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Abstract

In the presence of heteroskedasticity, the conventional test statistics, based on the ordinary least6

square estimator, lead to incorrect inference results in the linear regression model. Given that
heteroskedasticity is common in cross-sectional data, the test statistics based on various forms8

of heteroskedasticity consistent covariance matrices (HCCMs) have been developed in the liter-
ature. Heteroskedasticity is a more serious problem for spatial econometric models, generally10

causing inconsistent estimators. We investigate the finite sample properties of a heteroskedas-
ticity robust generalized method of moments estimator for a spatial econometric model with an12

unknown form of hetereoskedasticity. We develop various HCCM-type corrections to improve
the finite sample properties of the GMME and the conventional Wald test. Our Monte Carlo14

experiments indicate that the HCCM-type corrections produce more accurate inference results
for the model parameters and the effects estimates.16
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1 Introduction20

An unknown form of heteroskedasticity in the disturbance terms of a spatial autoregressive model
can yield inconsistent extremum estimators. The robust generalized method of moments estimators22

(GMMEs) proposed by Kelejian and Prucha, (2010), Lin and Lee, (2010) and Debarsy et al., (2015)
have the virtue of being consistent under both heteroskedasticity and homoskedasticity. Despite this24

desirable property, these estimators are inefficient as the best set of moment functions is generally
not available when the model involves an unknown form of heteroskedasticity. Furthermore, there is26

not much known on inference based on these estimators in finite samples. An exception is Kelejian
and Prucha, (2010) who provide results on the size properties of the standard Wald test based on28

their multi-step estimator. It remains open to investigate the properties of the robust estimation
approach in terms of inference in finite samples. To this end, we consider an SARAR(1, 1) model30

with an unknown form of heteroskedasticity in this study.
First, we revisit the estimation approach of Lin and Lee, (2010) for our SARAR(1, 1) speci-32

fication and investigate the form of the best set of moment functions following the idea in Lee,
(2007). Our findings are in line with the findings of Debarsy et al., (2015). The best GMM esti-34

mator formulated from the best set of moment functions is not feasible as these moments involve
an unknown covariance matrix that cannot be estimated consistently. More importantly, our main36

objective is to derive heteroskedasticity consistent covariance matrix (HCCM)-type corrections for
the robust GMME. To this end, we suggest various HCCM estimators (HCCMEs) based on two38

quasi hat matrices and investigate their effects on the finite sample properties of the robust GMME
as well as on the finite sample properties of the Wald test.40

Originally suggested by Eicker, (1967) and White, (1980), HCCMEs are common tools to im-
prove finite sample properties of the conventional tests of significance in linear regression models42

and generalized estimating equations (Bera et al., 2002; Cribari-Neto, 2004; Cribari-Neto et al.,
2007; Kauermann and Carroll, 2001; Long and Ervin, 2000; MacKinnon and White, 1985). It44

has been well documented in the literature that the Wald test based on the original HCCME sug-
gested in White, (1980) has serious size distortions. Therefore, various modifications to the original46

HCCME have been proposed over the years. MacKinnon and White, (1985) suggest alternative
HCCMEs formulated from the leverage-adjusted residuals. Chesher and Jewitt, (1987), Chesher,48

(1989), Chesher and Austin, (1991) and Kauermann and Carroll, (2001) indicate that the standard
Wald tests based on the HCCMEs suggested in MacKinnon and White, (1985) can still have poor50

finite sample properties when there are high leverage points in the design matrix. Cribari-Neto,
(2004) and Cribari-Neto et al., (2007), therefore, propose modified HCCMEs to remove the effect52

of high leverage points. For a comprehensive review, see MacKinnon, (2013).
Lin and Chou, (2015) (LC hereafter) complement the literature by providing a methodology to54

formulate HCCMEs based on leverage-adjusted residuals within the GMM framework for non-linear
regression models. Our contribution is extending LC’s methodology to a spatial autoregressive56

model with an unknown form of heteroskedasticity to formulate various HCCMEs within the GMM
framework. This extension is not straightforward mainly due to two complications arising from the58

spatial dependence in our model. First, our set of moments involve moment functions that are linear
and quadratic in disturbance terms, whereas the set of moments in LC contains only linear moment60

functions. The presence of quadratic moment functions complicates the formulation of a hat matrix.
Second, LC extend the idea of the leverage adjusted-residuals in MacKinnon and White, (1985) to62

a non-linear regression model. In essence, various HCCMs are based on a relationship derived at
the observational level between the leverage-adjusted residuals and the individual variance under64

homoskedasticity assumption. In the presence of spatial dependence, such a relationship can not
be established at the observational level. Instead, it has to be established at the sample level which66
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complicates the derivation of a hat matrix.
In a simulation study, we investigate the finite sample properties of the GMME based on vari-68

ous finite sample correction methods formulated from two (quasi) hat matrices for a SARAR(1, 1)
specification. These correction methods affect both the bias and the estimated standard errors of70

the GMME in finite samples. Our simulation results show that the bias properties of the GMME
are similar across the correction methods. That is, the GMME formulated from each of the sug-72

gested correction method produce similar point estimates in finite samples. However, our results
show that the estimated standard errors of the GMME are quite different across the correction74

methods. Especially, we show that the usual estimated standard errors (formulated from SHC0)
differ from the empirical counterpart substantially, which in turn results in large size distortions76

for the standard Wald test. Our results indicate that the estimated standard error based on the
correction methods are much closer to their empirical counterparts, and hence can lead to more78

accurate inference within the context of our spatial model.
This paper is organized in the following way. Section 2 presents the spatial autoregressive model,80

underlying assumptions and reviews the robust GMM estimation approach to lay out the details of
the estimation approach for the SARAR(1, 1) specification. Section 3 deals with various methods82

of heteroskedasticity-consistent covariance matrix estimation in the GMM framework. Section 4
presents details of the derivation of the quasi-hat matrix. Section 5 lays out the details of the84

Monte Carlo design and presents the results. Section 6 closes with concluding remarks. Some of
the technical derivations are relegated to an appendix.86

2 SARAR(1,1) specification, assumptions and the robust GMME

Using the standard notation, the SARAR(1, 1) specification is given by

Yn = λ0WnYn +Xnβ0 + un, un = ρ0Mnun + εn, (2.1)

where Yn = (Y1n, . . . , Ynn)
′

is the n × 1 vector of a dependent variable, Xn is the n × k matrix of88

non-stochastic exogenous variables with a matching parameter vector β0. Furthermore, Wn and
Mn are the n× n spatial weight matrices of known constants with zero diagonal elements, λ0 and90

ρ0 are the spatial autoregressive parameters, un = (u1n, . . . , unn)
′

is the n× 1 vector of regression

disturbance terms and εn = (ε1n, . . . , εnn)
′

is the n× 1 vector of disturbances (or innovations). Let92

Θ be the parameter space of the model. In order to distinguish the true parameter vector from
other possible values in Θ, we state the model with the true parameter vector θ0 = (ρ0, λ0, β

′
0)
′
.94

Furthermore, for notational simplicity, we let Sn(λ) = (In − λWn), Rn(ρ) = (In − ρMn), Gn(λ) =
WnS

−1
n (λ), Hn(ρ) = MnR

−1
n (ρ), Gn(ρ, λ) = Rn(ρ)Gn(λ)R−1

n (ρ) and Xn(ρ) = Rn(ρ)Xn. Also, at96

(ρ0, λ0), we denote Sn(λ0) = Sn, Rn(ρ0) = Rn, Gn(λ0) = Gn, Hn(ρ0) = Hn, Gn(ρ0, λ0) = Gn and
Xn(ρ0) = Xn.98

We maintain Assumption 1 and 2 with respect to innovations and weight matrices.

Assumption 1. — The innovations εins are distributed independently, and satisfy E (εin) = 0,100

E
(
ε2
in

)
= σ2

in, and E |εin|4+η <∞ for some η > 0 for all n and i.

Assumption 2. — The spatial weight matrices Mn and Wn are uniformly bounded in row and102

column sums in absolute value. Moreover, S−1
n , R−1

n , S−1
n (λ) and R−1

n (ρ) exist and are uniformly
bounded in row and column sums in absolute value for all values of ρ and λ in a compact parameter104

space.

The regularity conditions in Assumptions 1 and 2 are motivated to restrict the spatial autocor-106

relation in the model at a tractable level (Kelejian and Prucha, 1998). By this assumption, the third
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and fourth moments, denoted respectively by µ3 and µ4, of εin exist for all i and n. Assumption 2108

also implies that the model in (2.1) represents an equilibrium relation for the dependent variable,
that is, Yn = S−1

n Xnβ0 + S−1
n R−1

n εn.110

For the model in (2.1), we consider a GMME based on a combination of linear and quadratic
moment functions (Lee, 2007; Lin and Lee, 2010). The combined vector of moment functions is112

given by gn(θ0) =
(
ε
′
nP1nεn, . . . , ε

′
nPmnεn, ε

′
nQn

)′
. Moment functions formulated with the n × n

constant matrices Pjn for j = 1, . . . ,m are called the quadratic moment functions. The remaining114

moment function Q
′
nεn is a linear moment function, where Qn is an n× r instrument matrix with

r ≥ k + 1 and has full column rank. The matrices Pjn and Qn are chosen in such way that116

orthogonality conditions of population moment functions are not violated. Let Pn be the class of
n× n constant matrices with zero diagonal elements. The quadratic moment functions formulated118

with matrices from Pn satisfy the orthogonality conditions when disturbance terms are independent.
In the following, Assumptions 3 and 4 states regularity conditions for moment matrices and120

regressors. Assumption 5 characterizes the parameter space.1

Assumption 3. — Elements of the IV matrix Qn are uniformly bounded. Matrices Pjn for122

j = 1, . . . ,m are uniformly bounded in row and column sums in absolute value.

Assumption 4. — The regressors matrix Xn is an n×k matrix consisting of uniformly bounded124

constant elements. It has full column rank. Moreover, limn→∞
1
nX

′
nXn exists and is nonsingular.

Assumption 5. — The parameter space Θ is a compact subset of Rk+2, and θ0 ∈ Int(Θ).126

The GMME is obtained by exploiting the sample moment counterparts of population mo-
ment conditions implied by the model specification. For our specification, the GMME is based128

on a set of quadratic and linear moment functions formulated from the orthogonality conditions
implied by RnYn = λ0RnWnYn + RnXnβ0 + εn = Znδ0 + εn, where Zn = (RnWnYn, RnXn)130

and δ0 =
(
λ0, β

′
0

)′
. The linear moment matrix Qn is constructed from the expectation of

Zn =
(
RnWnYn, RnXn

)
, and implies the population moment function of Q

′
nεn. The quadratic132

moment functions are formulated to exploit the information in the stochastic part of Zn, which can
be written as RnWnYn = RnGnXnβ0 +RnGnR

−1
n εn. The stochastic variables, denoted by Pjnεn for134

i = 1, . . . ,m, are used to instrument the stochastic part RnGnR
−1
n εn of RnWnYn, which produce

the quadratic moment functions ε
′
nPjnεn. Hence, we have the following vector of moment functions136

gn(θ0) =
(
ε
′
nP1nεn, . . . , ε

′
nPmnεn, ε

′
nQn

)′
for the GMM estimation.

It proves helpful to introduce the following notation. Let A(s) = An+A
′
n for any matrix An. We

denote the (i, j)th element, the ith row and jth column of An, respectively, by Aij,n, Ai•,n and A•j,n.

Hence, A
(s)
ij,n =

(
Aij,n + Aji,n

)
, A

(s)
i•,n =

(
Ai•,n + A

′
•i,n
)

and A
(s)
•j,n =

(
A•j,n + A

′
j•,n
)
. Also note that

A
(s)
i•,n = A

(s)′

•i,n. Let D(·) be a matrix operator that creates a matrix from the diagonal elements of
an input matrix, and vecD(·) be a vector operator that returns a vector from the diagonal elements
of an input matrix. We will denote D(σ2

1n, . . . , σ
2
nn) by Σn, which is the covariance matrix of the

disturbance terms. Furthermore, let Ωn = E
[
gn(θ0)g

′
n(θ0)

]
and Φn = E

[
∂gn(θ0)/∂θ

′]
, which are

functions of Σn.2 Under our assumptions, we have 1
nΩn = O(1) and 1

nΦn = O(1). Let ε̂in be

the ith residual of the model based on a consistent initial estimator θ̂1n of θ0, and let Σ̂n denote
D(ε̂2

in, . . . , ε̂
2
nn). When Σn in Ωn and Φn is replaced by Σ̂n, the resulting matrices are denoted by

Ω̂n and Φ̂n, respectively. It can be shown that 1
n Ω̂n = 1

nΩn + op(1) and 1
n Φ̂n = 1

nΦn + op(1). Let

θ̂1n be an initial robust GMME (IRGMME) and Ω̂1n be the estimate of Ωn recovered from θ̂1n.

Then, the optimal robust GMME (ORGMME) is given by θ̂2n = argminθ∈Θ g
′
n(θ) Ω̂

−1

1n gn(θ) and

1See Kelejian and Prucha, (2010) for the specification of the parameter space of autoregressive parameters.
2See Appendix C for their explicit forms.
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furthermore it can be shown that3

√
n
(
θ̂2n − θ0

) d−→ N
(
0(k+2)×1,

[
lim
n→∞

1

n
Φ
′
nΩ−1

n Φn

]−1)
. (2.2)

An estimate of the variance-covariance matrix of
√
n
(
θ̂2n − θ0

)
can be formulated from138 [

1
n Φ̂

′

2n Ω̂
−1

1n Φ̂2n

]−1
where Φ̂2n is an estimate of Φn recovered from θ̂2n.

The result in (2.2) indicates that the asymptotic efficiency of the GMME should be considered
for the selection of the moment functions. As stated, the linear IVs are based on the expectation of
Zn = [RnWnYn, RnXn]. Hence, the best IV matrix is given by Qn = E(Zn) = [RnGnXnβ0, RnXn]
(Lee, 2003). Selection of Pjns in Pn can be made by investigating an upper bound for

[
Φ
′
nΩ−1

n Φn

]
.

To this end, we can write

Φ
′
nΩ−1

n Φn =

 B1×1 D1×1 01×k
D′1×1 G1×1 01×k
0k×1 0k×1 0k×k

 (2.3)

+

 01×1 01×1 01×k
0
′
1×1 β

′
0X

′
nG
′
nQn

(
Q
′
nΣnQn

)−1
Q
′
nGnXnβ0 β

′
0X

′
nG
′
nQn

(
Q
′
nΣnQn

)−1
Q
′
nXn

0k×1 X
′
nQn

(
Q
′
nΣnQn

)−1
Q
′
nGnXnβ0 X

′
nQn

(
Q
′
nΣnQn

)−1
Q
′
nXn


where B =

[
tr
(
ΣnH

′
nP

(s)
1n

)
, . . . , tr

(
ΣnH

′
nP

(s)
mn

)]
A−1
n

[
tr
(
ΣnH

′
nP

(s)
1n

)
, . . . , tr

(
ΣnH

′
nP

(s)
mn

)]′
,140

G =
[
tr
(
ΣnG

′
nP

(s)
1n

)
, . . . , tr

(
ΣnG

′
nP

(s)
mn

)]
A−1
n

[
tr
(
ΣnG

′
nP

(s)
1n

)
, . . . , tr

(
ΣnG

′
nP

(s)
mn

)]′
, D =[

tr
(
ΣnH

′
nP

(s)
1n

)
, . . . , tr

(
ΣnH

′
nP

(s)
mn

)]
A−1
n

[
tr
(
ΣnG

′
nP

(s)
1n

)
, . . . , tr

(
ΣnG

′
nP

(s)
mn

)]′
and An =142

1
2

[
vec
(
(ΣnP1n)(s)

)
, . . . , vec

(
(ΣnPmn)(s)

)]′[
vec
(
(ΣnP1n)(s)

)
, . . . , vec

(
(ΣnPmn)(s)

)]
. Note that

when Pjn ∈ Pn ∀j, the covariance between a quadratic linear moment function and the linear144

moment function is zero. That is, Cov
(
ε
′
nPjnεn, Q

′
nεn
)

= Q
′
n

∑n
k=1

∑n
l=1 Pkl,jnE

(
εnεknεln

)
=

µ3Q
′
n vecD

(
Pjn
)

= 0n×1, since vecD
(
Pjn
)

= 0n×1 for all j (See Lemma 1). This result shows that146

the best Pjns can be determined from the first matrix on the right hand side of (2.3) using the
Schwartz inequality to determine upper bounds for its elements.148

Claim 1. — Under our stated assumptions, the best Pn matrices for the quadratic moment
functions are P1n = Σ−1

n

(
Gn −D(Gn)

)
and P2n = Σ−1

(
Hn −D(Hn)

)
.150

Proof. See Appendix C.

The best quadratic moment matrices involve the unknown covariance matrix Σn which has an152

unknown form. In the case where there is an assumed parametric specification for the variance
terms, Σn can be consistently estimated and the best quadratic moments will be available. Hence,154

under heteroskedasticity of an unknown form, the GMME based on the best quadratic moment
moment matrices is not feasible. One can consider the GMME based on the quadratic moment156

matrices when the disturbance terms are simply i.i.d. In that case, Claim 1 implies that the best
quadratic moment matrices are P1n = Gn −D(Gn) and P2n = Hn −D(Hn).158

The optimal robust GMME requires an initial consistent estimates of the parameters. Among
others, an IRGMME based on the quadratic moment matrices P1n = W

′
nWn − D

(
W
′
nWn

)
, P2n =160

M
′
nMn − D

(
M
′
nMn

)
and the linear moment matrix Qn =

[
WnMnXn,WnXn,MnXn, Xn

]
can be

employed, when the disturbance terms satisfy Assumption 1.162

3The asymptotic results in this section are proved in Dogan and Taspinar, (2013) along the lines of Lin and Lee,
(2010).
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3 Heteroskedasticity-Consistent Covariance Matrix Estimators

In this section, we consider various refinement methods suggested in the literature, and extend164

these methods for our spatial autoregressive model. We provide a general argument by considering

the general vector of population moment functions gn(θ0) =
(
ε
′
nP1nεn, . . . , ε

′
nPmnεn, ε

′
nQn

)′
where166

Qn is an n× r matrix of linear instruments, and Pjn ∈ Pn for j = 1, . . . ,m.

Following the similar notation of MacKinnon and White, (1985), we denote
[

1
n Φ̂

′

2n Ω̂
−1

1n Φ̂2n

]−1
168

by SHC0 when Σ̂n = D(ε̂2
1n, . . . , ε̂

2
nn). Hinkley, (1977) consider another version in which individual

residuals are scaled according to the degrees of freedom in the residual vector. This version of the170

estimated covariance, denoted by SHC1, is based on Σ̂1n = (n/(n− k)) D(ε̂2
1n, . . . , ε̂

2
nn).4 Following

Horn et al., (1975), MacKinnon and White, (1985) suggest an alternative approach for a linear172

regression model when the disturbance terms of the model are homeskedastic. This approach
produces an unbiased estimator and is based on the diagonal elements of a matrix, called the hat174

matrix. The literature has provided various modifications based on the diagonal elements of the hat
matrix (Bera et al., 2002; Cribari-Neto, 2004; Cribari-Neto et al., 2007; Kauermann and Carroll,176

2001; Lin and Chou, 2015; Long and Ervin, 2000; MacKinnon, 2013; MacKinnon and White, 1985).
We will consider the counterparts of these modified versions for our spatial model as well.178

Next, we derive alternative HCCMEs formulated from a hat matrix by extending the refinement
methodology of Lin and Chou, (2015) for our spatial model. The extension is not trivial mainly due180

to complications arising from the spatial structure of our model. First, moment functions that are
quadratic in the disturbance terms complicate a direct extension of Lin and Chou, (2015). Second,182

their methodology is an extension of the idea of the leverage adjusted-residuals in MacKinnon and
White, (1985) to a non-linear regression model. In essence, various HCCMEs are based on the184

leverage-adjusted residuals relation, stated as E
(
ε̂2
in

)
= σ2

0

(
1−Hii,n

)
. Here, ε̂2

in is the ith residual
based on a consistent estimator and Hii,n is the (i, i)th element of a matrix Hn. In the presence of186

spatial dependence, such a relationship between the residuals and the individual variance cannot
be established at the observational level. Instead, such a relationship needs to be established at188

the sample level in the form of E
(
ε̂nε̂

′

n

)
= σ2

0

(
In −Hn

)
. In the following, we present the details on

how this relationship can be established for our spatial model.190

By the mean value theorem, we can write εn(θ̂n) = εn(θ0) + ∂εn(θn)

∂θ′
(
θ̂n − θ0

)
where θn lies

between θ̂n and θ0. Let εn ≡ ε̂n(θ̂1n), where ε̂n(θ̂1n) is the residual vector recovered by using the
initial estimator θ̂1n. Then, the outer product of εn is given by

εnε
′
n = εn(θ0)ε

′
n(θ0) +

∂εn(θn)

∂θ′
(
θ̂1n − θ0

)(
θ̂1n − θ0

)′ ∂ε′n(θn)

∂θ
+
∂εn(θn)

∂θ′
(
θ̂1n − θ0

)
ε
′
n(θ0)

+ εn(θ0)
(
θ̂1n − θ0

)′ ∂ε′n(θn)

∂θ
. (3.1)

Now, replacing θn with θ0 and taking the expectation of (3.1) under homoskedasticity assumption,

4In the context of non-spatial linear regression models, both HC0 and HC1 are consistent, but generally biased
under both homoskedasticity and heteroskedasticity (Bera et al., 2002).
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we obtain

E
(
εnε
′
n

)
≈ σ2

0In + E

(
∂εn(θ0)

∂θ′
(
θ̂1n − θ0

)(
θ̂1n − θ0

)′ ∂ε′n(θ0)

∂θ

)
(3.2)

+ E

(
∂εn(θ0)

∂θ′
(
θ̂1n − θ0

)
ε
′
n(θ0)

)
+ E

(
εn(θ0)

(
θ̂1n − θ0

)′ ∂ε′n(θ0)

∂θ

)
.

The above representation, implicitly, suggests a quasi-hat matrix, which can be recovered from
E
(
εnε
′
n

)
≈ σ2

0

(
In −H1n

)
, where

H1n = −
[

1

σ2
0

E

(
∂εn(θ0)

∂θ′
(
θ̂1n − θ0

)(
θ̂1n − θ0

)′ ∂ε′n(θ0)

∂θ

)
+

1

σ2
0

E

(
∂εn(θ0)

∂θ′
(
θ̂1n − θ0

)
ε
′
n(θ0)

)
+

1

σ2
0

E

(
εn(θ0)

(
θ̂1n − θ0

)′ ∂ε′n(θ0)

∂θ

)]
. (3.3)

First order asymptotic results for
(
θ̂1n− θ0

)
can be used to determine the expectation of each term

in (3.3). Let Ψn be an arbitrary non-stochastic weighting matrix for the GMM objective function.
Then, an initial GMME is defined by θ̂1n = argminθ∈Θ g

′
n(θ) Ψ−1

n gn(θ). The first order condition

of the objective function is ∂gn′(θ̂1n)
∂θ Ψ−1

n gn(θ̂1n) = 0. By the mean value theorem at θn, we have

√
n
(
θ̂1n − θ0

)
= −

(
1

n

∂g
′
n(θ̂1n)

∂θ
Ψ−1
n

1

n

∂gn(θ1n)

∂θ′

)−1 1

n

∂g
′
n(θ̂1n)

∂θ
Ψ−1
n

1√
n
gn(θ0), (3.4)

where 1
n
∂gn(θ)

∂θ′
= 1

n

(
P s1nεn(θ), P s2nεn(θ), . . . , P smnεn(θ), Qn

)′ ∂εn(θ)

∂θ′
. Under our regularity conditions,

we have 1
n
∂gn(θ̂1n)

∂θ′
= 1

nE
(∂gn(θ0)

∂θ′
)

+ op(1) = 1
nΦn + op(1). Therefore, we have

√
n
(
θ̂1n − θ0

)
= −

(
1

n
Φ
′
nΨ−1

n

1

n
Φn

)−1 1

n
Φ
′
nΨ−1

n

1√
n
gn(θ0) + op(1) = Zn

1√
n
gn(θ0) + op(1)

(3.5)

where Zn = −
(

1
nΦ
′
nΨ−1

n
1
nΦn

)−1 1
nΦ
′
nΨ−1

n is a (k+ 2)× (m+ r) matrix. For ∂ε(θ0)

∂θ′
in (3.3), we have

∂ε(θ0)

∂θ′
= −

[
Mn

(
SnYn −Xnβ0

)
, RnWnYn, RnXn

]
. (3.6)

Let Kn ≡
[
Mn

(
SnYn −Xnβ0

)
, RnWnYn, RnXn

]
and let Ei, for i = 1, 2, denote a (k + 2)× (k + 2)

square matrix with zero elements except the (1, i)th element, which equals 1. Also, let E3 be a
(k + 2) × (k + 2) square matrix with zero elements except the elements from the (1, 3)th element
through (1, k + 2)th element, which equal 1. It will be convenient to write (3.6) in the following
way:

∂ε(θ0)

∂θ′
= −

(
KnE1 +KnE2 +KnE3

)
. (3.7)

7



From (3.3), (3.4) and (3.7), it follows that

H1n =− 1

n2

1

σ2
0

[
E

((
KnE1 +KnE2 +KnE3

)
Zngn(θ0)g

′
n(θ0)Z ′n

(
KnE1 +KnE2 +KnE3

)′)]
+

1

n

1

σ2
0

E

((
KnE1 +KnE2 +KnE3

)
Zngn(θ0)ε

′
n(θ0)

)
+

1

n

1

σ2
0

E

(
ε
′
n(θ0)g

′
n(θ0)Z ′n

(
KnE1 +KnE2 +KnE3

)′)
. (3.8)

The result in (3.8) indicates that the quasi-hat matrix will be available when all the expectation
terms are evaluated. We will elaborate on how to evaluate these expectation terms in Section 4.192

We will show that an estimate of H1n can be recovered from the initial consistent estimates of θ0,
σ2

0, µ3 = E
(
ε3
in

)
and µ4 = E

(
ε4
in

)
. We will denote the resulting estimate of H1n by H1n(θ̂1n), where194

θ̂1n is an initial consistent estimator of θ0.
Let Ĥii,1n be the ith diagonal element of H1n(θ̂1n) for i = 1, . . . , n. In analogous to the non-

spatial literature, we use the diagonal elements of this hat matrix to define some other HCCME
versions. Corresponding to HC2 and HC3 of MacKinnon and White, (1985), we formulate SHC2?

and SHC3? based on the following matrices:

Σ̂
?

2n = D

(
ε̂2

1n(θ̂2n)

1− Ĥ11,1n

, . . . ,
ε̂2
nn(θ̂2n)

1− Ĥnn,1n

)
, (3.9)

Σ̂
?

3n = D

(
ε̂2

1n(θ̂2n)(
1− Ĥ11,1n

)2 , . . . , ε̂2
nn(θ̂2n)(

1− Ĥnn,1n
)2). (3.10)

Corresponding to HC4 of Cribari-Neto, (2004), we formulate another covariance estimate denoted
by SHC4?, with the following matrix:

Σ̂
?

4n = D

(
ε̂2

1n(θ̂2n)(
1− Ĥ11,2n

)ν1 , . . . , ε̂2
nn(θ̂2n)(

1− Ĥnn,2n
)νn), (3.11)

where νi = min
{ nĤii,1n∑n

i=1 Ĥii,1n
, 4
}

for i = 1, . . . , n. Using the fact that
∑n

i=1 Ĥii,1n = tr
(
Ĥ1n

)
= k, we

can simply define νi = min
{nĤii,1n

k , 4
}

. In (3.11), observations that have high leverage are more
inflated by the corresponding discount factors. The truncation at 4 for the discount factors is twice
what is used in the definition of SHC3. When Ĥii,1n > 4k/n, νi = 4. Cribari-Neto et al., (2007)
also suggest a modified version of HC4 which we will denote with HC5. Our analogous version
SHC5? is formulated with

Σ̂
?

5n = D

(
ε̂2

1n(θ̂2n)(
1− Ĥ11,1n

)α1
, . . . ,

ε̂2
nn(θ̂2n)(

1− Ĥnn,1n
)αn), (3.12)

where αi = min
{ nĤii,1n∑n

i=1 Ĥii,1n
, max

{
nκĤmax∑n
i=1 Ĥii,1n

, 4
}}

. Here, κ ∈ (0, 1) is a predefined constant, and196

Hmax = max
{
Ĥ11,1n, . . . , Ĥnn,1n

}
. The literature on linear regression models shows that HC0

can be substantially downward biased in finite sample, especially when there are are high leverage198

points in the design matrix (Chesher, 1989; Chesher and Jewitt, 1987)5. Both νi and αi determine

5For a non-spatial linear regression model, the hat matrix is given by H = X(X
′
X)−1X

′
. A value of Hii greater

8



how much the ith residual should be inflated to adjust the ith observation leverage. For non-spatial200

linear regression models, Cribari-Neto, (2004) and Cribari-Neto et al., (2007) show that HC4 and
HC5 can yield reliable inference results, even under extremely leveraged data. If κ = 0, Σ̂5n reduces202

to Σ̂4n. The simulation results in Cribari-Neto et al., (2007) indicate that the setting of κ = 0.7
provides reliable inference in finite samples.204

We will close this section by considering a naive approach which will yield another
hat matrix. For a given value of δ = (ρ, λ)

′
, the model in (2.1) can be written

as Rn(ρ)Sn(λ)Yn = Rn(ρ)Xnβ + ε. The OLS estimator from this equation is given

by β̂n =
(
X
′
nR
′
n(ρ)Rn(ρ)Xn

)−1
X
′
nR
′
n(ρ)Rn(ρ)Sn(λ)Yn. For a given value of δ, we have

ε̂n(δ) = Rn(ρ)Sn(λ)Yn − Rn(ρ)Xnβ̂n = Mn(ρ)Rn(ρ)Sn(λ)Yn, where Mn(ρ) =
[
In −

Rn(ρ)Xn

(
X
′
nR
′
n(ρ)Rn(ρ)Xn

)−1
X
′
nR
′
n(ρ)

]
is an idempotent residual maker type matrix. Under

the assumption of homoskedasticity, we have

E
(
ε̂n(δ)ε̂

′

n(δ)
)

=Mn(ρ)E
(
εnε

′
n

)
Mn(ρ) = σ2

0Mn(ρ) = σ2
0

(
In −H2n(ρ)

)
, (3.13)

where H2n(ρ) = Rn(ρ)Xn

(
X
′
nR
′
n(ρ)Rn(ρ)Xn

)−1
X
′
nR
′
n(ρ) can be considered as a quasi hat matrix.

We can use (3.13) to replace ε̂2
in in Σ̂n. Analogous to (3.9), an estimate of Σn, denoted by Σ̂2n, can

be formulated using ε̂2
1n(δ̂n) and the diagonal elements of Ĥ2n. Here, δ̂n is a consistent estimator of

δ0. We will refer to the covariance estimate formulated with Σ̂2n by SHC2. Note also that we can

determine the bias E
(
ε̂2
in(δ)

)
− σ2

in when E
(
εnε

′
n

)
= Σn for a given δ (Bera et al., 2002; Chesher

and Jewitt, 1987). We have

E
(
ε̂2
in(δ)

)
=M′

•i,n(ρ)E
(
εnε

′
n

)
M•i,n(ρ) =M′

•i,n(ρ)ΣnM•i,n(ρ)

= σ2
in − 2H′•i,2n(ρ)H•i,2n(ρ)σ2

in +H′•i,2n(ρ)ΣnH•i,2n(ρ) (3.14)

where the last equality follows from the fact that H2n(ρ) is symmetric and idempotent. The
result in(3.14) implies the bias of E

(
ε̂2
in(δ)

)
− σ2

in = H′•i,2n(ρ)
(
Σn − 2Inσ

2
in

)
H•i,2n(ρ) for a given206

δ. Note that when E
(
εnε

′
n

)
= σ2

0In, we have E
(
ε̂2
in(δ)

)
− σ2

0 = −σ2
0Hii,2n(ρ) for a given δ. Hence,

E
(
ε̂2
in(δ)/

[
1−Hii,2n(ρ)

])
= σ2

0 for a given δ. Similarly, we can define counterparts of (3.10) through208

(3.12) using ε̂2
n(δ̂n) and Ĥ2n. We will denote the respective covariance estimates with SHC3, SHC4

and SHC5.210

4 The Quasi-Hat Matrix

In this section, we lay out the details on how to evaluate each expression stated in (3.8). The212

latter two terms in (3.8) are relatively easier to deal with and we will start with these terms.
First, we consider (i) E

(
KnE1Zngn(θ0)ε

′
n(θ0)

)
= HnE

(
εnZ1•,ngn(θ0)ε

′
n

)
= HnE

(
D1n

)
where Z1•,n214

is the first row of Zn and D1n = εnZ1•,ngn(θ0)ε
′
n. Let ei be the ith elementary vector in Rn.

Then, the expectation of the (s, s)th element of D1n is given by E
(
e
′
sD1nes

)
= Z1•,nE

(
gn(θ0)ε2

sn

)
,216

where E
(
gn(θ0)ε2

sn

)
=
[
01×m, µ3Qs•,n

]′
by Lemma 2. Similarly, by using elementary vectors, the

expectation of the (s, t)th element in D1n is given by E
(
e
′
sD1net

)
= Z1•,nE

(
gn(θ0)εsnεtn

)
, where by218

Lemma 2 we have E
(
gn(θ0)εsnεtn

)
=
[
σ4

0Vst, 01×r
]′

and Vst =
[
P

(s)
st,1n, . . . , P

(s)
st,mn

]
.

The next term that we consider is (ii) E
(
KnE2Zngn(θ0)ε

′
n

)
= GnXnβ0Z2•,nE

(
D2n

)
+GnE

(
D3n

)
220

where D2n = gn(θ0)ε
′
n, D3n = εnZ2•,ngn(θ0)ε

′
n and Z2•,n =

(
Z21,n, . . . ,Z2(m+r),n

)
is the second

than 2
n

tr(H) = 2k
n

or 3
n

tr(H) = 3k
n

is considered as a high leverage point (Judge et al., 1988).

9



row of Zn. First, we shall evaluate the expectation of D2n. The independence of εins implies222

that E
(
D2n

)
=
[
0n×m, σ

2
0Qn

]′
. Coming to the expectation of D3n, the (s, s)th and (s, t)th ele-

ments of E
(
D3n

)
are respectively given by E

(
e
′
sD3nes

)
= Z2•,n

[
01×m, µ3Qs•,n

]′
and E

(
e
′
sD3net

)
=224

Z2•,n
[
σ4

0Vst, 01×r
]′

, where we use Lemma 2. Let Z3n =
(
Z ′3•,n, . . . ,Z

′

(k+2)•,n
)′

be the k × (m + r)

matrix. The last term we need to evaluate in the latter two terms in (3.8) is E
(
KnE3Zngn(θ0)ε

′
n

)
=226

RnXnZ3nE
(
D2n

)
. Then, we obtain E

(
KnE3Zngn(θ0)ε

′
n

)
= RnXnZ3n

[
0n×m , σ

2
0Qn

]′
by the inde-

pendence of εins.228

Next, we shall return to the first term on the right hand side in (3.8) which involves expecta-
tion expressions for six unique terms. We start with (iv) E

(
KnE1Zngn(θ0)gn(θ0)

′Z ′nE
′
1K
′
n

)
. The

integrand of this term is given by HnεnZ1•,ngn(θ0)gn(θ0)
′Z ′1•,nε

′
nH

′
n. For notational conevenience,

let Fn denote gn(θ0)g
′
n(θ0) and let U1n denote εnZ1•,nFnZ

′
1•,nε

′
n. Then,

E
(
KnE1Zngn(θ0)gn(θ0)

′Z ′nE
′
1K
′
n

)
= HnE (U1n)H

′
n (4.1)

Then, the (s, s)th element of E (U1n) is Z1•,nE
(
Fnε2

sn

)
Z ′1•,n. Using Lemma 2, we can show that

E
(
Fnε2

sn

)
= σ6

0

[
Ξnm 0m×r
0r×m 0r×r

]
+

[ (
σ2

0µ4 − σ6
0

)
V ′sVs µ3σ

2
0V
′
sQn

µ3σ
2
0Q
′
nVs σ4

0Q
′
nQn +

(
µ4 − σ4

0

)
Q
′
s•,nQs•,n

]
(4.2)

where Ξnm =
[

vec(P
(s)
1n ), . . . , vec(P

(s)
mn)

]′[
vec(P1n), . . . , vec(Pmn)

]
, Vs =

[
P

(s)
•s,1n, . . . , P

(s)
•s,mn

]
and P

(s)
•s,jn = P

′
s•,jn + P•s,jn. Similarly, the expectation of the (s, t)th element of U1n is

Z1•,nE (Fnεsnεtn)Z ′1•,n. Then, using Lemma 2 again, we obtain

E
(
Fnεsnεtn

)
=

[
µ2

3V
′
stVst µ3σ

2
0V
′
stQst

µ3σ
2
0Q
′
stVst σ4

0

(
Q
′
s•,nQt•,n +Q

′
t•,nQs•,n

) ] (4.3)

where Vst =
[
P

(s)
st,1n, . . . , P

(s)
st,mn

]
, P

(s)
st,jn = Pst,jn + Pts,jn and Qst = Qs•,n +Qt•,n.

Another term in (3.8) is (vii) E
(
KnE2Zngn(θ0)gn(θ0)

′Z ′nE
′
2K
′
n

)
, which can be written as

E
(
KnE2Zngn(θ0)gn(θ0)

′Z ′nE
′
2K
′
n

)
=
(
GnXnβ0

)
Z2•,nE

(
Fn
)
Z ′2•,n

(
GnXnβ0

)′
+GnE

(
εnZ2•,nFnZ

′
2•,nε

′
n

)
G
′
n +

(
GnXnβ0

)
Z2•,nE

(
FnZ

′
2•,nε

′
n

)
G
′
n

+GnE
(
εnZ2•,nFn

)
Z ′2•,n

(
GnXnβ0

)′
. (4.4)

We will evaluate each term in (4.4) separately. Let Diag (·) be a generalized block diagonal matrix
operator that forms a block diagonal matrix from the list of input matrices. Then, it follows from
Lemma 1 that(

GnXnβ0

)
Z2•,nE

(
Fn
)
Z ′2•,n

(
GnXnβ0

)′
(4.5)

=
(
GnXnβ0

)
Z2•,n Diag

(
σ4

0Ξnm, σ
2
0Q
′
nQn

)
Z ′2•,n

(
GnXnβ0

)′
where Ξnm =

[
vec(P

(s)
1n ), . . . , vec(P

(s)
mn)

]′[
vec(P1n), . . . , vec(Pmn)

]
. The next term we shall consider230

is GnE
(
εnZ2•,nFnZ

′
2•,nε

′
n

)
G
′
n = GnE

(
T1n

)
G
′
n, where T1n = εnZ2•,nFnZ

′
2•,nε

′
n. Then, the (s, s)th
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element of E (T1n) is E
(
e
′
sT1nes

)
= Z2•,nE

(
Fnε2

sn

)
Z ′2•,n where E

(
Fnε2

sn

)
is given in (4.2). Simi-232

larly, the (s, t)th element of E (T1n) is E
(
e
′
sT1net

)
= Z2•,nE (Fnεsnεtn)Z ′2•,n where E (Fnεsnεtn) is

given in (4.3).234

The last term we shall evaluate in (4.4) is
(
GnXnβ0

)
Z2•,nE

(
FnZ

′
2•,nε

′
n

)
G
′
n =(

GnXnβ0

)
Z2•,nE

(
T2n

)
G
′
n where T2n = FnZ

′
2•,nε

′
n. Let es be the sth elementary vector in Rm+r

(and et is the tth elementary vector in Rn). Then, the (s, t)th element of E
(
T2n

)
is given by

E
(
e
′
sT2net

)
= e

′
sE
(
Fnεtn

)
Z ′2•,n. By Lemma 2, we have

E
(
Fnεtn

)
=

[
σ2

0µ3O
′
tOt σ4

0O
′
tQn

σ4
0Q
′
nOt µ3Q

′
t•,nQt•,n

]
(4.6)

where Ot =
[
Ot1,Ot2, . . . ,Otm

]
with Otj = P

(s)
•t,jn =

[
P

(s)
1t,jn, P

(s)
2t,jn, . . . , P

(s)
nt,jn

]′
for j = 1, . . . ,m.

Next, we shall work on (viii) E
(
KnE3Zngn(θ0)gn(θ0)

′Z ′nE
′
3K
′
n

)
= RnXnZ3nE

(
Fn
)
Z′3nX

′
nR
′
n,

where Z3n =
(
Z ′3•,n, . . . ,Z

′

(k+2)•,n
)′

. By Lemma 1, we have

E
(
Fn
)

= Diag
(
σ4

0Ξnm, σ
2
0Q
′
nQn

)
.

Another term in (3.8) that we need to consider is (ix) E
(
KnE2Zngn(θ0)gn(θ0)

′Z ′nE
′
1K
′
n

)
, which

can be written as

E
(
KnE2Zngn(θ0)gn(θ0)

′Z ′nE
′
1K
′
n

)
=
(
GnXnβ0

)
Z2•,nE

(
FnZ

′
1•,nε

′
n

)
H
′
n

+GnE
(
εnZ2•,nFnZ

′
1•,nε

′
n

)
H
′
n =

(
GnXnβ0

)
Z2•,nE (T3n)H

′
n +GnE (T4n)H

′
n,

where T3n = FnZ
′
1•,nε

′
n and T4n = εnZ2•,nFnZ

′
1•,nε

′
n. We start with E (T3n). The expectation236

of the (s, t)th element of T3n for s = 1, . . . ,m + r and t = 1, . . . , n is given by E
(
e
′
sT3net

)
=

e
′
sE (Fnεtn)Z ′1•,n, where E (Fnεtn) is given in (4.6). Next, we shall evaluate the term involving238

T4n. Then, the (s, s)th element of E (T4n) is E
(
e
′
sT4nes

)
= Z2•,nE

(
Fnε2

sn

)
Z ′1•,n, where E

(
Fnε2

sn

)
is given in (4.2). Similarly, the (s, t)th element of E (T4n) is E

(
e
′
sT4net

)
= Z2•,nE (Fnεsnεtn)Z ′1•,n,240

where E (Fnεsnεtn) is given in (4.3).

Another term in (3.8) that we need to consider is (x) E
(
KnE3Zngn(θ0)gn(θ0)

′Z ′nE
′
1K
′
n

)
.242

The expectation of this term is RnXnZ3nE
(
T3n

)
H
′
n where T3n = FnZ

′
1•,nε

′
n and Z3n =(

Z ′3•,n, . . . ,Z
′

(k+2)•,n
)′

. The calculation of the (s, t)th element of E
(
T3n

)
for s = 1, . . . ,m + r244

and t = 1, . . . , n is illustrated in the preceding paragraph.

The last term we shall evaluate in (3.8) is (xi) E
(
KnE2Zngn(θ0)gn(θ0)

′Z ′nE
′
3K
′
n

)
. The expec-

tation of this term is

E
(
KnE2Zngn(θ0)gn(θ0)

′Z ′nE
′
3K
′
n

)
=
(
GnXnβ0

)
Z2•,nE

(
Fn
)
Z
′
3nX

′
nR
′
n

+GnE
(
εnZ2•,nFn

)
Z
′
3nX

′
nR
′
n. (4.7)

In the first term on the right hand side of (4.7), we have E (Fn) = Diag
(
σ4

0Ξnm, σ
2
0Q
′
nQn

)
. For

the second term, let T5n = εnZ2•,nFn. Furthermore, let et be tth elementary vector in Rm+r (and
es is the sth elementary vector in Rn). Then, the (s, t)th element of E (T5n) for s = 1, . . . , n and
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t = 1, . . . ,m+ r is given by E
(
e
′
sT5net

)
= Z2•,nE (Fnεsn) et. By Lemma 2, we obtain

E (Fnεsn) =

[
σ2

0µ3O
′
sOs σ4

0O
′
sQn

σ4
0Q
′
nOs µ3Q

′
s•,nQs•,n

]
(4.8)

where Os =
[
Os1,Os2, . . . ,Osm

]
and Osj = P

(s)
•s,jn =

[
P

(s)
1s,jn, P

(s)
2s,jn, . . . , P

(s)
ns,jn

]′
for j = 1, . . . ,m.246

The evaluations provided in the preceding paragraphs indicate that a consistent estimate of H1n

can be obtained once we have consistent estimates of θ0, σ2
0, µ3 = E

(
ε3
in

)
and µ4 = E

(
ε4
in

)
. Hence,248

H1n will be available once we have an initial robust GMME.

5 A Monte Carlo Study250

5.1 Design

In order to study the finite sample properties of the suggested refinement methods, we design252

an extensive Monte Carlo study. For the model given in (2.1), we consider three regressors
Xn = (X1n, X2n, X3n) that are mutually independent vectors of independent standard normal254

random variables. We set (β01, β02, β03)
′

= (1 ,−1.2 ,−0.2)
′

for all experiments. For the spatial au-
toregressive parameters, we employ combinations of {0.2, 0.6} to allow for weak and strong spatial256

interactions. The weights matrix Wn and Mn are block diagonal matrices where each block is the
row normalized contiguity matrix Wo from Anselin (1988)’s study of crimes across 49 districts of258

Columbus, Ohio. We consider 3 cases: (i) Wn = Mn = Wo, (ii) Wn = Mn = I2 ⊗Wo, and (iii)
Wn = Mn = I5 ⊗Wo. These three cases yield, respectively, sample sizes of 49, 98 and 245.260

Heteroskedasticity is incorporated using a skedastic function that maps household income values
taken from the same Anselin, (1988) study onto (0,∞). More explicitly, let Incomein denote house-262

hold income value (measured in thousand dollars) for the ith observation. Then, the disturbance
terms are generated as εin = σinξin where ξin ∼ i.i.dN(0, 1) and σ2

in = exp
(
0.1 + 0.05 · Incomein

)
.264

For the sample sizes 98 and 245, household income values are sampled randomly with replacement.
Following Chesher and Jewitt, (1987), we measure the degree of heteroskedasticity as the ratio266

ζ = maxi
(
σ2
in

)
/mini

(
σ2
in

)
. Our data generating process yields a ζ value around 3.77.6

We use the following expression to measure the level of signal-to-noise in this set up (Pace et al.,
2012):

R2 = 1−
tr
(
R−1′
n S−1′

n S−1
n R−1

n Σn

)
β
′
0X

′
nS
−1′
n S−1

n Xnβ0 + tr
(
R−1′
n S−1′

n S−1
n R−1

n Σn

) . (5.1)

Our setup yields an R2 value about 0.5, which is a reasonable level of goodness-of-fit. Resampling268

is carried out for 2000 times.

5.2 Simulation Results on Model Parameters270

Our suggested SHC-corrections affect the point estimates of GMME through the weight matrix
used in the GMM objective function. Therefore, we first evaluate the finite sample bias properties272

of the GMME based on various SHCs. The simulation results for the bias properties are presented

6MacKinnon, (2013) generates individual variances by σi = z(γ)
(
β1 +

∑5
k=2 βkXik

)γ
, where 0 ≤ γ ≤ 2 is a

parameter used to determine the degree of heteroskedasticity. MacKinnon, (2013) states that γ = 0 implies ho-
moskedasticity and γ ≥ 1 implies extreme heteroskedasticity. Thus, a moderate degree of heteroskedasticity can be
obtained by setting γ = 0.5, which generates a value of ζ around 4.
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in Tables 1–2. The absolute average biases across different corrections methods are generally similar274

and small for all values of (λ0, ρ0). In all cases, β̂3 reports relatively smaller bias. The results for
the autoregressive parameters in Table 2 show that the estimators of these parameters report very276

low and similar biases across all methods and cases.
Next, we provide simulation results for the estimated asymptotic standard errors and the em-278

pirical standard deviations for each method. These results are provided in Tables 3–4. The results
are easily interpretable if we highlight the difference between the estimated standard errors and the280

corresponding empirical deviations. To this end, we compute the percentage deviation of the mean
absolute deviations of the estimated asymptotic standard errors from the corresponding empirical282

standard deviations.7 In the following, we will refer to these measures simply as the percentage
deviations. A small percentage deviation for an estimator suggests that its assumed distribution284

approximates the true finite sample distribution well enough.
The percentage deviations reported in Tables 3–4 are generally larger in the case of SHC0. In286

particular, the GMME of λ0 and ρ0 based on SHC0 reports relatively larger percentage deviations
in all cases. The percentage deviations get smaller as the sample size gets larger in all cases. To288

give an overall picture, we can calculate the average percentage deviations across all λ0 and ρ0

values from the results presented in Tables 3–4 for each method. For example, for the GMME of290

β1, the average percentage deviations are 8.3% for SHC0, 6.8% for SHC1, 6.1% for SHC2, 4.2%
for SHC3, 4.6% for SHC4, 4.6% for SHC5, 9.1% for SHC2?, 2.3% for SHC3?, 2.8% for SHC4?292

and 2.9% for SHC5?. For the GMME of λ0, these averages are 17.9% for SHC0, 16.8% for SHC1,
15.7% for SHC2, 16.1% for SHC3, 16.1% for SHC4, 16.1% for SHC5, 16% for SHC2?, 12.3% for294

SHC3?, 11.9% for SHC4? and 12% for SHC5?. Finally, for the GMME of ρ, these averages are
11.5% for SHC0, 11.7% for SHC1, 11.2% for SHC2, 10.7% for SHC3, 10.5% for SHC4, 10.5%296

for SHC5, 11.3% for SHC2?, 10.3% for SHC3?, 10.5% for SHC4? and 10.6% for SHC5?. These
results indicate that the small-sample corrections SHC3?, SHC4? and SHC5? perform relatively298

better than the other methods.
We use the P value discrepancy plots to illustrate the size properties of standard Wald test300

formulated from the corrections methods. Figures 1 through 5 display the discrepancy between the
actual size of the Wald test and its nominal size. In these figures, the nominal size values, depicted302

on the x-axis, span from 1% to 10%, and the discrepancies are reported for our three sample size
next to each other in the same plot. For the null hypotheses H0 : β1 = 1, H0 : β2 = −1.2 and304

H0 : β3 = −0.2, there are large size distortions for the Wald tests based on SHC0 when n = 49
and n = 98. Figures 1 through 3 indicate that the Wald tests for the coefficients of the exogenous306

variables, generally, over reject under all methods and in all cases. However, the rejection rates
based on the finite-sample corrections SHC2? − SHC5? are much closer to the nominal sizes308

than the other methods in all cases. This conclusion is consistent with the results presented in
Tables 3 through 4, where the percentage deviations reported are relatively smaller in the case of310

SHC2? − SHC5?. Finally, the performance of SHC1 − SHC5 is, generally, better than SHC0,
but worse than SHC2? − SHC5?.312

The P value discrepancy plots for the Wald tests of autoregressive parameters are given in
Figures 4 and 5. The rejection rates reported in these figures are larger than the corresponding314

nominal sizes, especially when n = 49 and n = 98. In Figure 4, the correction methods SHC3? −
SHC5? outperform the other methods in all cases. Hence, these methods can be useful for testing316

λ0. The P value discrepancy plots for the null hypotheses involving ρ0 are given in Figure 5. When
n = 49 and n = 98, the correction methods SHC3? − SHC5? outperform the other methods in318

7In our Monte Carlo set up, let yi be the estimated standard errors for an estimator in the ith repetition and y be
the calculated empirical standard deviation of the same estimator across all resamples. Then, we compute this scalar
measure by 100× |Median (yi)− y| /y.
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Table 1: Bias Properties of β̂1, β̂2 and β̂3

Bias of β̂1

n ρ0 − λ0 SHC0 SHC1 SHC2 SHC3 SHC4 SHC5 SHC2? SHC3? SHC4? SHC5?

49

0.2–0.2 -0.0176 -0.0176 -0.0179 -0.0179 -0.0173 -0.0173 -0.0183 -0.0181 -0.0200 -0.0200

0.2–0.6 -0.0094 -0.0081 -0.0089 -0.0087 -0.0076 -0.0076 -0.0078 -0.0080 -0.0077 -0.0084

0.6–0.2 -0.0251 -0.0250 -0.0220 -0.0227 -0.0211 -0.0211 -0.0231 -0.0259 -0.0326 -0.0322

0.6–0.6 -0.0195 -0.0193 -0.0185 -0.0184 -0.0177 -0.0177 -0.0230 -0.0230 -0.0233 -0.0205

98

0.2–0.2 -0.0202 -0.0201 -0.0202 -0.0202 -0.0206 -0.0206 -0.0199 -0.0198 -0.0204 -0.0204

0.2–0.6 -0.0034 -0.0034 -0.0036 -0.0037 -0.0037 -0.0037 -0.0036 -0.0037 -0.0035 -0.0035

0.6–0.2 -0.0226 -0.0220 -0.0209 -0.0211 -0.0211 -0.0211 -0.0214 -0.0210 -0.0207 -0.0207

0.6–0.6 -0.0158 -0.0160 -0.0160 -0.0152 -0.0182 -0.0182 -0.0160 -0.0155 -0.0173 -0.0167

245

0.2–0.2 -0.0065 -0.0065 -0.0065 -0.0064 -0.0065 -0.0065 -0.0065 -0.0065 -0.0064 -0.0064

0.2–0.6 -0.0027 -0.0027 -0.0026 -0.0027 -0.0027 -0.0027 -0.0026 -0.0027 -0.0027 -0.0027

0.6–0.2 -0.0031 -0.0030 -0.0030 -0.0033 -0.0031 -0.0031 -0.0031 -0.0033 -0.0034 -0.0031

0.6–0.6 -0.0045 -0.0045 -0.0046 -0.0046 -0.0049 -0.0049 -0.0045 -0.0046 -0.0045 -0.0044

Bias of β̂2

49

0.2–0.2 0.0237 0.0243 0.0241 0.0233 0.0236 0.0236 0.0244 0.0237 0.0238 0.0238

0.2–0.6 0.0252 0.0251 0.0249 0.0258 0.0248 0.0248 0.0245 0.0241 0.0250 0.0244

0.6–0.2 0.0272 0.0265 0.0262 0.0279 0.0273 0.0273 0.0279 0.0303 0.0380 0.0382

0.6–0.6 0.0391 0.0365 0.0381 0.0358 0.0369 0.0369 0.0391 0.0427 0.0404 0.0378

98

0.2–0.2 0.0122 0.0119 0.0119 0.0117 0.0117 0.0117 0.0117 0.0117 0.0116 0.0116

0.2–0.6 0.0125 0.0129 0.0126 0.0125 0.0125 0.0125 0.0123 0.0127 0.0125 0.0125

0.6–0.2 0.0075 0.0067 0.0058 0.0064 0.0055 0.0055 0.0072 0.0073 0.0061 0.0061

0.6–0.6 0.0196 0.0219 0.0200 0.0200 0.0222 0.0222 0.0220 0.0209 0.0200 0.0198

245

0.2–0.2 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056

0.2–0.6 0.0030 0.0030 0.0030 0.0030 0.0031 0.0031 0.0030 0.0030 0.0030 0.0030

0.6–0.2 -0.0000 -0.0000 -0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 -0.0000 -0.0001

0.6–0.6 0.0026 0.0026 0.0026 0.0025 0.0026 0.0026 0.0026 0.0025 0.0027 0.0026

Bias of β̂3

49

0.2–0.2 0.0087 0.0090 0.0087 0.0088 0.0088 0.0088 0.0089 0.0088 0.0088 0.0088

0.2–0.6 -0.0009 -0.0011 -0.0010 -0.0008 -0.0015 -0.0015 -0.0005 -0.0012 -0.0011 -0.0011

0.6–0.2 0.0068 0.0065 0.0059 0.0058 0.0056 0.0056 0.0059 0.0061 0.0090 0.0095

0.6–0.6 0.0042 0.0034 0.0039 0.0034 0.0032 0.0032 0.0044 0.0064 0.0101 0.0101

98

0.2–0.2 0.0034 0.0033 0.0034 0.0034 0.0035 0.0035 0.0033 0.0032 0.0033 0.0033

0.2–0.6 -0.0007 -0.0006 -0.0006 -0.0005 -0.0005 -0.0005 -0.0007 -0.0006 -0.0004 -0.0004

0.6–0.2 0.0018 0.0018 0.0022 0.0022 0.0023 0.0023 0.0023 0.0027 0.0023 0.0023

0.6–0.6 0.0035 0.0044 0.0046 0.0044 0.0045 0.0045 0.0049 0.0043 0.0052 0.0051

245

0.2–0.2 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015

0.2–0.6 0.0027 0.0028 0.0027 0.0027 0.0027 0.0027 0.0027 0.0028 0.0028 0.0028

0.6–0.2 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

0.6–0.6 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0049 0.0049 0.0049 0.0050

Figures 5(a) and 5(b), however there is no discernible differences across methods in Figures 5(c)
and 5(d). This result indicates that the degree of spatial dependence in the disturbance term can320
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Table 2: Bias Properties of λ̂ and ρ̂

Bias of λ̂

n ρ0 − λ0 SHC0 SHC1 SHC2 SHC3 SHC4 SHC5 SHC2? SHC3? SHC4? SHC5?

49

0.2–0.2 0.0471 0.0454 0.0468 0.0469 0.0461 0.0461 0.0466 0.0461 0.0442 0.0446

0.2–0.6 -0.0003 -0.0001 -0.0006 -0.0007 -0.0000 -0.0000 -0.0000 0.0003 0.0012 0.0027

0.6–0.2 0.0054 0.0001 0.0074 0.0041 0.0093 0.0093 0.0056 -0.0029 -0.0205 -0.0213

0.6–0.6 0.0385 0.0399 0.0384 0.0414 0.0400 0.0400 0.0352 0.0344 0.0315 0.0311

98

0.2–0.2 0.0101 0.0093 0.0092 0.0093 0.0095 0.0095 0.0093 0.0085 0.0075 0.0075

0.2–0.6 -0.0092 -0.0094 -0.0088 -0.0098 -0.0090 -0.0090 -0.0083 -0.0091 -0.0093 -0.0089

0.6–0.2 -0.0143 -0.0143 -0.0140 -0.0134 -0.0149 -0.0149 -0.0152 -0.0164 -0.0128 -0.0128

0.6–0.6 0.0030 0.0026 0.0068 0.0057 0.0022 0.0022 0.0016 0.0028 0.0073 0.0089

245

0.2–0.2 0.0044 0.0044 0.0044 0.0043 0.0043 0.0043 0.0044 0.0044 0.0044 0.0044

0.2–0.6 -0.0029 -0.0028 -0.0028 -0.0027 -0.0028 -0.0028 -0.0027 -0.0027 -0.0029 -0.0029

0.6–0.2 0.0106 0.0110 0.0108 0.0101 0.0102 0.0102 0.0109 0.0109 0.0103 0.0106

0.6–0.6 0.0050 0.0049 0.0050 0.0049 0.0048 0.0048 0.0050 0.0049 0.0049 0.0050

Bias of ρ̂

49

0.2–0.2 -0.0301 -0.0283 -0.0291 -0.0296 -0.0287 -0.0287 -0.0267 -0.0253 -0.0203 -0.0214

0.2–0.6 0.0198 0.0201 0.0195 0.0208 0.0177 0.0177 0.0190 0.0216 0.0205 0.0148

0.6–0.2 0.0181 0.0230 0.0173 0.0203 0.0171 0.0171 0.0196 0.0218 0.0405 0.0431

0.6–0.6 -0.0098 -0.0114 -0.0089 -0.0123 -0.0111 -0.0111 -0.0030 0.0090 0.0138 0.0110

98

0.2–0.2 -0.0014 -0.0015 -0.0015 -0.0015 -0.0014 -0.0014 -0.0015 -0.0000 0.0002 0.0002

0.2–0.6 0.0209 0.0213 0.0208 0.0214 0.0196 0.0196 0.0196 0.0201 0.0214 0.0214

0.6–0.2 0.0149 0.0158 0.0157 0.0162 0.0163 0.0163 0.0156 0.0169 0.0145 0.0145

0.6–0.6 0.0049 0.0061 0.0026 0.0032 0.0077 0.0077 0.0088 0.0077 -0.0008 -0.0012

245

0.2–0.2 -0.0046 -0.0046 -0.0047 -0.0047 -0.0047 -0.0047 -0.0047 -0.0048 -0.0048 -0.0048

0.2–0.6 0.0089 0.0088 0.0088 0.0088 0.0088 0.0088 0.0089 0.0093 0.0093 0.0094

0.6–0.2 -0.0022 -0.0023 -0.0023 -0.0021 -0.0020 -0.0020 -0.0023 -0.0022 -0.0021 -0.0023

0.6–0.6 0.0037 0.0038 0.0038 0.0038 0.0039 0.0039 0.0038 0.0039 0.0041 0.0039

affect the size distortions across the correction methods.
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Table 3: Percentage Deviations for β̂1, β̂2 and β̂3

Percentage of Mean Absolute Deviation of Estimated Standard Errors from Empirical Std: β̂1

n ρ0 − λ0 SHC0 SHC1 SHC2 SHC3 SHC4 SHC5 SHC2? SHC3? SHC4? SHC5?

49

0.2–0.2 13.2667 10.6371 9.2996 5.6339 6.4820 6.4820 6.4346 0.6529 0.0704 0.4051

0.2–0.6 12.0230 9.1701 8.3114 4.4950 5.1852 5.1852 30.7138 1.4188 0.2796 0.2160

0.6–0.2 17.0060 14.6927 12.3445 9.4550 10.4996 10.4996 10.3652 3.6481 7.1785 7.1735

0.6–0.6 13.8752 11.0963 9.9654 5.9833 6.6256 6.6256 32.2774 0.7663 1.9994 3.1355

98

0.2–0.2 8.4393 7.0206 6.5489 4.3236 4.5755 4.5755 5.4098 2.4676 4.0313 3.9785

0.2–0.6 8.7754 7.2755 6.7879 4.8435 5.2618 5.2618 6.1673 3.3320 4.3587 4.3684

0.6–0.2 8.6986 7.2209 6.5813 5.1273 5.2276 5.2276 5.5981 2.0853 4.0842 4.0842

0.6–0.6 9.7171 8.1310 7.7069 5.3481 6.0051 6.0051 7.1967 4.8111 5.8004 5.8433

245

0.2–0.2 2.1263 2.7605 3.0668 3.9815 3.8211 3.8211 3.6357 5.1416 4.4677 4.4679

0.2–0.6 2.2666 1.6626 1.3679 0.4846 0.6286 0.6286 0.8679 0.5794 0.1492 0.1244

0.6–0.2 1.4264 0.5209 0.2772 0.5725 0.1114 0.1114 0.2465 1.5986 0.9869 1.0486

0.6–0.6 2.2041 1.6015 1.2886 0.3579 0.5033 0.5033 0.7795 0.6648 0.3325 0.0465

Percentage of Mean Absolute Deviation of Estimated Standard Errors from Empirical Std: β̂2

49

0.2–0.2 13.8142 11.3223 9.7158 4.9737 3.2435 3.2435 7.0803 0.4837 1.6411 1.6597

0.2–0.6 15.7168 13.3847 12.1344 7.0007 5.9131 5.9131 34.7495 2.6743 3.6777 3.6465

0.6–0.2 15.1191 12.8104 10.8487 7.2079 4.5892 4.5892 8.8242 2.2385 5.5089 5.4121

0.6–0.6 13.9850 11.5546 9.8517 5.1401 3.4030 3.4030 32.0458 0.5686 0.1174 0.6514

98

0.2–0.2 9.5390 8.2922 7.7338 5.3648 5.4997 5.4997 6.3064 3.3708 4.2437 4.4806

0.2–0.6 7.4752 6.1228 5.4529 3.5354 2.9294 2.9294 4.8190 1.6418 2.6640 2.6998

0.6–0.2 11.5042 10.3292 9.8267 7.8618 8.2493 8.2493 8.6847 5.7844 6.5317 6.5312

0.6–0.6 11.6833 9.8500 9.9648 8.0205 8.3952 8.3952 8.9095 6.3631 7.9200 7.7941

245

0.2–0.2 3.5566 2.9579 2.6457 1.6730 1.6921 1.6921 2.1670 0.7031 1.3296 1.3296

0.2–0.6 2.3937 1.7929 1.4724 0.5335 0.5237 0.5237 0.9998 0.4486 0.2260 0.2117

0.6–0.2 1.8170 1.0847 0.8747 0.0990 0.1131 0.1131 0.2955 1.0198 0.1144 0.0392

0.6–0.6 2.2427 1.6363 1.3049 0.3679 0.5262 0.5262 0.7982 0.5269 0.2555 0.0506

Percentage of Mean Absolute Deviation of Estimated Standard Errors from Empirical Std: β̂3

49

0.2–0.2 15.3437 12.0550 11.4189 6.5697 6.7268 6.7268 8.1641 1.4487 3.9340 3.8760

0.2–0.6 16.3313 13.2693 11.9498 8.2776 7.7108 7.7108 32.1175 2.2914 3.4331 3.3202

0.6–0.2 10.9722 7.5155 6.5279 1.1002 1.7594 1.7594 3.2602 5.0743 3.5857 3.7416

0.6–0.6 8.8256 5.6368 4.1728 0.4347 0.0070 0.0070 25.8709 7.1486 8.3256 8.6624

98

0.2–0.2 11.0722 9.7050 8.7315 6.4732 6.4711 6.4711 7.6905 4.2422 5.3824 5.3386

0.2–0.6 9.9533 8.4846 7.7902 5.7620 5.9486 5.9486 7.1853 4.2623 5.1958 5.1924

0.6–0.2 6.7043 5.3732 4.5893 2.4671 3.1075 3.1075 3.3618 0.0300 1.8412 1.8411

0.6–0.6 7.9092 6.0482 5.3323 3.3586 3.7662 3.7662 4.6139 2.4716 3.4754 3.4258

245

0.2–0.2 3.1858 2.5893 2.2107 1.2047 1.0076 1.0076 1.5728 0.0898 0.1787 0.1789

0.2–0.6 3.4818 2.8796 2.4714 1.4894 1.3387 1.3387 1.9373 0.3860 0.7725 0.7452

0.6–0.2 3.8497 3.4978 3.1065 1.9307 1.7349 1.7349 2.4034 0.6600 0.9899 1.0822

0.6–0.6 0.1945 0.8092 1.2134 2.2070 2.4420 2.4420 1.8577 3.5661 3.4422 3.4489
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Table 4: Percentage Deviations for λ̂ and ρ̂

Percentage of Mean Absolute Deviation of Estimated Standard Errors from Empirical Std: λ̂

n ρ0 − λ0 SHC0 SHC1 SHC2 SHC3 SHC4 SHC5 SHC2? SHC3? SHC4? SHC5?

49

0.2–0.2 21.2885 19.8722 19.2331 16.4778 18.0530 18.0530 15.1333 9.7803 9.1865 9.2468

0.2–0.6 29.7537 29.4164 28.4406 28.3134 24.7199 24.7199 26.8728 17.5841 15.2319 15.9147

0.6–0.2 33.1772 32.6374 30.3112 30.3300 29.5974 29.5974 27.7123 24.9730 26.0197 25.8477

0.6–0.6 32.4412 31.2069 30.5103 26.9563 31.9509 31.9509 39.2427 24.4933 22.4891 20.4610

98

0.2–0.2 8.4635 7.1472 7.3013 5.3475 6.3845 6.3845 4.4771 1.4815 1.0772 1.5960

0.2–0.6 29.4856 28.1784 28.7567 27.8222 27.8712 27.8712 27.1963 25.1345 25.0432 25.0399

0.6–0.2 18.8646 17.4953 17.7758 17.4527 17.3959 17.3959 16.8203 14.6509 14.1312 14.1307

0.6–0.6 24.1198 22.3079 23.8712 22.3083 22.9481 22.9481 21.4568 18.8493 20.1847 19.8967

245

0.2–0.2 3.1530 2.5446 2.4101 1.7720 1.9965 1.9965 1.3822 0.4144 0.3986 0.3987

0.2–0.6 9.5314 8.9725 8.9488 8.3791 8.6421 8.6421 8.1292 6.5613 6.7964 6.7252

0.6–0.2 3.4639 2.3481 2.5628 2.9782 3.1173 3.1173 1.9422 0.8056 1.5711 1.0520

0.6–0.6 0.6287 0.0291 0.0639 0.7304 0.2896 0.2896 1.0714 2.3414 0.8504 3.6303

Percentage of Mean Absolute Deviation of Estimated Standard Errors from Empirical Std: ρ̂

49

0.2–0.2 10.4973 11.0453 9.2311 7.3595 7.2145 7.2145 8.0059 2.2600 1.9996 2.1870

0.2–0.6 2.9319 1.7135 1.4363 0.1059 0.7515 0.7515 2.2544 1.3480 5.5737 5.8609

0.6–0.2 32.3294 32.1195 29.1765 28.8492 27.2187 27.2187 29.4601 25.6331 26.6675 26.8690

0.6–0.6 11.6173 11.4964 11.4232 9.1080 9.6350 9.6350 9.2391 6.3381 4.8103 3.6848

98

0.2–0.2 1.2867 2.1325 2.1865 3.5304 2.5797 2.5797 3.5107 5.2994 5.4982 5.3109

0.2–0.6 1.0778 1.8317 1.2633 1.6829 1.9734 1.9734 2.7480 4.0457 3.7090 3.7330

0.6–0.2 22.2224 21.7561 22.0248 21.5038 21.1317 21.1317 21.3796 20.2613 18.5219 18.5214

0.6–0.6 9.9990 9.9521 9.4537 8.0799 9.6315 9.6315 8.6571 5.1320 7.0567 6.7768

245

0.2–0.2 14.9026 15.2531 15.2790 15.6397 15.4993 15.4993 15.9196 16.9738 17.1381 17.1380

0.2–0.6 14.5739 14.9098 14.9218 15.2879 15.1807 15.1807 15.4848 16.2517 16.1923 16.2098

0.6–0.2 4.2323 5.3852 4.7011 3.3116 2.8142 2.8142 4.1983 5.1340 4.9666 5.4973

0.6–0.6 12.8692 13.3165 13.3389 13.7668 12.8752 12.8752 14.9336 14.8308 14.3158 15.8317
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Figure 1: P value discrepancy plots: H0 : β1 = 1

5.3 Simulation Results on Effects Estimates322

In this section, we investigate the effect of correction methods on the effects estimates (or marginal
effects) of exogenous variables within the context of our spatial model. First, we describe how these
marginal effects (impact measures) and their dispersions can be calculated. The marginal effect of
a change in Xkn is given by the following n× n matrix:

∂Yn

∂X
′
kn

= S−1
n βk0, (5.2)
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Figure 2: P value discrepancy plots: H0 : β2 = −1.2

where βk0 is the kth component of β0. The diagonal elements of this matrix
(
∂Yin/∂Xk,in

)
contain

the own-partial derivatives, while the off-diagonal elements represent the cross-partial derivatives324 (
∂Yjn/∂Xk,in

)
. LeSage and Pace, (2009) define the average of the main diagonal elements of this

matrix as a scalar summary measure of direct effects, and the average of off-diagonal elements as a326

scalar summary measure of indirect effects. The sum of direct and indirect effects is labeled as the
total effects.328

We consider the Delta method for the calculation of dispersions of these impact measures
(Debarsy et al., 2015; Taspinar et al., 2016). The result in (5.2) indicates that the estimator
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Figure 3: P value discrepancy plots: H0 : β2 = −0.2

of direct effect is 1
ntr
(
S−1
n (λ̂n)β̂kn

)
. By the mean value theorem,

1√
n

[
tr
(
S−1
n (λ̂n)β̂kn

)
− tr

(
S−1
n βk0

)]
= A1n ×

√
n
(
λ̂n − λ0, β̂kn − βk0

)′
+ op(1)

d−→ N
(
0, lim
n→∞

A1nBnA
′
1n

)
, (5.3)

where A1n =
[

1
ntr
(
S−1
n Gnβk0

)
, 1
ntr
(
S−1
n

) ]
, and Bn is the asymptotic covariance of

√
n
(
λ̂n −

λ0, β̂kn − βk0

)′
. The result in (5.3) indicates that the asymptotic variance of direct effects can be330
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Figure 4: P value discrepancy plots

estimated by 1
nÂ1nB̂nÂ

′

1n, where Â1n =
[

1
ntr
(
S−1
n (λ̂n)Gn(λ̂n)β̂kn

)
, 1
ntr
(
S−1
n (λ̂n)

)]
, and B̂n is the

estimated asymptotic covariance of
√
n
(
λ̂n − λ0, β̂kn − βk0

)′
.332

Applying the mean value theorem to the estimator of total effects 1
n β̂knl

′
nS
−1
n (λ̂n)ln yields

1√
n

[
β̂knl

′
nS
−1
n (λ̂n)ln − βk0l

′
nS
−1
n ln

]
= A2n ×

√
n
(
λ̂n − λ0, β̂kn − βk0

)′
+ op(1)

d−→ N
(
0, lim
n→∞

A2nBnA
′
2n

)
, (5.4)
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Figure 5: P value discrepancy plots

where A2n =
[

1
nβk0l

′
nS
−1
n Gnln,

1
n l
′
nS
−1
n ln

]
. Hence, Var

(
1
n β̂knl

′
nS
−1
n (λ̂n)ln

)
can be estimated by

1
nÂ2nB̂nÂ

′

2n, where Â2n =
[

1
n β̂knl

′
nS
−1
n (λ̂n)Gn(λ̂n)ln,

1
n l
′
nS
−1
n (λ̂)ln

]
.334

The estimate of indirect effects is given by 1
n

[
β̂knl

′
nS
−1
n (λ̂n)ln − tr

(
S−1
n (λ̂n)β̂kn

)]
. The results

in (5.3) and (5.4) implies that

1√
n

[(
β̂knl

′
nS
−1
n (λ̂n)ln − tr

(
S−1
n (λ̂n)β̂kn

))
−
(
βk0l

′
nS
−1
n ln − tr

(
S−1
n )βk0

))]
(5.5)

=
(
A2n −A1n

)
×
√
n
(
λ̂n − λ0, β̂kn − βk0

)′
+ op(1)

d−→ N
(
0, lim
n→∞

(A2n −A1n)Bn (A2n −A1n)
′ )
.
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Hence, an estimate of Var
(

1
n

[
β̂knl

′
nS
−1
n (λ̂n)ln−tr

(
S−1
n (λ̂n)β̂kn

)])
is given by 1

n

(
Â2n−Â1n

)
B̂n

(
Â2n−

Â1n

)′
.336

Table 5: Bias Properties of Total Effects

Bias on Total Effects: X1

n ρ0 − λ0 SHC0 SHC1 SHC2 SHC3 SHC4 SHC5 SHC2? SHC3? SHC4? SHC5?

49

0.2–0.2 0.0889 0.0875 0.0888 0.0882 0.0889 0.0889 0.0885 0.0810 0.0818 0.0818

0.2–0.6 -0.0147 -0.0267 -0.0301 -0.0309 -0.0275 -0.0275 -0.0301 -0.0238 -0.0140 -0.0140

0.6–0.2 -0.0339 -0.0370 -0.0317 -0.0290 -0.0176 -0.0176 -0.0285 -0.0373 -0.0642 -0.0673

0.6–0.6 0.0380 0.0209 0.0446 0.0591 0.0453 0.0453 0.0097 -0.0346 -0.0425 -0.0334

98

0.2–0.2 -0.0019 -0.0024 -0.0027 -0.0027 -0.0027 -0.0027 -0.0026 -0.0037 -0.0040 -0.0040

0.2–0.6 -0.0690 -0.0677 -0.0690 -0.0694 -0.0643 -0.0643 -0.0663 -0.0656 -0.0698 -0.0680

0.6–0.2 -0.0051 -0.0047 -0.0058 -0.0047 -0.0059 -0.0059 -0.0075 -0.0101 -0.0031 -0.0031

0.6–0.6 -0.0792 -0.0830 -0.0775 -0.0869 -0.0993 -0.0993 -0.0923 -0.0759 -0.0802 -0.0750

245

0.2–0.2 -0.0039 -0.0039 -0.0039 -0.0040 -0.0040 -0.0040 -0.0039 -0.0040 -0.0038 -0.0038

0.2–0.6 -0.0275 -0.0273 -0.0271 -0.0280 -0.0277 -0.0277 -0.0270 -0.0275 -0.0265 -0.0265

0.6–0.2 0.0181 0.0176 0.0176 0.0168 0.0168 0.0168 0.0178 0.0168 0.0163 0.0166

0.6–0.6 0.0177 0.0181 0.0181 0.0190 0.0176 0.0176 0.0183 0.0179 0.0177 0.0180

Bias on Total Effects: X2

49

0.2–0.2 -0.0788 -0.0764 -0.0779 -0.0796 -0.0777 -0.0777 -0.0772 -0.0756 -0.0743 -0.0743

0.2–0.6 0.1074 0.1130 0.1158 0.1156 0.1080 0.1080 0.1097 0.1016 0.0923 0.0923

0.6–0.2 0.0127 0.0187 0.0115 0.0112 0.0121 0.0121 0.0029 0.0175 0.0514 0.0538

0.6–0.6 -0.0609 -0.0368 -0.0648 -0.0781 -0.0484 -0.0484 -0.0375 -0.0052 0.0787 0.0646

98

0.2–0.2 -0.0252 -0.0238 -0.0241 -0.0241 -0.0270 -0.0270 -0.0253 -0.0240 -0.0267 -0.0267

0.2–0.6 0.0754 0.0799 0.0802 0.0757 0.0744 0.0744 0.0785 0.0796 0.0804 0.0787

0.6–0.2 0.0038 0.0068 0.0045 0.0018 0.0042 0.0042 0.0076 0.0067 -0.0000 -0.0000

0.6–0.6 0.0184 0.0332 0.0098 0.0356 0.0623 0.0623 0.0466 0.0219 0.0143 0.0066

245

0.2–0.2 0.0009 0.0010 0.0010 0.0011 0.0010 0.0010 0.0010 0.0011 0.0011 0.0011

0.2–0.6 0.0221 0.0222 0.0222 0.0224 0.0223 0.0223 0.0222 0.0222 0.0220 0.0220

0.6–0.2 -0.0211 -0.0216 -0.0216 -0.0204 -0.0210 -0.0210 -0.0217 -0.0207 -0.0212 -0.0215

0.6–0.6 -0.0183 -0.0167 -0.0167 -0.0169 -0.0155 -0.0155 -0.0166 -0.0156 -0.0162 -0.0180

Bias on Total Effects: X3

49

0.2–0.2 0.0077 0.0083 0.0078 0.0102 0.0099 0.0099 0.0089 0.0098 0.0111 0.0107

0.2–0.6 0.0452 0.0465 0.0437 0.0505 0.0456 0.0456 0.0453 0.0452 0.0466 0.0461

0.6–0.2 0.0296 0.0285 0.0292 0.0299 0.0260 0.0260 0.0285 0.0332 0.0395 0.0401

0.6–0.6 0.0849 0.0842 0.0862 0.0854 0.0783 0.0783 0.0916 0.0988 0.1198 0.1105

98

0.2–0.2 0.0090 0.0091 0.0091 0.0093 0.0091 0.0091 0.0089 0.0092 0.0093 0.0093

0.2–0.6 0.0554 0.0553 0.0554 0.0555 0.0556 0.0556 0.0549 0.0559 0.0569 0.0569

0.6–0.2 0.0118 0.0119 0.0122 0.0137 0.0136 0.0136 0.0135 0.0134 0.0128 0.0128

0.6–0.6 0.0783 0.0793 0.0792 0.0790 0.0802 0.0802 0.0824 0.0778 0.0803 0.0800

245

0.2–0.2 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029

0.2–0.6 0.0185 0.0185 0.0185 0.0185 0.0186 0.0186 0.0185 0.0185 0.0185 0.0185

0.6–0.2 -0.0004 -0.0005 -0.0004 -0.0003 -0.0004 -0.0004 -0.0004 -0.0004 -0.0001 -0.0002

0.6–0.6 0.0233 0.0234 0.0234 0.0235 0.0235 0.0235 0.0234 0.0236 0.0236 0.0233
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We use the same Monte Carlo set up described in Section 5.1 to evaluate the finite sample
properties of these effects estimators. We report the simulation results only for the total effects338

estimator. The results for the finite sample bias properties of the estimator are reported in Table 5.
The total effects estimator reports similar bias across different methods in all cases, and the bias is340

relatively larger when n = 49. The bias becomes negligible when n = 245 across all methods. The
results in Table 5 indicate that the total effects estimator of marginal effect of X3 has relatively342

smaller bias. Overall, it seems that the estimators impose relatively large bias on the impact mea-
sures when there is strong spatial dependence both in the dependent variable and the disturbance344

term.
The size properties of standard Wald test for the total effects are illustrated by the P value346

discrepancy plots presented in Figures 6 through 8. The size distortions presented in Figures 6(a)–
6(d) for the total effects of X1 indicate that the Wald tests based on SHC0 produce relatively348

large discrepancies when n = 49 and n = 98. The same pattern is also valid in Figures 7 and
8 for the Wald tests of the marginal effects of X2 and X3. The size distortions are relatively350

smaller in the case of SHC2? − SHC5?, especially when n = 49 and n = 98. The correction
methods SHC2−SHC5, generally, perform better than SHC0, but worse than SHC2?−SHC5?.352

Figures 6 through 8 also indicate that the difference in size distortions across methods get smaller
when there is strong spatial dependence either in the disturbance term or in the dependent variable.354
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Figure 6: P value discrepancy plots for total effects: X1
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Figure 7: P value discrepancy plots for total effects: X2
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Figure 8: P value discrepancy plots for total effects: X3
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6 Conclusion

In this study, we investigate the finite sample properties of a robust GMME suggested for a356

SARAR(1,1) specification that has heteroskedastic disturbance terms. We consider various re-
finement methods suggested in the non-spatial literature and extend these method for our spatial358

autoregressive model. We provide a general argument by assuming an arbitrary set of moment
functions. To formulate leverage-adjusted residuals within the context of our spatial model, we360

suggest two (quasi) hat matrices. The first hat matrix is formulated using the first order asymp-
totic results established for the GMME. The spatial dependence in our context provide a different362

stochastic dimension which complicates the formulation. We show how this hat matrix can be
determined for the spatial autoregressive models. Based on this hat matrix, we formulate the finite364

sample correction methods SHC2? − SHC5?. The second hat matrix is ad-hoc in the sense that
its formulation is feasible when the autoregressive parameters are known. Based on this particular366

hat matrix, we formulate the finite sample correction methods SHC2− SHC5.
In a Monte Carlo study, we investigate the effect of these correction methods on the finite368

sample properties of the GMME of a SARAR(1,1) specification. In terms of bias properties, our
results indicate that the correction methods produce similar point estimates for all parameters. Our370

results also indicate that the usual estimated standard errors (based on SHC0) differ substantially
from the empirical standard deviations, which suggests that the asymptotic distribution does not372

approximate the finite sample distribution well enough. Further, our results show that the Wald
tests based on the usual estimated standard errors can have substantial size distortions in small374

samples. We show that the GMME based on the correction methods SHC2?−SHC5? can perform
better in terms of finite sample properties. In particular, our results show that the Wald tests based376

on the correction methods SHC2?−SHC5? have relatively smaller size distortions in finite samples.
All of these results can be useful for applied researchers who estimate and test spatial models with378

the GMM estimators.
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Appendix

A Some Useful Lemmas448

Lemma 1. — Assume that εins are i.i.d with mean zero and variance σ2
0. Let E

(
ε3
in

)
= µ3,

E
(
ε4
in

)
= µ4. Let An and Bn be n × n matrices of constants with zero diagonal elements, i.e.,

vecD(An) = vecD(Bn) = 0n×1. Then,

(1) E
(
ε
′
nAnεn

)2
= σ4

0tr
(
AnA

(s)
n

)
, (2) E

(
ε
′
nAnεn · ε

′
nBnεn

)
= σ4

0tr
(
AnB

(s)
n

)
,

(3) E
(
Anεn · ε

′
nBnεn

)
= An vecD

(
Bn
)
µ3 = 0, (4) E

(
ε
′
nBnεn · ε

′
nAn

)
= µ3 vec

′
D

(
Bn
)
An = 0,

(5) tr
(
AnBn

)
= vec

′ (
A
′
n

)
· vec

(
Bn
)
.

Lemma 2. — Assume that An and Bn are two n× n non-stochastic matrices with zero diagonal
elements. Assume that εins are i.i.d with mean zero and variance σ2

0. Let es and et be elementary450

vectors in Rn for s = 1, . . . , n, t = 1, . . . , n, and s 6= t. For notational simplicity, let A
(s)
is,n =

Ais,n +Asi,n, A
(s)
s•,n =

(
As•,n +A

′
•s,n
)
, and A

(s)
•s,n =

(
A
′
s•,n +A•s,n

)
= A

(s)′
s•,n . Then,452

(1) E
(
ε
′
nAnεn · ε2

sn

)
= 0, and E

(
ε
′
nAnεn · εsnεtn

)
= σ4

0

(
Ats,n +Ast,n

)
.

(2) Let Qn be an n× r non-stochastic matrix. Then,

(2.1) E
(
Q
′
nεn · ε2

sn

)
= µ3Q

′
s•,n,

(2.2) E
(
Q
′
nεn · εsnεtn

)
= 0r×1.

(3) The expectation of the (s, s)th element of
(
εn · ε

′
nAnεn · ε

′
nBnεn · ε

′
n

)
is given by

E
(
e
′
sεn · ε

′
nAnεn · ε

′
nBnεn · ε

′
nes
)

= σ6
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′ (
A(s)
n

)
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(
Bn
)
−
(
σ6

0 − µ4σ
2
0

)
A

(s)′
•s,nB

(s)
•s,n.

(4) The expectation of the (s, t)th element of
(
εn · ε

′
nAnεn · ε

′
nBnεn · ε

′
n

)
is given by

E
(
e
′
sεn · ε

′
nAnεn · ε

′
nBnεn · ε

′
net
)

= µ2
3A

(s)
st,nB

(s)
st,n.

(5) Let Qn be an n× r non-stochastic matrix. Then,

(5.1) E
(
ε
′
nAnεn · ε

′
nQn · ε2

sn

)
= σ2

0µ3A
(s)′
•s,nQn,

(5.2) E
(
ε
′
nAnεn · ε

′
nQn · εsnεtn

)
= σ2

0µ3A
(s)
st,n

(
Qs•,n +Qt•,n

)
,

(5.3) E
(
Q
′
nεn · ε

′
nQn · ε2

sn

)
= σ4

0Q
′
nQn +

(
µ4 − σ4

0

)
Q
′
s•,nQs•,n,

(5.4) E
(
Q
′
nεn · ε

′
nQn · εsnεtn

)
= σ4

0

(
Q
′
s•,nQt•,n +Q

′
t•,nQs•,n

)
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(6) E
(
ε
′
nAnεn · ε

′
nBnεn · εtn

)
= σ2

0µ3A
(s)′

•t,nB
(s)
•t,n.454

(7) Let Qn be an n× r non-stochastic matrix. Then,

(7.1) E
(
ε
′
nBnεn · ε

′
nQn · εtn

)
= σ4

0A
(s)′

•t,nQn,

(7.2) E
(
Q
′
nεn · ε

′
nQn · εtn

)
= µ3Q

′
t•,nQt•,n.

Lemma 3. — Let An, Bn and Cn be n× n matrices with ijth elements respectively denoted by
Aij,n, Bij,n and Cij,n. Assume that An and Bn have zero diagonal elements, and Cn has uniformly
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bounded row and column sums in absolute value. Let qn be n× 1 vector with uniformly bounded
elements in absolute value. Assume that εn satisfies Assumption 1 with covariance matrix denoted
by Σn=D

(
σ2

1n, . . . , σ
2
nn

)
. Then,

(1) E
(
ε
′
nAnεn · ε

′
nBnεn
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=
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jn = tr

(
ΣnAn

(
B
′
nΣn + ΣnBn

))
,
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(4) E
(
ε
′
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′
nCnεn = Op(n),
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′
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Lemma 4. — Let An, Bn and Cn be n × n three matrices. Assume that An has zero diagonal
elements, i.e., D(An) = 0n×n, and Cn is a diagonal matrix, i.e., D (Cn) 6= 0n×n. Then,

(1) tr
(
A(s)
n Bn
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=
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2
tr
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B Proofs of Lemmas

Proof of Lemma 1. For (1), (2), (3) and (4), see Lee, (2007). For (5), see Abadir and Magnus,
(2005, p. 283) . Using (5), (1) and (2) can also be written as

E
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′
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Proof of Lemma 2. (1). E
(
ε
′
nAnεn · ε2

sn

)
=
∑n
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j=1Aij,nE

(
εinεjnε
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A
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)
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.
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′
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=
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n∑
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n∑
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(
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.

There are four cases that we need to consider: (1) (i = k = s) 6= (j = l = t), (2) (i = k = t) 6= (j =
l = s), (3) (i = l = s) 6= (j = k = t), and (4) (i = l = t) = (j = k = s). Hence,

E
(
ε
′
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′
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)
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3
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2
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)
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consider (1) (i = k) 6= (j = s) and (2) (i = s) 6= (j = k). Hence
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(
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E
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ε
′
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′
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)
=
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′
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(
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2
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)
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where E
(
εinεjnε

2
sn

)
is not zero: (i) (i = j = s) and (ii) (i = j) 6= s. Hence,

n∑
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n∑
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′
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(
εinεjnε

2
sn

)
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0
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(
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′
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′
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)
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E
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Q
′
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0
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Q
′
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′
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(6) E

(
ε
′
nAnεn · ε

′
nBnεn · εtn

)
=
∑n
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∑n
j=1

∑n
k=1

∑n
l=1Aij,nBkl,nE

(
εinεjnεknεlnεtn

)
. There are four

cases to consider: (1) (i = k) 6= (j = l = t), (2) (i = k = t) 6= (j = l), (3) (i = l = t) 6= (j = k) and
(4) (i = l) 6= (j = k = t). Hence,

E
(
ε
′
nAnεn · ε

′
nBnεn · εtn

)
= σ2

0µ3

n∑
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(
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)(
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)
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0µ3

n∑
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A
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(s)
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(7.1) E
(
ε
′
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′
nQn · εtn

)
=
∑n
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∑n
j=1

∑n
k=1Aij,nQk•,nE

(
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)
. Here, we need to con-

sider: (1) (i = k) 6= (j = t) and (2) (i = t) 6= (j = k). Hence

E
(
ε
′
nAnεn · ε

′
nQn · εtn

)
= σ4

0

n∑
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A
(s)
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(s)′
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(7.2) E
(
Q
′
nεn · ε

′
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)
=
∑n
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∑n
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′
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(
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)
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′
t•,nQt•,n, since E

(
εinεjnεtn

)
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is not zero only if (i = j = t).

Proof Lemma 3. The proofs for (1), (2) and (3) are given in Lin and Lee, (2010). For (4) and464

(5), see Dogan and Taspinar, (2013).

Proof of Lemma 4. (1) 1
2tr
(
A

(s)
n B

(s)
n

)
= 1

2tr
(
A

(s)
n Bn + A

(s)
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′
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)
= 1

2tr
(
A

(s)
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)
+ 1

2

(
A

(s)
n B

′
n

)
=

34



1
2tr
(
A

(s)
n Bn

)
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)
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A
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. Then, by Lemma 1(5), we have
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n
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A
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n
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A
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n
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(
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)]
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(s)
n
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(
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2

[
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(
A

(s)
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)
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(
A
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(
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+ tr
(
A

(s)
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′
n

)
− tr

(
A
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A

(s)
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)
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(
A

(s)
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)
= tr

(
A

(s)
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′
n

)
and

tr
(
A

(s)
n D

(
Bn
))

= 0. The last equality in this part simply follows from Lemma 1(5).468

(3) The proof is as follows:
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2
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](s))
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(
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)
=

1

2
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=
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2
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=
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=
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=
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′
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)
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(
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)
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(
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′
n

)
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(
CnPjnBn

)
+ tr
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′
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)
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)
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(
P
′
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)
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′
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]
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)
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)
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1

2
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n

)
=

1

2
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Bn −D(Bn)
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=

1

2
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.
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Lemma 3 in Appendix A can be used to derive Ωn and Φn.

Ωn =


tr
(
ΣnP1n(ΣnP1n)(s)

)
· · · tr

(
ΣnP1n(ΣnPmn)(s)

)
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...
...

...
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(
ΣnPmn(ΣnP1n)(s)
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′
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
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′
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′
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′
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′
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
Proof of Claim 1. Let C1mn =

[
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(
ΣnH

′
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(s)
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)
, . . . , tr

(
ΣnH

′
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(s)
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(
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′
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(s)
1n

)
, . . . , tr

(
ΣnG

′
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(s)
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)]
. We will investigate an upper bound for B and G. By
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Lemma 4, when Pjn ∈ Pn, a generic term in C1mn can be written as
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′
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)
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=
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=
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Lemma 4 (3), we can also write a generic term of C1mn in the following way:
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First, we investigate an upper bound for B by using the Schwartz inequality:
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2
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1

2
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|B| ≤
∥∥∥∥ vec

(
[Hn −D(Hn)](s)
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2
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1

2
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36



The argument above also applies to G. That is,

|G| ≤1

2

∥∥∥∥ vec
([
Gn −D(Gn)

](s))∥∥∥∥× ∥∥∥∥ vec
([
Gn −D(Gn)

](s))∥∥∥∥
= tr

(
Gn
[
Gn −D(Gn)

](s))
= tr

(
Σ−1
n

[
Gn −D(Gn)

](s)
GnΣn

)
. (C.2)

The same argument for B indicates that

|D| ≤
∥∥∥∥ vec

([
Gn −D(Gn)

](s))∥∥∥∥× ∥∥∥∥1

2
vec
(

[Hn −D(Hn)](s)
)∥∥∥∥. (C.3)

The results in (C.1), (C.2) and (C.3) indicates that Σ−1
n [Hn −D(Hn)] and Σ−1

n

[
Gn −D(Gn)

]
provide the best matrices for the quadratic moment functions.472
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