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1 Introduction

This paper develops a general formula for the asymptotic distribution of semiparametric

M-estimators. In particular, we aim at obtaining a direct way of characterizing the as-

ymptotic distribution of two-step semiparametric M-estimators for which the first-stage

nonparametric estimator may depend on unknown finite-dimensional parameters of inter-

est. In addition, we allow for smooth and non-smooth objective functions and also allow

for smooth and non-smooth first-stage nonparametric estimators.

Our paper is closely related with Andrews (1994), Newey (1994), Pakes and Olley (1995),

Chen and Shen (1998), Ai and Chen (2003), and Chen, Linton, and Van Keilegom (2003).

Previous papers develop general forms to compute the asymptotic distribution of semipara-

metric estimators. Although previous work clarifies the structure of the asymptotic analysis

of semiparametric estimation, we still cannot carry out the asymptotic analysis for given

a semiparametric estimation problem in the same way we can do for the standard two-

step GMM estimation. This prevents applied researchers from easily modifying existing

semiparametric estimators from the way originally discussed. Often modifying the original

approach requires that we re-derive the whole asymptotic theory.

One contribution of this paper is to make the asymptotic analysis of semiparametric es-

timation more routine than available in the literature. Another contribution of this paper is

to calculate explicit forms of the asymptotic distribution when the first-stage nonparamet-

ric estimator may depend on unknown finite-dimensional parameters of interest. Although

some previous papers (e.g., Newey (1994), Pakes and Olley (1995), and Chen, Linton, and

Van Keilegom (2003)) allow for dependence of the first-stage nonparametric estimation on

unknown parameters of interest, treatment has been rather implicit or limited to some spe-

cific examples. A third contribution of this paper is to allow for non-smooth first-stage

nonparametric estimators (with respect to parameters of interest) as well as non-smooth

objective functions (with respect to nonparametric components).1 The fourth contribution

of this paper is to provide regularity conditions that are simpler to verify (e.g. than Chen,

Linton, and Van Keilegom (2003)) and also substantially weaker than those imposed by

previous papers (e.g., Newey (1994), Pakes and Olley (1995), and Chen, Linton, and Van

Keilegom (2003)).

Our approach is basically analogous to the standard analysis of the two-step parametric

estimators when the objective function is not smooth. To be more specific, our approach is
1To our best knowledge, Chen, Linton, and Van Keilegom (2003) is the only paper that allows for an

objective function that is not smooth with respect to a nonparametric function. However, they assume
implicitly that the first-stage estimator is a smooth function.
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based on a Taylor’s series expansion of the expectation of the objective function. Since the

first stage involves nonparametric estimation and thus the objective function is a functional

defined on the Cartesian product of a Euclidean space and a function space, we need to use

basic results of the calculus for infinite-dimensional spaces and also need to suitably modify

the concept of asymptotic linearity. As a result, calculating a formula for the asymptotic

distribution involves Fréchet differentiation of the expectation of an objective function.

For many leading examples, this is often easy to derive. This approach was pioneered by

Ichimura (2003) for analyzing the asymptotic distribution of semiparametric GMM-type

estimators with smooth moment conditions. We show in this paper that this approach can

be extended nicely in the setup of M-estimation with weaker conditions on smoothness.

Our framework is illustrated by applying it to profiled estimation of a single index

quantile regression model. Due to the nature of profiled estimation and non-differentiability

of the check function it is non-trivial to analyze this estimator. Our general framework

allows us to calculate the asymptotic distribution of this estimator by computing some

simple formulas. Our framework is also illustrated by applying it to semiparametric least

squares estimation of Ichimura (1993) under model misspecification. To our best knowledge,

both of these two results seem to be new findings in the literature.

The paper is organized as follows. Section 2 defines a semiparametric M-estimator and

describes an example. Section 3 provides theoretical results, including regularity conditions

and general formulas for the asymptotic distribution. Section 4 demonstrates usefulness of

general results of Section 3 by applying them to the profiled estimator of a single index

quantile regression model. As another application of our general results, in Section 5, we

establish the asymptotic distribution of semiparametric least squares estimation of Ichimura

(1993) under model misspecification. All the proofs are in the Appendix.

2 Estimation

Throughout the paper, let θ ∈ Θ and f ∈ F denote finite and infinite dimensional para-

meters, where Θ is a compact subset of Rdθ and F = Cα
1 (X ) is a class of some smooth

functions defined in Van der Vaart and Wellner (1996, p.154), where X is the domain of

f . The parameter space Θ × F is a Cartesian product of Θ and F with a norm defined

by ‖(θ, f)‖Θ×F = ‖θ‖+ ‖f‖F , where ‖θ‖ is the usual Euclidean norm on Θ and ‖f‖F is a

norm on F . For example, ‖f‖F can be the supremum norm ‖f‖∞.

Let m(Z, θ, f(·, θ)) denote a known, real-valued function of data Z ∈ Rdz and unknown

parameters (θ, f(·, θ)) ∈ Θ×F . Assume that f(·, θ) is a df -vector-valued function that can
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depend on the finite dimensional parameters θ and the data Z. For simplicity in notation,

the arguments of f are denoted by a dot. This notation is useful because it is unnecessary to

specify how arguments of f(·, θ) appear and more importantly, we can allow m(Z, θ, f(·, θ))
to depend either on the whole function f(·, θ) or on values of f(·, θ) at some data points.2

Suppose that the θ0 minimizes E[m(Z, θ, f0(·, θ))] for an unknown function f0 ∈ F . As-

sume that for each θ, a nonparametric estimator f̂n(·, θ) of f0(·, θ) is available. Furthermore,

assume that the observed data {Zi : i = 1, . . . , n} are a random sample of Z. A natural

sample analog estimator of θ0 is an M-estimator that minimizes

Ŝn(θ) ≡ n−1
n∑

i=1

m(Zi, θ, f̂n(·, θ)).(2.1)

Let θ̂n denote the resulting estimator of θ0.

There are many examples of semiparametric estimators that can be viewed as special

cases of (2.1). Some well-known examples include: Robinson (1988), Powell, Stock, and

Stoker (1989), Ichimura (1993), and Klein and Spady (1993) among many others. One

noteworthy feature of our approach is that we can analyze semiparametric estimators under

model misspecification, whereas papers cited above assume that the model is correctly

specified. To illustrate, we analyze the asymptotic distribution of the estimator of Ichimura

(1993) allowing for the possibility that the underlying model is misspecified. We also analyze

the following new example, which is not considered before in the literature.

Example: Profiled Estimation of A Single-Index Quantile Regression Model. This

model has the form

(2.2) Y = G0(XT β0) + U,

where Y is the dependent variable, X ∈ Rdx is a vector of explanatory variables, β0 is

a vector of unknown parameters, G0(·) is an unknown, real-valued function, and the τ -

quantile of U given X = x is zero for almost every x for some τ , where τ , 0 < τ < 1, is

the quantile of interest. Here, T denotes a transpose. To describe our estimator of β0, let

ρτ (u) denote the ‘check’ function, that is ρτ (u) = |u|+ (2τ − 1)u. If G0 were known, then

β could be estimated by solving

min
b

n−1
n∑

i=1

ρτ [Yi −G0(XT
i b)].(2.3)

2In the former case, m(Z, θ, f(·, θ)) is a functional of f(·, θ). See Newey (1994).
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However, this is infeasible with model (2.2) because G0 is unknown. A feasible estimation

approach is to minimize (2.3) with unknown G0(XT
i b) in (2.3) being replaced by a nonpara-

metric estimator of the τ -quantile of Y conditional on XT b = XT
i b. It is worth mentioning

that non-differentiability of the check function as well as (possible) non-differentiability

of the nonparametric estimator of G0 prevents us from using usual asymptotic arguments

based on Taylor series methods. Our general framework allows us to calculate the asymp-

totic distribution of this proposed estimator.

3 Asymptotic Results

3.1 Preliminaries

This subsection gives a short summary of well-established results of Fréchet Differentiation

in Banach spaces. An interested reader is referred to monographs on nonlinear functional

analysis such as Berger (1977) and Zeidler (1986).

Let L(A,B) be a class of all linear and bounded maps from a Banach space A to a

Banach space B. In general, a mapping g : A 7→ B is said to be Fréchet differentiable at a0

if there exists a linear operator Dg(a0) ∈ L(A,B) such that

g(a)− g(a0)−Dg(a0)[a− a0] = o(‖a− a0‖A)

for all a in a neighborhood of a0, where ‖·‖A is a norm defined on A.

In this paper, we consider a mapping m∗ from Θ×F to R. The map m∗(θ, f) is Fréchet

differentiable at (θ0, f0) if there exists a linear operator Dm∗(θ0, f0) ∈ L(Θ × F ,R) such

that

m∗(θ, f)−m∗(θ0, f0)−Dm∗(θ0, f0)[(θ − θ0, f − f0)] = o(‖θ − θ0‖+ ‖f − f0‖F )(3.1)

for all (θ, f) in a neighborhood of (θ0, f0). If it exists, Dm∗(θ0, f0) is called the Fréchet (F-)

derivative of m∗ at (θ0, f0). Also, if the F-derivative Dm∗(θ, f) exists for all (θ, f) ∈ Θ×F ,

then the mapping Dm∗ : Θ×F 7→ L(Θ×F ,R) is called the the F-derivative of m∗(θ, f). If

this mapping is continuous, then m∗(θ, f) is said to be continuously Fréchet differentiable.

The partial F-derivatives of m∗(θ, f), denoted by Dθm
∗(θ, f) and Dfm∗(θ, f), are de-

fined as

Dθm
∗(θ, f)[ϑ] = Dm∗(θ, f)[(ϑ, 0)], and

Dfm∗(θ, f)[h] = Dm∗(θ, f)[(0, h)].
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When m∗(θ, f) is Fréchet differentiable, the partial F-derivatives Dθm
∗(θ, f) and Dfm∗(θ, f)

exist because it follows from (3.1) that

m∗(θ + ϑ, f)−m∗(θ, f)−Dm∗(θ, f)[(ϑ, 0)] = o(‖ϑ‖), and

m∗(θ, f + h)−m∗(θ, f)−Dm∗(θ, f)[(0, h)] = o(‖h‖)

for all ϑ and h in neighborhoods of zero. Furthermore, when m∗(θ, f) is Fréchet differen-

tiable,

Dm∗(θ, f)[(ϑ, h)] = Dθm
∗(θ, f)[ϑ] + Dfm∗(θ, f)[h](3.2)

for all ϑ and h.3

The map m∗(θ, f) is said to be twice Fréchet differentiable if the F-derivative of m∗(θ, f)

is Fréchet differentiable. We denote the second-order F-derivative of m∗(θ, f) by D2m∗(θ, f).

The second-order F-derivative D2m∗(θ, f) is a mapping from Θ×F to L(Θ×F , L(Θ×F ,R)).

By Lemma (2.1.24) of Berger (1977, p.71), then L(Θ×F , L(Θ×F ,R)) is identical to the

class of bilinear operators L(Θ×F , Θ×F ;R).4 When m∗(θ, f) is twice Fréchet differentiable,

then D2m∗(θ, f) is unique and symmetric in a sense that

D2m∗(θ, f)[(ϑ1, h1), (ϑ2, h2)] = D2m∗(θ, f)[(ϑ2, h2), (ϑ1, h1)].

Also, when m∗(θ, f) is twice Fréchet differentiable, we write partial F-derivatives of Dθm
∗(θ, f)

by Dθθm
∗(θ, f) and Dθfm∗(θ, f) and partial F-derivatives of Dfm∗(θ, f) by Dfθm

∗(θ, f)

and Dffm∗(θ, f). Then by repeated applications of (3.2),

D2m∗(θ, f)[(ϑ1, h1), (ϑ2, h2)]

= Dθθm
∗(θ, f)[ϑ1, ϑ2] + Dθfm∗(θ, f)[ϑ1, h2]

+ Dfθm
∗(θ, f)[h1, ϑ2] + Dffm∗(θ, f)[h1, h2](3.3)

When D2m∗(θ, f) is continuous as a mapping from Θ × F to L(Θ × F , Θ × F ;R), then

Dθfm∗(θ, f)[ϑ, h] = Dfθm
∗(f, θ)[h, ϑ]. Higher-order F-derivatives are defined successively.

The following is a set of some remarks that will be useful later:

Remark 3.1. As mentioned in Example 4.7 of Zeidler (1986, Section 4.2), Fréchet differen-

tiability and classical total differentiability are the same for functions defined on Euclidean
3See Proposition 4.14 of Zeidler (1986, Section 4.4) for the proof.
4An operator f : A1 ×A2 7→ B is called bilinear if f(a1, a2) is linear in a1 when a2 is fixed and linear in

a2 when a1 is fixed.
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spaces. Therefore, notice that Dθm
∗(θ, f)[ϑ] is equivalent to the inner product of ϑ and the

usual partial derivatives of m∗(θ, f) with respect to θ. In view of this, we write

Dθm
∗(θ, f)[ϑ] =

[
∂m∗(θ, f)

∂θ

]T

ϑ,

where ∂m∗(θ, f)/∂θ is a vector of partial derivatives of m∗(θ, f) with respect to θ and AT

denotes a transpose of matrix A. Similarly, we write

Dθθm
∗(θ, f)[ϑ, ϑ] = ϑT

[
∂2m∗(θ, f)

∂θ∂θT

]
ϑ,

where ∂2m∗(θ, f)/∂θ∂θT is a Hessian matrix of m∗(θ, f). Also, it is not difficult to show

that

Dθfm∗(θ, f)[ϑ, h] =
{

Df

[
∂m∗(θ, f)

∂θT

]
[h]

}
ϑ,

where Df

[
∂m∗(θ, f)/∂θT

]
[h] is a partial F -derivative of ∂m∗(θ, f)/∂θT with respect to f .

Remark 3.2. By Taylor’s Theorem on Banach spaces (see, for example, Section 4.6 of

Zeidler, 1986), if m∗(θ, f) is twice continuously Fréchet differentiable in an open, convex

neighborhood of (θ0, f0(·, θ0)) with respect to a norm ‖(θ, f)‖Θ×F , then for any (θ, f) and

(θ0, f0) in an open, convex neighborhood of (θ0, f0(·, θ0)),

m∗(θ, f)−m∗(θ0, f0)(3.4)

= Dθm
∗(θ0, f0)[θ − θ0] + Dfm∗(θ0, f0)[f − f0]

+
∫ 1

0
(1− s)

[
Dθθm

∗(θs, fs)[θ − θ0, θ − θ0] + 2Dθfm∗(θs, fs)[θ − θ0, f − f0]

+ Dffm∗(θs, fs)[f − f0, f − f0]
]
ds,

where θs = θ0 + s(θ − θ0) and fs = f0 + s(f − f0).

3.2 Assumptions

In this subsection, we state assumptions that are needed to establish asymptotic results.

The consistency of a semiparametric M-estimator θ̂n can be obtained using general results

available in the literature. See, for example, Theorem 2.1 of Newey and McFadden (1994,

p.2121), Corollary 3.2.3 of Van der Vaart and Wellner (1996, p.287), and Theorem 1 of Chen,

Linton, and Van Keilegom (2003). Thus, we assume that θ̂n is consistent and consider only

a neighborhood of θ0. For any δ1 > 0 and δ2 > 0, define Θδ1 = {θ ∈ Θ : ‖θ − θ0‖ < δ1} and

Fδ2 = {f ∈ F : ‖f(·)− f0(·, θ0)‖F < δ2}. For any function ψ of data, let ‖ψ(Z)‖L2(P ) =
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[
∫

[ψ(Z)]2dP ]1/2, where P is the probability measure of data Z. That is, ‖·‖L2(P ) is the

L2(P )-norm. To simplify the notation, we assume that df = 1, i.e., f(·, θ) is a real-valued

function.5

To establish asymptotic results, we make the following assumptions:

Assumption 3.1. (a) θ0 is an interior point in Θ, which is a compact subset of Rdθ .

(b) θ0 is a unique minimizer of E[m(Z, θ, f0(·, θ))].

(c) θ̂n →p θ0.

Condition (a) is standard, condition (b) imposes identification, and condition (c) as-

sumes the consistency of θ̂n to θ0 in probability.

Assumption 3.2. For any (θ1, f1) and (θ2, f2) in Θδ1 × Fδ2, there exist linear operators

∆1(z, θ1 − θ2) and ∆2(z, f1(·)− f2(·)) and a function ṁ(z, δ1, δ2) satisfying

(a) |m(z, θ1, f1(·))−m(z, θ2, f2(·))−∆1(z, θ1 − θ2)−∆2(z, f1(·)− f2(·))|
≤ [‖θ1 − θ2‖+ ‖f1(·)− f2(·)‖F ] ṁ(z, δ1, δ2),

and

(b) ‖ṁ(Z, δ1, δ2)‖L2(P ) ≤ C (δα1
1 + δα2

2 )

for some constants C < ∞, α1 > 0, and α2 > 0.6

Since ∆1 is a linear operator and θ is a finite-dimensional parameter, we write ∆1(z, θ1−
θ2) = ∆1(z) · (θ1− θ2). Assumption 3.2 allows for both differentiable and non-differentiable

functions with respect to parameters. For example, it can handle absolute value functions.

Assumption 3.3. Let m∗(θ, f) = E[m(Z, θ, f)] for fixed θ and f .7 m∗(θ, f) is twice

continuously Fréchet differentiable in an open, convex neighborhood of (θ0, f0(·, θ0)) with

respect to a norm ‖(θ, f)‖Θ×F .

This assumption implies that a second-order Taylor expansion of m∗(θ, f) in (3.4) is

well defined.
5It is rather straightforward to extend our main results to a vector-valued f(·, θ) with a use of more

complicated notation.
6Here, ∆1, ∆2, and ṁ may depend on (θ2, f2(·)). However, we suppress the dependence on (θ2, f2(·)) for

the sake of simplicity in notation.
7The notation m∗(θ, f) is already used in the previous section to denote a generic function, but we use

the same notation here to denote a particular function. We have abused the notation a bit since we only
need to apply Fréchet differentiation to this function m∗(θ, f).
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Assumption 3.4. (a) For each θ ∈ Θδ1, f0(·, θ) is an element of F = Cα
1 (X ) for some

α > dX /2, where dX is the dimension of the arguments of f0(·, θ) and X is a bounded,

convex subset of RdX with nonempty interior.

(b) For each θ ∈ Θδ1, f̂n(·, θ) ∈ F = Cα
1 (X ) with probability approaching one.

(c) supθ∈Θδ1

∥∥∥f̂n(·, θ)− f0(·, θ)
∥∥∥
F

= Op(δ̃2) for δ̃2 satisfying n1/2δ̃1+α2
2 → 0.

(d) As a function of θ, f0(·, θ) is twice continuously differentiable on Θδ1 with bounded

derivatives on X . Furthermore, with probability approaching one,
∥∥∥f̂n(·, θ1)− f̂n(·, θ2)

∥∥∥
F
≤ CSδ1,δ2

‖θ1 − θ2‖(3.5)

with some finite constant CSδ1,δ2
, which is independent of f̂n(·, θ), and

∥∥∥∥f̂n(·, θ)− f̂n(·, θ0)− ∂f0(·, θ0)
∂θT

(θ − θ0)
∥∥∥∥
F

= op (‖θ − θ0‖) .(3.6)

Condition (a) imposes smoothness condition on f0(·, θ) for each fixed θ. It is reasonable

to assume that f0(·, θ) is a smooth function; however, a nonparametric estimator of f0(·, θ)
may not share the same smoothness for fixed sample size n. Condition (b) assumes that a

nonparametric estimator of f0(·, θ) shares the same smoothness condition with probability

tending to one. Condition (c) requires some uniform rate of convergence of f̂n(·, θ) in

probability when ‖·‖F is the supremum norm. If α2 = 1 (smooth m), δ̃2 = o(n−1/4); when

α2 = 0.5 (non-smooth m), δ̃2 = o(n−1/3). In general, f̂n(·, θ) needs to converge at a faster

rate when m is less smooth.8 Finally, condition (d) imposes some smoothness condition on

f0(·, θ) and f̂n(·, θ) as functions of θ.

Assumption 3.5. The following holds uniformly over θ in Θδ1:

∫ 1

0
(1− s)

{
Dffm∗(θ, f̂s(·, θ))[f̂n(·, θ)− f0(·, θ), f̂n(·, θ)− f0(·, θ)]

}
ds

−
∫ 1

0
(1− s)

{
Dffm∗(θ0, f̂s(·, θ0))[f̂n(·, θ0)− f0(·, θ0), f̂n(·, θ0)− f0(·, θ0)]

}
ds

= op

(
n−1/2 ‖θ − θ0‖

)
+ op

(
n−1

)
,

where f̂s(·, θ) = f0(·, θ) + s(f̂n(·, θ)− f0(·, θ)).
8Only α2 matters as long as α1 > 0, although α1 = α2 in many applications.
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This condition ensures that the remainder term by the Taylor series expansion is negli-

gible. This assumption can be stated equivalently by

sup
θ∈Θδ1

{
Dffm∗(θ, f̃(·, θ))[f̂n(·, θ)− f0(·, θ), f̂n(·, θ)− f0(·, θ)]

−Dffm∗(θ0, f̃(·, θ0))[f̂n(·, θ0)− f0(·, θ0), f̂n(·, θ0)− f0(·, θ0)]
}

= op

(
n−1/2 ‖θ − θ0‖

)
+ op

(
n−1

)
,

where f̃(·, θ) is between f̂n(·, θ) and f0(·, θ) for each θ. Assumption 3.5 is a high-level

condition; however, it is not difficult to verify. For example, if the first-stage is carried out

by kernel estimators, then Assumption 3.5 can be verified using standard arguments for

degenerate U-processes (e.g. Theorem 3 of Sherman, 1994) along with some conditions on

the asymptotic bias of kernel estimators.

Assumption 3.6. (a) As a function of θ, Dfm∗(θ, f0(·, θ))[f̂n(·, θ) − f0(·, θ)] is twice

continuously differentiable on Θδ1 with probability approaching one.

(b) There exists a dθ-row-vector-valued Γ1(z) such that E[Γ1(Z)] = 0, and

d

dθT

(
Dfm∗(θ, f0(·, θ))[f̂n(·, θ)− f0(·, θ)]

) ∣∣∣
θ=θ0

= n−1
n∑

i=1

Γ1(Zi) + op(n−1/2).(3.7)

The term Γ1(z) captures effects of first-stage nonparametric estimation of f0(·, θ). To

understand the effects of first-stage estimation more carefully, let ∂1m
∗(θ, f) denote a vector

of the usual partial derivatives of m∗(θ, f) with respect to the first argument θ. In this

notation, ∂1m
∗(θ, f(·, θ)) denotes the partial derivative of m∗(θ, f) with respect to the first

argument θ, evaluated at (θ, f) = (θ, f(·, θ)). Notice that by simple calculus, the left-hand

side of (3.7) can be written as

d

dθT

(
Dfm∗(θ, f0(·, θ))[f̂n(·, θ)− f0(·, θ)]

) ∣∣∣
θ=θ0

= Dfm∗(θ0, f0(·, θ0))
[
∂f̂n(·, θ0)

∂θT
− ∂f0(·, θ0)

∂θT

]

+
{

Df [∂1m
∗(θ0, f0(·, θ0))] [f̂n(·, θ0)− f0(·, θ0)]

}T

+ Dffm∗(θ0, f0(·, θ0))
[
f̂n(·, θ0)− f0(·, θ0),

∂f0(·, θ0)
∂θT

]
,

(3.8)

where the first and third terms appear because both f̂n(·, θ) and f0(·, θ) may depend on

θ and the second term shows up because of possible interactions between θ and f in the

definition of m∗(θ, f).
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When Γ1(z) ≡ 0, then the asymptotic distribution would be the same as if f0(·, θ)
were known. This is a version of an asymptotic orthogonality condition between θ0 and

f0 (Andrews (1994), equation 2.12). Newey (1994) discusses conditions for the asymptotic

orthogonality (see Propositions 2 and 3) when f0(·, θ) is profiled. In what follows, we also

provide a sufficient condition for the asymptotic orthogonality. Specifically speaking, the

following assumption satisfies Assumptions 3.6 (a) and (b) with Γ1(z) ≡ 0.

Assumption 3.7. Dfm∗(θ, f0(·, θ))[f̂n(·, θ)− f0(·, θ)] = 0 for any θ.

Assumption 3.7 is satisfied by both of examples that are considered in the paper.

Assumption 3.6 imposes high-level conditions that insure n−1/2-consistency of θ̂n. We

will give an explicit expression for Γ1 in (3.7) when f̂n(·, θ) is a smooth function of θ. This

case includes nonparametric kernel estimators of conditional expectations and densities, as

leading examples.

Let L2(P ) denote the L2 space defined on the probability space of Z. If Dfm∗(θ, f0(·, θ))[h]

is a continuous linear functional on L2(P ) for each θ, it follows from the Hilbert space theory

(the Rieze representation theorem) that there exists a unique g(·, θ) such that for each θ,

Dfm∗(θ, f0(·, θ))[h(·)] =
∫

h(·)g(·, θ)dP.

Notice that under Assumption 3.2,

Dfm∗(θ, f0(·, θ))[f(·)− f0(·, θ)] = E[∆2(Z, f(·)− f0(·, θ))].(3.9)

Then for many cases, an expression for g(·, θ) can be obtained in a straightforward manner

by inspecting the form of the expectation on the right hand side of (3.9). Then we have

d

dθT

(
Dfm∗(θ, f0(·, θ))[f̂n(·, θ)− f0(·, θ)]

) ∣∣∣
θ=θ0

=
d

dθT

(∫
[f̂n(·, θ)− f0(·, θ)]g(·, θ)dP

) ∣∣∣
θ=θ0

=
∫ [

∂f̂n(·, θ)
∂θ

− ∂f0(·, θ)
∂θ

]
g(·, θ)dP

∣∣∣
θ=θ0

+
∫

[f̂n(·, θ)− f0(·, θ)]∂g(·, θ)
∂θ

dP
∣∣∣
θ=θ0

,

(3.10)

whose probability limits are straightforward to obtain using standard arguments in non-

parametric estimation.9

9The expression in (3.10) assumes implicitly that ∂f̂n(·, θ)/∂θ exists with probability approaching one.
This may not be the case for some examples, including the profiled estimator of the single-index quantile
regression model. For the case of the profiled estimator of the single-index quantile regression model,
Assumption 3.7 holds and thus it is irrelevant whether ∂f̂n(·, θ)/∂θ exists.
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3.3 Theorem

This subsection presents the main result of the paper. Let ∆10(z) and ∆20(z, h) denote

∆1(z) and ∆2(z, h) in Assumption (3.2) with (θ1, f1) = (θ, f) and (θ2, f2) = (θ0, f0(·, θ0)).

Thus, ∆10(z)(θ − θ0) + ∆20(z, f(·) − f0(·, θ0)) is a linear approximation of m(z, θ, f(·)) −
m(z, θ0, f0(·, θ0)). Define ∆∗

20[h] = E[∆20(Z, h)] for fixed h. Also define a dθ-row-vector-

valued function Γ0(z) such that

Γ0(z) = ∆10(z)−E[∆10(Z)] + ∆20

[
z,

∂f0(·, θ0)
∂θT

]
−∆∗

20

[
∂f0(·, θ0)

∂θT

]
+ Γ1(z),(3.11)

Ω0 = E[Γ0(Z)T Γ0(Z)], and

V0 =
d2 m∗(θ, f0(·, θ))

dθ dθT

∣∣∣
θ=θ0

.

Notice that V0 is the Hessian matrix of m∗(θ, f0(·, θ)) with respect to θ, evaluated at θ = θ0.

Notice that the expression of V0 can be written as

V0 =
d2 m∗(θ, f0(·, θ))

dθ dθT

∣∣∣
θ=θ0

=
∂2m∗(θ0, f0(·, θ0))

∂θ∂θT
+ Dffm∗(θ0, f0(·, θ0))

[
∂f0(·, θ0)

∂θ
,
∂f0(·, θ0)

∂θT

]

+ 2
{

Df

[
∂1m

∗(θ0, f0(·, θ0))T
] [

∂f0(·, θ0)
∂θ

]}
+ Dfm∗(θ0, f0(·, θ0))

[
∂2f0(·, θ0)

∂θ∂θT

]
.

(3.12)

Let ‖·‖∞ denote the supremum norm (with θ fixed), that is ‖f(·, θ)‖∞ = sup·∈X |f(·, θ)|
for any given θ. The following theorem gives the asymptotic distribution of θ̂n when the

first-stage nonparametric estimator f̂n(·, θ) depends on θ.

Theorem 3.1. Let ‖·‖F = ‖·‖∞. Assume that {Zi : i = 1, . . . , n} are a random sample of

Z. Let Assumptions 3.1-3.6 hold. Also, assume that Ω0 exists and V0 is a positive definite

matrix. Then

n1/2(θ̂n − θ0) →d N(0, V −1
0 Ω0V

−1
0 ).

Remark 3.3. When f0(·, θ) is not a function of θ, i.e. f0(·, θ) ≡ f0(·), then the expressions

Γ0(z) and V0 are simplified to

Γ0(z) = ∆10(z)− E[∆10(Z)] + Γ̃1(z)

and

V0 =
∂2m∗(θ0, f0(·))

∂θ∂θT
,
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where Γ̃1(z) satisfies
∥∥∥∥∥
{

Df [∂1m
∗(θ0, f0(·))] [f̂n(·)− f0(·)]

}T
− n−1

n∑

i=1

Γ̃1(Zi)

∥∥∥∥∥ = op(n−1/2).

4 Single-Index Quantile Regression Models

4.1 Informal Description of an Estimator

This section provides an informal description of a semiparametric M -estimator of β0 in

model (2.2). For each b, let G0(t, b) denote the τ -quantile of Y conditional on XT b = t and

the event that X ∈ T with a known compact set T , and let Gn(t, b) denote a nonparametric

estimator of G0(t, b). In principle, any reasonable nonparametric estimator could be used.

To be specific, Gn(XT
i b, b) is defined as a local linear quantile regression estimator, that

is Gn(XT
i b, b) ≡ ĉni(b), where ĉni(b) ≡ [ĉni0(b), ĉni1(b)]′ solves the following minimization

problem

min
(c0,c1)∈R2

n∑

j=1

1(Xj ∈ Tn)ρτ

[
Yj − c0 − c1(XT

j b−XT
i b)

]
K

(
XT

i b−XT
j b

hn

)
.(4.1)

Here, 1(·) is the usual indicator, Tn = {x : ‖x− x′‖ ≤ 2hn for some x′ ∈ T }, K(·) is a

kernel function, and hn is a sequence of bandwidths that converges to zero as n → ∞.10

Calculation of the asymptotic distribution does not depend on the particular type of the

first-stage nonparametric estimator, as long as a nonparametric estimator satisfies some

regularity conditions, which will be given below.

We are now ready to define our estimator of β0. To do so, define

Sn(b) ≡ n−1
n∑

i=1

1(Xi ∈ T )ρτ

[
Yi −Gn(XT

i b, b)
]
,(4.2)

As in Ichimura (1993), the trimming function 1(· ∈ T ) is necessary to insure that the density

of XT b is bounded away from 0 on T for any b.11

10The local constant estimator could be used as well. As was mentioned by Chaudhuri (1991), the local
constant estimator is a compact interval and the local linear estimator is unique asymptotically. As a result,
for given n, the local linear estimates tend to be smoother than the local constant estimates as a function
of b.

11One can use a more sophisticated trimming function that converges to one as n → ∞. For example,
Robinson (1988) uses the trimming function 1(p̂(x) > cn), where p̂(x) is the kernel density estimator of X
and cn is a sequence of positive real numbers converging to zero at a sufficiently slow rate. It is expected
that our main results will hold with Robinson’s trimming function, but details are not worked out for the
simplicity of the paper.
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Our estimator is defined as

β̂n = argminbSn(Gn, b).(4.3)

To guarantee identification of β0, we assume that there exists a continuously distributed

component of X = (X1, X2), say X1, whose coefficient is non-zero and is normalized to

be one. Therefore, the minimization in (4.3) is over θ, not b, where θ denotes a vector

of components of b except for the coefficient of X1. Let θ̂n denote the resulting estimator

under scale normalization.

It is worth mentioning existing estimators of β0. Chaudhuri, Doksum, and Samarov

(1997) developed average derivative estimators of β0 and Khan (2001) proposed a two-

step rank estimator of β0. The new estimator is more general than the estimators of

Chaudhuri, Doksum, and Samarov (1997) in the sense that X can include discrete variables

and functionally dependent variables (e.g., the square of one of explanatory variables) and

more general than the estimator of Khan (2001) in the sense that monotonicity of G0 is not

required.

4.2 The Asymptotic Distribution of the Estimator

To apply the general result obtained in Section 3, let

m(z, θ, f(·, θ)) =
1
2
1(x ∈ T )

{
ρτ

[
y − f(x1 + xT

2 θ, θ)
]− ρτ

[
y −G0(x1 + xT

2 θ0, θ0)
]}

,

where z = (y, x), x = (x1, x2), and θ0 is a vector of components of β0 except for the

coefficient of x1. Our estimator θ̂n is an M -estimator with m(z, θ, f(·, θ)) defined above.

Note that m depends on θ only through f(·, θ). Hence, ∆1(z) ≡ 0 and ∂1m
∗(θ, f(·, θ)) ≡ 0.

Let PY |X(y|x) and pY |X(y|x) denote the CDF and PDF of Y conditional on X = x.

Also, let pU |X1+XT
2 θ0

(0|t) be the PDF of U conditional on X1 + XT
2 θ0 = t, ṖU |X1+XT

2 θ0
[0|t]

the partial derivative of PU |X1+XT
2 θ0

[0|t] with respect to t, and E[·|x1 + x′2θ0] a conditional

expectation given X1 + XT
2 θ0 = x1 + x′2θ0.

Assumption 4.1. Assume that

(a) θ0 is an interior point in Θ, which is a compact subset of Rdθ , and

(b) Pr
{
1(X ∈ T )[G0(X1 + XT

2 θ, θ) 6= G0(X1 + XT
2 θ0, θ0)]

}
> 0 for every θ 6= θ0.

Condition (b) is a high-level condition that imposes identification of θ0 directly. Suffi-

cient conditions can be found in Ichimura (1993, Assumption 4.2).
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Assumption 4.2. Assume that

(a) pY |X(y|x) is bounded, bounded away from zero at y = G0(x1 + x′2θ0, θ0), and continu-

ously differentiable as a function of y for each x,

(b) PY |X(y|x) ≡ PY |X1+XT
2 θ0

(y|x1 + x′2θ0), that is the conditional distribution of Y given

X depends only on the index x1 + x′2θ0, and

(c) PY |X1+XT
2 θ0

(y|t) is continuously differentiable with respect to both y and t.

Assumption 4.3. Assume that G0(·, θ) and its first-stage estimator Ĝn(·, θ) satisfy the

following conditions:

(a) G0(·, θ) is a Lipschitz function with α > 1/2 given θ and continuously differentiable

with respect to θ on Θδ1 with a bounded derivative ∂G0(·, θ)/∂θ,

(b) supθ∈Θδ1
‖Gn(·, θ)−G0(·, θ)‖∞ = op(n−1/3),

(c) there exist a stochastic term ϕj,n(·, θ), a bias term Bj,n(·, θ), and the remainder term

Rf,n(·, θ) satisfying

Ĝn(·, θ) = G0(·, θ) + n−1
n∑

j=1

[ϕj,n(·, θ) + Bj,n(·, θ)] + Rf,n(·, θ),

where E[ϕj,n(·, θ)|X1, X2, . . . , Xn] = 0, E[Bj,n(·, θ)|X1, X2, . . . , Xn] = Bj,n(·, θ), and

supθ∈Θδ1
‖Rf,n(·, θ)‖∞ = op(n−1/2),

(d) the following holds for any θ ∈ Θδ1:
∥∥∥∥∥∥
n−1

n∑

j=1

[ϕj,n(·, θ) + Bj,n(·, θ)]− [ϕj,n(·, θ0) + Bj,n(·, θ0)]

∥∥∥∥∥∥
F

= op(‖θ − θ0‖), and

(e) the following holds for any θ ∈ Θδ1:

E
[
1(X ∈ T )pU |X1+XT

2 θ0
(0|X1 + XT

2 θ0)
{
Gn(X1 + XT

2 θ, θ)−G0(X1 + XT
2 θ, θ)

}2
]

− E
[
1(X ∈ T )pU |X1+XT

2 θ0
(0|X1 + XT

2 θ0)
{
Gn(X1 + XT

2 θ0, θ0)−G0(X1 + XT
2 θ0, θ0)

}2
]

= op

(
n−1/2 ‖θ − θ0‖

)
,

where the expectation above is taken with respect to X.
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It can be shown that under suitable conditions, the local linear quantile regression

estimator can satisfy conditions (b)-(e) of Assumption 4.3. In particular, it can be shown

that

ϕj,n(·, θ) = (nhn)−1
n∑

j=1

1(Xj ∈ Tn)[τ − 1{Yj ≤ G0(X1i + XT
2iθ, θ)}]

pY |X1+XT
2 θ[G0(X1i + XT

2iθ, θ)|X1i + XT
2iθ]

×K

(
(X1i + XT

2iθ)− (X1j + XT
2jθ)

hn

)

and

Bj,n(·, θ) = h2
n

∂2G0(t, θ)
∂t2

∣∣∣∣
t=X1i+XT

2iθ

.

The following theorem gives the asymptotic normality of θ̂n.

Theorem 4.1. Let ‖·‖F = ‖·‖∞. Assume that {(Yi, Xi) : i = 1, . . . , n} are a random

sample of (Y, X). Let Assumptions 3.1, 4.2, and 4.3 hold. Then

n1/2(θ̂n − θ0) →d N(0, V̄ −1
0 Ω̄0V̄

−1
0 ),

where

Ω̄0 = τ(1− τ)E
[
1(X ∈ T )

∂G0(X1 + XT
2 θ0, θ0)

∂θ

∂G0(X1 + XT
2 θ0, θ0)

∂θT

]

and

V̄0 = E

[
1(X ∈ T )pU |X1+XT

2 θ0
(0|X1 + XT

2 θ0)
∂G0(X1 + XT

2 θ0, θ0)
∂θ

∂G0(X1 + XT
2 θ0, θ0)

∂θT

]
.

with

∂G0(x1 + xT
2 θ0, θ0)

∂θ
=

ṖU |X1+XT
2 θ0

(0|x1 + x′2θ0)

pU |X1+XT
2 θ0

(0|x1 + x′2θ0)
(
x2 − E[X2|X1 + X ′

2θ0 = x1 + xT
2 θ0, X ∈ T ]

)
.

(4.4)

The asymptotic variance can be estimated consistently by a sample analog estimator

based on the expressions of Ω̄0 and V̄0. We end this section by comparing our approach

with that of Chen, Linton, and Van Keilegom (2003). First of all, it is unclear whether

there is a well-identified, GMM-type version of a profiled estimator of β0 in (2.2). Even

though there is a corresponding GMM-type estimator, that would involve a nonparametric

part inside an indicator function just like Example 2 of Chen, Linton, and Van Keilegom

(2003). In view of regularity conditions imposed in Chen, Linton, and Van Keilegom (2003),
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one needs to assume that α > 1 and show that among other things, (1) f̂n(·, θ) ∈ Cα
1 (X )

with probability approaching one, and (2) supθ∈Θδ1

∥∥∥f̂n(·, θ)− f0(·, θ)
∥∥∥
∞

= op(n−1/4). Our

regularity conditions imposed in Assumption 4.3 (a)-(b) are weaker in terms of the ‘size of

function space’ and stronger in terms of the uniform rate of convergence in probability of

the first-stage estimator. Our regularity conditions are simpler to verify than those needed

for the approach of Chen, Linton, and Van Keilegom (2003) because (1) in general, it would

be more desirable to have a large function space, (2) it is not difficult to obtain a n−1/3

rate of convergence of the first-stage estimator, and (3) it would be difficult to verify that

f̂n(·, θ) is continuously differentiable (with probability approaching one) in view of the fact

that f̂n(·, θ) is not smooth.

5 Semiparametric Least Squares Estimation under Misspec-
ification

This section establishes the asymptotic distribution of the semiparametric least squares

(SLS) estimator of Ichimura (1993) under model misspecification. As in the previous section,

we assume that for identification, there exists a continuously distributed component of

X = (X1, X2), say X1, whose coefficient is non-zero and is normalized to be one. Let θ

denote a vector of coefficients of X2 and θ0 denote the true value of θ in a sense that θ0

minimizes

E[1(X ∈ T ){Y − f0(X1 + XT
2 θ, θ)}2],(5.1)

where T is a known compact set and f0(t, θ) denotes the expectation of Y conditional on

X1+XT
2 θ = t and the event that X ∈ T for each θ. Therefore, under model misspecification,

f0(x1 + xT
2 θ0, θ0) can be interpreted as the best L2 approximation to E[Y |X = x] in the

class of single-index models since (5.1) implies that θ0 minimizes

E[1(X ∈ T ){E[Y |X]− f0(X1 + XT
2 θ, θ)}2].(5.2)

The SLS estimator of Ichimura (1993), say θ̂n, minimizes a sample analog of (5.1). That

is, θ̂n solves

min
θ

n−1
n∑

i=1

1(Xi ∈ T )
[
Yi − f̂n(X1i + XT

2iθ, θ)
]2

,(5.3)

where f̂n(t, b) is a nonparametric kernel estimator of f0(t, b) defined in Ichimura (1993, p.78).

The asymptotic distribution of the SLS estimator is established by Ichimura (1993) under
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the assumption that the model is correctly specified, that is E[Y |X = x] = f0(x1+xT
2 θ0, θ0).

In this section, we establish the asymptotic distribution of the SLS estimator when E[Y |X =

x] may not belong to a class of single-index models.

To apply the general result obtained in Section 3, let

m(z, θ, f(·, θ)) =
1
2
1(x ∈ T )

[
y − f(x1 + xT

2 θ, θ)
]2

,

where z = (y, x) and x = (x1, x2). The SLS estimator θ̂n is an M -estimator with m(z, θ, f(·, θ))
defined above. As in the previous section, note that m depends on θ only through f(·, θ).
Hence,

∆1(z) = Dθm
∗(θ, f) = Dθθm

∗(θ, f) = Dθfm∗(θ, f) ≡ 0.

Also, it is straightforward to verify that

∆20[z, h] = −1(x ∈ T )[y − f0(x1 + xT
2 θ0)]h(·),

Dfm∗(θ, f)[h] = −E[1(X ∈ T ){Y − f(·))}h(·)], and

Dffm∗(θ, f)[h1, h2] = E[1(X ∈ T )h1(·)h2(·)],

where f0(x1 + xT
2 θ0) = f0(x1 + xT

2 θ0, θ0). In particular,

Dfm∗(θ0, f0(·, θ0))[h] = −E[1(X ∈ T ){Y − f0(·, θ0)}h(·)], and

Dffm∗(θ0, f0(·, θ0))[h1, h2] = E[1(X ∈ T )h1(·)h2(·)].

Notice that Dfm∗(θ, f0(·, θ))[f̂n(·, θ)− f0(·, θ)] ≡ 0 for any fixed θ since the expectation

in the expression of Dfm∗(θ0, f0(·, θ0)) is taken with respect to the argument (i.e. ‘·’) and

f0(t, θ) is the expectation of Y conditional on X1 + XT
2 θ = t and the event that X ∈ T for

each θ. Therefore, under model misspecification, Assumption 3.7 is still satisfied.

In addition, observe that by interchanging the order of expectation and differentiation,

Dfm∗(θ0, f0(·, θ0))
[
∂2f0(·, θ0)

∂θ∂θT

]

=
∂2

∂θ∂θT
Dfm∗(θ0, f0(·, θ0))[f0(·, θ)]

∣∣∣
θ=θ0

=
∂2

∂θ∂θT
E

[
1(X ∈ T ){Y − f0(X1 + XT

2 θ0)}f0(X1 + XT
2 θ, θ)

] ∣∣∣
θ=θ0

= 0.

Define

V0 = E

[
1(X ∈ T )

∂f0(X1 + XT
2 θ0, θ0)

∂θ

∂f0(X1 + XT
2 θ0, θ0)

∂θT

]
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and

Ω0 = E

[
1(X ∈ T ){Y − f0(X1 + XT

2 θ0)}2 ∂f0(X1 + XT
2 θ0, θ0)

∂θ

∂f0(X1 + XT
2 θ0, θ0)

∂θT

]

Then by Theorem (3.1) combined with results obtained in this section, we have, under

model misspecification,

n1/2(θ̂n − θ0) →d N
(
0, V −1

0 ΩV −1
0

)
.(5.4)

The asymptotic variance in (5.4) is exactly the same as the asymptotic variance when

the model is correctly specified. Therefore, a sample analog estimator of the asymptotic

variance of the SLS estimator of Ichimura (1993, Theorem 7.1) is consistent whether or not

the model is correctly specified.

6 Conclusions

TO BE ADDED.
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A Appendix: Proofs

As shorthand notation, let mi(θ, f) = m(Zi, θ, f(·)), mi(θ0, f0(·, θ0)) = m(Zi, θ0, f(·, θ0)),

∆1i(θ − θ0) = ∆10(Zi)(θ − θ0), and ∆2i(f − f0(·, θ0)) = ∆20(Zi, f(·)− f0(·, θ0)). Let

Ri(θ, f) = mi(θ, f)−mi(θ0, f0(·, θ0))−∆1i(θ − θ0)−∆2i[f − f0(·, θ0)].

Define

Sn(θ, f) = n−1
n∑

i=1

[mi(θ, f)−mi(θ0, f0(·, θ0))] .

Also, let R∗(θ, f) = E[Ri(θ, f)] for fixed θ and f .

Proof of Theorem 3.1. Write

Sn(θ, f) = Sn1(θ) + Sn2(f) + Sn3(θ, f) + S∗(θ, f),

where

Sn1(θ) = n−1
n∑

i=1

[∆1i −E(∆1i)] (θ − θ0),

Sn2(f) = n−1
n∑

i=1

∆2i[f − f0(·, θ0)]−∆∗
20(f − f0(·, θ0)),

Sn3(θ, f) = n−1
n∑

i=1

Ri(θ, f)−R∗(θ, f), and

S∗(θ, f) = m∗(θ, f)−m∗(θ0, f0(·, θ0)).

Notice that θ̂n minimizes Sn(θ, f̂n(·, θ)) and θ0 minimizes S∗(θ, f0(·, θ)). Also, recall that

Θδ1 = {θ ∈ Θ : ‖θ − θ0‖ < δ1} and Fδ2 = {f ∈ F : ‖f(·)− f0(·, θ0)‖F < δ2}.
Define

Γ̂n = n−1
n∑

i=1

[∆1i − E(∆1i)] + [∆2i −∆∗
20][∂f0(·, θ0)/∂θT ]

+
d

dθT

(
Dfm∗(θ, f0(·, θ))[f̂n(·, θ)− f0(·, θ)]

)∣∣∣
θ=θ0

.

For any δ1 → 0 and δ2 → 0, by Lemmas A.1-A.4 in subsections A.1-A.3,

Sn(θ, f̂n(·, θ)) =
1
2
(θ − θ0)T V0(θ − θ0)

+ Γ̂n(θ − θ0)

+ Op

[
n−1/2(δ1 + δ2) (δα1

1 + δα2
2 )

]
+ op(n−1/2δ1)

+ o(‖θ − θ0‖2) + RS ,(A.1)
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uniformly over θ ∈ Θδ1 , where RS is a term that is independent of θ.

Notice that Γ̂n = Op(n−1/2) in view of (3.7). The theorem can be proved by applying

Theorems 1 and 2 of Sherman (1994) to (A.1). By Theorem 1 of Sherman (1994),
∥∥∥θ̂n − θ0

∥∥∥ = max[Op(ε1/2
n ) + op(n−1/4δ

1/2
1 ), Op(n−1/2)],(A.2)

where εn = n−1/2(δ1 + δ2) (δα1
1 + δα2

2 ) . As in Sherman (1994, comments following Theorem

1), we first obtain an initial rate of convergence when δ1 → 0. Note that

‖f(·, θ)− f0(·, θ0)‖F ≤ ‖f(·, θ)− f0(·, θ)‖F + C ‖θ − θ0‖

for some constant C. Hence, when δ1 → 0 and δ2 → 0, (A.2) implies that
∥∥∥θ̂n − θ0

∥∥∥ =

op(n−1/4). Then we shrink the parameter spaces Θδ1 and Fδ2 by taking δ1 satisfying

n1/4δ1 → 0 and δ2 = max{δ̃2, δ1}. It follow from (A.2) that the the convergence rate

can be improved such that
∥∥∥θ̂n − θ0

∥∥∥ = op(n−3/8). Repeated applications of (A.2) gives∥∥∥θ̂n − θ0

∥∥∥ = Op(n−1/2), provided that n1/2δ̃1+α2
2 → 0. Note that Γ̂n converges in distri-

bution to N(0, Ω0) by (3.7) and the central limit theorem. Then the theorem follows by

applying Theorem 2 of Sherman (1994) to (A.1).

A.1 Asymptotic expansion of Sn3(θ, f)

Consider a class of functions Mδ1,δ2

Mδ1,δ2 = {R(θ, f) : ‖θ − θ0‖ < δ1 and ‖f(·)− f0(·, θ0)‖F < δ2}.

Then by Assumption 1, an envelope function Mδ1,δ2 for the class Mδ1,δ2 has the form

Mδ1,δ2 = (δ1 + δ2)ṁ(z, δ1, δ2).

Let ‖Mδ1,δ2‖L2(P ) = [
∫

[Mδ1,δ2 ]
2dP ]1/2, where P is the probability measure of data Z.

Lemma A.1.

E

[
sup
Mδ1,δ2

|Sn3(θ, f)|
]
≤ Cn−1/2(δ1 + δ2) (δα1

1 + δα2
2 )

Proof. Let N(ε,M, ‖·‖M) and N[ ](ε,M, ‖·‖M), respectively, denote the covering and brack-

eting numbers for the set M (for exact definitions, see, for example, Van der Vaart and

Wellner (1996, p.83)). By Theorem 2.14.2 of Van der Vaart and Wellner (1996, p.240),

there is a positive constant C such that

E sup
Mδ

∣∣∣n1/2Sn3(θ, f)
∣∣∣ ≤ CJ[ ](1,Mδ1,δ2 , L2(P )) ‖Mδ1,δ2‖L2(P )
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where J[ ](1,Mδ1,δ2 , L2(P )) is a bracketing integral of Mδ1,δ2 , that is

J[ ](1,Mδ1,δ2 , L2(P )) =
∫ 1

0

√
1 + log N[ ](ε ‖Mδ1,δ2‖L2(P ) ,Mδ1,δ2 , L2(P )) dε.

First, note that

‖Mδ1,δ2‖L2(P ) ≤ C(δ1 + δ2) (δα1
1 + δα2

2 ) .

Since R(θ, f) is Lipschitz in the parameters (θ, f) by Assumption 3.2 (a), we have, as in

Theorem 2.7.11 of Van der Vaart and Wellner (1996, p.164),

N[ ](2ε ‖ṁ(z, δ1, δ2)‖L2(P ) ,Mδ1,δ2 , L2(P )) ≤ N(ε,Θδ1 ×Fδ2 , ‖·‖Θδ1
×Fδ2

).

Equivalently,

N[ ](ε,Mδ1,δ2 , L2(P )) ≤ N
(
ε/

[
2 ‖ṁ(z, δ1, δ2)‖L2(P )

]
, Θδ1 ×Fδ2 , ‖·‖Θδ1

×Fδ2

)
.

Then using the fact that N(rε,M, ‖·‖) = N(ε, r−1M, ‖·‖) for the class rM = {rf : f ∈
M, r > 0} given a class of functions M,

N[ ](ε ‖Mδ1,δ2‖L2(P ) ,Mδ1,δ2 , L2(P )) ≤ N
(
ε(δ1 + δ2)/2, Θδ1 ×Fδ2 , ‖·‖Θδ1

×Fδ2

)

≤ N (ε(δ1 + δ2)/4, Θδ1 , ‖·‖)×N (ε(δ1 + δ2)/4,Fδ2 , ‖·‖F )

≤ N (ε/4, Θ, ‖·‖)×N (ε/4,F , ‖·‖F ) .

Then it is easy to verify that J[ ](1,Mδ1,δ2 , L2(P )) < ∞ using the results above and Theorem

2.7.1 of Van der Vaart and Wellner (1996, p.155). Hence, the lemma follows.

A.2 Asymptotic expansion of Sn2(f(·, θ))
To deal with Sn2(f(·, θ)), it is useful to define a relevant class of functions for f̂n(·, θ). Let

Sδ1,δ2 denote a sub-class of Fδ2 such that

Sδ1,δ2 =
{

f(·, θ) ∈ Fδ2 : For any θ1 and θ2 in Θδ1 ,

‖f(·, θ1)− f(·, θ2)‖F ≤ CSδ1,δ2
‖θ1 − θ2‖

with some finite constant CSδ1,δ2
that is independent of f(·, θ), and∥∥∥∥f(·, θ)− f(·, θ0)− ∂f0(·, θ0)

∂θT
(θ − θ0)

∥∥∥∥
F

= o (‖θ − θ0‖)

uniformly over f(·, θ) ∈ Fδ2 .
}

.
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Then by Assumption 3.4 (d), f̂n(·, θ) ∈ Sδ1,δ2 with probability approaching one. Therefore,

we can restrict the class of functions to be Sδ1,δ2 .

Write Sn2(f(·, θ)) = Sn21(f(·, θ)) + Sn22(f(·, θ0)), where

Sn21(f(·, θ)) = n−1
n∑

i=1

∆2i[f(·, θ)− f(·, θ0)]−∆∗
20(f(·, θ)− f(·, θ0))

Sn22(f(·, θ0)) = n−1
n∑

i=1

∆2i[f(·, θ0)− f0(·, θ0)]−∆∗
20(f(·, θ0)− f0(·, θ0))).

Notice that the second term Sn22(f(·, θ0)) does not depend on θ, therefore we can ignore

this term. To establish an asymptotic expansion of the first term, further write

Sn21(f(·, θ)) = n−1
n∑

i=1

[∆2i −∆∗
20][∂f0(·, θ0)/∂θT ](θ − θ0)

+ n−1
n∑

i=1

[∆2i −∆∗
20] [Lf (·, θ)] ,

where Lf (·, θ) = f(·, θ)− f(·, θ0)−
[
∂f0(·, θ0)/∂θT

]
(θ − θ0).

Consider a class of functions Lδ1,δ2

Lδ1,δ2 = {Lf (·, θ) : ‖θ − θ0‖ < δ1 and f(·, θ) ∈ Sδ1,δ2}.

Then an envelope function Lδ1,δ2 for the class Lδ1,δ2 has the form

Lδ1,δ2 = sup
Lδ1,δ2

|Lf (·, θ)| .

It follows from the definition of Sδ1,δ2 that ‖Lδ1,δ2‖L2(P ) = o(δ1).

Lemma A.2.

E

[
sup
Lδ1,δ2

∣∣∣∣∣n
−1

n∑

i=1

[∆2i −∆∗
20] [Lf (·, θ)]

∣∣∣∣∣

]
= O

[
n−1/2

[
log

(
δ1/ ‖Lδ1,δ2‖L2(P )

)]1/2
‖Lδ1,δ2‖L2(P )

]

Proof. This lemma can be proved using arguments similar to those used in the proof of

Lemma A.1. In view of the proof of Lemma A.1, it suffices to compute J[ ](1,Lδ1,δ2 , L2(P )).

Let θ1, . . . , θp be an ε-net for Θδ1 = {θ ∈ Θ : ‖θ − θ0‖ < δ1}. Then the p brackets[
−ε

(
CSδ1,δ2

+ ‖∂f0(·, θ0)/∂θ‖
)

, ε
(
CSδ1,δ2

+ ‖∂f0(·, θ0)/∂θ‖
)]

cover Lδ1,δ2 . Therefore,

N[ ]

(
ε

[∥∥∥CSδ1,δ2
+ ‖∂f0(·, θ0)/∂θ‖

∥∥∥
L2(P )

]
,Lδ1,δ2 , L2(P )

)
≤ N (ε,Θδ1 , ‖·‖) .
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Using this and the assumption that ‖‖∂f0(·, θ0)/∂θ‖‖L2(X ) < ∞, we have

N[ ](ε ‖Lδ1,δ2‖L2(P ) ,Lδ1,δ2 , L2(P )) ≤ N
(
εC ‖Lδ1,δ2‖L2(P ) , Θδ1 , ‖·‖

)

for some constant C. Hence, it follows that

J[ ](1,Lδ1,δ2 , L2(P )) ≤ C
√

log(δ1/ ‖Lδ1,δ2‖L2(P )).

Then the lemma follows immediately.

Notice that if δ1 → 0 as n →∞, then

E

[
sup
Lδ1,δ2

∣∣∣∣∣n
−1

n∑

i=1

[∆2i −∆∗
20] [Lf (·, θ)]

∣∣∣∣∣

]
= o(n−1/2δ1).

Thus, we have the following result.

Lemma A.3. If δ1 → 0 as n →∞,

Sn2(f(·, θ)) = n−1
n∑

i=1

[∆2i −∆∗
20][∂f0(·, θ0)/∂θT ](θ − θ0) + o(n−1/2δ1) + RSn2

uniformly over θ ∈ Θδ1 and f(·, θ) ∈ Sδ1,δ2, where RSn2 is a term that is independent of θ.

A.3 Asymptotic expansion of S∗(θ, f(·, θ))
Lemma A.4. For any (θ, f(·, θ)) in an open, convex neighborhood of (θ0, f0(·, θ0)),

S∗(θ, f(·, θ)) =
1
2
(θ − θ0)T V0(θ − θ0)

+
d

dθT

(
Dfm∗(θ, f0(·, θ))[f(·, θ)− f0(·, θ)]

)∣∣∣
θ=θ0

(θ − θ0)

+ o(‖θ − θ0‖2) + op

(
n−1/2 ‖θ − θ0‖

)
+ o

(
n−1

)
+ RS∗

uniformly over θ in Θδ1, where RS∗ is a term that is independent of θ and V0 is defined in

(3.12).

Proof. Write S∗(θ, f(·, θ)) = S∗1(θ)+S∗2(θ, f(·, θ)), where S∗1(θ) = m∗(θ, f0(·, θ))−m∗(θ0, f0(·, θ0))

and S∗2(θ, f(·, θ)) = m∗(θ, f(·, θ))−m∗(θ, f0(·, θ)).
First, consider S∗1(θ). Since θ0 is a unique minimizer of m∗(θ, f0(·, θ)) and θ0 is in the

interior of Θ (see Assumption 3.1 (a) and (b)), dS∗1(θ)/dθ = 0. Then by simple calculus,

S∗1(θ) =
1
2
(θ − θ0)T V0(θ − θ0) + o(‖θ − θ0‖2),(A.3)
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where V0 is defined in (3.12).

Now consider S∗2(θ, f(·, θ)). An application of Taylor’s Theorem of m∗(θ, f(·, θ)) around

(θ, f0(·, θ)) (equivalently, evaluating (3.4) at (θ, f) = (θ, f(·, θ)) and (θ0, f0) = (θ, f0(·, θ))
gives

S∗2(θ, f(·, θ)) = Dfm∗(θ, f0(·, θ))[f(·, θ)− f0(·, θ)]

+
∫ 1

0

{
(1− s)Dffm∗(θ, fs(·, θ))[f(·, θ)− f0(·, θ), f(·, θ)− f0(·, θ)]

}
ds,(A.4)

where fs(·, θ) = f0(·, θ) + s(f(·, θ)− f0(·, θ)). By Assumption 3.6 (a), a Taylor expansion of

the first term of the right hand side of (A.4) gives

Dfm∗(θ, f0(·, θ))[f(·, θ)− f0(·, θ)] = Dfm∗(θ0, f0(·, θ0))[f(·, θ0)− f0(·, θ0)]

+
d

dθT

(
Dfm∗(θ, f0(·, θ))[f(·, θ)− f0(·, θ)]

)∣∣∣
θ=θ0

(θ − θ0)

+ R∗
S1

(θ),

where the Taylor series remainder term R∗
S1

(θ) is of order o
(
‖θ − θ0‖2

)
because f(·, θ) is

restricted to be in a neighborhood of f0(·, θ). Thus, this result combined with Assumption

3.6 (c) yields

S∗2(θ, f(·, θ)) =
d

dθT

(
Dfm∗(θ, f0(·, θ))[f(·, θ)− f0(·, θ)]

)∣∣∣
θ=θ0

(θ − θ0) + RS∗ + o
(
n−1

)
(A.5)

uniformly over θ in Θδ1 , where RS∗ is a term that is independent of θ, defined by

RS∗ ≡ Dfm∗(θ0, f0(·, θ0))[f(·, θ0)− f0(·, θ0)]

+
∫ 1

0

{
(1− s)Dffm∗(θ0, fs(·, θ0))[f(·, θ0)− f0(·, θ0), f(·, θ0)− f0(·, θ0)]

}
ds.

The lemma now follows from (A.3) and (A.5).

A.4 Proof of Theorem 4.1

This subsection provides the proof of Theorem 4.1. First, we establish the consistency of

θ̂n.

Lemma A.5. As n →∞, θ̂n →p θ0.

Proof. Define

S̄n(θ) = n−1
n∑

i=1

1(Xi ∈ T )ρτ

[
Yi −Gn(X1i + XT

2iθ, θ)
]− n−1

n∑

i=1

1(Xi ∈ T )ρτ (Ui) ,(A.6)
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where Ui = Yi −G0(X1i + XT
2iθ0, θ0). To prove the theorem, it is more convenient to work

with S̄n(θ) than Sn(b) in (4.2). Write

S̄n(θ) = S̄n1(θ) + S̄n2(θ),

where

S̄n1(θ) = n−1
n∑

i=1

1(Xi ∈ T )
{
ρτ

[
Yi −Gn(X1i + XT

2iθ, θ)
]− ρτ

[
Yi −G0(X1i + XT

2iθ, θ)
]}

and

S̄n2(θ) = n−1
n∑

i=1

1(Xi ∈ T )ρτ

[
Yi −G0(X1i + XT

2iθ, θ)
]− n−1

n∑

i=1

1(Xi ∈ T )ρτ (Ui) .

By the triangle inequality and Assumption 4.3 (c),

∣∣S̄n1(θ)
∣∣ ≤ Cn−1

n∑

i=1

1(Xi ∈ T )
∣∣Gn(X1i + XT

2iθ, θ)−G0(X1i + XT
2iθ, θ)

∣∣ = op(1)

uniformly over θ ∈ Θ. By Lemma 2.4 of Newey and McFadden (1994, p.2129), S̄n2(θ)

converges uniformly in probability to S0(θ), where

S0(θ) = E
[
1(X ∈ T )

{
ρτ

[
Y −G0(X1 + XT

2 θ, θ)
]− ρτ (U)

}]
.(A.7)

It can be shown that S0(θ) is uniquely minimized at θ = θ0 using the identification condition

directly imposed by Assumption 4.1 (b). Therefore, the lemma can be proved by the

standard consistency theorem for m-estimators (for example, Theorem 2.1 of Newey and

McFadden (1994, p.2121)).

Proof of Theorem 4.1. We prove this theorem by verifying the conditions of Theorem 3.1.

To verify Assumption 3.2, notice that

1
2

∣∣∣ρτ [y − {f(·) + h(·)}]− ρτ [y − f(·)] + 1(x ∈ T )[τ − 1(y − f(·) ≤ 0)][h(·)]
∣∣∣

≤ |h(·)| 1(x ∈ T )1 {|y − f(·)| ≤ |h(·)|} .

Then using this, we can verify Assumption 3.2 with the following ∆2 and ṁ such that

∆2(z, f1(·)− f2(·)) = −1(x ∈ T )[τ − 1(y − f2(·) ≤ 0)](f1(·)− f2(·))
and

ṁ(z, δ1, δ2) = 1(x ∈ T )1(|y − f2(·)| ≤ δ2).
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Notice that

‖ṁ(Z, δ1, δ2)‖2
L2(P ) = E[1(X ∈ T )PY |X(f2(·) + δ2|X)]−E[1(X ∈ T )PY |X(f2(·)− δ2|X)]

≤ Cδ2

for some positive constant C, implying that Assumption 3.2 is satisfied with α2 = 0.5.

Notice that since m depends on θ only through f(·, θ),

Dθm
∗(θ, f) = Dθθm

∗(θ, f) = Dθfm∗(θ, f) ≡ 0.

Then we verify Assumption 3.3 first by computing the first and second order F-derivatives

of m∗(θ, f) and then by verifying that they are continuous. To compute Dfm∗(θ, f), notice

that

|m∗(θ, f + h)−m∗(θ, f) + E[1(X ∈ T ){τ − 1(Y − f(·) ≤ 0)}h(·)]|
≤ E[1{|Y − f(·)| ≤ |h(·)|}|h(·)|]
≤ E[1{|Y − f(·)| ≤ |h(·)|}] ‖h(·)‖∞
= o(‖h(·)‖∞)

for any h in a neighborhood of zero. Thus,

Dfm∗(θ, f)[h] = −E[1(X ∈ T ){τ − 1(Y − f(·)) ≤ 0}h(·)].(A.8)

To compute Dffm∗(θ, f), notice that

Dfm∗(θ, f + h2)[h1]−Dfm∗(θ, f)[h1]

= −E[1(X ∈ T ){τ − PY |X(f(·) + h2(·)|X)}h1(·)] + E[1(X ∈ T ){τ − PY |X(f(·)|X)}h1(·)]
= E[1(X ∈ T )pY |X(f(·)|X)h2(·)h1(·)] + o(‖h2(·)‖∞)

for any h1 and h2 in a neighborhood of zero. Thus,

Dffm∗(θ, f)[h1, h2] = E[1(X ∈ T )pY |X(f(·)|X)h1(·)h2(·)].(A.9)

It is straightforward to show that the first and second order F-derivatives of m∗(θ, f) are

continuous.

We now show that Assumption 3.4 is satisfied. First note that the dimension of the

arguments of f̂n(·, θ) is just one due to the index structure. Then condition (a) of 3.4 is

satisfied with X = T by Assumption 4.3 (a). To verify condition (b), write

|f̂n(·, θ1)− f̂n(·, θ2)| ≤ |f̂n(·, θ1)− f0(·, θ1)|+ |f̂n(·, θ2)− f0(·, θ2)|+ |f0(·, θ1)− f0(·, θ2)|.
(A.10)
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Then condition (b) follows by the uniform consistency of f̂n(·, θ) over θ ∈ Θδ1 that is implied

by Assumption 4.3 (b). Also, condition (c) follows by Assumption 4.3 (b) with α2 = 0.5.

To verify condition (d), note that by conditions (a) and (c) of Assumption 4.3,

f̂n(·, θ)− f̂n(·, θ0) =
∂f0(·, θ0)

∂θT
(θ − θ0) + o (‖θ − θ0‖)

+ n−1
n∑

j=1

[ϕj,n(·, θ) + Bj,n(·, θ)]− [ϕj,n(·, θ0) + Bj,n(·, θ0)] + op

(
n−1/2

)
.

(A.11)

Then (3.6) follows by Assumption 4.3 (d).

We next turn to Assumption 3.5. To verify this, note that the left-hand side of the

equation in Assumption 3.5 can be rewritten as R̂ff1(θ) + R̂ff2(θ) + R̂ff3(θ), where

R̂ff1(θ) =
∫ 1

0
(1− s)

{
Dffm∗(θ, f̂s(·, θ))−Dffm∗(θ0, f0(·, θ0))

}

× [f̂n(·, θ)− f0(·, θ), f̂n(·, θ)− f0(·, θ)] ds,

R̂ff2(θ) = −
∫ 1

0
(1− s)

{
Dffm∗(θ0, f̂s(·, θ0))−Dffm∗(θ0, f0(·, θ0))

}

× [f̂n(·, θ0)− f0(·, θ0), f̂n(·, θ0)− f0(·, θ0)] ds,

R̂ff3(θ) =
∫ 1

0
(1− s)

{
Dffm∗(θ0, f0(·, θ0))[f̂n(·, θ)− f0(·, θ), f̂n(·, θ)− f0(·, θ)]

−Dffm∗(θ0, f0(·, θ0))[f̂n(·, θ0)− f0(·, θ0), f̂n(·, θ0)− f0(·, θ0)]
}

ds,

and f̂s(·, θ) = f0(·, θ)+ s(f̂n(·, θ)− f0(·, θ)). Then it follows from (A.9) and Assumption 4.3

(b) that R̂ff1(θ) = op

(
n−1

)
+ op

(
n−2/3 ‖θ − θ0‖

)
and R̂ff2(θ) = op

(
n−1

)
uniformly over θ

in Θδ1 . Furthermore, it follows from Assumption 4.3 (e) that R̂ff3(θ) = op

(
n−1/2 ‖θ − θ0‖

)

uniformly over θ in Θδ1 . Therefore, combining results above verifies Assumption 3.5.

We next verify Assumption 3.6 by showing that Assumption 3.7 is satisfied here. To do

so, notice that by evaluating (A.8) at (θ, f) = (θ,G0(·, θ)):

Dfm∗(θ, G0(·, θ))[h] = −E[1(X ∈ T ){τ − 1(Y −G0(·, θ) ≤ 0)}h(·)] = 0,(A.12)

where the last equality follows from the fact that G0(·, θ) is the quantile of Y conditional

on X1 + Xθ
2 and the event that X ∈ T . Thus, Assumption 3.7 is satisfied.

Therefore, we have verified all assumptions and Theorem 4.1 follows immediately by the

conclusion of Theorem 3.1. It only remains to verify (4.4). To do so, notice that for each

θ, G0(x1 + xT
2 θ, θ) solves (for a) the following implicit equation

∫
1(x ∈ T )

{
PY |X(a|x)dFX|X1+XT

2 θ(x|x1 + xT
2 θ)− τ

}
= 0,(A.13)

27



where PX|X1+XT
2 θ(x|t) is the CDF of X conditional on X1 + XT

2 θ = t given θ. Then (A.13)

can be rewritten as

H(a, θ) ≡
∫

1(x ∈ T )
{

PY |X1+XT
2 θ0

[a|x′2(θ0 − θ) + x1 + x′2θ]dFX|X1+XT
2 θ(x|x1 + xT

2 θ)− τ
}

= 0.

(A.14)

Using arguments similar to those used in Klein and Spady (1993, pp. 401-403), we can

show that

∂H(G0(x1 + xT
2 θ0, θ0), θ0)

∂a
= pU |X1+XT

2 θ0
(0|x1 + x′2θ0)E[1(X ∈ T )|x1 + x′2θ0]

and

∂H(G0(x1 + xT
2 θ0, θ0), θ0)

∂θ
= ṖU |X1+XT

2 θ0
(0|x1 + x′2θ0)

× (
E[1(X ∈ T )|x1 + x′2θ0]x2 −E[1(X ∈ T )X2|x1 + x′2θ0]

)
.

Then we can compute the derivative of G0(x1 + xT
2 θ, θ) with respect to θ directly using the

Implicit Function Theorem, thereby yielding the expression of (4.4).
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