ 1N P

t∈ΛNi,s∈ΛNi

E [ANtANs]

¯̄̄̄
¯

≤ max
i6=j

C1
1
N

P
t∈ΛNi,s∈ΛNi

α (dts) for some large C1 > 0, by the boundedness of ANt0s and A6.

Consider adjacent blocks for which dependence will be typically stronger, then, by A9 and A6,
the number of (t, s) combinations within distance d is bounded by C2b

1/2
N d2 for some C2 > 0.

Letting C3 = C2C1 the expression is bounded by C3max 1
N
b
1/2
N

C4
√
bNP

d=0

d2α (d) for some C4 > 0
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and since by A9 d2α (d)→ 0 the expression is o
¡
1
N
bN
¢
and thusmax

i6=j
|E [DNiDNj]| = o

¡
1
N
bN
¢

or o
¡
a−1N
¢
(since n = aNbN), and so is the first term in (22).

For the second term, first note that by the boundedness of ANt and E [ANt] = 0: max
j∈ΞNil

max
t∈ΛNi

max
s∈ΛNj

|E [ANtANs]| = O
¡
α
¡√

bN (l − 1)
¢¢
uniformly in l. Therefore, the second term is

bounded by C2max
i

C1
√
aNP

l=2

1
N
|ΞNil| |ΛNi| |ΛNj|α

¡√
bN (l − 1)

¢
≤
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1
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b2N
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¢
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1
N
bN

C1
√
aNP

l=1

lα (l)

!
= o

¡
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¢
. The second-to-last equality

is due to
α (ts)

α (s)
= o (t2) as t → ∞ and the last one due to the boundedness of the sum

C1
√
aNP

l=1

lα (l).

Finally, since max
i

P
i6=j
|E [DNiDNj]| is o

¡
a−1N
¢
and thus

P
i6=j

E [DNiDNj ] is o (1), condition

(c) is demonstrated.

(d) Using the boundedness of ANt,

max
j
|DNj| = max

j

¯̄̄̄
¯ 1√

N

P
t∈ΛNj

ANt

¯̄̄̄
¯ ≤ 1√

N
|ΛNj|max

t
|ANt| = Op

³
1√
N
bN

´
= op (1) by the

construction of bN .

Since conditions (a)-(d) are satisfied under the current assumptions, Y0N
d→ N (0, 1)⇐⇒

gN (θ0)
d→ N (0,Ψ1 (θ0)) which concludes the proof of proposition 2. QED

Proof of Proposition 3

Ψ2N
³
θ̂GMM

´
p→ Ψ2 (θ0) follows from the fact that

∂gN

³
θ̂GMM

´
∂θ0

p→ ∂g (θ0)

∂θ0
by part (a)

of Lemma 1, by the consistency of θGMM
p→ θ0; and by A8 which assumes MN

p→M

To show that Ψ1N

³
θ̂GMM

´
p→ Ψ1 (θ0) we can show that Ψ1N

³
θ̂GMM

´
p→ Ψ1N (θ0) as we

did in Lemma 1.
Note that
Ψ1N (θ0) =

1
N

P
ij

τNi (θ0) τNj (θ0) ziz
0
j

©
Φ2
¡
ψi (θ0) , ψj (θ0) , ρNij (θ0)

¢
− Φ2

¡
ψi (θ0) , ψj (θ0) , 0

¢ª
=
1

N

X
ij

τNi (θ0) τNj (θ0) ziz
0
jρNij (θ0)

∂Φ2
¡
ψi (θ0) , ψj (θ0) , ρNij (θ

∗)
¢

∂ρ
(23)

where τ (·) is as defined in the proof of proposition 1, Φ2 stands for the bivariate normal
distribution, and the second equality follows from the mean value theorem for θ∗ between
θ̂GMM and θ0.
First consider the partial derivative term and show that it is bounded. Take the following

bivariate normal distribution.
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Φ2 (a, b, ρ) =

bZ
−∞

aZ
−∞

1

2Π (1− ρ)1/2
exp

½
− 1

2 (1− ρ2)
(t2 − 2ρts+ s2)

¾
dtds

and make the following change of variable from t to u = (t− ρs) (1− ρ2)
−1/2. Integrating

over u and differentiating with respect to ρ yields:

∂Φ(a,b,ρ)
∂ρ

= 1√
2Π

bZ
−∞

n
−s (1− ρ2)

−1/2
+ (a− ρs) ρ (1− ρ2)

−3/2
o
which, by the conditions on

ρ assumed in A12 - A14, is bounded.
Repeating the application of the mean value theorem with respect to θ in (23), using the

boundedness of the above partial derivative and the fact that θ̂GMM
p→ θ0 yields the result

that Ψ1N
³
θ̂GMM

´
p→ Ψ1N (θ0) and thus Ψ1N

³
θ̂GMM

´
p→ Ψ1 (θ0). QED
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