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1 Introduction

Quantiles of convolutions of random variables are rather intractable objects, and preliminary

differencing strategies familiar from Gaussian models have sometimes unanticipated effects. –

Koenker and Hallock (2001).

Despite the widespread use of both panel-data methodology and quantile-regression methodology, there

has been little work at the intersection of the two. The most likely explanation is the diffi culty in extending

differencing methods to quantiles. Many usually think there is no general transformation that can suitably

eliminate the individual effects, compared to mean regressions. Intuitively the first differencing (FD) and

within-group (WG) estimators are impossible under the original fixed effect quantile panel model, due to

the fact that the difference of the quantile is not the quantile of the difference.

To show impossibility of either FD or WG under the original data, let us look at the fixed effects τ−th

quantile panel model for 1 ≤ i ≤ N (e.g. individuals) and 1 ≤ t ≤ T (e.g. time periods)

Yit = X>itβ(τ) + ηi(τ) + εit

where ηi(τ) is the unobserved fixed effect and F−1
εit (τ |Xit, ηi) = 0. Denote Qεit(Xit, ηi, τ) as the τ−th

conditional quantile of εit given Xit ∈ RP and ηi ∈ R (including the intercept term), then

Qεit−εis (Xit −Xis, ηi, τ) 6= 0

where the τ−th conditional quantile of difference between εit and εis is generally not zero.

However in this paper we propose to approximate the above fixed effects quantile models (FE-QM) with

fixed effects Gaussian models (FE-GM), so that we can apply the traditional within-group estimators for

FE-GM in order to eliminate fixed effects. We show that such within-group estimators are based on the

transformed data from the quantile coupling transformation, instead of the original data. For a given i,

the quantile coupling transformation groups the t dimension data into J bins/cells with equal observations

m = T/J in each bin, and then compute the local dτme−th order statistics of Yit in each bin/cell. As

shown below, such local order statistics can be well approximated by a Gaussian random variable with some

negligible approximation errors. In addition, this paper proposes the backfitting algorithm to overcome the

curse of dimensionality of X, that is, there is no need to construct the bins/cells for the multivariate case. To

the best of our knowledge, this is the first paper that performs this within-group estimation for the FE-QM.

Quantile coupling (QC) is used to approximate a general random variable by a Gaussian random variable

on the same measurable space. Quantile coupling has usually been seen as strongly approximating the

sample average by a Gaussian random variable; however Zhou (2006) uses this variable to establish the

strong approximation of the sample median. Thereafter Brown, Cai and Zhou (2008) use the QC based

on the sample median to construct a nonparametric median estimator under an equispaced univariate fixed

design with homogeneous errors. Further Chen (2014) generalizes quantile coupling results to the arbitrary

dτme−th order statistics with non-identically distributed errors under the multivariate random design.
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Our within-group estimator enjoys three advantages: (1) since fixed effects are eliminated by WG under

the approximated FE-GM, our within-group estimators do not need to involve the increasing Hessian matrix

with respect to the dimension of fixed effects under FE-QM. Hence our estimator is computationally fast,

compared to the approaches in Koenker (2012) and Kato, Motnes-Rojas and Galvao (2012) where one is

required to deal directly with a large number of fixed effects parameters1 . (2) Under N and T going to

infinity, the rates of convergence and asymptotic normality are derived, where the limit theory allows for

both a sequential limit, T → ∞ followed by N → ∞, and joint limit, T,N → ∞ simultaneously. (3)

Estimates under the potential misspecification can be interpreted as solutions of minimizing least squared

mis-specification errors.

Unlike within-group estimators eliminating the fixed effects of FE-GM under the fixed T , the consistency

and normality of our within-group estimators require T →∞ for the quantile coupling transformation being

applied. This is because we need m → ∞ in order to well approximate an order statistics with a Gaussian

random variable. Hence in this paper we will use big N and big T to handle the incidental parameter problem

(see Neyman and Scott (1948) and Lancaster (2000) for a review) under FE-QM. The goal of this paper

is to formally establish suffi cient conditions for consistency and asymptotic normality of the estimator. As

well from a technical point of view, the application of the quantile coupling transformation for FE-QM is of

independent interest, which results in a different estimation strategy existing for the FE-QM (e.g. Koenker

(2004) and Kato, et al. (2012)) and simplifies the proof without invoking the empirical process technique.

Indeed, the core of our proof is deriving stochastic bounds of approximation errors between FE-QM and

FE-GM, and then choosing an appropriate bin size m to “kill”their effects on the limit distributions.

We now review the literature related to this paper. Maximum likelihood estimators for a general nonlinear

panel data (Hahn and Newey (2000)) lead to inconsistency in the presence of fixed effects, when T is fixed.

However Graham, Hahn and Powell (2009) show that when T = 2 and the common parameter does not

depend on τ (β (τ) = β ∀τ) for the FE-QM, we can estimate β by running the least absolute deviation

of Yi2 − Yi1 on Xi2 − Xi1. However their argument does not extend to the general case. Koenker (2004)2

and Kato, Motnes-Rojas and Galvao (2012) analyze the FE-QM by treating fixed effects as parameters;

in particular, Kato et al. (2012) offer a precise condition for the joint asymptotic (when n and T jointly

go to infinity) properties by studying the rate of the reminder term in the Badahur representation of their

estimator. Canay (2011) proposes a two-step estimator of the common parameters for FE-QM with the

restriction that each individual effect is not allowed to change across quantiles (ηi (τ) = ηi ∀τ): his first

step estimation is able to use the within-group estimator from the original data to estimate fixed effects ηi

(being identical under both conditional mean and quantile models), and then run the quantile estimation

based on Yit− η̂i and Xit. In addition Galvao, Lamarche and Lima (2013) investigate the censored FE-QM,

while Galvao and Wang (2015) propose effi cient minimum distance estimators of FE-QM. For other recent

1The computation of the variance-covariance matrix for inferences under Koenker (2012) and Kato, et al. (2012) is also
diffi cult to implement due to a large number of fixed effects.

2Koenker (2004) treats fixed effects as the same across quantiles, but when estimating a single fixed quantile this restriction
does not have any effect on the model and estimator.
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developments on FE-QM and the associated estimation approach, readers can refer to Abreyea and Dahl

(2008), Galvao and Kato (2010), and Rosen (2012).

The paper is organized as follows. Section 2 introduces fixed effects quantile models under both reduced

and structural forms. Section 3 explains how to apply the quantile coupling transformation in order to

approximate FE-QM by FE-GM. The WG estimator based on FE-GM is analyzed in Section 4. Section 5

discusses the Monte Carlo simulation results, and Section 6 associates the explanation of minimizing least

squared mis-specification errors to our WG estimators. All proofs are included in the appendix.

2 Fixed Effects Quantile Models

The appealing features of fixed effects quantile models (FE-QM) are that they can control for individual

heterogeneity via fixed effects, while exploring effects of heterogeneous covariates within the quantile frame-

work.

Our conditional fixed effect quantile model has the expression:

QY (Xit, ηi, τ) = X>itβ(τ) + ηi(τ)

which allows for the β(·) and ηi(·) depend to on τ . The model is semiparametric in the sense that the

functional form of the conditional distribution of Yit given Xit and ηi(·) is left unspecified, and no parametric

assumption is made on the relation between ηi(·) and Xit.

This conditional FE-QM can be written as

Yit = X>itβ(τ) + ηi(τ) + εit (1)

where Qε(Xi, ηi(τ), τ) = 0 and εit is independent conditional on Xi and ηi. The class of FE-QM we are

considering in this paper are required to satisfy Assumption R, below.

Assumption R (reduced form):

(i) Qε(Xit, ηi(τ), τ) = 0;

(ii) εit = ε(Xit, ηi, Uit), and Uit is i.i.d. conditional on Xit and ηi for a given i;

(iii) for ∀i and U ∈ (0, 1), |ε(Xit, ηi, U)− ε(Xis, ηi, U)| ≤ C |Xit −Xis|dσ where dσ ≥ 1.

Assumption R(i) is constructed from the conditional FE-QM, while Assumption R(ii) allows for a rich

structure for εit to be heterogeneous and dependent on Xi and ηi. While Galvao, et al. (2012), Fernandez-

val (2005) and Hahn and Newey (2004) assume unconditional temporal and cross sectional independence,

Assumption R(ii) only assumes conditional independence. We exclude temporal dependence, and it is hoped

that our innovative treatment for FE-QM will serve to illustrate the utility of quantile coupling ideas and

to simulate interests in the use of this method. Assumption R(iii) imposes smoothness conditions on εit,

required to apply quantile coupling results (see Appendix C).

The above Eq.(1) under Assumption R consists of several structural models assumed to satisfy Assump-

tion S.
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Assumption S (structural model):

(i) Yit = QY (Xit, ηi, Uit);

(ii) Uit follows a standard uniform distribution conditional on Xi and ηi
3 ;

(iii) τ 7−→ Q(x, η, τ) strictly increases on (0, 1), almost surely in x and η4 ;

(iv) Uit is independent of Uis for each t 6= s conditional on Xi and ηi.

Now we provide three examples to illustrate the generality of our FE-QM models.

Example 1:

Yit = X>itβ(Uit) + ηi(Uit)

= X>itβ(τ) + ηi(τ) + [X>itβ(Uit) + ηi(Uit)−X>itβ(τ)− ηi(τ)]

In this nonadditive errors model, ηi(τ) introduces an element of nonparametric functional heterogene-

ity in the conditional distribution of Yit. Note we make no parametric assumption on the relationship

between Xit and ηi(τ). In this example,ε(Xit, ηi, Uit) = [X>itβ(Uit) + ηi(Uit) − X>itβ(τ) − ηi(τ)] and

Qε(Xi, ηi, τ) = 0 by Assumption S(ii) and (iii). Assumption R (ii) is implied by Assumption S(iv)5 . In

the end |ε(Xit, η, U)− ε(Xis, η, U)| =
∣∣∣(Xit −Xis)

>
(β(U)− β(τ))

∣∣∣ ≤ C |Xit −Xis|> where dσ = 1, which

is Assumption R(iii).

Example 2:

Yit = X>itα+ ηi + (X>it γ + µηi)Uit

= X>it
[
α+ γF−1

U (τ)
]

+ ηi
[
1 + µF−1

U (τ)
]

+
[
(X>it γ + µηi)Uit −X>it γF−1

U (τ)− µηiF−1
U (τ)

]
where β(τ) = α + γF−1

U (τ) and ηi(τ) = ηi
[
1 + µF−1

U (τ)
]
. This model is the panel generalization of the

location-scale model of He (1997). In this example, we can see that ε(Xit, ηi, Uit) = (X>it γ + µηi)Uit −

X>it γF
−1
U (τ) − µηiF−1

U (τ) and Qε(Xi, ηi, τ) = 0 by Assumption S(ii) and (iii). Assumption R (ii) is im-

plied by Assumption S(iv). In the end |ε(Xit, η, U)− ε(Xis, η, U)| =
∣∣∣(Xit −Xis)

>
(τU − γF−1

U (τ))
∣∣∣ ≤ C

|Xit −Xis|> where dσ = 1, which is Assumption R(iii).

Example 3:

Yit = X>itβ(Uit) + ηi · γ(Uit)

= X>itβ(τ) + ηi · γ(τ) +
[
X>itβ(Uit) + ηi · γ(Uit)−X>itβ(τ)− ηi · γ(τ)

]
3This representation incorporates traditional additive error models Yit = QY (Xit) + ηi + F−1(Uit). Here QY (Xit) is not

QY (Xit, Uit) and ηi is not ηi(Uit). Hence Yit = QY (Xit, ηi, Uit) can affect the entire distribution of the demand curve, while
in traditional modesl it only affects the location of the distribution of the stochastic demand curve.

4Hence under Assumption S(ii) and (iii), QY (Xit, ηi, τ) is the τ−th conditional quantile of Yit given Xi and ηi. To see this

Pr(Yit ≤ QY (Xit, ηi, τ)|Xi, ηi) = Pr(QY (Xit, ηi, Uit) ≤ QY (Xit, ηi, τ)|Xi, ηi)
= Pr(Uit ≤ τ |Xi, ηi) = τ .

5This is because Uit is independent of Uis for each t 6= s conditional on Xi and ηi.
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In this linear quantile model, ηi · γ(Uit) introduces an element of parametric functional heterogeneity in

the conditional distribution of Yit. Here ε(Xit, ηi, Uit) = X>itβ(Uit) + ηi · γ(Uit) − X>itβ(τ) − ηi · γ(τ) and

Qε(Xi, ηi, τ) = 0 by Assumption S(ii) and (iii). Assumption R (ii) is implied by Assumption S(iv). Further

|ε(Xit, η, U)− ε(Xis, η, U)| =
∣∣∣(Xit −Xis)

>
(β(U)− β(τ))

∣∣∣ ≤ C |Xit −Xis|> where dσ = 1.

3 Quantile Coupling of FE-QM

In this section we apply the quantile coupling to FE-QM, so that the within-group estimators based on the

transformed data are feasible. In this respect, our approach is in contrast to Koenker (2004) and Kato, et al.

(2012) who concentrate out the individual fixed effects parameters in the first step by considering varying

time periods for a given i, then apply the whole varying time periods and varying individuals due to the

impossibility of within-group methods under the original data. For example, Koenker (2004) considers the

individual dummy variables estimator, which is a natural analog of the dummy variables estimator for the

standard fixed effects Gaussian regression models. Recall

Yit = X>itβ(τ) + ηi(τ) + εit;

then the Koenker (2004) estimator is defined as follows

(
β̂(τ), η̂(τ)

)
≡ arg min

(β(τ),η(τ))∈R×RN
1

NT

N∑
i=1

T∑
t=1

ρτ
(
Yit −X>itβ(τ)− ηi(τ)

)
,

where η(τ) ≡ (η1(τ), · · · , ηN (τ))
>, ρτ (u) ≡ {τ − 1 (u ≤ 0)}u is the check function as in Koenker and Bassett

(1978).

Ours is to apply the quantile coupling transformation in the first step so the fixed effects can be eliminated

by the within-group estimation from the transformed data.

We apply the quantile coupling techniques for computing local dτme−th order statistics of each bin/cell

for a given i. In order to compute local order statistics, we have to divide T observations into J bins/cells

with equalm = T/J observations in each bin/cell, and then choose the order statistics value of the dependent

variable Y in each bin/cell. We denote d·e to be the rounded-up integer. With these J bins for a given i,

the transformed data set is generated as

Yij:τ ≡ the dτme -th smallest value of Y in the jth bin, 1 ≤ j ≤ J.

We set

Eij:τ ≡ the dτme -th smallest value of ε in the jth bin, 1 ≤ j ≤ J,

θij [β(τ), ηi(τ)] ≡ Yij:τ − Eij:τ ,

then Yij:τ can be written as

Yij:τ = θij [β(τ), ηi(τ)] + Eij:τ .
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By working on the local order statistics, the error εit is transformed to Eij:τ . Lemma 3.1 below shows

that Eij:τ can be closely approximated using Gaussian random variables. Then, according to Lemma 3.2,

θij [β(τ), ηi(τ)] is approximated by X>i[j]β(τ)+ηi(τ), in which the vector X>i[j] is the coordinates of endpoints

in the jth bin/cell (which are precisely defined later).

Assumption QC (quantile coupling)

(i) εit has an unknown density function fε, such that
∫ 0

−∞ fε(u)du = τ and |fε(u)− fε(0)| ≤ Cu2 in an

open neighborhood of 0 for some constant C.

(ii)
∫
|u|κ fε(u)du <∞ for some κ > 0.

(iii) There is a constant M such that max1≤i≤N,1≤t≤T ‖Xit‖ < M .

(iv) max1≤j≤J
∥∥Xi[j] −Xi[j]∥∥1

= Op(J
−1), where Xi[j] is the coordinates of endpoints in the jth bin.

The smoothness condition |fε(u)− fε(0)| ≤ Cu2 in Assumption QC (i) is satisfied, for example, by the

Cauchy distribution, the Laplace distribution and the t distribution. Assumption QC(ii) guarantees the

existence of moments of the order statistics, as in Cramer et al. (2002). Assumption QC(iii) assumes that

the covariates are uniformly bounded. This is common to the quantile literature, and is imposed in A3 of

Koenker (2004). Assumption QC(iv) imposes the conditions on the spacings of Xi[j], which can be substituted

by low-level conditions on the density function of X, as in Gasser and Müller (1979). As the dimension of X

increases, such spacing conditions for the adjacent cells/bins will still hold using the backfitting algorithm

described in Section 4.1.

Lemma 3.1 (a) When Assumptions R and QC hold, we have

Eij:τ =
1√
m

[√
τ(1− τ)

fε,ij(0)
Zij + ζij

]
where {Zij}Jj=1 is i.i.d. standard Gaussian errors and fε,ij(0) is the density of ε evaluated as Xi[j] and ηi;

(b) For all l > 0,

E
∣∣ζij∣∣l = O

[(√
m

J

)l
+

(
1

m

)l]
.

Lemma 3.2 When Assumption QC(iii) holds, we have

θij [β(τ), ηi(τ)]−X>i[j]β(τ)− ηi(τ) = Op(
1

J
).

Remark: Although bins with an unequal number of observations are allowed (for example, the data

are binned with equal lengths in each dimension of X), the current bins with equal numbers of observations

provide a homoscedastic Gaussian approximation for fε,ij(0)·Ej,λ, where the variance of fε,ij(0)·Ej,λ depends

on m, the number of observations in the bin6 . However binning the data into equal lengths will result in

heteroscedastic Gaussian errors where variance will depend on how the X values are distributed within the

bin. Given that the density of the design points X is usually unknown, it is not clear how results could be

extended to that context.
6Smoothing quantile criterion functions is essentially constructing overlapping bins by adjusting the bandwidth, as in Galvao

and Kato (2010), but this requires extension of the quantile coupling results to the non-independent dataset. We leave this for
future research.
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4 Asymptotic of Within-group Estimators

Based on the quantile coupling results, we have the following approximated fixed effects Gaussian model:

Proposition 4.1 When Assumptions R and QC hold, then for a given i,

√
mYij:τ =

√
m
[
X>i[j]β(τ) + ηi(τ)

]
+

√
τ(1− τ)

fε,ij(0)
Zij + ξij

where {Zij}Jj=1 is i.i.d. standard Gaussian errors, and for all l > 0

E
∣∣ξij∣∣l = O

[(√
m

J

)l
+

(
1

m

)l]
.

In this paper, we discuss both sequential and joint limits (Phillips and Moon, 1999, 2000) to study

within-group estimators for FE-QM, since FE-QM has a double-indexed process related to N and T . For

the sequential limits asymptotics, we let first T , then N , tend to infinity. Denote as (T,N)seq →∞. For the

joint asymptotics where T and N tend to infinity at the same time without specifying the exact relationship

between N and T , we denote (T,N)→∞. Although sequential limits could give deceptive asymptotic results

, its asymptotics simplify the proofs substantially, and provide valuable insights into the results. In contrast

the view of joint asymptotics is more general, although it is significantly more diffi cult to obtain, even with

more stringent assumptions. In our case, the cost is related to the requirements on the diverging rate of T

and N . We expect that the scope of using sequential asymptotics is large for FE-QM; for instance, censored,

duration, and survival fixed effects quantile models are examples that remain to be formally developed.

Based on Proposition 4.1, we end up with the approximated fixed effects Gaussian model (FE-GM)

√
mYij:τ ≈

√
m
[
X>i[j]β(τ) + ηi(τ)

]
+

√
τ(1− τ)

fε,ij(0)
Zij

where we can apply within-group estimators to eliminate the fixed effects ηi(τ), allowing estimation of β(τ).

In summary there are two steps in our approach:

Step 1: for a given i, bin the data across t and compute the dτme-th smallest value of Y in the jth bin

where 1 ≤ j ≤ J ;

Step 2: use within-group estimators to the quantile coupling transformed data
{
Yij:τ ,Xi[j]

}
1≤i≤N,1≤j≤J .

Our within-group estimator can be expressed as

β̂(τ) = β(τ) +

1√
m


N∑
i=1

J∑
j=1

(Xi[j] −
1

J

J∑
s=1

Xi[s])(Xi[j] −
1

J

J∑
s=1

Xi[s])>

−1

·

N∑
i=1

J∑
j=1

{[√
τ(1− τ)

fε,ij(0)
Zij + ξij −

1

J

J∑
s=1

(√
τ(1− τ)

fε,ij(0)
Zis + ξis

)]
(Xi[j] −

1

J

J∑
s=1

Xi[s])>
}
.

Notice that our proposed estimator could also be thought of as estimating QY (Xit, ηi, τ) in a nonparamet-

ric first step (in the small bin/cell), and then minimizing the estimated QY (Xi[j], ηi, τ) and X>i[j]β(τ) + ηi(τ)

across for all 1 ≤ i ≤ N and 1 ≤ j ≤ J .
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Denote

Vi ≡ lim
J→∞

1

J

J∑
j=1

τ(1− τ)

[fε,ij(0)]
2 (Xi[j] −

1

J

J∑
s=1

Xi[s])(Xi[j] −
1

J

J∑
s=1

Xi[s])>,

V ≡ lim
N→∞

1

N

N∑
i=1

Vi,

Hi ≡ lim
J→∞

∑J
j=1(Xi[j] − 1

J

∑J
s=1 Xi[s])(Xi[j] − 1

J

∑J
s=1 Xi[s])>

J
,

H ≡ lim
N→∞

1

N

N∑
i=1

Hi.

THEOREM 4.2 (sequential asymptotics) Under Assumptions R and QC, and J = T a where a ∈(
1
2 ,

2
3

)
, then when (T,N)seq →∞ and we condition on the design {Xij}N,Ti=1,t=1 ,

√
NT

[
β̂ (τ)− β (τ)

]
d→

d→ N
[
0, H−1V H−1

]
.

Denote

V ∗ ≡ lim
N→∞

1

N


N∑
i=1

1

J

J∑
j=1

τ(1− τ)

[fε,ij(0)]
2 (Xi[j] −

1

J

J∑
s=1

Xi[s])(Xi[j] −
1

J

J∑
s=1

Xi[s])>
 ,

H∗ ≡ lim
N→∞

1

N


N∑
i=1

1

J

J∑
j=1

(Xi[j] −
1

J

J∑
s=1

Xi[s])(Xi[j] −
1

J

J∑
s=1

Xi[s])>
 ,

Θ1 ≡

N,T, J :

√
J√
N

+
√

T
J + J2

T

T
J2 + J3

T 2

→ 0,

(
T
J2 + J3

T 2

)
logN( √

J√
N

+
√

T
J + J2

T

)2 → 0, J = T a with a ∈ (1/3, 1)

 ,

Θ2 ≡

N,T, J :
T
J2 + J3

T 2
√
J√
N

+
√

T
J + J2

T

→ 0,
logN

√
J√
N

+
√

T
J + J2

T

→ 0, J = T a with a ∈ (1/3, 1)

 .

THEOREM 4.3 (joint asymptotics) Under Assumptions R and QC, either set of Θ1 or Θ2 is not empty

when (T,N)→∞, and we condition on the design {Xij}N,Ti=1,t=1 ,

√
NT

[
β̂ (τ)− β (τ)

]
d→

d→ N
[
0, (H∗)

−1
V ∗ (H∗)

−1
]
.

There are several important remarks to be observed from these results. First, from Theorems 4.2 and 4.3,

one can see that β̂ (τ) are
√
NT consistent. Second, notice that the asymptotics of within-group estimators

have the same limiting distributions regardless of whether they are sequential or joint. In other words,

under the standard assumption available in the literature on the sample rate for joint limits, the limiting

distribution of our WG estimator under sequential limits is to equal to that under joint limits. This find

is similar to Galvao and Wang (2014)7 . With respect to the joint asymptotics argument, our within-group
7Galvao and Wang (2014) address the effi ciency under the class of minimum distance estimators. Notice that the asymptotic

covariance matrix between ours and Galvao and Wang (2014) is generally different, unless the errors are i.i.d. (Knight, 2001).
We leave the effi ciency issue for the future research.
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estimators have the normal limiting distribution under the sophisticated conditions of N,T and J8 . These

conditions are used only to “kill”the approximation term ξij in the derivation of the asymptotic results. It

serves as a device on the type of situations where the asymptotics are likely to provide a good approximation

for
√
NT

[
β̂ (τ)− β (τ)

]
. Kato, et al. (2012) show that their fixed effect quantile regression estimator is

asymptotically (mean-zero) normal if the following condition holds: N2/T → 0 as N → ∞. Further, Kato

and Galvao (2011) suggest that a fixed effects smoothed quantile regression estimator is also asymptotically

(mean-zero) normal under the condition if N/T → 0 as N →∞.

Remark 1: Our within-group estimator does not provide the analytical bias correction for the FE-

QM; this possible correction is left for future research. Similarly, Galvao, et al. (2012) also discuss the

impossibility of using analytical bias correction for the large panel data. And the biggest diffi culty they face

is how to establish the exact probability limit of the reminder term for the Bahadur representation, and they

only manage to obtain moment inequalities for the reminder term. In our approach since we can only derive

the quantile coupling inequality for the approximation error between the local order statistics and Gaussian

random variable, we can not derive the exact probability limit for these "approximation error" terms either;

that is, we can not provide the analytical bias reduction.

Remark 2 To apply the above procedure in practice one needs to choose the number of observations per

bin, m. This parameter can be chosen data dependently by extending the median cross-validation criterion

proposed by Zheng and Yang (1998).

Remark 3: Since our within-group estimators do not need to jointly estimate the fixed effects as in

Koenker (2004)9 , Lamarche (2010), and Galvao, et al. (2012), ours is computationally fast. Although our

method is less effi cient because of binning10 , it is computationally less demanding since only few parameters

are estimated and there is no need to handle the increasing Hessian matrix with respect to the increasing

dimension of fixed effects under FE-QM.

Remark 4: Our proof for the limiting distribution does not work on the diverging number of fixed effects

ηi(τ) where 1 ≤ i ≤ N , since these fixed effects are cancelled out by WG estimation under the FE-GM. In

addition, the objective function of WG estimation is smooth. Thus our proof is relatively straightforward,

and does not use empirical process techniques such as Talagrand inequality, as in Kato, et al. (2012).

8Notice that the range of m is different from Cai and Zhou (2009), who try to derive the consistency and optimal rate of the
convergence; here we are proving the asymptotical normality such that the binning has no impact on the asymptotic limiting
distribution.

9Koenker (2004) explains how sparse matrix approaches can be used to aid computation in some cases.
10More effi cient within-group estimator can be applied by weighting

{
Yij:τ ,Xi[j]

}
1≤i≤N,1≤j≤J by the density function

fε,ij(0). However we do not pursue the effi ciency issue in this paper.
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Next we turn to estimating the asymptotic covariance matrix. This matrix is not directly estimated by

their sample analogues because the density fε,ij(0) is unknown. Let

η̂i(τ) ≡ 1

J

T∑
j=1

Yij:τ −
1

J

T∑
j=1

X>i[j]β̂(τ),

Ξ̂ij ≡ Yij:τ −X>i[j]β̂(τ)− η̂i(τ),

ε̂it ≡ Yit −X>it β̂(τ)− η̂i(τ)

where η̂i(τ) can be viewed as an estimator for the fixed effect ηi(τ), Ξ̂ij is an estimator for
√
τ(1−τ)

fε,ij(0)
√
m
Zij

and ε̂it is an estimator for εit. Here we offer two alternatives to estimate fε,ij(0). One is like Kato, et al.

(2012) using the kernel method for fε,ij(0) to estimate ε̂it from the original FE-QM. However their method

becomes impractical when a large number of fixed effects are present.

The second alternative is to estimate the sample variance of Ξ̂ij in a small neighborhood of X>i[j], so that

1/
[
f̂ε,ij(0)

]2
is computed as this variance is divided by τ(1− τ)/m. This approach uses the fact that under

the approximated FE-GM, Ξ̂ij is an estimate of the Gaussian error and its variance is τ(1−τ)/ [fε,ij(0)
√
m]

2.

To formalize this approach, let {hn} denote a sequence of positive numbers (bandwidths) such that hN → 0

as N →∞. We use the notation KhN (u) ≡ h−1
N K (u/hN ). Then

1/
[
f̂ε,ij(0)

]2
=

m

τ(1− τ)

∑J
s=1

(
Ξ̂is

)2

KhN (X>i[j] −X>i[s])∑J
s=1KhN (X>i[j] −X>i[s])

.

To guarantee the consistency of 1/
[
f̂ε,ij(0)

]2
, we assume the following:

Assumption K (kernel function):

(i)The kernel K is continuous, bounded and of bounded variation on R.

(ii) hN → 0 and JhN →∞ when either (T,N)seq →∞ or (T,N)→∞.

Most standard kernels such as Gaussian and Epanechnikov kernels satisfy Assumption K(i). Assumption

K(ii) is a restriction on the bandwidth hn, which needs to be slower than J−1.

Proposition 4.4 When Assumptions R, QC and K hold, and we condition on the design {Xij}N,Ti=1,t=1,

(a) sequential asymptotics: ifJ = T a where a ∈
(

1
2 ,

2
3

)
when (T,N)seq →∞:

1[
f̂ε,ij(0)

]2 p→ 1

[fε,ij(0)]
2 .

(b) joint asymptotics: if either set of Θ1 or Θ2 is not empty, when (T,N)→∞:

1[
f̂ε,ij(0)

]2 p→ 1

[fε,ij(0)]
2 .

Remark: When εit = ε(ηi, Uit) where εit does not depend on the observed covariates Xit, then fε,ij(0)

is simply fε,i(0). We can then estimate the entity 1/ [fε,ij(0)]
2 by m

∑J
s=1

(
Ξ̂is

)2

/τ(1− τ)J . In the end, if
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fε,i(0) = fε(0) for all 1 ≤ i ≤ N , then the asymptotic covariance matrix is

τ(1− τ)

[fε(0)]
2 lim
N→∞

 1

NJ

N∑
i=1

J∑
j=1

(Xi[j] −
1

J

J∑
s=1

Xi[s])(Xi[j] −
1

J

J∑
s=1

Xi[s])>

−1

.

4.1 Numerical algorithm

In order to implement the above WG estimator, it is essential to have J bins. For the univariate fixed-design

case, Brown et al. (2008) simply divide the data along the real line at equal interval lengths. However,

when X is a multivariate random design, this is diffi cult. In particular, it is more challenging to bin the

data in order to have an equal number of observations in each bin. Chen (2014) proposes using conditional

(sequential) ordering for constructing bins/cells for the multivariate case. His approach essentially constructs

the quantile function for the multivariate case (Sen and Chaudhuri, 2011), so that both multivariate fractile

and geometric quantile mappings can be applied. However as the dimension of X increases, these mappings

become more diffi cult and the computational complexity increases at an exponential rate. Hence this paper

suggests using the backfitting algorithm (Breiman and Friedman, 1985) to compute β(τ) where in each

iteration we only need to construct bins for the univariate case.

The backfitting algorithm for our WG estimator is implemented as follows:

Step 1: Initialize the β̂−q(τ), 1 ≤ q ≤ p which is the (p− 1)× 1 estimated coeffi cients, except for βq(τ).

Step 2: For each 1 ≤ i ≤ N , compute Yit − (Xit)
>
−q β̂−q(τ) where (Xit)−q denotes the (p − 1) × 1

covariates of Xit, except for Xqit.

Step 3: Divide the Xqit along the real line into J intervals of having equal observations m in each

interval. Denote Xqi[j] as the coordinate of the J−th interval’s endpoint. And let Yqij:τ be the dτme-th

smallest value of
[
Yit − (Xit)

>
−q β̂−q(τ)

]
in the jth bin.

Step 4: Run the WG estimator based on
{
Yqij:τ ,Xqi[j]

}
1≤i≤N,1≤j≤J to have the estimated β̂q(τ).

Step 5: Repeat the above Steps 1, 2, 3 and 4 for β̂k(τ), k 6= q with the updated β̂q(τ) included in β̂−k(τ)

for Step 1, and Yit − (Xit)
>
−k β̂−k(τ) and Xki[j] for Steps 2, 3 and 4.

Step 6: Stop the iteration utill β̂k(τ) converges.

The backfitting algorithm helps avoid the need for binning the multivariate design, so that binning along

the real line is straightforward. Since the backfitting algorithm is a contraction mapping under the general

mean regression, this guarantees the convergence of our WG estimation. However the final estimates may

depend on initial values of β̂−q(τ) and orders of covariates X in Step 1, and the convergence criterion in

Step 2. Moreover, reducing non-uniqueness of the solutions (Hastie and Tibshirani, 1990) and developing

asymptotic theory (Mammen, Linton and Nielsen, 1999) are left for future investigation.

5 Asymptotics under Mis-specification

Of course, one can estimate the conditional FE-QM without assuming the correct specification using various

non-parametric methods such as kernel estimation. However, our result provide a convenient parametric
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alternative to nonparametric methods when researchers are not sure about a correct specification or when

they want to keep a parametric model for reasons of parsimony or interpretability, even though it may not

pass a specification test such as the nonparametric kernel based on test proposed by Zheng (1998).

Our within-group estimator has an appealing interpretation, minimizing the squared mis-specification

error. For the existing cross-sectional quantile model Angrist, Chernozhukov and Fernandez-Val (2006)

offer the conditional quantile regression estimator as an explanation of minimizing the weighted squared

mis-specification errors, while Chamerlain (1994) provides the minimum distance quantile estimator for the

histogram weighted squared mis-specification errors. However Chamerlain (1994) is only built upon the

discrete X and the exact nature of the linear approximation has remained elusive. In this paper we use the

close connection between the FE-QM and FE-GM from the quantile coupling transformation, and generalize

Chamerlain (1994)’s ideas to the continuous random variables X. In the end, our result focuses on the panel

framework instead of the classical cross-sectional one.

Notice we first generalize the estimator in Kato et al. (2012) as the (infeasible) criterion of minimizing

the weighted squared mis-specification errors, following Angrist et al. (2006) to the fixed effect quantile

models as

β̂CAF (τ) ≈ arg min
β,{ηi}Ni=1

N∑
i=1

T∑
t=1

wτ (Xit) ·
[
QYit(Xi, ηi, τ)−X>itβ(τ)− ηi(τ)

]2
where wτ (Xit, β(τ), ηi) has the similar representation form as in Angrist et al. (2006)11 and depends on

β(τ).

On the other hand, our within-group estimator for the FE-QM is

β̂ (τ) ≈ arg min
β

N∑
i=1

J∑
j=1

[
QYit(Xi[j], ηi, τ)−X>i[j]β(τ)− ηi(τ)

]2
.

To see this, from
√
mYij:τ ≈

√
m
[
X>i[j]β(τ) + ηi(τ)

]
+

√
τ(1− τ)

fε,ij(0)
Zij

we have as similar in Galvao and Kato (2014)

β̂ (τ)
P→ E

[
X̃i[j]X̃>i[j]

]−1

E
[
X̃i[j]Ỹij:τ

]
≡ β0(τ)

where

X̃i[j] ≡ Xi[j] − E
[
Xi[j]|ηi(τ)

]
Ỹij:τ ≡ Yij:τ − E [Yij:τ |ηi(τ)]

β0(τ) ≡ arg min
β,ηi(τ)∈L2

E
[
Yij:τ −X>i[j]β(τ)− ηi(τ)

]2
= arg min

β,ηi(τ)∈L2
E
[
QYit(Xi[j], ηi, τ)−X>i[j]β(τ)− ηi(τ)

]2
since Yij:τ = QYit(Xi[j], ηi, τ)

11See Appendix B in Belloni, Chernozhukov and Fernandez-Val (2011) for bounds of approximated conditional linear quantile
models.
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where X>i[j]β0(τ) + η0i(τ) is the best linear approximation to QYit(Xi[j], ηi, τ). Just as the coeffi cient vector

of the best linear approximation to the conditional mean is a parameter of interest in the cross section case,

β0(τ) can be regarded as a plausible of interest of the panel data.

The difference between β̂CAF (τ) and β̂ (τ) is mainly due to their weight functions of mis-specification

errors, where β̂CAF (τ) is the importance weight while β̂ (τ) is the histogram weight. Notice that Chamerlain

(1994)’s result is a special case only weighted by the probability mass function covariates, which is

arg min
β

N∑
i=1

T∑
t=1

S∑
s=1

[QYit(Xits, ηi, τ)−Xitsβ(τ)− ηi(τ)]
2

where Xits denotes the discrete mass point X evaluated at the s−th grid for a given i and t.

6 Monte Carlo Simulations

This section conducts simulations to investigate the finite sample performance of the within-group estimator

for FE-QM. We consider the bivariate Xit example and apply the backfitting algorithm described in Section

4.1:

Yit = ηi +Xit + (1 + 0.1Xit)εit

where Xkit ∼ U [−2, 2]+2 ·Zi for k = 1, 2, ηi = 10 ·Zi, Zi ∼ 10 ·N(0, 1) and εit ∼ 0.1·Cauchy. The correlation

between ηi and Xit makes the random effects estimators inconsistent. The Cauchy distribution of the εit

makes the WG for the FE-GM12 inconsistent as well. We consider cases where n ∈ {10, 100}, T ∈ {25, 50}

and J ∈ {5, 10}.

12This FE-GM is without the quantile coupling transformation, that is, m is equal to 1.
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Table 1: Monte Carlo Simulation Results
Coeffi cient of (X1, X2)

WG for FE-QM WG for FE-GM Pooled OLS for RE-GM
n = 10 and J = 5

t = 25 Bias -0.1100 -0.1633 1.0139 -2.5823 1.9077 -1.3909
Stand error 0.3051 0.3933 5506.3 6203.39 4619.2 5261.9

n = 100 and J = 5
t = 25 Bias -0.0683 -0.1251 -0.7609 -0.0259 0.0708 0.6426

MSE 0.0312 0.0344 1303.5 1455.5 195.38 180.89

n = 10 and J = 5
t = 50 Bias -0.0706 -0.1108 7.0584 -2.9577 5.8327 -5.0389

MSE 0.0766 0.0908 9668.2 14676 11305 1.0087

t = 50 n = 10 and J = 10
Bias -0.0149 -0.0249 7.0584 -2.9577 5.8327 -5.0389
MSE 0.1398 1.3869 9668.2 14676 11305 10087

t = 50 n = 100 and J = 5
Bias -0.0746 -0.1094 0.1738 1.8411 -0.2387 0.8257
MSE -0.0075 0.0098 8607.1 14083 7861.8 9347.2

n = 100 and J = 10
t = 50 Bias -0.0199 -0.0327 0.1738 1.8411 -0.2387 0.8257

MSE 0.0143 0.0163 8607.1 14083 7861.8 9347.2

Table 2:

Appendix A: Quantile Coupling Representation

Proof for Lemma 3.1: Decompose ζij as ζij ≡ ζAij + ζBij , where

ζAij ≡
√
mEij:τ −

√
mE∗ij:τ (2)

and

ζBij ≡
√
mE∗ij:τ −

√
τ(1− τ)

fε,ij(0)
Zij (3)

and E∗ij:τ is the dτme−th smallest value of ε∗ in the jth bin where ε∗ = ε(Xi[j], ηi, Uit). Notice since Uit
in the jth bin is still independent (conditional on Xit and ηi), both Eij:τ and E∗ij:τ are still conditionally

independent. Furthermore since for ε∗ = ε(Xi[j], ηi, Uit) being the j-th bin for a given i with the constants

Xi[j] and ηi, ε∗ is conditionally i.i.d. which allows for applying the quantile coupling results stated below.

By the definition of Eij:τ and E∗ij:τ , where the difference is that for E∗ij:τ , we keep the the first argument

of ε(·, ηi, Uit) to be constant within each bin, so that the only variation of E∗ij:τ comes from the variation in

the Uit component. Thus by the following Lemma C1, we have∣∣∣ζAij∣∣∣ =
√
m
∣∣Eij:τ − E∗ij:τ ∣∣ ≤ C√mJ .
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In order to bound ζBj , we need Lemma C2; then we have for any fixed l > 0,

E
∣∣∣ζBij∣∣∣l = Op(m

−l).

The independence of Zij stems from being constructed by Φ−1 [Fε(Uit)], where Uit is independent for

1 ≤ j ≤ J .

Q.E.D.

Proof for Lemma 3.2: Denote the set of indices in the jth bin as Ij , then Yij:τ ≤ maxk∈Ij

[
X>i[j]β(τ) + ηi(τ)

]
+

Eij:τ and Yij:τ ≥ mink∈Ij

[
X>i[j]β(τ) + ηi(τ)

]
+ Eij:τ . Then, according to Assumption 4, θi,j (β(τ), ηi(τ)) −

X>i[j]β(τ)− ηi(τ) = Op
(

1
J

)
.

Proof for Proposition 4.1: Decompose ξij as

ξij ≡
√
mYij:τ −

√
m
[
X>i[j]β(τ) + ηi(τ)

]
−
√
τ(1− τ)

fε,ij(0)
Zij

= ζAj + ζBj + ζCj

where ζCj =
√
mYij:τ −

√
m
[
X>i[j]β(τ) + ηi(τ)

]
−
√
mEij:τ =

√
mθi,j (β(τ), ηi(τ))−

√
m
[
X>i[j]β(τ) + ηi(τ)

]
,

and ζAj and ζBj are the same as in Equations (2) and (3). Following Lemma 3.1 and Lemma 3.2, the

proposition is proved.
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Appendix B: Asymptotics of Within-group Estimators

Proof for Theorem (sequential asymptotic):

β̂ (τ) = β (τ) +

1√
m


N∑
i=1

J∑
j=1

(Xi[j] −
1

J

J∑
s=1

Xi[s])(Xi[j] −
1

J

J∑
s=1

Xi[s])>

−1

·


N∑
i=1

J∑
j=1

[√
τ(1− τ)

fε,ij(0)
Zij −

1

J

J∑
s=1

√
τ(1− τ)

fε,ij(0)
Zis

][
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>
+

1√
m


N∑
i=1

J∑
j=1

(Xi[j] −
1

J

J∑
s=1

Xi[s])(Xi[j] −
1

J

J∑
s=1

Xi[s])>

−1

·


N∑
i=1

J∑
j=1

[
ξij −

1

J

J∑
s=1

ξis

][
Xi[j] −

1

J

J∑
s=1

Xi[s]

]
>

.

Hence for a given i, where N is finite and J → ∞ (since T → ∞) and we condition on the design
{Xij}N,Ti=1,t=1 :

1√
J

J∑
j=1

[√
τ(1− τ)

fε,ij(0)
Zij −

1

J

J∑
s=1

√
τ(1− τ)

fε,ij(0)
Zis

][
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>

d→ N

0, lim
J→∞

1

J

J∑
j=1

[
(Xi[j] −

1

J

J∑
s=1

Xi[s])(Xi[j] −
1

J

J∑
s=1

Xi[s])>
]
V ar

(√
τ(1− τ)

fε,ij(0)
Zij −

1

J

J∑
s=1

√
τ(1− τ)

fε,ij(0)
Zis

)2


d→ N

0, lim
J→∞

1

J

J∑
j=1

τ(1− τ)

[fε,ij(0)]
2

[
(Xi[j] −

1

J

J∑
s=1

Xi[s])(Xi[j] −
1

J

J∑
s=1

Xi[s])>
]

Since conditional on {Xij}N,Ti=1,t=1, we have

E

[√
τ(1− τ)

fε,ij(0)
Zij −

1

J

J∑
s=1

√
τ(1− τ)

fε,ij(0)
Zis

]
= 0

and

V ar

[√
τ(1− τ)

fε,ij(0)
Zij −

1

J

J∑
s=1

√
τ(1− τ)

fε,ij(0)
Zis

]

=

(
1− 2

J

)
E

[√
τ(1− τ)

fε,ij(0)
Zij

]2

+
1

J2

J∑
j=1

E

[√
τ(1− τ)

fε,ij(0)
Zij

]2

p→ τ(1− τ)

[fε,ij(0)]
2 ,

then by the Lyapunov condition, we have the first equality.
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Hence for fixed N and T →∞, we have

√
T√
m


N∑
i=1

J∑
j=1

(Xi[j] −
1

J

J∑
s=1

Xi[s])(Xi[j] −
1

J

J∑
s=1

Xi[s])>

−1

·

N∑
i=1

J∑
j=1

[√
τ(1− τ)

fε,ij(0)
Zij −

1

J

J∑
s=1

√
τ(1− τ)

fε,ij(0)
Zis

][
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>

=

{
N∑
i=1

∑J
j=1(Xi[j] − 1

J

∑J
s=1 Xi[s])(Xi[j] − 1

J

∑J
s=1 Xi[s])>

J

}−1

·

N∑
i=1

1√
J

J∑
j=1

[√
τ(1− τ)

fε,ij(0)
Zij −

1

J

J∑
s=1

√
τ(1− τ)

fε,ij(0)
Zis

][
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>

d→
N∑
i=1

{
lim
J→∞

1

J

∑J
j=1(Xi[j] − 1

J

∑J
s=1 Xi[s])(Xi[j] − 1

J

∑J
s=1 Xi[s])>

J

}−1

·

N∑
i

N

0, lim
J→∞

1

J

J∑
j=1

τ(1− τ)

[fε,ij(0)]
2 (Xi[j] −

1

J

J∑
s=1

Xi[s])(Xi[j] −
1

J

J∑
s=1

Xi[s])>
 .

Next, we will allow N →∞. Then by the Slutsky theorem we have

N∑
i=1

{
lim
J→∞

1

J

∑J
j=1(Xi[j] − 1

J

∑J
s=1 Xi[s])(Xi[j] − 1

J

∑J
s=1 Xi[s])>

J

}−1

·

√
N

N∑
i=1

N

0, lim
J→∞

1

J

J∑
j=1

τ(1− τ)

[fε,ij(0)]
2 (Xi[j] −

1

J

J∑
s=1

Xi[s])(Xi[j] −
1

J

J∑
s=1

Xi[s])>


d→
{

lim
N→∞

1

N

[
lim
J→∞

∑J
j=1(Xi[j] − 1

J

∑J
s=1 Xi[s])(Xi[j] − 1

J

∑J
s=1 Xi[s])>

J

]}−1

·

N

0, lim
N→∞

1

N

 lim
J→∞

1

J

J∑
j=1

τ(1− τ)

[fε,ij(0)]
2 (Xi[j] −

1

J

J∑
s=1

Xi[s])(Xi[j] −
1

J

J∑
s=1

Xi[s])>

 .

We bound 1√
J

∑J
j=1

[
ξij − 1

J

∑J
s=1 ξis

] [
Xi[j] − 1

J

∑J
s=1 Xi[s]

]>
for fixed N and T →∞. By Chebyshev’s

inequality,

Pr

∣∣∣∣∣∣ξij
(
Xi[j] −

1

J

J∑
s=1

Xi[s]

)>
− Eξij

(
Xi[j] −

1

J

J∑
s=1

Xi[s]

)>∣∣∣∣∣∣ ≥ C1


≤

V ar
(
ξij
)

C2
11

≤
E
(
ξij
)2

C2
11

= O

(
m

J2
+

1

m2

)
.

Since m = T/J , then when J = T a where a ∈ (1/3, 1), we have

lim
J→∞

Pr

∣∣∣∣∣∣ξij
(
Xi[j] −

1

J

J∑
s=1

Xi[s]

)>
− Eξij

(
Xi[j] −

1

J

J∑
s=1

Xi[s]

)>∣∣∣∣∣∣ ≤ C1

 (4)

= 1.
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Applying Lemma C3 (Bernstein inequality), we have

Pr

∣∣∣∣∣∣
J∑
j=1

[
ξij
] [
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>
−

J∑
j=1

E
[
ξij
] [
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>∣∣∣∣∣∣ ≥ √JC2


≤ 2 exp

− JC2
2

2
∑J
j=1 V ar

[
ξij
] [
Xi[j] − 1

J

∑J
s=1 Xi[s]

]>
+ 2

3C1

√
JC2


= 2 exp

(
− JC2

2

2
∑J
j=1(Xi[j] − 1

J

∑J
s=1 Xi[s])(Xi[j] − 1

J

∑J
s=1 Xi[s])>V ar

[
ξij
]

+ 2
3C1

√
JC2

)

=

O

[
exp

(
− JC2

2

2
∑J
j=1(Xi[j]− 1

J

∑J
s=1 Xi[s])(Xi[j]−

1
J

∑J
s=1 Xi[s])>V ar[ξij]

) ]
when 2

∑J
j=1(Xi[j] − 1

J

∑J
s=1 Xi[s])(Xi[j] − 1

J

∑J
s=1 Xi[s])>V ar

[
ξij
]
≥ 2

3C1

√
JC2,

which is equivalent to J = T a, a ∈ (0, 2/5) ∪ (4/5, 1) .
or

=

O
[
exp

(
− JC2

2
2
3C1
√
JC2

)]
when 2

∑J
j=1(Xi[j] − 1

J

∑J
s=1 Xi[s])(Xi[j] − 1

J

∑J
s=1 Xi[s])>V ar

[
ξij
]
≤ 2

3C1

√
JC2,

which is equivalent to J = T a, a ∈ (2/5, 4/5) .

Hence (a) when J = T a, a ∈ (0, 2/5) ∪ (4/5, 1), we have

exp

− JC2
2

2
∑J
j=1

[
Xi[j] − 1

J

∑J
s=1 Xi[s]

]2
V ar

[
ξij
]


= exp

(
− C3

m
J2 + 1

m2

)
→ 0 when J = T a, a ∈ (1/3, 2/5) ; and

(b) when J = T a, a ∈ (2/5, 4/5), we have

exp

(
− JC2

2
2
3C1

√
JC2

)
= exp

(
−
√
JC3

)
→ 0 when J = T a, a ∈ (2/5, 4/5) .

When J = T a, a ∈ (1/3, 4/5),

Pr

∣∣∣∣∣∣
J∑
j=1

[
ξij
] [
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>
−

J∑
j=1

E
[
ξij
] [
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>∣∣∣∣∣∣ ≥ √JC2

→ 0,

which means that

1√
J

J∑
j=1

[
ξij
] [
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>
− 1√

J

J∑
j=1

E
[
ξij
] [
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>
p→ 0.

In the end, when J = T a with a ∈ (1/2, 2/3), we have

1√
J

J∑
j=1

E
[
ξij
] [
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>
→ 0,
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which implies

1√
J

J∑
j=1

[
ξij
] [
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>
p→ 0.

Similarly we can prove

1√
J

[
J∑
s=1

ξis

]
J∑
j=1

[
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>
p→ 0.

In the end, we have

1√
J

J∑
j=1

[
ξij −

1

J

J∑
s=1

ξis

][
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>
p→ 0.

Q.E.D.
Proof for Theorem (joint asymptotic):

√
NT

[
β̂ (τ)− β (τ)

]
=

 1

N

N∑
i=1

1

J

J∑
j=1

(Xi[j] −
1

J

J∑
s=1

Xi[s])(Xi[j] −
1

J

J∑
s=1

Xi[s])>

−1

· (5)

1√
N

N∑
i=1

1√
J

J∑
j=1

[√
τ(1− τ)

fε,ij(0)
Zij −

1

J

J∑
s=1

√
τ(1− τ)

fε,ij(0)
Zis

][
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>
(6)

+

 1

N

N∑
i=1

1

J

J∑
j=1

(Xi[j] −
1

J

J∑
s=1

Xi[s])(Xi[j] −
1

J

J∑
s=1

Xi[s])>

−1

1√
N

N∑
i=1

1√
J

J∑
j=1

[
ξij −

1

J

J∑
s=1

ξis

][
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>
. (7)

For the numerator of the first term on the right hand side, we have

1√
N

N∑
i=1

1√
J

J∑
j=1

[√
τ(1− τ)

fε,ij(0)
Zij −

1

J

J∑
s=1

√
τ(1− τ)

fε,ij(0)
Zis

][
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>

≡ 1√
N

N∑
i=1

ΠiN

where

ΠiN ≡
1√
J

J∑
j=1

[√
τ(1− τ)

fε,ij(0)
Zij −

1

J

J∑
s=1

√
τ(1− τ)

fε,ij(0)
Zis

][
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>
.

Being conditional on the design {Xij}N,Ti=1,t=1,

E (ΠiN ) = 0

V ar (ΠiN ) =
1

J

J∑
j=1

[
(1− 1

J
)
τ(1− τ)

[fε,ij(0)]
2

]
(Xi[j] −

1

J

J∑
s=1

Xi[s])(Xi[j] −
1

J

J∑
s=1

Xi[s])>.

Hence by Lyapunov central limit theorem,

1√
N

N∑
i=1

ΠiN

d

→ N

0, lim
N→∞

1

N


N∑
i=1

1

J

J∑
j=1

τ(1− τ)

[fε,ij(0)]
2 (Xi[j] −

1

J

J∑
s=1

Xi[s])(Xi[j] −
1

J

J∑
s=1

Xi[s])>

 .
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Next, for the numerator of the second term of Equation (5), we have

1√
N

N∑
i=1

1√
J

J∑
j=1

[
ξij −

1

J

J∑
s=1

ξis

][
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>

≡ 1√
N

N∑
i=1

(Λi1N + Λi2N )

where

Λi1N ≡ 1√
J

J∑
j=1

ξij

[
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>

.Λi2N ≡ 1√
J

J∑
s=1

ξis

J∑
j=1

[
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>
.

In order to prove the limiting normal distribution under the joint asymptotics, we need to show

1√
N

N∑
i=1

(Λi1N + Λi2N )
p→ op(1)

which is suffi cient to show
max

1≤i≤N
(Λi1N + Λi2N )

p→ op(
1√
N

).

To this end, we only need to show that for any C1 > 0,

Pr

(∣∣∣∣ max
1≤i≤N

(Λi1N + Λi2N )

∣∣∣∣ > C1√
N

)
= op(1) (8)

which is equivalent to

max
1≤i≤N

Pr

(
|Λi1N + Λi2N | >

C1√
N

)
= op(

1

N
).
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We have

Pr

(
|Λi1N | >

C1√
N

)

= Pr

∣∣∣∣∣∣
J∑
j=1

ξij

[
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>∣∣∣∣∣∣ > C1

√
J√

N


≤ Pr

∣∣∣∣∣∣
J∑
j=1

ξij

[
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>
− E

J∑
j=1

ξij

[
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>∣∣∣∣∣∣ > C1

√
J√

N
− E

J∑
j=1

ξij

[
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>
= Pr

∣∣∣∣∣∣
J∑
j=1

ξij

[
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>
− E

J∑
j=1

ξij

[
Xi[j] −

1

J

J∑
s=1

Xi[s]

]>∣∣∣∣∣∣ > C2

( √
J√
N

+
√
m+

J

m

)
≤ 2 exp

− C2
2

( √
J√
N

+
√
m+ J

m

)2

2
∑J
j=1 V ar

[
ξij
] [
Xi[j] − 1

J

∑J
s=1 Xi[s]

]
+ 2

3C3

( √
J√
N

+
√
m+ J

m

)


=
O

[
exp

(
−

C2
2

( √
J√
N

+
√
m+ J

m

)2
2
∑J
j=1(Xi[j]− 1

J

∑J
s=1 Xi[s])(Xi[j]−

1
J

∑J
s=1 Xi[s])>V ar[ξij]

) ]
= o [exp (− logN)]

when 2
∑J
j=1(Xi[j] − 1

J

∑J
s=1 Xi[s])(Xi[j] − 1

J

∑J
s=1 Xi[s])>V ar

[
ξij
]
≥ 2

3C3

( √
J√
N

+
√
m+ J

m

)
.

or

=
O

[
exp

(
−
C2
2

( √
J√
N

+
√
m+ J

m

)2
2
3C3

( √
J√
N

+
√
m+ J

m

)
)]

= o [exp (− logN)]

when 2
∑J
j=1(Xi[j] − 1

J

∑J
s=1 Xi[s])(Xi[j] − 1

J

∑J
s=1 Xi[s])>V ar

[
ξij
]
< 2

3C3

( √
J√
N

+
√
m+ J

m

)
.

where the second equality is by Proposition 4.1, and the second inequality is coming from Lemma C3
(Bernstein inequality) where conditions are satisfied by Equation (4) (when J = T a where a ∈ (1/3, 1)) and{
ξij

[
Xi[j] − 1

J

∑J
s=1 Xi[s]

]}J
j=1

are independent conditional on the {Xij}N,Ti=1,t=1.

Hence we need to show
(a) under both conditions √

J√
N

+
√
m+ J

m

m
J + J

m2

→ 0,

and (
m
J + J

m2

)
logN( √

J√
N

+
√
m+ J

m

)2 → 0

then we have max1≤i≤N Pr
(
|Λi1N | > C4√

N

)
= op(

1
N ).

(b) under both conditions
m
J + J

m2
√
J√
N

+
√
m+ J

m

→ 0,

and
logN

√
J√
N

+
√
m+ J

m

→ 0

we will have max1≤i≤N Pr
(
|Λi1N | > C4√

N

)
= op(

1
N ).

Similarly we can prove max1≤i≤N Pr
(
|Λi2N | > C5√

N

)
= op(

1
N ) under the above (a) and (b) cases. Thus

Equation (8) is proved.
Q.E.D.
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Appendix C: Lemmas used in the Appendices A and B

Lemma C1: Let I be a closed interval and ‖f − g‖L∞(I) ≤ c; then

|dτme order statistics of f in the I − dτme order statistics of g in the I|
≤ c.

Proof : dτmeorder statistics of f and g in the I are monotone functional: f ≤ g =⇒ dτmeorder statistics
of f in the I ≤ dτmeorder statistics of g in the I. Thus if ‖f − g‖L∞(I) ≤ c, then f ≤ g + c and

dτme order statistics of f in the I
≤ dτme order statistics of (f + c) in the I

≤ dτme order statistics of g in the I + c.

By symmetry, we also get

dτme order statistics of g in the I
≤ dτme order statistics of f in the I + c.

Q.E.D.
Lemma C2: (a) Under Assumption QC, we have∣∣∣∣√ m

τ(1− τ)
fε,ij(0)E∗ij:τ − Zij

∣∣∣∣ ≤ C

m

(
1 + |Zij |3

)
for |Zij | ≤ κ

√
m, where constants C, κ > 0 do not depend on m.

(b) When Assumptions QC hold and constants C ′, C ′′ > 0 do not depend on m, we have

E

∣∣∣∣∣√mE∗ij:τ −
√
τ(1− τ)

fε,ij(0)
Zij

∣∣∣∣∣
l

= O(m−l)

for any fixed l > 0.
Proof:
The main steps of proving QC inequality follow Brown, Cai and Zhou (2008) and Mason and Zhou (2012).

Here our paper extends to the arbitrary dτmeth sample quantile with independent, not identically distributed
distribution. Although the proof is elementary, only requiring the basic Taylor expansions and various
exponential approximations, it is not simple at all. Therefore we collect and reorganize these procedures so
that an expository proof is present.
In sum, the proof consists of:
Step 1: Exponentialize the density of the dτme−th sample quantile (or an asymptotic expansion of the

density of the dτme−th sample quantile in terms of exponential approximations).
Step 2: Exponentialize the distribution of the dτme−th sample quantile (or an asymptotic expansion

of the distribution of the λ−th sample quantile in terms of exponential approximations);
Step 3: Exponentialize the ratio of tails’standard normal distributions, for example, log 1−Φ(y+u)

1−Φ(y) for
some u;
Step 4: Use Proposition 3 in Mason and Zhou (2012) to finish the proof for the quantile coupling

inequality. This finishes the proof for part (a) .
Step 5: In order to prove the bounds of quantile coupled moments, check the finiteness of order statistics.
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Step 1 is the fundamental part of the proof, and other steps come directly from Theorem 6 in Cai and
Zhou (2009). See Mason and Zhou (2012) for an excellent expository summary.
(Part a) Assume τm is an integer for simplification. Let g (x) and G(x) be the density and cumulative

distribution function of E∗, and φ (z) and Φ (z) denote respectively the density and cumulative distribution
function of a standard normal random variable. Since in the j-th bin, all fε,ij(x) and Fε,ij(x) have the same
density and distribution functions, we suppress the i, j subscripts for fε,ij and Fε,ij (x), and only denote
them as fε and Fε (x). The density of E∗ is

g(x) =
m!

(τm)! (m− τm)!
F τm−1
ε∗ (x) [1− Fε∗ (x)]

m−τm
fε∗ (x) .

From Stirling’s formula, p! =
√

2πpp+1/2 exp (−p+ q) with q = O (1/p), gives

g(x) =
1√
2π

mm+ 1
2

(τm− 1)
τm−1+ 1

2 (m− τm)
m−τm+ 1

2

exp

[
−1 +O(

1

m
)

]
·F τm−1
ε (x) [1− Fε (x)]

m−τm
fε (x)

=
1√
2π

m
3
2

(τm− 1)
1
2 (m− τm)

1
2

(
τm

τm− 1

)τm
τm− 1

τm
exp

[
−1 +O(

1

m
)

]

·
{[

Fε (x)

τ

] τm−1
τm

[
1− Fε (x)

1− τ

] 1−τ
τ

}τm
fε (x)

=
1√
2π

√
m

τ(1− τ)
O(1) exp

[
1 +O(

1

m
)

]
O(1) exp

[
−1 +O(

1

m
)

]

·
{[

Fε (x)

τ

] τm−1
τm

[
1− Fε (x)

1− τ

] 1−τ
τ

}τm
fε (x)

=
1√
2π

√
m

τ(1− τ)

{[
Fε (x)

τ

] τm−1
τm

[
1− Fε (x)

1− τ

] 1−τ
τ

}τm
fε (x) exp

[
O(

1

m
)

]
,

where the third equality comes from

m
3
2

(τm− 1)
1
2 (m− τm)

1
2

=

√
m

τ(1− τ)
O(1),(

τm

τm− 1

)τm
= exp

[
1 +O(

1

m
)

]
,

τm− 1

τm
= O(1).

Thus

g(x) =
1√
2π

√
m

τ(1− τ)

{[
Fε∗ (x)

τ

] τm−1
τm

[
1− Fε∗ (x)

1− τ

] 1−τ
τ

}τm
fε∗ (x) exp

[
O(

1

m
)

]

=
1√
2π

√
m

τ(1− τ)
(
Fε∗ (x)

τ
)−1

{[
Fε∗ (x)

τ

]τ [
1− Fε∗ (x)

1− τ

]1−τ
}m

fε∗ (x) exp

[
O(

1

m
)

]

=
1√
2π

√
m

τ(1− τ)

{[
Fε∗ (x)

τ

]τ [
1− Fε∗ (x)

1− τ

]1−τ
}m

fε∗ (x) exp

[
O(

1

m
)

]
.
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For the term
{[

Fε(x)
τ

]τ [
1−Fε(x)

1−τ

]1−τ}m
, we have

[
Fε (x)

τ

]τm [
1− Fε (x)

1− τ

](1−τ)m

=

[
1 +

1

Fε(0)
(Fε (x)− Fε (0))

]τm [
1− 1

1− Fε(0)
(Fε (x)− Fε (0))

](1−τ)m

=

{
τm∑
k=0

(
τm

k

)[
1

τ
[Fε (x)− Fε (0)]

]k}{m−τm∑
k=0

(
m− τm

k

)[
− 1

1− τ)
[Fε (x)− Fε (0)]

]k}

= 1 +

[(
τm

2

)
1

τ2
+

(
m− τm

2

)
1

(1− τ)2
−m2

]
[Fε (x)− Fε (0)]

2

+O

([(
τm

2

)
1

τ2
+

(
m− τm

2

)
1

(1− τ)2
−m2

]
[Fε (x)− Fε (0)]

2

)
= 1− m

2τ(1− τ)
[Fε (x)− Fε (0)]

2
+O

([(
τm

2

)
1

τ2
+

(
m− τm

2

)
1

(1− τ)2
−m2

]
[Fε (x)− Fε (0)]

2

)
= 1− m

2τ(1− τ)

[∫ x

0

[fε(t)− fε(0)] dt+ xfε(0)

]2

+O

([(
τm

2

)
1

τ2
+

(
m− τm

2

)
1

(1− τ)2
−m2

]
[Fε (x)− Fε (0)]

2

)
= 1− m

2τ(1− τ)
f2
ε (0)x2 +O(m |x|4)

where the last equality is coming from |fε(u)− fε(0)| ≤ Cu2.
Hence when x is chosen small enough, we have

log

{[
Fε (x)

τ

]τm [
1− Fε (x)

1− τ

](1−τ)m
}

= − m

2τ(1− τ)
f2
ε (0)x2 +O(m |x|4).

In addition, Assumption QC (ii) implies that fε (x) /fε (0) = 1 +O(|x|2) = exp(|x|2).
Thus

g(x) =
1√
2π

√
m

τ(1− τ)
fε (0) exp

[
− m

2τ(1− τ)
f2
ε (0)x2 +O(m |x|4 + x2 +

1

m
)

]
=

1√
2π

√
m

τ(1− τ)
fε (0) exp

[
− m

2τ(1− τ)
f2
ε (0)x2 +O(m |x|4 +

1

m
)

]
.

According to this, we have our quantile coupling inequality following Theorem 6 in Cai and Zhou (2009).
(Part b) For the bound on the moment, and let l > 1 be any finite integer, we have

E

∣∣∣∣∣√mE∗ij:τ −
√
τ(1− τ)

fε∗(0)
Zij

∣∣∣∣∣
l

= E


∣∣∣∣∣√mE∗ij:τ −

√
τ(1− τ)

fε(0)
Zij

∣∣∣∣∣
l

I
{
|Zij | ≤ c

√
m
}

+E


∣∣∣∣∣√mE∗ij:τ −

√
τ(1− τ)

fε(0)
Zij

∣∣∣∣∣
l

I
{
|Zij | > c

√
m
}

= ΞA + ΞB
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where

ΞA ≡ E


∣∣∣∣∣√mE∗ij:τ −

√
τ(1− τ)

fε(0)
Zij

∣∣∣∣∣
l

I
{
|Zij | ≤ c

√
m
}

ΞB ≡ E


∣∣∣∣∣√mE∗ij:τ −

√
τ(1− τ)

fε(0)
Zij

∣∣∣∣∣
l

I
{
|Zij | > c

√
m
} .

By part a, we have

ΞA = Cm−lE

{(∣∣∣1 + |Zij |3
∣∣∣)l I {|Zij | ≤ c√m}}

= O
(
m−l

)
where the equality comes from the finiteness of the absolute moments of the standard normal random variable.
For term ΞB ,

ΞB ≤ E


∣∣∣∣∣√mE∗ij:τ −

√
τ(1− τ)

fε(0)
Zij

∣∣∣∣∣
2l


1/2 {
Pr(|Zij | > c

√
m)
}1/2

≤ E


∣∣∣∣∣√mE∗ij:τ −

√
τ(1− τ)

fε(0)
Zij

∣∣∣∣∣
2l


1/2{
1

2
exp

(
−c

2

2
m

)}1/2

=

E
2l∑
k=0

(
2l

k

)[√
mE∗ij:τ

]2l−k(−√τ(1− τ)

fε(0)
Zi,j

)k
1/2{

1

2
exp

(
−c

2

2
m

)}1/2

≤ C ′′ml/2

{
1

2
exp

(
−c

2

2
m

)}1/2

= o(m−l)

where the first equality is by the Cauchy—Schwarz inequality; the second inequality is from Mill’s ratio
inequality φ(x)

1−Φ(x) > max
{
x, 2√

2π

}
for x > 0; the third inequality is due to the l−th finite moments of E∗i,j:τ

for any integer l > 1 by Assumption QC (ii) from Cramer et al. (2002). The first equality is from Binomial
theorem, while the last equality is because limm→∞

m3l/2

em = 0 for a large l.
Q.E.D.
Lemma C3: (Bernstein in Serfling, 1980) Let Y1, · · · , Yn be independent random variables satisfying

Pr (|Yi − E(Yi)| ≤ m) = 1, each i, where m <∞. Then, for t > 0,

Pr

(∣∣∣∣∣
n∑
i=1

Yi −
n∑
i=1

E(Yi)

∣∣∣∣∣ ≥ nt
)
≤ 2 exp

(
− n2t2

2
∑n
i=1 V ar(Yi) + 2

3mnt

)
,

for all n = 1, 2, · · · .
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