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Abstract. In this paper, we investigate what can be learned about average counterfac-
tual outcomes when it is assumed that treatment response functions are smooth. The
smoothness conditions in this paper amount to assuming that the differences in average
counterfactual outcomes are bounded under different treatments. We obtain a set of new
partial identification results for the average treatment response by imposing smoothness
conditions alone, by combining them with monotonicity assumptions, and by adding in-
strumental variables assumptions to treatment responses. We give a numerical illustration
of our findings by reanalyzing the return to schooling example of Manski and Pepper
(2000) and demonstrate how one can conduct sensitivity analysis by varying the degrees
of smoothness assumption. In addition, we discuss how to carry out inference based on the
existing literature using our identification results and illustrate its usefulness by applying
one of our identification results to the Job Corps Study dataset. Our empirical results
show that there is strong evidence of the gender and race gaps among the less educated
population.
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1. Introduction

Partial identification has been increasingly popular in econometrics. For example, see

monographs by Manski (2003, 2007), a recent review by Tamer (2010), and references

therein. One important branch of this literature is concerned with bounding the distribution

of the counterfactual outcomes or bounding the average treatment effects.1 In this paper, we

introduce a new set of “smoothness” assumptions for models with counterfactual outcomes.

The smoothness conditions in this paper amount to assuming that the differences in average

counterfactual outcomes are bounded under different treatments. The precise definition will

be given later, but the basic idea is that the change in the average treatment effect cannot

be too large if the change in the treatment is not large; hence it is called smoothness

conditions.

To describe our setup, let Γ ⊂ R denote an ordered set that can be finite, countably

infinite, or uncountable, and let Yi(t) : Γ 7→ R denote an individual-level, real-valued

outcome function for treatment t ∈ Γ. Assume that we observe independent and identically

distributed observations {(Yi, Zi) : i = 1, . . . , n}, where Zi ∈ Γ is the actual treatment for

individual i, and Yi ≡ Yi(Zi) is this individual’s observed outcome. Let µ denote the

probability distribution of Zi, which may be discrete, continuous, or mixed.2

In this paper, we focus on the identification region of g∗(t) ≡ E[Yi(t)], namely the

expected value of the counterfactual outcome Yi(t) for each t ∈ Γ. Define g(t, s) ≡
E[Yi(t)|Zi = s] to be the expectation of Yi(t) conditional on the event that the real-

ized treatment is s. With the empirical evidence alone, we can only identify g(s, s). Let

t0 be the value of the treatment of interest. Suppose that Yi(t0) ∈ [ymin, ymax], where

−∞ ≤ ymin ≤ ymax ≤ ∞. Then, partial identification analysis for g∗(t) starts from the

well-known Manski’s worst-case bound for the parameter (see, for example, Proposition 1.1

of Manski (2003)):

E[Yi|Zi = t0]P (Zi = t0) + yminP (Zi 6= t0)

≤ g∗(t0)

≤ E[Yi|Zi = t0]P (Zi = t0) + ymaxP (Zi 6= t0).

1See, for example, Balke and Pearl (1997), Bhattacharya, Shaikh, and Vytlacil (2008, 2012), Blundell,
Gosling, Ichimura, and Meghir (2007), Chesher (2005, 2010), Chiburis (2010), Fan and Park (2014), Fan,
Sherman, and Shum (2014), Fan and Wu (2010), Heckman and Vytlacil (1999, 2005), Jun, Pinkse, and Xu
(2011), Kitagawa (2009), Manski (1990, 1997, 2013), Manski and Pepper (2000, 2009, 2012), Shaikh and
Vytlacil (2011) and Okumura and Usui (2013) among many others.
2Furthermore, we implicitly assume that all random variables, their functions, and all the events appearing
in the paper are measurable.
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This formulation of the identification region reveals that the identification power becomes

weak when (i) the probability mass at Zi = t0 is small or (ii) ymax − ymin is too large.

Indeed, the identification region for g∗(t0) is [ymin, ymax] if P (Zi = t0) = 0 and (−∞,∞) if

ymax =∞ and ymin = −∞.

The issue of small or zero probability mass occurs naturally when the treatment is eval-

uated on a continuous scale or on a discrete scale with many treatment options.3 It is

also easy to think of a situation where the difference between the upper and lower bounds

of the outcome variable is too large. This motivates us to develop new identifying condi-

tions under which one can obtain a meaningful identification region for g∗(t) even in these

circumstances.

The basic idea of this paper is to introduce smoothness conditions in g(t, s) in both

arguments t and s. They are called smooth treatment response and smooth treatment se-

lection conditions. For the former, we assume that there exists a bound for the changes

in the average treatment response with respect to the changes in the treatment; for the

latter, we assume that the average counterfactual outcome cannot change too much if the

treatment choice changes a little bit. We also combine the smoothness conditions with the

other frequently imposed assumptions in the partial identification literature, namely the

monotone treatment response (MTR), monotone instrument variable (MIV), and mono-

tone treatment selection (MTS) assumptions, and derive the conditions under which the

tighter bounds can be obtained. This is a natural step, since the philosophy of the partial

identification is a “bottom-up” approach; starting from the no-assumption state, we add

more and more assumptions if deemed justifiable. Here, we suggest that the smoothness

assumptions can be utilized for the purpose of tightening the identification region.

Our smoothness conditions are inspired by Hausman and Newey (2013), who put the

bounds on the partial derivative of the demand function with respect to the income in order

to partially identify average consumer surplus. Moreover, Hall and Yatchew (2007, 2010)

used information on the derivatives to recover the level of the function itself. They showed

that faster convergence rate for nonparametric regression can be achieved in presence of

the data on the derivatives. Our paper differs from the latter papers in that we only

need information on the bound on the derivatives, leading to partial identification of the

counterfactual outcomes. However, we share with Hausman and Newey (2013) and Hall

3This problem may arise under the extrapolation problem as well. For example, consider the case that the
treatment t is years of schooling and we have individual level data, including years of schooling measured in
integer values. We are interested in extending the current level of compulsory schooling, say some integer
value t, by only 6 months.Then in this case, the empirical probability mass at Zi = t+0.5 is zero, implying
that we have no prediction power for the new policy with the empirical evidence alone. See Figures 1.1
and 1.2 in Manski (2007, page 5) for a nice illustration.
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and Yatchew (2007, 2010) the feature that information on derivatives or differences can

help bound (or estimate) the mean outcomes of interest.

There is now a large body of literature on empirical applications of the various partial

identification techniques. In particular, there exist many empirical papers using partial

identification under monotonicity (MTR, MTS, and MIV).4 However, most of them focus

on binary or at most five treatments. An alternative approach to the continuous treatment

case is to assume point identification using generalized propensity score matching (see, for

example, Hirano and Imbens (2004) and Imai and Van Dyk (2004)).5 We complement the

existing literature by increasing the scope of applications of partial identification in the

context of multiple/continuous treatments.

The remainder of the paper is organized as follows. In Section 2, we introduce new

assumptions on treatment responses and obtain identification results. In addition, we

provide discussions on bounding average treatment effects and other parameters. In Section

3, we show how to tighten the identification results obtained in Section 2 when an IV or

an MIV exists. We find that the MTR-MTS bound of Manski and Pepper (2000) can be

further tightened if we impose the smoothness conditions on the treatment response. In

Section 4, we revisit the returns to schooling example of Manski and Pepper (2000) and

demonstrate the usefulness of our smoothness conditions. In particular, we demonstrate

how one can conduct sensitivity analysis by varying the degrees of smoothness assumption.

In Section 5, we provide discussions on inference using the identification results. In Section

6, we present an actual application in the context of continuous treatment using the Job

Corps Study dataset and find that the signs of gender and race gaps can be determined for

some demographic groups under weak assumptions. Section 7 gives concluding remarks.

In Appendix A, we consider restrictions on treatment selection and establish identification

results. The basic idea in Appendix A is that the average counterfactual outcome cannot

change too much if self-selected treatment choices are not too different. In Appendix B,

we collect the proofs of all the identification results in the paper. Appendix C gives some

additional theoretical results with respect to the average treatment effects and Appendix

D provides some details about the empirical example.

As mentioned before, µ can be a general probability measure. Throughout the paper, we

write the expectation of a function of Z as E[ϕ(Z)] =
∫
ϕ(z)µ(dz), where ϕ(·) is a given

4See De Haan (2011), Gerfin and Schellhorn (2006), Gonzalez (2006), Gundersen and Kreider (2008, 2009),
Gundersen, Kreider, and Pepper (2012), Kreider and Hill (2009), Kreider and Pepper (2007), Kreider,
Pepper, Gundersen, and Jolliffe (2012), Lee and Wilke (2009) and Pepper (2000) among others.
5For recent empirical applications of this method, see Flores, Flores-Lagunes, Gonzalez, and Neumann
(2012), Kluve, Schneider, Uhlendorff, and Zhao (2012), and others.
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function. For example, if the distribution of Z is continuous, E[ϕ(Z)] =
∫
ϕ(z)µ(dz) =∫

ϕ(z)pµ(z)dz, where pµ(·) is the probability density function of Z. Alternatively, if the

distribution of Z is discrete, E[ϕ(Z)] =
∫
ϕ(z)µ(dz) =

∑
j ϕ(zj)pµ(zj), where pµ(·) is now

the probability mass function of Z. Other cases can be understood similarly. Finally, we

let Roman letters such as t, t′, s, s′ ∈ Γ denote generic arguments of g(·, ·) with different

uses in different places.

2. Smooth Treatment Response

In this section, we introduce two assumptions on treatment responses: the one we

call smooth treatment response (STR) and the other smooth monotone treatment response

(SMTR). Both conditions are stated below in terms of the “local” behavior of g(t, s) with

respect to t.

Assumption 2.1 (Treatment Response Assumptions). Assume one of the following con-

ditions:

(i) (Condition STR) There exists a constant b > 0 such that |g(t, s) − g(t′, s)| ≤
b|t− t′| ∀t, t′, s ∈ Γ.

(ii) (Condition SMTR) The STR condition in part (i) holds with a constant b > 0.

In addition, g(t, s) ≥ g(t′, s) ∀t, t′, s ∈ Γ satisfying t ≥ t′.

Assumption 2.1, which is inspired by Manski (1997) and Hausman and Newey (2013),

does not seem to be explored in the literature on models with counterfactual outcomes.

Manski (1997) introduced the notion of monotone treatment response (MTR). That is,

t ≥ t′ ⇒ Yi(t) ≥ Yi(t
′)(2.1)

for each individual i. Our monotonicity assumption in SMTR is in the same spirit of

Manski (1997), but slightly weaker than (2.1) since we focus on the identification region of

the expected value E[Yi(t)].

What is different from Manski (1997) in this paper is that we have a bound on changes

in g(t, s) with respect to t. Hausman and Newey (2013, Theorem 7) used the bounds on

the income effect to partially identify average consumer surplus. Their assumption has the

following form for the income effect: (using their notation) there are constants b and B

such that

b ≤ ∂q(p, y, η)/∂y ≤ B,(2.2)
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where q is a demand function of price p, individual income y, and unobserved individual

heterogeneity η. We follow Hausman and Newey (2013) to make Assumption 2.1, while

allowing for the case that the treatment is not continuous.

The “smoothness” condition in both STR and SMTR conditions can be rewritten as

−b ≤ g(t, s)− g(t′, s)

t− t′
≤ b(2.3)

for all t 6= t′ and for all s.6 Regarding g(·, s) as a function of only the first argument for

each s, the quotient in (2.3) is called in general the difference quotient of g(·, s). Hence, part

(i) of Assumption 2.1 amounts to assuming that g(·, s), as a function of the first argument,

has bounded difference quotients uniformly in s. If Γ = R, or an interval in the real line,

this is equivalent to assuming that g(·, s) is Lipschitz continuous with respect to the first

argument uniformly in s.

Note that the inequalities in (2.3) can be satisfied if

−b ≤ Yi(t)− Yi(t′)
t− t′

≤ b(2.4)

for all t 6= t′ and for each i. That is, assuming (2.4) amounts to bounding the individual-

level treatment effect defined as [Yi(t)−Yi(t′)]/(t−t′). Manski and Pepper (2009) considered

the homogeneous-linear-response (HLR) assumption such that

Yi(t) = β × t+ δi,

where β is a slope parameter and δi is an unobserved random variable for each individual

i. The STR condition is satisfied by the HLR assumption, as long as β ≤ b.

An alternative way of bounding the rate of change in the average counterfactual response

is to impose further global restrictions in addition to monotonicity. Manski (1997, Section

4) added concavity to the basic assumption of monotonicity and showed formally that con-

cavity has substantial identifying power. See also Okumura and Usui (2013) who combined

concavity with the MTS assumption. Our approach imposes restrictions directly on the

rate of change in its nature, whereas the combination of concavity and monotonicity, as

in Manski (1997) and Okumura and Usui (2013), restricts the rate of change indirectly.

Therefore, we view that two approaches are distinct as well as complementary.

6More generally, one may consider (2.3) with two different end points b1 and b2, similar to (2.2), as in
Hausman and Newey (2013). Our STR and SMTR conditions are special cases of (b1, b2) = (−b, b) and
(b1, b2) = (0, b), respectively. In this paper, we did not opt to introduce this more general setup since it
introduces an additional tuning parameter.
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In some applications, the derivative of a counterfactual outcome function is naturally

bounded. For example, consider a production function for which the input is some raw ma-

terial and the output is a processed product. When measured by the weight, the derivative

cannot exceed 1. Another case is an inelastic downward sloping demand function where the

treatment is price. In both cases, the STR and SMTR assumptions can be applied with

b = 1. See also Hausman and Newey (2013) for how to set bounds (b and B in (2.2)) on

the income effect for their empirical application on gasoline demand. There will be many

other cases where we can set a plausible bound on the smoothness of the counterfactual

outcome.

More generally speaking, we may interpret our identification analysis as a conditional

one indexed by b. Furthermore, we may conduct sensitivity analysis by looking at different

values of b. In Section 4.3, we provide an example of sensitivity analysis (for general

discussions on sensitivity analysis, see Leamer (1985), Tamer (2010), and others).

We regard STR as a useful assumption that might complement the MTR assumption

in a variety of applications. For example, consider the problem of bounding the return to

schooling, as in Manski and Pepper (2000). In this example, Yi(t) is the counterfactual log

hourly wage and the treatment t is years of schooling. Thus, the “smoothness” assumption

here corresponds to setting the maximum value of the return to schooling.7 In Section 4,

we will come back to the example of Manski and Pepper (2000) to show some numerical

illustration.

Before we give our first identification result, define x+ ≡ max(x, 0) and x− ≡ max(−x, 0)

for any real number x. The following proposition provides sharp bounds for g∗(t) under

STR and SMTR, respectively.

Proposition 2.1. Assume that the support of Yi(t) is unbounded. Then the following

bounds are sharp:

(i) Under STR, E[Yi]− bE[|Zi − t|] ≤ g∗(t) ≤ E[Yi] + bE[|Zi − t|].
(ii) Under SMTR, E[Yi]− bE[(Zi − t)+] ≤ g∗(t) ≤ E[Yi] + bE[(Zi − t)−].

Proposition 2.1 (i) states that under STR, the sharp bound is symmetric around E[Yi]

and its width is 2bE[|Zi−t|]. Proposition 2.1 (ii) implies that under SMTR, the sharp bound

is possibly asymmetric around E[Yi], and its width is now bE[|Zi−t|] since |x| = x++x− for

any real number x. Thus, adding the weak monotonicity to the STR condition shortens the

width by half. In both cases, the strength of the identification power of the STR condition

is determined by two factors: (i) the size of b and (ii) the distribution of the realized

7For instance, setting 0.2 as the bound on the return from one more year of schooling seems to be conser-
vative enough.
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treatment random variable Zi. Also note that for either case, the width is minimized when

the counterfactual treatment value is the median of Zi.

We now focus on comparison between the SMTR condition and the original MTR as-

sumption. First, if only the MTR condition in the equation (2.1) is assumed with un-

bounded Yi(t), then the identification region of g∗(t) is unbounded (see Corollary M1.2

of Manski (1997)). Therefore, we have demonstrated that when the support of Yi(t) is

unbounded but average changes in Yi(t) are bounded, we can obtain some informative

identification results.

When the support of Yi(t) is bounded, the identification analysis is more complicated. For

example, suppose that Yi(t) ≤ ymax <∞ for some known ymax. Then it is straightforward

to show that the SMTR upper bound for g∗(t) is

g∗(t) ≤
∫
z<t

min {ymax, (E[Yi|Zi = z] + b(t− z))}µ(dz) + E[Yi|Zi ≥ t]P (Zi ≥ t).(2.5)

Here, recall that µ denotes the probability distribution of Zi, which may be discrete, contin-

uous, or mixed. The upper bound (2.5) cannot be larger than the upper bound under the

MTR assumption alone since the latter has the form (see again Corollary M1.2 of Manski

(1997)):

g∗(t) ≤ ymaxP (Zi < t) + E[Yi|Zi ≥ t]P (Zi ≥ t).(2.6)

Note that the SMTR upper bound strictly improves the MTR upper bound if and only if

the event such that E[Yi|Zi]+b(t−Zi) < ymax has a strictly positive probability, conditional

on Zi < t. Analogous results can be established for the lower bound, and we summarize

our findings below.

Corollary 2.2. Assume that the support of Yi(t) is [ymin, ymax], where −∞ ≤ ymin ≤ ymax ≤
∞. Then we have:

(i) The upper bound of the SMTR bound is strictly smaller than that of the MTR bound

if and only if
∫
z<t

1 {USMTR(t, z) < 0}µ(dz) > 0, where USMTR(t, z) ≡ E[Yi|Zi =

z] + b(t− z)− ymax.

(ii) The lower bound of the SMTR bound is strictly larger than that of the MTR bound

if and only if
∫
z>t

1 {LSMTR(t, z) > 0}µ(dz) > 0, where LSMTR(t, z) ≡ E[Yi|Zi =

z]− b(z − t)− ymin.

Note that given values of (t, b, ymin, ymax), one can test whether there is an strict im-

provement, since the sufficient and necessary conditions in Corollary 2.2 are expressed as

population quantities that can be estimated consistently. To be more specific, suppose
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that we are interested in testing the null hypothesis of no strict improvement of the upper

bound. That is, we consider testing

H0 :

∫
z<t

1 {USMTR(t, z) < 0}µ(dz) = 0 vs. H1 :

∫
z<t

1 {USMTR(t, z) < 0}µ(dz) > 0.(2.7)

Analogously, we can test for the improvement of the MTR-lower bound. It seems that there

is no readily available method for testing (2.7) nonparametrically. This is an interesting

topic for future research.

Remark 2.1. Taking minimum of the STR and MTR upper bounds generally does not lead

to the SMTR upper bound. To see this, define

I1(t) ≡
∫
z<t

min{ymax, E[Yi|Zi = z] + b|z − t|}µ(dz),

I2(t) ≡
∫
z<t

ymaxµ(dz),

I3(t) ≡
∫
z≥t

E[Yi|Zi = z]µ(dz),

I4(t) ≡
∫
z≥t

E[Yi|Zi = z] + b|z − t|µ(dz).

Then, the upper bounds for STR, MTR and SMTR with the knowledge of the support of

Yi(t) are I1(t) + I4(t), I2(t) + I3(t), and I1(t) + I3(t), respectively. Note that I1(t) ≤ I2(t)

and I3(t) ≤ I4(t). Therefore, min{I1(t) + I4(t), I2(t) + I3(t)} > I1(t) + I3(t) if and only

if I2(t) > I1(t) and I4(t) > I3(t), which easily holds if ymax is sufficiently large, and t is

not the endpoint of the support of Zi (for example, if µ is counting measure and t is the

upper endpoint, I3(t) = I4(t), which leads to the same STR upper bound as SMTR one).

A similar argument can be applied to the case of the lower bound.

Remark 2.2. We may confine the STR and SMTR conditions to be only locally valid. This

restriction is reasonable if we suspect that the underlying counterfactual response function

exhibits non-smooth behavior in some region of the support. Making global assumptions

may also result in an excessively large value of b, which may not lead to informative

identification results. Let Γ0 denote the subset of Γ where the STR and SMTR conditions

locally hold. Then the identification results presented above (and those to be presented

below) can be translated as those for E[Yi(t)|Zi ∈ Γ0] for t ∈ Γ0.

2.1. Bounds on Average Treatment Effects and Other Parameters. All identifica-

tion results obtained so far are concerned with the average outcomes of a particular treat-

ment. In some cases, we are interested in average treatment effects, defined as ∆(t, t′) ≡
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g∗(t)− g∗(t′) for t 6= t′. Recall that the STR condition −b ≤ [g(t, s)− g(t′, s)]/(t− t′) ≤ b

implies |∆(t, t′)| ≤ b(t − t′) for t 6= t′. This shows that we are essentially bounding the

size of the average treatment effect to make identification of g∗(t) possible. This strategy

results in weak identification power of the STR condition for the average treatment effect

itself. For example, if we write the upper bound of g∗(t)− g∗(t′) as

(E[Yi] + bE[|Zi − t|])− (E[Yi]− bE[|Zi − t′|]) = b (E[|Zi − t|] + E[|Zi − t′|])

taking the upper and lower bounds of each counterfactual mean outcome, this bound is

not sharp under the STR condition. Similar arguments hold for the SMTR condition.8

However, the STR or SMTR condition can be useful to bound the average treatment effect

when it is combined with other assumptions. For example, see Section 4.2 for this case.

Although the bound with the STR or SMTR condition alone is not attractive in terms

of identifying average treatment effects, our approach is useful to bound other parameters.

To give such an example, suppose that Wi is the gender. Then E[Yi(t)|Wi = male] −
E[Yi(t)|Wi = female] is the gender gap in the average counterfactual outcome. The upper

bound of E[Yi(t)|Wi = male] − E[Yi(t)|Wi = female] is the difference between the upper

bound of E[Yi(t)|Wi = male] and the lower bound of E[Yi(t)|Wi = female]. This bound is

sharp if there is no cross restriction between males and females. The sharp lower bound is

defined analogously.9 We provide an empirical example of this type of bounds in Section 6

using the Job Corps Study dataset.

3. Adding Instrumental Variables Assumptions to Treatment Responses

In this section, we show how to tighten the identification results obtained in Section 2

when an instrumental variable exists. In particular, we follow Manski and Pepper (2000)

and study the identifying power of instrumental variable (IV) and monotone instrumental

variable (MIV) assumptions, as they are combined with conditional versions of STR and

SMTR conditions.10

Assume from now on that we observe independent and identically distributed observa-

tions {(Yi, Zi, Vi) : i = 1, . . . , n}, where Vi ∈ V ⊂ R is a real-valued instrumental variable

for individual i. Define g(t, s, v) ≡ E[Yi(t)|Zi = s, Vi = v] to be the expectation of Yi(t)

8See Proposition C.1 and following discussions in Appendix C for details.
9Other examples of parameters of interest, which can be bounded sharply by the STR or SMTR condition,
include trends of the average counterfactual outcome over time. See, e.g. Blundell, Gosling, Ichimura, and
Meghir (2007) and Lee and Wilke (2009) for related results.
10Lafférs (2013) emphasized the importance of distinguishing conditional and unconditional versions of
monotone treatment selection.
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conditional on Zi = s and Vi = v. We now state the STR and SMTR assumptions condi-

tional on Vi = v (hence, called CSTR and CSMTR) as well as the IV and MIV assumptions

of Manski and Pepper (2000).

Assumption 3.1 (Treatment Response and Instrumental Variable Assumptions). Con-

sider the following assumptions:

(i) (Condition CSTR) There exists a constant b > 0 such that |g(t, s, v)−g(t′, s, v)| ≤
b|t− t′| ∀(t, t′, s, v) ∈ (Γ× Γ× Γ× V).

(ii) (Condition CSMTR) The CSTR condition in part (i) holds with a constant

b > 0. In addition, g(t, s, v) ≥ g(t′, s, v) ∀(t, t′, s, v) ∈ (Γ × Γ × Γ × V) satisfying

t ≥ t′.

(iii) (Condition IV) E[Yi(t)|Vi = v] = E[Yi(t)|Vi = v′] for all (v, v′, t) ∈ (V × V × Γ).

(iv) (Condition MIV) If v ≥ v′, then E[Yi(t)|Vi = v] ≥ E[Yi(t)|Vi = v′] for all

(v, v′, t) ∈ (V × V × Γ).

Condition CSTR is met if (2.4) holds for each individual and CSMTR is satisfied when

(2.1) and (2.4) hold for each individual. Hence, the conditional versions of STR and SMTR

conditions can be motivated, as in Section 2. The IV and MIV conditions are well known

in the literature. See, for example, Manski and Pepper (2000, 2009) among others.

Remark 3.1. A related identification assumption in the literature is “bounded instrumental

variable” introduced in Manski and Pepper (2012, 2013). To express the assumption in our

notation, Vi is called a bounded instrumental variable, if

|ATEv1 − ATEv2| ≤ ∆

for some ∆ > 0, for all v1 and v2, where ATEv ≡ E[Y (t1)|Vi = v]− E[Y (t0)|Vi = v]. This

condition is related with our CSTR assumption in the following sense: |ATEv1 − ATEv2 |
is less than or equal to |ATEv1|+ |ATEv2 | by triangular inequality, and each |ATEv1| and

|ATEv2| is bounded due to the CSTR assumption.

The following proposition gives identification results under several possible combinations

of the conditions in Assumption 3.1.

Proposition 3.1. Assume that the support of Yi(t) is unbounded. Then the following

bounds are sharp:

(i) Under CSTR and IV together,

sup
v∈V
{E[Yi|Vi = v]− bE[|Zi − t||Vi = v]} ≤ g∗(t) ≤ inf

v∈V
{E[Yi|Vi = v] + bE[|Zi − t||Vi = v]} .
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(ii) Under CSMTR and IV together,

sup
v∈V

{
E[Yi|Vi = v]− bE[(Zi − t)+|Vi = v]

}
≤ g∗(t) ≤ inf

v∈V

{
E[Yi|Vi = v] + bE[(Zi − t)−|Vi = v]

}
.

(iii) Under CSTR and MIV together,

sup
v1∈V:v1≤v

{E[Yi|Vi = v1]− bE[|Zi − t||Vi = v1]}

≤ E[Yi(t)|Vi = v]

≤ inf
v2∈V:v2≥v

{E[Yi|Vi = v2] + bE[|Zi − t||Vi = v2]} .

(iv) Under CSMTR and MIV together,

sup
v1∈V:v1≤v

{
E[Yi|Vi = v1]− bE[(Zi − t)+|Vi = v1]

}
≤ E[Yi(t)|Vi = v]

≤ inf
v2∈V:v2≥v

{
E[Yi|Vi = v2] + bE[(Zi − t)−|Vi = v2]

}
.

These results can be regarded as combinations of Proposition 2.1 and Proposition 1 of

Manski and Pepper (2000). It follows immediately from Proposition 3.1 (iii) and (iv) that

the identification region of g∗(t) under the MIV assumption is given as below.

Corollary 3.2. Assume that the support of Yi(t) is unbounded. Let FV denote the proba-

bility measure of Vi. Then the following bounds are sharp:

(i) Under CSTR and MIV together,∫
sup

v1∈V:v1≤v
{E[Yi|Vi = v1]− bE[|Zi − t||Vi = v1]}FV (dv)

≤ g∗(t)

≤
∫

inf
v2∈V:v2≥v

{E[Yi|Vi = v2] + bE[|Zi − t||Vi = v2]}FV (dv).

(ii) Under CSMTR and MIV together,∫
sup

v1∈V:v1≤v

{
E[Yi|Vi = v1]− bE[(Zi − t)+|Vi = v1]

}
FV (dv)

≤ g∗(t)

≤
∫

inf
v2∈V:v2≥v

{
E[Yi|Vi = v2] + bE[(Zi − t)−|Vi = v2]

}
FV (dv).

As in the only-MIV bound of Manski and Pepper (2000), the CSTR-MIV (CSMTR-MIV)

bound coincides with the only-CSTR (only-CSMTR) bound if the CSTR (CSMTR) lower
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and upper bounds for E[Yi(t)|Vi = v] are weakly increasing in v. Hence, in this case, the

MIV assumption has no identifying power. Likewise, if these bounds are weakly decreasing

in v, then combining IV with CSTR or CSMTR yields the same result as combination with

MIV. Thus, in such cases, the MIV assumption has the same identifying power as the IV

assumption.

3.1. The SMTR and MTS Bounds. In this subsection, we consider adding the smooth-

ness assumption to the MTR-MTS bound of Manski and Pepper (2000). This bound is

particularly useful because combining the MTR and MTS assumptions yields an informa-

tive bound even if Yi is unbounded, as shown by Manski and Pepper (2000). Therefore, it

is important to understand the role of smoothness assumption for the MTR-MTS bound.

Manski and Pepper (2000) introduced the following concept of monotone treatment se-

lection (MTS):

s ≥ s′ ⇒ E[Yi(t)|Zi = s] ≥ E[Yi(t)|Zi = s′].(3.1)

Manski and Pepper (2000) pointed out that the MTS assumption is a special case of

the MIV assumption when the instrumental variable Vi is the realized treatment Zi. We

examine the role of smoothness assumption for the MTR-MTS bound by replacing the

MTR assumption with the SMTR condition.

Proposition 3.3. Assume that the support of Yi(t) is unbounded. Then, under SMTR and

MTS together, E[Yi(t)] ∈ [l1(t), u1(t)], where

l1(t) ≡
∫
z<t

E[Yi|Zi = z]µ(dz) +

∫
z≥t

sup
s′∈[t,z]

(E[Yi|Zi = s′] + b(t− s′))µ(dz),

u1(t) ≡
∫
z≤t

inf
s′∈[z,t]

(E[Yi|Zi = s′] + b(t− s′))µ(dz) +

∫
z>t

E[Yi|Zi = z]µ(dz).

Moreover, this bound is sharp.

Recall that the MTR-MTS bound of Manski and Pepper (2000) has the form

lMP (t) ≤ E[Yi(t)] ≤ uMP (t),

where

lMP (t) ≡ E[Yi|Zi < t]P (Zi < t) + E[Yi|Zi = t]P (Zi ≥ t),

uMP (t) ≡ E[Yi|Zi > t]P (Zi > t) + E[Yi|Zi = t]P (Zi ≤ t).
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To characterize the case when the smoothness assumption improves the MTR-MTS bound,

define

Al(t) ≡ {z ∈ Γ : sup
s′∈[t,z]

(E[Yi|Zi = s′] + b(t− s′)) > E[Yi|Zi = t]},

Au(t) ≡ {z ∈ Γ : inf
s′∈[z,t]

(E[Yi|Zi = s′] + b(t− s′)) < E[Yi|Zi = t]}.

Clearly, Al(t) excludes points such that z ≤ t and Au(t) excludes those such that z ≥ t. The

following proposition gives necessary and sufficient conditions for the strict improvement

of the SMTR-MTS bound to the MTR-MTS bound.

Corollary 3.4. The the SMTR-MTS bound is strictly tighter than the MTR-MTS bound

if and only if P (Zi ∈ Al(t)) > 0 or P (Zi ∈ Au(t)) > 0. More specifically, we have

(i) l1(t) > lMP (t) if and only if P (Zi ∈ Al(t)) > 0.

(ii) u1(t) < uMP (t) if and only if P (Zi ∈ Au(t)) > 0.

This corollary essentially means that SMTR-MTS bound can be made tighter than the

MTR-MTS bound if b is reasonably small, i.e. treatment response is sufficiently smooth. In

Section 4, using the empirical example of Manski and Pepper (2000), we will demonstrate

the strict improvement of the MTR-MTS bound with a reasonable value of b. Furthermore,

Section 4.3 presents sensitivity analysis that shows the SMTR-MTS bound improves the

MTR-MTS bound for the average treatment effect for a range of different values of b.

4. Numerical Illustration: Manski and Pepper (2000) Revisited

In this section, we revisit the returns to schooling example of Manski and Pepper (2000)

and illustrate the usefulness of our framework. In particular, we show that the SMTR-MTS

bound becomes narrower than the MTR-MTS bound, which achieves the tightest bound

in Manski and Pepper (2000), for a range of reasonable values of b. In this section, we

will treat numerical results as if we knew population quantities, to focus on identification

results and also to be comparable to Manski and Pepper (2000). In the next section, we

will move to the issue of inference.

4.1. Bounds on Average Counterfactual Outcomes. In the example of Manski and

Pepper (2000), t is years of schooling and g∗(t) is the expectation of counterfactual log

wages when the treatment is t years of schooling. To estimate the bounds developed in

this paper and those in Manski and Pepper (2000), we only need to estimate E[Yi|Zi = t],

P (Zi = t), and the end points [ymin, ymax] of the support of Yi. Table I of Manski and

Pepper (2000) gives information on the estimates of E[Yi|Zi = t], P (Zi = t), which were
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obtained from the NLSY. According to the NBER working paper version of Manski and

Pepper (1998), Manski and Pepper used [ymin, ymax] = [1.4, 5.0].11 We use the same values

in our analysis of both the MTR bound and the MTS bound.

Figure 1. SMTR-STR-MTR comparison
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Figure 1 shows the SMTR, STR, and MTR bounds when the value of b is 0.2.12 Roughly

speaking, this corresponds to the maximum of 20 percentage points in the average return to

one year of schooling. For US samples, OLS and IV estimates of the returns to education are

typically less than 0.1 (see, for example, Table II of Card, 2001). Using local instrumental

variables estimators with NLSY data, Carneiro, Heckman, and Vytlacil (2011) reported a

baseline estimate of 0.0815 for the average treatment effect of one year of college. Their

estimate varies between 0.0626 and 0.1409, across different samples and specifications (see

11See Manski and Pepper (1998) for details on their choice of [ymin, ymax].
12For the SMTR and STR bounds, we calculated unbounded version of them, following Proposition 2.1.
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Table 6 of Carneiro, Heckman, and Vytlacil, 2011). In view of these estimates, we regard

our choice of b as a plausible upper bound.

The STR bound alone or the MTR bound alone gives a relatively wide bound; however,

the SMTR bound seems much tighter, especially in the middle of the distribution of Zi.

Note that the SMTR bound is narrower than the envelope of the STR and MTR bounds, as

discussed in Remark 2.1. Figure 1 demonstrates that there could be a substantial shrinkage

of the identification region if one combines the smoothness condition with the monotonicity

assumption.

Table 1. Comparing SMTR-MTS bound and MTR-MTS bound

SMTR-MTS MTR-MTS
t lower upper lower upper
8 2.247 2.635 2.247 2.635
9 2.299 2.636 2.299 2.636
10 2.195 2.632 2.195 2.632
11 2.339 2.640 2.339 2.640
12 2.477 2.651 2.477 2.651
13 2.560 2.730 2.560 2.730
14 2.552 2.719 2.552 2.719
15 2.571 2.754 2.571 2.754
16 2.627 2.875 2.627 2.875
17 2.618 2.792 2.615 2.792
18 2.636 2.973 2.636 3.002
19 2.636 3.004 2.636 3.004
20 2.635 2.933 2.635 2.933

Table 1 shows the SMTR-MTS bound given in Proposition 3.3 when b = 0.2. It also

shows Manski and Pepper (2000)’s MTR-MTS bound in the last two columns. The im-

proved bounds are marked as boldface. The lower bound for t = 17 and the upper bound

for t = 18 are improved with the addition of the smoothness assumption with b = 0.2.

4.2. Bounds on Average Treatment Effects. We now consider the average treatment

effect:

4(s, t) ≡ E[Yi(t)]− E[Yi(s)].(4.1)

As discussed in Section 2.1, one may obtain the upper bound of 4(s, t) by taking the

difference between the upper bound of E[Yi(t)] and the lower bound of E[Yi(s)]. On one

hand, this type of the upper bound based on our SMTR-MTS assumption is not sharp13;

13See Proposition C.2 in Appendix C for a formal proof.
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on the other hand, the same type of the upper bound using the MTR-MTS assumption is

sharp, as discussed in Manski and Pepper (2000). However, it is possible that our upper

bound of 4(s, t) can be strictly smaller than that of Manski and Pepper (2000). For

example, in Table 1, consider 4(16, 18), which corresponds roughly to the return to two

years of postgraduate education. Note that the MTR-MTS upper bound of 4(16, 18) is

0.375, whereas the SMTR-MTS upper bound is 0.346 with b = 0.2. As a result, the upper

bound decreases by 2.9 percentage points.

Remark 4.1. Recall that the SMTR bound alone imposes the upper bound of 0.4 = 2b for

4(16, 18). It can be seen that the SMTR bound alone is improved upon by combining it

with the MTS condition, resulting in a better bound than the MTR-MTS bound. Therefore,

although the SMTR condition alone does not provide useful information on the average

treatment effect, which was discussed in Section 2.1, the upper bound of 4(s, t) based on

the SMTR-MTS assumption can provide a tighter bound for the average treatment effect .

Figure 2. The upper bound for ∆(16, 18)
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Figure 3. The upper bound for ∆(12, 16)
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4.3. Sensitivity Analysis. The results up to now are based on the choice of b = 0.2,

which seems reasonable but nonetheless arbitrary. We now present the results of sensitivity

analysis by considering all possible values of b. Figure 2 shows how different choices of

b affect the identification region of the avearage treatment effect. The solid line is the

upper bound for ∆(16, 18) obtained by subtracting the lower bound of E[Yi(16)] from

the upper bound of E[Yi(18)] under the SMTR-MTS assumption. Note that choosing b

from (0.15,0.24) gives both meaningful (smaller than 2b - denoted by the dashed line)

and improved (smaller than the MTR-MTS upper bound, whose value is marked by the

constant solid line when b > 0.24) upper bound for the average treatment effect. That

is, for the region of (0.15,0.24), the smoothness assumption provides useful information to

tighten the bound for ∆(16, 18). Hence, we may call such region the effective region of b

for identification of ∆(16, 18). Obtaining the effective region of b amounts to conducting

sensitivity analysis in this example. By looking at all possible values of b, we can see

how the identification region of the average treatment effect changes. This approach gives
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a more complete picture of partial identification analysis than the approach with a fixed

choice of b.

In general, the effective region of b will be dependent on the average treatment effect of

interest. Figure 3 presents the analogous result when our parameter of interest is ∆(12, 16),

and the effective region of b, which turns out to be (0.07,0.18).

5. Inference

In this section, we provide discussions on inference using the identification results ob-

tained in the paper and give directions for further research by mentioning open questions

in inference methods.

5.1. Inference Using Proposition 2.1. We first describe how to carry out inference

under STR, following Imbens and Manski (2004) and Stoye (2009). First, define

θ̂` ≡
1

n

n∑
i=1

[Yi − b|Zi − t|] ,

θ̂u ≡
1

n

n∑
i=1

[Yi + b|Zi − t|] ,

σ̂2
` ≡

1

n

n∑
i=1

[Yi − b|Zi − t|]2 − θ̂2` ,

σ̂2
u ≡

1

n

n∑
i=1

[Yi + b|Zi − t|]2 − θ̂2u,

and ∆̂ ≡ 2b n−1
∑n

i=1 |Zi − t|. For each t, let

CISTR
α (t) ≡

[
θ̂` −

cασ̂`√
n
, θ̂u +

cασ̂u√
n

]
,

where cα solves

Φ

(
cα +

√
n∆̂

max{σ̂`, σ̂u}

)
− Φ (−cα) = 1− α.

Since θ̂` ≤ θ̂u by construction, Lemma 3 and Proposition 1 of Stoye (2009) imply that

g∗(t) ∈ CISTR
α (t) with probability 1 − α uniformly as n → ∞, provided that the data

generating process satisfies mild regularity conditions given in Assumption 1 (i) and (ii)

of Stoye (2009). Note that the confidence interval in CISTR
α (t) is pointwise in t. It would

require more complicated approximations than simple normal approximations in Imbens

and Manski (2004) and Stoye (2009) to obtain a uniform confidence band for g∗(t).



20 KIM, KWON, KWON, AND LEE

Analogously, we can obtain a confidence interval for g∗(t) under SMTR by redefining θ̂`,

θ̂u, σ̂
2
` , σ̂

2
u, and ∆̂ as the following:

θ̂` ≡
1

n

n∑
i=1

[
Yi − b(Zi − t)+

]
,

θ̂u ≡
1

n

n∑
i=1

[
Yi + b(Zi − t)−

]
,

σ̂2
` ≡

1

n

n∑
i=1

[
Yi − b(Zi − t)+

]2 − θ̂2` ,
σ̂2
u ≡

1

n

n∑
i=1

[
Yi + b(Zi − t)−

]2 − θ̂2u,
∆̂ ≡ b

1

n

n∑
i=1

|Zi − t|.

One may develop alternative methods for inference, noting that the bounds in Proposition

2.1 can be expressed as unconditional moment inequality restrictions. Existing inference

methods include Andrews and Barwick (2012), Andrews and Guggenberger (2009), An-

drews and Soares (2010), Beresteanu and Molinari (2008), Bugni (2010), Canay (2010),

Chernozhukov, Hong, and Tamer (2007), Galichon and Henry (2009), Romano and Shaikh

(2008), Romano and Shaikh (2010) and Rosen (2008) among others.

5.2. Inference Using Proposition 3.1. The identification region obtained in each case of

Proposition 3.1 corresponds to the form of intersection bounds considered in Chernozhukov,

Lee, and Rosen (2013). Therefore, a pointwise confidence interval for g∗(t) can be obtained,

following the inference method developed in Chernozhukov, Lee, and Rosen (2013) directly.

Alternatively, one can use inference methods developed for conditional moment inequali-

ties, such as Andrews and Shi (2013), Armstrong (2011a,b), Armstrong and Chan (2013),

Chetverikov (2011) and Lee, Song, and Whang (2013a,b) among others. Among these

methods, Lee, Song, and Whang (2013a) can be used to obtain a uniform confidence band

for g∗(t).

As an illustration of the inference method in this section, we compare the MTR-MIV

bound with the SMTR-MIV bound by revisiting the return to education example using

the data from the National Longitudinal Survey of Youth of 1979.14 Here, Yi(t) is the

counterfactual log wage given that the individual received t years of schooling, and Vi is

14In particular, we use the same data extract as Carneiro and Lee (2009). See also Carneiro, Heckman,
and Vytlacil (2011) for the dataset and recent advances in estimating returns to schooling.
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the Armed Forces Qualifying Test (AFQT) score which is used as MIV; i.e. those with

higher AFQT scores will earn more wages on average. We used b = 0.2 for the smoothness

parameter. Figure 4 shows the pointwise 95% confidence intervals for E[Yi(t)|Vi = 0] using

both the MTR-MIV and SMTR-MIV bounds.15 Each confidence interval was obtained

by the inference method of Chernozhukov, Lee, and Rosen (2013) using a STATA com-

mand in Chernozhukov, Kim, Lee, and Rosen (2013).16 We can observe that imposing the

smoothness assumption substantially tightens the original MTR-MIV confidence interval,

in particular the upper confidence interval at more than 12 years of schooling.

Figure 4. SMTR-MTR comparison when combined with MIV
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5.3. Open Questions in Inference. The existing literature does not provide inference

methods for all the bounds we developed in this paper. First, the bounds given in Corollary

3.2 differ from the intersection bounds; they are rather averages of intersection bounds.

15The variable Vi was normalized so that it has mean zero and variance one in the NLSY population.
16In particular, the series estimator with cubic B-splines was employed. The pointwise confidence intervals
were obtained by inverting a test, which is implementable by the clr3bound command in Chernozhukov,
Kim, Lee, and Rosen (2013).
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There does not seem to exist a suitable inference method yet in the literature. It is an

interesting future research topic to develop inference methods for such bounds, including

bounds given in equations (9) and (17) of Manski and Pepper (2000).

The SMTR-MTS bounds in Proposition 3.3 seem difficult to deal with. Note that the

SMTR-MTS bounds can be estimated consistently by plugging in suitable sample analogs;

however, they are not sufficiently smooth functionals of the underlying population distri-

bution. It is an open question how to carry out inference in general non-smooth setups,

including our bounds as special cases.

6. An Empirical Application

In this section, we use data from the National Job Corps Study (NJCS) and investigate

what can be learned by our partial identification approach about the relationship between

the length of job training and the labor market outcome. In particular, we focus on the

SMTR bounds, present an empirical application of our inference method described in Sec-

tion 5.1, and illustrate the usefulness of our approach by bounding counterfactual gender

and race gaps.

To describe the setting, the treatment variable Zi is the length of exposure to the aca-

demic and vocational instruction (henceforth “AV instruction”) measured in weeks, and the

outcome variable Yi(t) is the weekly earnings of an individual one year after the individual

left the training program, given that the individual received t weeks of AV instruction dur-

ing the program. For a detailed description of this dataset and previous research, refer to

the literature that analysed the same dataset, such as Schochet, Burghardt, and Glazerman

(2001), Schochet, Burghardt, and McConnell (2008), Flores-Lagunes, Gonzalez, and Neu-

mann (2010), and most recently Flores, Flores-Lagunes, Gonzalez, and Neumann (2012).

Our smoothness assumption seems particularly relevant in this example. If only the

MTR assumption is imposed, the resulting bound depends on the support of Yi(t), which

seems difficult to know since the outcome variable is the weekly earnings of an individual.

Furthermore, since the treatment changes continuously, it would be difficult to come up

with an informative bound with only the MTR assumption.

6.1. Bounds on the Average Responses of Earnings to Job Training. We are inter-

ested in obtaining the upper and lower bounds of E[Yi(t)] using smoothness assumptions

along with monotonicity. Here we impose the SMTR assumption, meaning that taking

more instructions at least does not hurt the labor outcome on average. The smoothness

parameter we set here is b = 5; i.e. we assume that one more week of AV instruction cannot

increase the average weekly earnings by more than 5 dollars. We chose b = 5 since it is
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larger than the largest estimate of average derivatives reported in Flores, Flores-Lagunes,

Gonzalez, and Neumann (2012, the second panel of Table 3).

Figure 5. Potential earning for the white population
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*“More educated” means more than or equal to 10 years of education. Otherwise individ-
uals are classified as “Less educated.” Weekly earnings are measured in dollars.
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Figure 6. Potential earning for the black population
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*“More educated” means more than or equal to 10 years of education. Otherwise individ-
uals are classified as “Less educated.” Weekly earnings are measured in dollars.

To compare the estimates from our method with the existing ones, we computed the

estimates of E[Yi(t)] using the generalized propensity score (GPS) under the uncomfound-

edness assumption (the estimate is often called “average dose response function”). For
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theoretical background, see Hirano and Imbens (2004) and Flores, Flores-Lagunes, Gonza-

lez, and Neumann (2012), the latter of which applies the GPS matching method to the Job

Corps dataset. For simplicity we used the parametric specification in estimating the GPS

and the average dose response function; the semiparametric methods were used in Flores,

Flores-Lagunes, Gonzalez, and Neumann (2012) instead. For actual implementation of the

parametric method, refer to Bia and Mattei (2008).

Figures 5 and 6 show the upper and lower bounds of E[Yi(t)] for different subsamples

divided according to the gender, race (white or black), and education (at least 10 years of

education or less - corresponding to finishing at least the half of high school education),

along with 95% confidence intervals obtained by the method described in Section 5.1. The

sample was restricted to those with data on variables of interest - the outcome, treatment,

demographic variables used to divide the sample, as well as other conditioning variables

necessary to calculate the GPS.17 The estimates using GPS are also drawn together. We

can observe that the latter estimates usually lie between the confidence intervals of SMTR

bounds. Moreover, the monotonicity assumption we made seems generally consistent with

the results obtained by the GPS approach, except the case of the less educated black male

population.

6.2. Bounds on the Counterfactual Gender and Race Gaps. In this subsection,

we illustrate the usefulness of the SMTR bound by looking at the implied counterfactual

gender and race gaps. As discussed in Section 2.1, the following corollary gives the sharp

SMTR bound of the average group differences such as the gender or race gap, as long as

there is no cross restriction between two groups.

Corollary 6.1. Assume that the support of Yi(t) is unbounded. Let Wi ∈ {0, 1} denote a

binary indicator that splits the population into two exclusive groups. Suppose that there is

no cross restriction between two groups. Then under SMTR, the following bound is sharp:

{E[Yi|Wi = 1]− E[Yi|Wi = 0]} − b
{
E[(Zi − t)+|Wi = 1] + E[(Zi − t)−|Wi = 0]

}
≤ E[Yi(t)|Wi = 1]− E[Yi(t)|Wi = 0]

≤ {E[Yi|Wi = 1]− E[Yi|Wi = 0]}+ b
{
E[(Zi − t)−|Wi = 1] + E[(Zi − t)+|Wi = 0]

}
.

Corollary 6.1 implies that the upper bound (UB) of the gender (or race) gap is defined

as the difference between the upper SMTR bound of male (white) and the lower SMTR

bound of female (black). The lower bound (LB) is defined similarly. Tables 2 and 3 show

17Choice of the conditioning variables followed the specification of Flores, Flores-Lagunes, Gonzalez, and
Neumann (2012), but we excluded some of them. See Appendix D for details.
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corresponding estimates of bounds for E[Yi(t)|Male]−E[Yi(t)|Female] and E[Yi(t)|White]−
E[Yi(t)|Black], respectively. These bound estimates are obtained in different subsamples, at

t = 4 (one month), 24 (six months), and 36 (nine months), which approximately correspond

to 25%, 50%, and 75% quantiles of the outcome variable. The estimated bound is marked

as boldface when the sign of the gap can be determined.

Table 2. Estimation of gender outcome gaps (Male - Female)

White/High Edu White/Low Edu Black/High Edu Black/Low Edu
LB UB LB UB LB UB LB UB

1 month -18.35 183.16 53.09 237.66 -85.90 100.70 -92.21 120.68
6 months -0.25 165.06 64.86 225.88 -74.68 89.48 -72.59 101.05
9 months -17.35 182.16 44.18 246.57 -95.97 110.77 -91.18 119.64

*“High Edu” means more than or equal to 10 years of education. Otherwise individuals
are classified as “Low Edu.” The unit is dollars per week.

Table 3. Estimation of race outcome gaps (White - Black)

Male/High Edu Male/Low Edu Female/High Edu Female/Low Edu
LB UB LB UB LB UB LB UB

1 month -18.53 173.69 24.42 226.03 -95.37 100.51 -103.84 92.01
6 months -7.08 162.23 37.75 212.71 -77.51 82.65 -85.76 73.93
9 months -27.72 182.87 19.07 231.39 -95.26 100.41 -106.36 94.54

*“High Edu” means more than or equal to 10 years of education. Otherwise individuals
are classified as “Low Edu.” The unit is dollars per week.

The estimation result shows that there is strong evidence of the gender gap among the

white, less educated population; the minimum gap varies from 44 dollars to 64 dollars a

week. There is also evidence of the race gap among less educated males, the minimum gap

varying from 19 dollars to 37 dollars a week.

7. Concluding Remarks

In this paper, we have investigated the identification power of smoothness assumptions in

the context of partial identification of average counterfactual outcomes. We have obtained

a set of new identification results for the average treatment response by imposing smooth-

ness conditions alone, by combining them with monotonicity assumptions, and by adding

instrumental variables assumptions to treatment responses. Our result can also be used

to tighten the average treatment effect when we combine the smoothness assumption with

instrumental variables assumptions. We have demonstrated the usefulness of our approach
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by reanalyzing the return to schooling example of Manski and Pepper (2000) and also by

applying it to the Job Corps Study dataset.

Since information on the upper bound of the average treatment effect is useful for con-

ducting our identification analysis, our approach may be suitable when a policymaker tries

to predict the average counterfactual outcome of a new policy, when some average treat-

ment effect estimates are available from previous studies (or a lower-cost pilot study using

randomized experiments). Also, our result may be useful when a policymaker makes con-

tingent predictions for the average counterfactual outcome of a new policy, depending on

various scenarios of the effectiveness of the treatments. The latter corresponds to the

sensitivity analysis approach.

It might be important to extend our analysis to the identification of the entire distribution

of counterfactual responses, not just average outcomes. It would also be useful to develop

new inference tools for our identification results that cannot be covered by the existing

literature. These are interesting topics for future research.

Appendix A. Smooth Treatment Selection

In this section, we introduce the condition that E[Yi(t)|Zi = s] is a “smooth” function

of s. As in Section 2, we focus on two assumptions on treatment selection: the one we

call smooth treatment selection (STS) and the other smooth monotone treatment selection

(SMTS). Both conditions are now stated below in terms of the “local” behavior of g(t, s)

with respect to s.

Assumption A.1 (Treatment Selection Assumptions). Assume one of the following con-

ditions:

(i) (Condition STS) There exists a constant a > 0 such that |g(t, s) − g(t, s′)| ≤
a|s− s′| ∀t, s, s′ ∈ Γ.

(ii) (Condition SMTS) The STS condition in part (i) holds with a constant a > 0.

In addition, g(t, s) ≥ g(t, s′) ∀t, s, s′ ∈ Γ satisfying s ≥ s′.

Note that in both STS and SMTS conditions, we have a bound on changes in g(t, s) with

respect to s. The “smoothness” condition in Assumption A.1 can be rewritten as

−a ≤ g(t, s)− g(t, s′)

s− s′
≤ a(A.1)

for all s 6= s′ and t, which is equivalent with g(t, ·) having uniformly bounded difference

quotients when viewed as a function of only the second argument for each t. The condition

in (A.1) assumes that the average outcome cannot change “too much” as the selection of
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the treatment varies. If we think about plausibility in the context of bounding the return

to schooling, the STS assumption is consistent with the economic models that predict that

persons who select similar levels of schooling have similar levels of ability on average.

Remark A.1. Assumption A.1 does not seem to be imposed in the literature before; the

most related discussions we can find in the literature are from Manski (2003) and Manski

and Pepper (2012). Using our notation, equation (9.21) in Section 9.4 of Manski (2003,

page 149) states that:

|E[Yi(t)|Vi = v]− E[Yi(t)|Vi = v′]| ≤ C ∀(v, v′, t) ∈ (V × V × Γ),

where C > 0 is a specified constant. Manski (2003) motivated this restriction as a form of

“approximate” mean independence of instruments but just mentioned it without developing

any identification result. Manski and Pepper (2012) considered assumptions of bounded

variations: using our notation, for any (t, d, w) and (t′, d′, w′),

CL ≤ Ed[Yi(t)|Wi = w]− Ed′ [Yi(t′)|Wi = w′]| ≤ CU ,

where d and d′ refer to possibly different time periods, Wi is a vector of covariates, and

CL and CU are constants chosen by the researcher. Our STS and SMTS assumptions

are distinct and have different motivations since we emphasize the nature of continuity or

smoothness of the treatment selection.

The following proposition provides sharp bounds for g∗(t) under these two assumptions.

Proposition A.1. Assume that the support of Yi(t) is unbounded. Then the following

bounds are sharp:

(i) Under STS, E[Yi|Zi = t]− aE[|Zi − t|] ≤ g∗(t) ≤ E[Yi|Zi = t] + aE[|Zi − t|].
(ii) Under SMTS, E[Yi|Zi = t]− aE[(Zi − t)−] ≤ g∗(t) ≤ E[Yi|Zi = t] + aE[(Zi − t)+].

The interpretation of Proposition A.1 is similar to that of Proposition 2.1. Proposition

A.1 (i) states that under STS, the sharp bound is symmetric around E[Yi|Zi = t] and its

width is 2aE[|Zi − t|]. Proposition A.1 (ii) implies that under SMTS, the sharp bound is

asymmetric around E[Yi|Zi = t] and also its width is just aE[|Zi− t|] (the half of the width

under STS). Again, the width is minimized when the counterfactual treatment value is the

median of Zi.

As in the case of the treatment response assumptions, the identification region of g∗(t) is

unbounded when only the MTS condition in the equation (3.1) is assumed (see Proposition

1, Corollary 2 of Manski and Pepper (2000)). This implies that the STS assumption can

provide additional information for identification when the support of Yi(t) is unbounded.
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When the support of Yi(t) is bounded, i.e. Yi(t) ≤ ymax < ∞ for some known ymax, we

can show that the upper bound for g∗(t) is

g∗(t) ≤
∫
z>t

min{ymax, (E[Yi|Zi = t] + a(z − t))}µ(dz) + E[Yi|Zi = t]P (Zi ≤ t).(A.2)

The upper bound (A.2) cannot be larger than the upper bound under the MTS assumption

alone since the latter has the form (see again Proposition 1, Corollary 2 of Manski and

Pepper (2000)):

g∗(t) ≤ ymaxP (Zi > t) + E[Yi(t)|Zi = t]P (Zi ≤ t).(A.3)

Similarly to the discussion under SMTR, note that the SMTS upper bound strictly improves

the MTS upper bound if and only if the event such that E[Yi|Zi = t] +a(Zi− t) < ymax has

a strictly positive probability, conditional on Zi > t. Analogous results can be established

for the lower bound, and we summarize our findings below.

Corollary A.2. Assume that the support of Yi(t) is [ymin, ymax], where −∞ ≤ ymin ≤
ymax ≤ ∞. Then we have:

(i) The upper bound of the SMTS bound is strictly smaller than that of the MTS bound

if and only if
∫
z>t

1 {USMTS(t, z) < 0}µ(dz) > 0, where USMTS(t, z) ≡ E[Yi|Zi =

t] + a(z − t)− ymax.

(ii) The lower bound of the SMTS bound is strictly larger than that of the MTS bound

if and only if
∫
z<t

1 {LSMTS(t, z) > 0}µ(dz) > 0, where LSMTS(t, z) ≡ E[Yi|Zi =

t]− a(t− z)− ymin.

As in the SMTR case, one can test whether there is an strict improvement using Corollary

A.2. Moreover, a similar argument as Remark 2.1 can be made to deduce that taking

minimum (maximum) of STS and MTS upper (lower) bounds does not give SMTS upper

(lower) bound.

A.1. The STR and STS Bounds. If we combine STR with STS, we obtain the following

result.

Proposition A.3. Assume that the support of Yi(t) is unbounded. Then, under STR and

STS together, E[Yi(t)] ∈ [l2(t), u2(t)], where

l2(t) ≡
∫

max{E[Yi|Zi = t]− a|z − t|, E[Yi|Zi = z]− b|z − t|}µ(dz),

u2(t) ≡
∫

min{E[Yi|Zi = t] + a|z − t|, E[Yi|Zi = z] + b|z − t|}µ(dz).

Moreover, this bound is sharp.
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In contrast to the case where only one of STS and STR holds, the length of the identifi-

cation region is generally not minimized at the median of Zi. To make a comparison with

the STR bound in Proposition 2.1 and the STS bound in Proposition A.1, we present the

special case such that a = b as the following corollary.

Corollary A.4. Suppose a = b = k̄, where k̄ denotes the common value. Define A(t) as

the event such that E[Yi|Zi = t] ≤ E[Yi|Zi] for each t. Assume that the support of Yi(t) is

unbounded. Then, under STR and STS together, E[Yi(t)] ∈ [l3(t), u3(t)], where

l3(t) ≡ E[Yi|Zi = t]P (A(t)c) + E[Yi|A(t)]P (A(t))− k̄E[|Zi − t|],

u3(t) ≡ E[Yi|Zi = t]P (A(t)) + E[Yi|A(t)c]P (A(t)c) + k̄E[|Zi − t|].

As a polar case, suppose that E[Yi|Zi = t] ≤ E[Yi|Zi] holds with probability one. Then

the lower and upper bounds of the STR-STS bound reduce to

l3(t) = E[Yi]− k̄E[|Zi − t|] and u3(t) = E[Yi|Zi = t] + k̄E[|Zi − t|],

respectively. Thus, in this case, as long as E[Yi|Zi = t] < E[Yi], we can conclude that

the upper bound of the STR-STS bound is strictly smaller than that of the STR bound

in Proposition 2.1 and that the lower bound of the STR-STS bound is strictly larger than

that of the STS bound in Proposition 2.1.

A.2. Numerical Illustration: Manski and Pepper (2000) Revisited. In this sub-

section, we go back to the returns to schooling example of Manski and Pepper (2000) in

Section 4 and illustrate the usefulness of STR and SMTS assumptions. Figure 7 shows the

SMTS, STS, and MTS bounds when the value of a is 0.4. Here, SMTS and STS bounds

are calculated as unbounded version. It seems more difficult to come up with a reasonable

value of a in this example. We set a = 2b = 0.4 to have a relatively large value for a. The

estimation results are similar to those in Figure 1. Again Figure 7 shows that there could

be a substantial advantage if one combines the smoothness condition with the monotonicity

assumption.

A.3. Inference Using Proposition A.1. The bounds given in Proposition A.1 are sim-

ilar to those given in Proposition 2.1. The important difference is that the bounds are

around the conditional expectation E[Yi|Zi = t], not the overall mean E[Yi]. To reflect this
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Figure 7. SMTS-STS-MTS comparison
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difference, define

θ̃` ≡ ̂E[Yi|Zi = t]− a 1

n

n∑
i=1

|Zi − t|,

θ̃u ≡ ̂E[Yi|Zi = t] + a
1

n

n∑
i=1

|Zi − t|,

where ̂E[Yi|Zi = t] is a local linear estimator of E[Yi|Zi = t].18 Let ŝ2(t) denote a consistent

estimator of the asymptotic variance of
√
nh
(

̂E[Yi|Zi = t]− E[Yi|Zi = t]
)

, where h is a

bandwidth used in local linear estimation. Since ̂E[Yi|Zi = t] cannot be estimated by a

rate of n−1/2, while 1
n

∑n
i=1 |Zi − t| can be estimated by n−1/2, we set

σ̃2
` = σ̃2

u ≡ ŝ2(t),

18We can allow for other nonparametric estimators, provided that a pointwise normal approximation is
readily available.
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and ∆̃ ≡ 2a n−1
∑n

i=1 |Zi − t|. For each t, let

CISTS
α (t) ≡

[
θ̃` −

cασ̃`√
nh
, θ̃u +

cασ̃u√
nh

]
,

where cα solves

Φ

(
cα +

√
nh∆̃

ŝ(t)

)
− Φ (−cα) = 1− α.

Again, since θ̃` ≤ θ̃u by construction, we can modify Lemma 3 and Proposition 1 of Stoye

(2009) and rely on undersmoothing to obtain the asymptotic uniform validity of the pro-

posed confidence interval. Analogously, we can obtain a confidence interval for g∗(t) under

SMTS by redefining θ̃`, θ̃u and ∆̃ as the following:

θ̃` ≡ ̂E[Yi|Zi = t]− a 1

n

n∑
i=1

(Zi − t)−,

θ̃u ≡ ̂E[Yi|Zi = t] + a
1

n

n∑
i=1

(Zi − t)+,

∆̂ ≡ a
1

n

n∑
i=1

|Zi − t|.

The STR-STS bound in Proposition A.3 is expressed as the expectation of the maximum

between two conditional expectations. Its form in Corollary A.4 is simpler but still involves

several terms, including E[Yi|Zi = t]. For these bounds, there does not seem to exist a

suitable inference method yet in the literature. It is an interesting future research topic to

develop inference methods for such bounds.

Appendix B. Proofs

In this section, we give the proofs of propositions and corollaries in the paper. The proofs

of Corollaries 2.2, 6.1 and A.2 are omitted since they are straightforward.

Proof of Proposition 2.1. Part (i). Under STR, we have∫
(E[Yi|Zi = z]− b|z − t|)µ(dz) ≤

∫
E[Yi(t)|Zi = z]µ(dz) ≤

∫
(E[Yi|Zi = z] + b|z − t|)µ(dz),

equivalently,

E[Yi]− bE[|Zi − t|] ≤
∫
E[Yi(t)|Zi = z]µ(dz) ≤ E[Yi] + bE[|Zi − t|].

Hence, we obtained the desired bound since g∗(t) = E[Yi(t)] =
∫
E[Yi(t)|Zi = z]µ(dz).
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For the sharpness, consider a DGP s.t. E[Yi(t)|Zi = s] = E[Yi|Zi = s]+b|s−t| ∀t, s ∈ Γ.

This ensures E[Yi(t)] attains the upper bound. It remains to show this DGP satisfies STR,

which is followed by:

|E[Yi(t1)|Zi = s]− E[Yi(t2)|Zi = s]| = b
∣∣|s− t1| − |s− t2|∣∣

≤ b|t1 − t2|.

On the other hand, the DGP E[Yi(t)|Zi = s] = E[Yi|Zi = s] − b|s − t| ∀t, s ∈ Γ, attains

the lower bound, and the convex combinations between the two DGPs yield all the values

between the lower and upper bounds. It can also be shown that they obey STR.

Part (ii). We only prove the case for the upper bound. The proof for the lower bound

is similar. Under SMTR,

E[Yi(t)] =

∫
z≤t

E[Yi(t)|Zi = z]µ(dz) +

∫
z>t

E[Yi(t)|Zi = z]µ(dz)

≤
∫
z≤t

(E[Yi|Zi = z] + b(t− z))µ(dz) +

∫
z>t

(E[Yi|Zi = z] + 0)µ(dz)

= E[Yi] + bE[(Zi − t)−].

For the sharpness, consider a DGP s.t. E[Yi(t)|Zi = s] = E[Yi|Zi = s] + b(t− s) when

s ≤ t and E[Yi(t)|Zi = s] = E[Yi|Zi = s] when s > t. This ensures E[Yi(t)] attains the

upper bound. To show that this DGP satisfies SMTR, note that for any t1 and t2 satisfying

t1 > t2, we have

E[Yi(t1)|Zi = s]− E[Yi(t2)|Zi = s] =


b(t1 − t2) if t1 > t2 ≥ s

0 if t2 < t1 < s

b(t1 − s) if t2 < s ≤ t1.

This implies that SMTR holds since (t1−s) ≤ (t1− t2) when t2 < s ≤ t1. The lower bound

can be attained similarly, and furthermore, as in part (i), the convex combinations between

the two polar DGPs yield all the values between the lower and upper bounds. �

Proof of Proposition 3.1 and Corollary 3.2. Part (i). Note that under CSTR, Proposition

2.1(i) leads to

E[Yi|Vi = u]− bE[|Zi − t||Vi = u] ≤ E[Yi(t)|Vi = u] ≤ E[Yi|Vi = u] + bE[|Zi − t||Vi = u]

which holds for any u ∈ V . Due to Assumption IV, E[Yi(t)|Vi = u] is no larger than the

CSTR upper bound on E[Yi(t)|Vi = u′], and no smaller than the CSTR lower bound, for

any u′ ∈ V . There are no other restriction on E[Yi(t)|Vi = u], so the bound is sharp. Part

(ii) can be proved in a similar way. For Part (iii)., we again use the CSTR bound for
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E[Yi(t)|Vi = u] presented above. Due to Assumption MIV, E[Yi(t)|Vi = u] is no smaller

than the CSTR lower bound on E[Yi(t)|Vi = u1], and no larger than the CSTR upper bound

on E[Yi(t)|Vi = u2], for any u1 ≤ u ≤ u2. There is no other restriction on E[Yi(t)|Vi = u],

so the bound is sharp. Part (iv) can be proved in the similar way.

Corollary 3.2 can be proved by observing that

g∗(t) =

∫
E[Yi(t)|Vi = v]FV (dv).

Setting E[Yi(t)|Vi = v] at its lower (upper) bound given in Proposition 3.1 (iii) and (iv)

yields the result. �

Proof of Proposition 3.3. Suppose s < t. Note by the SMTR condition that g(s, s) ≤
g(t, s) ≤ g(s, s) + b(t− s). Then, for all s′ ∈ [s, t], we have g(t, s) ≤ g(s′, s′) + b(t− s′) by

MTS and thus g(t, s) ≤ infs′∈[s,t](g(s′, s′) + b(t − s′)). Thus, we obtain g(s, s) ≤ g(t, s) ≤
infs′∈[s,t](g(s′, s′)+b(t−s′)) for all s < t. In a similar manner, we obtain sups′∈[t,s](g(s′, s′)+

b(t− s′)) ≤ g(t, s) ≤ g(s, s) for all s > t. Hence, it follows that

s < t⇒ g(s, s) ≤ g(t, s) ≤ inf
s′∈[s,t]

(g(s′, s′) + b(t− s′)).

s = t⇒ g(t, s) = g(t, t)

s > t⇒ sup
s′∈[t,s]

(g(s′, s′) + b(t− s′)) ≤ g(t, s) ≤ g(s, s).

The lower and upper bounds follow immediately by integrating out s.

For the sharpness, consider a DGP that satisfies

g(t, s) =

{
g(s, s) + b(t− s) if s ≤ t

g(s, s) if s > t
(B.1)

and g(t, s) ≤ g(t, s′) ∀s ≤ s′,∀t. Note that this implies that the DGP in (B.1) satisfies

g(s′, s′) ≥ g(s, s) + b(s′ − s) ∀s ≤ s′ ≤ t. Then, if s < t, it follows that

inf
s′∈[s,t]

(g(s′, s′) + b(t− s′)) = g(s, s) + b(t− s) = g(t, s),

where the last equality follows from (B.1). Hence, we have

s < t⇒ g(t, s) = inf
s′∈[s,t]

(g(s′, s′) + b(t− s′))

s = t⇒ g(t, s) = g(t, t)

s > t⇒ g(t, s) = g(s, s).
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This ensures that E[Yi(t)] attains the upper bound. For the lower bound, consider a DGP

that satisfies

g(t, s) =

{
g(s, s) if s < t

g(s, s) + b(t− s) if s ≥ t

and g(t, s) ≤ g(t, s′) ∀s ≤ s′,∀t. An analogous argument shows that this DGP indeed

attains the lower bound. The convex combinations between the two DGPs yield all the

values between the lower and upper bounds. It is obvious that such DGPs satisfy SMTR and

MTS. The latter is directly imposed. To see the former, consider the DGP we considered

for the upper bound, and observe that we have, for any t1 and t2 satisfying t1 > t2,

g(t1, s)− g(t2, s) =


b(t1 − t2) if t1 ≥ t2 ≥ s

b(t1 − s) if t1 ≥ s > t2

0 if s > t1 ≥ t2,

which implies that the DGP satisfies SMTR. �

Proof of Proposition A.1. Part (i). We only prove the case of the upper bound. The proof

for the lower bound is analogous. Under STS,

E[Yi(t)] =

∫
E[Yi(t)|Zi = z]µ(dz)

≤
∫

(E[Yi|Zi = t] + a|z − t|)µ(dz)

= E[Yi|Zi = t] + aE[|Zi − t|].

For the sharpness, consider a DGP s.t. E[Yi(t)|Zi = s] = E[Yi(t)|Zi = t]+a|s−t| ∀t, s ∈ Γ.

This ensures that E[Yi(t)] attains the upper bound. We can also show that this DGP

satisfies STS:

E[Yi(t)|Zi = s1] = E[Yi(t)|Zi = t] + a|s1 − t|

E[Yi(t)|Zi = s2] = E[Yi(t)|Zi = t] + a|s2 − t|

⇒|E[Yi(t)|Zi = s1]− E[Yi(t)|Zi = s2]| = a
∣∣|s1 − t| − |s2 − t|∣∣

≤ a|s1 − s2|.

On the other hand, the DGP s.t. E[Yi(t)|Zi = s] = E[Yi(t)|Zi = t] − a|s − t| ∀t, s ∈ Γ,

attains the lower bound, and the convex combinations between the two DGPs yield all the

values between the lower and upper bounds. Also, they all obey STS.
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Part (ii). We only consider the upper bound. Again, the proof for the lower bound is

analogous. Under SMTS,

E[Yi(t)] =

∫
z≤t

E[Yi(t)|Zi = z]µ(dz) +

∫
z>t

E[Yi(t)|Zi = z]µ(dz)

≤
∫
z≤t

(E[Yi|Zi = t] + 0)µ(dz) +

∫
z>t

(E[Yi|Zi = t] + a(z − t))µ(dz)

= E[Y |Zi = t] + aE[(Zi − t)+].

For the sharpness, consider a DGP s.t. E[Yi(t)|Zi = s] = E[Yi(t)|Zi = t] when s ≤ t

and E[Yi(t)|Zi = s] = E[Yi(t)|Zi = t] + a(s − t) when s > t. This ensures that E[Yi(t)]

attains the upper bound. To show that this DGP satisfies SMTS, note that for any s1 and

s2 satisfying s1 > s2, we have

E[Yi(t)|Zi = s1]− E[Yi(t)|Zi = s2] =


0 if s2 < s1 ≤ t

a(s1 − s2) if s1 > s2 > t

a(s1 − t) if s1 > t ≥ s2.

This implies that SMTS holds since (s1 − t) ≤ (s1 − s2) when s1 > t ≥ s2. Then the rest

can be proved as in part (ii) of the proof of Proposition 2.1. �

Proof of Proposition A.3 and Corollary A.4. The bounds in Proposition A.3 naturally fol-

low from Propositions 2.1 and A.1. For the sharpness, note that there are two cases to

consider; STR and STS can hold with 1) a ≥ b or 2) a < b. For case 1), consider a

DGP s.t. E[Yi|Zi = z] = c ∀z, where c indicates some constant. Furthermore, suppose

g(t, s) = g(s, s) + b|t − s| = c + b|t − s|. Note that in case 1),
∫

min{E[Yi|Zi = t] + a|z −
t|, E[Yi|Zi = z] + b|z− t|}µ(dz) =

∫
min{c+a|z− t|, c+ b|z− t|}µ(dz) =

∫
c+ b|z− t|µ(dz).

Moreover, note that E[Yi(t)] =
∫
E[Yi(t)|Zi = z]µ(dz) =

∫
c + b|t − z|µ(dz). Therefore,

the upper bound is sharp in this case. Likewise, if we change the DGP into g(t, s) =

g(s, s)− b|t− s| = c− b|t− s|, we can show that the lower bound is also sharp. Finally, the

DGP s.t. g(t, s) = g(s, s) + k|t− s| = c+ k|t− s|, s ∈ (−b, b) generates different values for

E[Yi(t)] which are between the upper and the lower bound.

It remains to show these DGPs satisfy STR and STS. However, this can be easily checked

since these DGPs have the same form as in the DGPs appearing in the proofs for the

propositions 2.1 and A.1. For case 2), replacing b with a leads to the analogous argument

which completes the proof.
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For the upper bound in Corollary A.4, note that

g∗(t) ≤
∫

min(E[Yi|Zi = t] + k̄|z − t|, E[Yi|Zi = z] + k̄|z − t|)µ(dz)

=

∫ [
min(E[Yi|Zi = t], E[Yi|Zi = z]) + k̄|z − t|

]
µ(dz)

=

∫
min(E[Yi|Zi = t], E[Yi|Zi = z])µ(dz) + k̄E|Zi − t|

=

∫
A(t)

E[Yi|Zi = t]µ(dz) +

∫
A(t)c

E[Yi|Zi = z]µ(dz) + k̄E|Zi − t|.

The result for the lower bound can be shown similarly. �

Appendix C. Additional Theoretical Results

In this section, we provide some additional theoretical results with respect to the average

treatment effects.

Proposition C.1. Consider the average treatment effect, ∆(t, t′) ≡ g∗(t) − g∗(t′) with

t > t′. Under STR, the sharp bound for ∆(t, t′) is [−b(t− t′), b(t− t′)]. Under SMTR, the

sharp bound for ∆(t, t′) is [0, b(t− t′)].

Proof of Proposition C.1. To verify the sharpness of the STR upper bound, consider a

HLR-type DGP s.t. Yi(t) = β × t+ δi with Eδi = 0 and β = b satisfies STR, as mentioned

in the main text, and this DGP yields ∆(t, t′) = b(t− t′). Likewise, the sharp lower bound

is −b(t − t′) (take β = −b). Now the convex combinations between the two DGPs yield

all the values between the lower and upper bounds. Identical arguments yield that the

sharp SMTR upper and lower bounds for the average treatment effect are b(t− t′) and 0,

respectively. �

Note that subtracting the lower bound from the upper bound using Proposition 2.1 yields

the bound of ∆(t, t′) in the following form:

[−b (E[|Zi − t|] + E[|Zi − t′|]) , b (E[|Zi − t|] + E[|Zi − t′|])].(C.1)
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Let t > t′. For simplicity, suppose that Zi is a continuous random variable. Now consider

the upper bound in (C.1):

b {E[|Zi − t|] + E[|Zi − t′|]}

= b

{∫
z<t

(t− z)µ(dz) +

∫
z>t

(z − t)µ(dz) +

∫
z<t′

(t′ − z)µ(dz) +

∫
z>t′

(z − t′)µ(dz)

}
= b

{∫
z<t′

(t+ t′ − 2z)µ(dz) +

∫
z>t

(2z − t− t′)µ(dz) +

∫
t′<z<t

(t− t′)µ(dz)

}
.

Therefore,

b {E[|Zi − t|] + E[|Zi − t′|]} − b(t− t′) = 2b

{∫
z<t′

(t′ − z)µ(dz) +

∫
z>t

(z − t)µ(dz)

}
> 0,

provided that t or t′ is in the interior of the support of Zi. Therefore, subtracting the lower

bound from the upper bound can never achieve the sharp upper bound for the average

treatment effect under the STR assumption. Similar arguments can be made for the STR

lower bound as well as the SMTR lower and upper bounds.

Proposition C.2. Consider the treatment effect, g∗(t)− g∗(t′). The bound for the average

treatment effect implied by Proposition 3.3, [l1(t)− u1(t′), u1(t)− l1(t′)], is not sharp.

Proof of Proposition C.2. We show that g∗(t) − g∗(t′) can never obtain the implied upper

bound u1(t)− l1(t′) for any t > t′ under any DGP satisfying the conditions of Proposition

3.3. Suppose there exists some t and t′ with t > t′ such that g∗(t)− g∗(t′) = u1(t)− l1(t′).
Investigating the proof of Proposition 5.3, we can see that this is possible only when g(·, ·)
satisfies

g(t, s) =

{
g(s, s) + b(t− s) if s ≤ t

g(s, s) if s > t

and

g(t′, s) =

{
g(s, s) if s < t′

g(s, s) + b(t′ − s) if s ≥ t′
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almost surely. That is, P (A) = 0, whereA ≡ {s ∈ Γ : s does not satisfy the two conditions above}.
Then, however, we have

g(t, s)− g(t′, s) =


b(s− t′) if s ≥ t > t′

b(t− t′) if t > s > t′

b(t− s) if t > t′ ≥ s,

and thus |g(t, s)− g(t′, s)| > b|t− t′| for s such that s > t or s < t′ on Ac. Hence, provided

that P (B) > 0, where B ≡ {s ∈ Γ : s > t or s < t′}, g(·, ·) does not satisfy SMTR. A

similar argument can also be made to show that the lower bound cannot be obtained. �

Appendix D. Variables Employed in the Estimation of The GPS

In choosing the variables for the estimation of the generalized propensity score in the

section 6.1, we tried to follow the specification of Flores, Flores-Lagunes, Gonzalez, and

Neumann (2012). However, we had to omit some of the variables employed by the authors,

due to (i) the small sample size when we delete observations with missing values for the

variables we employ19 and (ii) data availability issue (the variables related to the geographic

information of the participants are not publicly available).

The demographic variables employed here are nonresidential slot indicator, age (as well as

the quadratic and cubic terms), and indicators for living in primary metropolitan statistical

area or just metropolitan statistical area, having ever been arrested, having a child, being

married, being the head of household, living with two parents and using English as native

language. Since the gender and race variables were used in dividing the sample, they are

not listed here. The health variables include indicators for good/fair/poor health, smoking,

drinking and smoking marijuana.

The variables related to education and work experience of the participants include the

highest grade measured in years of education (as well as the quadratic term), average weekly

earnings at the time of baseline interview and the indicator for having high school diploma,

having general educational development diploma, having vocational diploma, having at-

tended or training program in the last year and having ever worked before. Lastly, the

variables related to Job Corps (JC) enrolment include the estimated probability of not

enrolling in JC, the estimated probability of staying in JC for 30/90/180/270 days, and the

indicators for being worried about JC, having heard about JC from parents, having known

what center a participant wished to attend, and having known desired job training.

19Since we divide our sample into subsamples finer than Flores, Flores-Lagunes, Gonzalez, and Neumann
(2012), the small sample problem is more serious.
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The variables omitted from the original specification used by Flores, Flores-Lagunes,

Gonzalez, and Neumann (2012) due to the small sample issue include the indicators for

the type of training a participant wanted from the program (11 categories), expectations

from the program (7 categories) and reasons for joining JC (7 categories). The variables

excluded due to the data availability issues are Local Unemployment Rates (LURs), LUR

at time of JC exit, LUR of 16 to 35 year olds of an individuals race, JC center attended

(109 centers), and the State of residence (48 states), all of them necessitating the private

geographic information of the participants.

Moreover, interactions with female, white, black, and Hispanic indicators were not used

since the bounds are estimated for each subsample of the gender/race category.
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