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ABSTRACT

An interval-valued observation in a time period contains more information than a point-valued
observation in the same time period. Examples of interval data include the maximum and min-
imum temperatures in a day, the maximum and minimum GDP growth rates in a year, the
maximum and minimum asset prices in a trading day, the bid and ask prices in a trading period,
the long term and short term interests, and the top 10% income and bottom 10% income of a
cohort in a year, etc. Interval forecasts may be of direct interest in practice, as it contains informa-
tion on the range of variation and the level or trend of economic processes. More importantly, the
informational advantage of interval data can be exploited for more efficient econometric estimation
and inference.

We propose a new class of autoregressive conditional interval (ACI) models for interval-valued
time series data. A minimum distance estimation method is proposed to estimate the parameters
of an ACI model, and the consistency, asymptotic normality and asymptotic efficiency of the
proposed estimator are established. It is shown that a two-stage minimum distance estimator is
asymptotically most efficient among a class of minimum distance estimators, and it achieves the
Cramer-Rao lower bound when the left and right bounds of the interval innovation process follow
a bivariate normal distribution. Simulation studies show that the two-stage minimum distance
estimator outperforms conditional least squares estimators based on the ranges and/or midpoints
of the interval sample, as well as the conditional quasi-maximum likelihood estimator based on
the bivariate left and right bound information of the interval sample. In an empirical study on
asset pricing, we document that when return interval data is used, some bond market factors,
particularly the default risk factor, are significant in explaining excess stock returns, even after
the stock market factors are controlled in regressions. This differs from the previous findings (e.g.,

Fama and French (1993)) in the literature.
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1. Introduction

Time series analysis has been concerned with modelling the dynamics of a stochastic point-
valued time series process. This paper is perhaps a first attempt to model the dynamics of a
stochastic interval-valued time series which exhibits both ‘range’ and ‘level’ characteristics of the
underlying process. A regular real-valued interval is a set of ordered real numbers defined by
y = [a,0] ={y € R| a <y <b, where a,b € R}. More generally, one can represent a certain
region in the n-dimensional Euclidean space by an interval vector, that is, a n-tuple of intervals;
see Moore, Kearfott and Cloud (2009). A stochastic interval time series is a sequence of interval-
valued random variables indexed by time t.

There exists a relatively large body of evidence of interval-valued data in economics and finance.
In microeconomics, interval-valued observations are often used to provide rigorous enclosures of
the actual point data due to incomplete information (e.g., Manski (1995, 2003, 2007, 2013),
Manski and Tamer (2002), Andrews and Shi (2009), Andrews and Soares (2010), Beresteanu and
Molinari (2008), Chernozhukov, Hong, and Tamer (2007), Chernozhukov, Rigobon and Stoker
(2010), Bontemps, Magnac and Maurin (2012)). In time series analysis, however, interval data in
a time period often contain richer information than point-based observations in the same period
since an interval captures both the ‘range’ (or ‘variability’) and ‘level’ (or ‘trend’) characteristics
of the underlying process. A well-known example of interval-valued time series processes is the
daily temperatures, e.g., [Yr:, Yry), where the left and right bounds denote the minimum and
maximum temperatures in day ¢ respectively. In macroeconomics, the minimum and maximum
annualized monthly GDP growth rates form an annual interval-valued GDP growth rate data
that indicates the range within which it varies in a given year. In finance, an interval can be an
alternative volatility measure, due to its dual natures in assessing the fluctuating range as well as
the level of an asset price during a trading period, e.g., P, = [Pr;, Pry). In study of the dynamics
of bid-ask price spread of an asset, one can construct an interval data [Y7;, Y| to present the
bid-ask price spread, where Y7, and Yz, are the ask and bid prices of the asset at time ¢. In asset
pricing modelling, Y7 ; and Yr; denote the risk-free and equity returns, respectively. Besides the
interval-valued observations formed by the minimum and maximum point observations, quantile-
based data are also informative. In study of income inequality, for example, the bottom 10% and
top 10% quantiles of the incomes of a cohort can be used as a robust measure of income inequality.

Interval forecasts may be of direct interest in practice because, compared to point forecasts, in-
tervals contain rich information about the variability and the trend of economic processes. Russell
and Engle (2009) argued that the high-frequency financial time series reveal subtle characteristics,

e.g., irregular temporal spacing, strong diurnal patterns and complex dependence that present



obstacles for traditional forecasting methods. In addition, it is rather difficult to accurately fore-
cast the entire sequence of intraday prices for one day ahead. Thus, interval modelling may be an
alternative way to analyze intraday time series. Other examples are interval forecasts of temper-
atures, GDP growth rates, inflation rates, bid and ask prices, as well as long-term and short term
interest rates in a given time period.

Since an interval observation in a time period provides more information than a point-valued
observation in the same time period, this informational advantage can be exploited for more
efficient estimation and inference in econometrics. To elaborate this, let us consider volatility
modelling as an example, which has been a central theme in financial econometrics. Most studies
on volatility modelling employ point-based data, e.g., the daily closing price of an asset rather
than the interval data consisting of the maximum and minimum prices in a trading day. This is
the case for the popular GARCH and Stochastic Volatility (SV) models in the literature. Although
GARCH and SV models aim to study the dynamics of volatility of an asset price, the closing price
observations fail to capture the ‘fluctuation’ information within a time period. A development in
the literature that improves upon GARCH and SV models is to use range observations, based on
the difference between the maximum and minimum asset prices in a time period, which are more
informative than returns based on closing prices. Early models of this class include Parkinson
(1980) and Beckers (1983). More recently, Alizadeh, Brandt and Diebold (2002) have used range
observations of stock prices to obtain more efficient estimation for SV models. See also Diebold
and Yilmaz (2009) for the use of range observations as measures for volatility. Chou (2005), on
the other hand, develops a class of Conditional Autoregressive Range (CARR) models to capture
the dynamics of the range of an asset price. Chou (2005) documents that CARR models have
better forecasts of volatility than GARCH models, indicating the gain of utilizing range data over
point-valued closing price data. However, an inherent drawback of the CARR models is that using
range as a volatility measure is unable to simultaneously capture the dual empirical features, i.e.,
‘variability’ and ‘level’. For example, the same range observations in different time periods may
have the same range but distinct price levels.

It is possible to capture the dual features of range and level by a bivariate point-valued model for
the left and right bounds of an interval process. Existing methods include modelling and estimating
the two univariate point-valued processes separately or joint modelling with vector autogression;
see Maia, Carvalho and Ludermir (2008), Neto, Carvalho and Freire (2008), Neto and Carvalho
(2010), Arroyo, Espinola and Maté (2011), Arroyo, Gonzalez-Rivera, and Maté (2011), Lin and
Gonzélez-Rivera (2013), and the references therein. However, a bivariate point-valued sample
may not efficiently make use of the information of the underlying interval process, and possible

limitations often arise in handling separate classical studies; see Gil, Gonzélez-Rodriguez, Colubi



and Montenegro (2007), Blanco-Fernandez, Corral and Gonzélez-Rodriguez (2011). Furthermore,
a certain region which an interval vector presents, e.g., a squared box which a bivariate interval
vector presents, contains at least twice simultaneous equations as a single interval model, which
may involve a large number of unknown model parameters.

To capture the dynamics of an interval process, to forecast an interval and to explore the
potential gain of using interval time series data over using point-valued time series data, we
propose a new class of autoregressive conditional interval (ACIX thereof) models for interval-
valued time series processes, possibly with exogenous explanatory interval variables. We develop
an asymptotic theory for estimation, testing and inference. In addition to direct interest in interval
forecasts by policy makers and practitioners, the advantages of ACIX models over the existing
volatility and range models are at least twofold. First, it utilizes the information of both range
and level contained in interval data, and thus it is expected to yield more efficient estimation and
inference than based on point-valued data. Consider the case of modelling the conditional range
of the daily price of some asset where there are more variabilities in the level sample than in the
range sample. Since range and level are generally correlated, it may not be efficient to estimate
parameters in a range model by using the range information alone. Instead, one may obtain more
efficient parameter estimation for an ACIX model with an interval sample, thus providing more
accurate forecasts for range.

A parsimonious ACIX model provides a simple and convenient unified framework to infer the
dynamics of the interval population, which can also be used to derive some important point-
based time series models as special cases. For example, when interval data are transformed to
the point-valued ‘range’, the ACIX model then yields an ARMAX-type range model, which is
an alternative to Chou’s (2005) CARR model. Because our approach is based on the concept
of extended interval for which the left bound needs not to be smaller than the right bound,
the aforementioned advantages of our methodology also carry over to a large class of point-valued
regression models, where the regressand and regressors are defined as differences between economic
variables. See Section 7 for an example of capital asset pricing modelling (Fama and French
(1993)).

The remainder of this paper is organized as follows. Section 2 introduces basic algebra of
intervals, interval time series, and the class of ACIX models. In Section 3, we propose a minimum
distance estimation method and establish the asymptotic theory of consistency and normality of
the proposed estimators. We also show how various estimators for the point-based models can be
derived as special cases of the proposed minimum distance estimator. Section 4 derives the optimal
weighting function that yields the asymptotic most efficient minimum distance estimator, and

proposes a feasible asymptotically most efficient two-stage minimum distance estimator. Section



5 develops a Lagrange Multiplier test and a Wald test for the hypotheses on model parameters.
Section 6 presents a simulation study, comparing the performance of the proposed two-stage
minimum distance estimator with various parameter estimators in finite samples. It is confirmed
that more efficient parameter estimation can be obtained when interval data rather than point-
valued data are utilized, and the proposed two-stage minimum distance estimator performs the
best in finite sample, confirming our asymptotic analysis. Section 7 is an empirical study of Fama-
French’s (1993) asset pricing model, comparing the OLS estimator and the proposed two stage
interval-based minimum distance estimator. We document that the use of interval risk premium
data yields overwhelming evidence that the default risk factor is significant in explaining excess
stock returns even when stock risk factors are controlled, a result that the previous literature and
the OLS estimation fail to reveal (see Fama and French (1993)). Section 8 concludes the paper.

All mathematical proofs are collected in the Mathematical Appendix.
2. Interval Time Series and ACIX Model

In this section, we first introduce some basis concepts and analytic tools for stochastic interval
time series. We then propose a parsimonious class of autoregressive conditional interval models
with exogenous explanatory variables (ACIX) to capture the dynamics of interval time series
processes. Both static and dynamic interval time series regression models are included as special

cases.
2.1 Preliminary
To begin with, we first define an extended random interval.

Definition 2.1: An extended random interval Y on a probability space (2, F, P) is a measurable
mapping Y : Q — Ir, where Ir is the space of closed sets of ordered numbers in R, as Y (w) =
Y7 (w), Yr(w)], where Y (w), Yr(w) € R for all w € Q denote the left and right bounds of Y (w)
respectively, together with the following three compositions called addition, scalar multiplication
and difference, respectively:

(i) Addition, symbolized by +, which is a binary composition in Ig:
A+ B=[AL+ B, Ar + Bgl;
(i) Scalar multiplication, symbolized by -, which is a symmetric function from R x Ig to Ir:
p-A=I[B-AL (- Ag;
(iii) Difference (Hukuhara (1967)), symbolized by — g, which is a binary composition in Igr:
A—pg B=[A, — B, Ar — Bg].
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As a special case, a real-valued scalar a € R can be presented by a ‘degenerate interval’, or a
‘trivial interval’ such that @ = [a,a]. An example of degenerate intervals is the zero interval:
A =[0,0]. The mapping Y : Q@ — Igr in Definition 2.1 is ‘strongly measurable’ with respect to
the o-field generated by the topology induced by the Hausdorff metric dgy; see Li, Ogura, and
Kreinovich (2002, Definition 1.2.1). Specifically, for each interval X, we have Y ~!(X) € F, where
Y HX) ={weN:Y(w)NX # ¢} is the inverse image of Y.

For each w € Q, Y(w) is a set of ordered real-valued numbers, changing continuously from
Y7 (w) to Yr(w). To define the probability distribution of an extended random interval Y, we
denote the Borel field of Ig as B(/r). Given a B(/r)-measurable random interval Y, we define a
sub-o-field Fy by

Fy=0{Y '(v),v€B(Ir)},

where Y 1(v) = {w € Q: Y(w) € v}. Then Fy is a sub-o-field of F with respect to which Y is
measurable. The distribution of a random interval Y is a probability measure P on B(/r) defined
by

Fy(v)=P[Y'(v)] ,v € B(Ir).

Consider as an example the interval in which the S&P 500 stock index in day ¢ fluctuates as an
extended random interval Y; defined on the probability space (€2, F, P), and the outcome of the
experiment corresponds to a point w € ). Then the measuring process is carried out to obtain an
interval in day ¢: Y;(w) = [Yz+(w), Yr+(w)]. Unlike a bivariate random vector X : Qy — R? of the
left and right boundaries of Y where X (wyx) = (Y, (wx), Yr(wy)) for wy € Qy, the measurable
mapping Y : Q — [Ir is a univariate random set of ordered numbers in the space of Ir. Unless

there exists a probability measure Px on B(R?) such that
P [X7H(ox)] = P[Y7H(w)],

for each vy € B(R?) and v € B(IR) such that Yz (wx) = Yz (w), Yr(wx) = Yr(w) and X (vx) =
{wx € Qx : X(wx) € vx}, modelling an interval population Y cannot be simply equated to joint
modelling a bivariate point-valued random vector for the left and right bounds of Y. The latter
approach may not retain all information in a set of ordered numbers for each interval observation
due to the fact that the two probability measures are not identical.

In Definition 2.1, we do not impose the conventional restriction of Y; < Yy for regular inter-
vals that has been imposed in the conventional interval analysis (see Moore, Kearfott, and Cloud
(2009)). This is the reason we call Y as an extended interval. Our extension ensures the complete-
ness of Ir and the consistency among the compositions introduced in Definition 2.1. Let § = —1

and Y; = [1, 3], for example. Then the extension ensures that 5-Y; = —1 x [1,3] = [-1, 3] € Igr.



This is not a regular interval. Furthermore, for all § € R,Y; € IR,

B-Yi+(=5)-Y,=[8Yr, — BYLy, YRy — BYR,] = [0,0],

which implies that a symmetric element with respect to addition exists. Conversely,
0,0] = (=8) - Y: = [0+ BYL,0 + YR = B - Vi

The concept of extended interval together with Hukuhara’s difference is suitable for econo-
metric modelling of interval data. One example is the first difference of some interval process
X

Y= X = X1 = [Xoo = Xpao1, Xag — Xnaa]

which becomes a stationary interval process although the original interval series X, is not. Hukuhara
introduced this difference operation to deal with the fact that the regular interval space, i.e., with
the restriction Y7 ; < Yr,, is not a linear space due to the lack of a symmetric element with respect
to the addition operation, which is addressed by our extension of the interval space. Below our
notation follows a convention throughout the paper: the scalar multiplication, e.g., 3 - A, will be
presented as A, while the Hukuhara difference A —y B is simply represented as A — B.

Definition 2.1 also greatly extends the scope of applications of our methodology. For example,
it covers the case of an extended interval with the risk-free rate as the left bound and the market
portfolio return as the right bound, where the risk-free rate is not necessarily smaller than the
market portfolio return. See Section 7 for applications to asset pricing modelling.

It may be noted that the concept of extended random interval differs from that of a confidence
interval in statistical analysis, even if the restriction Y, < Yy is imposed. The objective here is to
learn about the probability distribution of an ‘interval population’ rather than a ‘point population’,
and the forecast aims at the ‘true interval’ or the ‘conditional expectation of an interval’ of the
underlying stochastic interval process. In contrast, the conventional confidence interval of a point-
valued time series is to learn about the uncertainty or dispersion of a point population or its
estimator given a prespecified confidence level.

Next, we define a stochastic interval time series process.
Definition 2.2: A stochastic interval time series process is a sequence of extended random intervals
indezed by time t € Z = {0,£1,+2, ...}, denoted {Y; = [Yr4, Yrul},o -

A segment {Y1,Ys,...,Yr} from ¢t = 1 to T of the interval time series {Y;} constitutes an
interval time series random sample of size T'. A realization of this random sample, denoted as

{y1,v2, ..., yr}, is called an interval time series data set with size T. Our main objective is to use



the observed interval data to infer the dynamic structure of the interval time series {Y;} and to use

it for forecasts and other applications. For example, a leading object of interest is the conditional

mean E(Y;|I;—1), where I;_y = {Y;_1,..., Y1} is the information set available at time ¢ — 1.
Following Aumann’ s (1965) definition of expectation of random sets, we now introduce the

expectation of extended random intervals.

Definition 2.3: If Y; is an extended random interval on (2, F, P), then the expectation of Y; is

an extended interval defined by
p=EY)={E(f)If:Q—R, fell, feY, as [P}

provided E (|Y;]) < oo with |Y;| = sup{|y|, y € Yi(w)|.

In order to quantify the variation of a random interval Y; around its expectation y,, to define
the autocovariance function of an interval time series process {Y;}, and particularly to develop a
minimum distance estimation method for an interval time series model, we need a suitable distance
measure between intervals.

A basic idea of a distance measure between intervals is to consider the set of the absolute
differences between all possible pairs of elements (points) of the intervals A and B, with respect
to a suitable weighting function. The Hausdorff metric dy (Munkres, 1999) has been widely
used in measuring the distance between random sets (e.g., Artstein and Vitale (1975), Puri and
Ralescu (1983, 1985), Cressie (1978), Hiai (1984), Li, Ogura and Kreinovich (2002), Molchanov
(2005), Beresteanu and Molinari (2008), Beresteanu, Molchanov and Molinari (2011, 2012), Chan-
drasekhar, Chernozhukov, Molinari and Schrimpf (2012)). It is defined on a normed space ® as
follows:

dy(A, B) = max {sup inf d(a, b), sup inf d(a, b)} ,

acA bEB beB acA
where d(a,b) = ||a —b|| is the norm defined on ®, and A, B € p(®) which is the family of all

non-empty subsets of ®. If @ is a p-dimensional Euclidean space R?, dy(A, B) can be written as

dy(A, B) = max {supd(a, B),supd(b, A)} = sup |sa(u)—sp(u)|, (2.1)

acA beB ueSr—1

where SP71 = {u € R? : |u|lg, = 1} is the unit sphere in R?, and s4(u) is called a support

function of the set A defined as

sa(u) =sup (u,a), u € R?, (2.2)
acA

where (-.-) is an inner product. See Minkowsky (1911).
Eq.(2.1) indicates that dy only considers the least upper bound of the set of absolute differences
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between all pairs of support functions in p— 1 directions of tangent planes with weight 1. As shown
in Nather (1997, 2000), the Fréchet expectation of a random set Y; is not with respect to dy. As
a special case of random sets, the interval expectation F(Y;|I;_1) is not the optimal solution of

the minimization problem, namely,
E(Y;|I;_1) # arg min E [d},(Y;, A(Li-1))] -
A€lr

Thus, dy is not a suitable metric to develop a minimum distance estimation method for a condi-
tional expectation model of an interval process.
Korner and Néther (2002) developed a distance measure called Dy metric. For any pair of

sets A, B € F .(RP),

Di(A,B) = \/ L s =500 5a(0) = 5] K ),

where F.(RP) is the space of convex compact sets, (-, ), denote the inner product in SP~! with
respect to kernel K (u,v), and K (u,v) is a symmetric positive definite weighting function on SP~!
which ensures that Dg (A, B) is a metric for f .(RP). When p = 1, the above random sets become
extended random intervals, and the generalized f .(R) space is Igr. For any pair of extended

intervals A, B € IR,

Dk(A,B) = \//( - [sa(u) — sp(u)][sa(v) — sp(v)] dK (u,v), (2.3)

where the unit space S = {u € R', Ju] = 1} = {1, —1} is a set consisting of only two numbers, 1

and —1. Here, the support function becomes

saw) = [ SWPeca{u-aju€ ST} Hf A, < A
! B infaeq{u-alu e S} if Ap < Ap,
Agr u=1
7 2.4
{ A, u=-1, (2.4)

and s4(u) = A if A is a degenerate interval where A; = Ap.

The space of support functions s4(u) in Eq.(2.4) is linear, namely

SAarB = Sa+ S,
Sxa = Asy, forall A € R,
SA_p = 84— Sp. (2.5)

The usual support function in Eq.(2.2) is sublinear since that sy4 = As4 only holds for A > 0.



Our extension of the regular interval space, which allows A; > Ap for Ir, ensures that it holds
for all A € R. When Ap < Ag, it is the usual support function as in Eq.(2.2). The result
that s4_p = sa — s shows that the support function of a Hukuhara difference between two
extended intervals, is equal to the difference between the corresponding support functions of the
two intervals. For more discussions on support functions, see Rockafellar (1970), Romanowska
and Smith (1989), Choi and Smith (2003), Li, Ogura, and Kreinovich (2002), Molchanov (2005),
Beresteanu and Molinari (2008), Beresteanu, Molchanov and Molinari (2011, 2012), Bontemps,
Magnac and Maurin (2012), Chandrasekhar, Chernozhukov, Molinari and Schrimpf (2012).

The kernel K (u,v) is a symmetric positive definite function such that for u,v € 8° = {1, —1},

K(1,1) > 0,
K(1,1)K(-1,-1) > K(1,-1), (2.6)
K(1,-1) = K(-1,1).

For A, B € Ig, the mapping (-,), : Ir — R is a linear functional on Ig , with respect to any
kernel K satisfying Eq.(2.6). This is because that the support functions form an inner product
space (or unitary space), provided the inner product with respect to kernel K for each A, B,C € Ir

satisfies the following operation rules:

( SA > <SBasA>K7

(
<SA+375C'>K*<SA780> +<537$C>K7
(sxa,8B) = A(Sa,5B), for all A € R, (2.7)
<8A > >O

[ (s4,54) = 0iff A=10,0].

The norm for A € Ig with respect to kernel K is defined as the nonnegative square root of
(54,54) f, 1.e.,

[All ¢ = D (A, [0,0]) = \/(54,54) (2.8)

and similarly,

|A = Bl = Dic(A, B) = /(a5 54-5) - (2.9)

The Dg-metric has certain desirable properties. Most importantly, s4(u) is an isometry between
Ir and a cone of the Hilbert subspace endowed with the generic Lo-type Dy distance respect to
K (u,v), which implies the suitability for the least squares estimation method of time series models

for the conditional mean of an interval process. This is stated in Lemma 2.1 below.

Lemma 2.1: Suppose A(l;_1) is a measurable interval function of information set I, 1. Then

E(Yilli-1) = arg min B [Dk (Y, A1) (2.10)



See Nather (1997, 2000) for a generalized result of random sets, but not in a time series context.

Numerically the Dk (A, B) in Eq.(2.3) has a simple quadratic form and is easy to compute. It
follows from the definitions of s4(u) and K (u,v) that

D%(A,B) = K(1,1)(Ag — Bg)* + K(—1,-1)(A, — B)* —2K(1,—1)(Ag — Bg)(Ap — By)
_ [ Ar — Bg HK(LU K(1 _1>H Ar — Bg } (2.11)
—(Ap — Bp)| |K(-1,1) K(-1,-1)| |-(A, — Br)| '
Recall that the crucial criterion of a distance between intervals A and B is to consider the set
of the absolute differences between all possible pairs of elements (points) of A and B, with a
proper weighting function to include the maximum amount of useful information contained in
intervals. However, Eq.(2.11) might lead to a misunderstanding that D% (A, B) only considers a
weighted average of distances between the two boundary points of intervals A and B, and ignores
the distances between interior points. Below we elaborate s4(u) and K (u,v) to gain insight into
the numerical equality in Eq.(2.11).
Intuitively, the support function s4(u) is an alternate representation of A € Ig in terms of the
positions of two tangent planes, i.e., the left and right bounds, that enclose the interval A. Li,
Ogura and Kreinovich (2002, Corollary 1.2.8) verify that s4(u) of the extended random interval

A defined on (£, F, P) is measurable, by which we can derive any point-valued random variable
AN (w) € A(w) :

AN (W) = As 4 (1) — (1 = N)saw)(—1) = Mg + (1 — V)AL (2.12)

for A\ € [0, 1]. For instance, for each w € Q, A =0, 1 and 0.5 yield the left and right bounds, and
the midpoint of A(w) respectively:

S
5
E &
-
S
CINC)
ISP
S~— S~—
[
& |
=2 w
£ =
— /g
= £
=
=

N
3
£

i

=

o

Z

B
|

(2.13)

Bertoluzza, Corral and Salas (1995) first introduced a dy, distance for intervals, which was later

generalized to the Dg metric by Kérner and Néther (2002). The dy distance is defined as

dy (A, B) = \/ / (A® — BW)2dW(N) |, for all A, B € Ig
0.1]

where W (\) is a probability measure on the real Borel space ([0,1]), B([0,1]). The dw (A, B)

measure involves not only distances between extreme points with weights W (0) and W (1), but
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also distances between interior points in the intervals with weights W (\), 0 < A < 1.

It is interesting to see that the Dy metric as a generalization of the dy, metric preserves
this property (Gonzilez-Rodriguez, Blanco-Ferndndez, Corral and Colubi (2007)). The simpler
expression of the Dg metric in Eq.(2.11) than dy (A, B) lies in the fact that it measures the

distance between each pair of points in intervals A and B in terms of the support functions,

(AN — BMY = [\Ap+(1—M\A, — ABg — (1 — A)By)?
= M(Ar—Br)*+ (1 = N*AL — BL)?+2\1 — \) (Ag — Br) (AL — By).
(2.14)

Instead of considering an integral for (A® — BM)2 with respect to W (\), Eq.(2.14) suggests that

the value of K (u,v) for each pair of (u,v) € S° can be interpreted as

K(1,1) = /1 NdW (N,

K1,-1) = K(—l,l):/l/\()\—l)dW()\),

K(-1,-1) = /1(1—>\)2dW()\).

These identities suggest that the choice of kernel K is equivalent to the choice of a certain weighting
function W(X). Thus, although D% (A, B) can be simply computed by the distances between
extreme points with respect to kernel K (u,v), it is in essence an integral over the distances
between all pairs of points in intervals A and B with a weighting function W (\) implied by the
choice of K (u,v).

We now explore some special choices of kernel K (u,v) and discuss their implication on captur-
ing the information contained in intervals. For notational convenience, we denote a generic choice
of a symmetric kernel K as K(1,1) = a, K(1,—-1) = K(-1,1) = b, K(—1,—1) = ¢, where a, b
and c satisfy Eq.(2.6).

Case 1. (a,b,c) = (3,—3%,1).

407 4014
This kernel K corresponds to the choice of weighting function W (\) as a degenerate distribu-

tion: W(A) =1 for A = 1 and 0 otherwise. The Dy metric becomes

Dy (A, B) = (A™ — B")*,

which measures the distance between midpoints of A and B. Note that kernel K is not positive

definite here.
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Case 2. (a,b,c¢) = (1,1,1). In this case, we have
Di(A,B) = (A" = B")?,

which measures the distance between ranges of A and B. Note that kernel K is not positive

definite here.
Case 3. a = ¢, |b] < a. Then by Eq.(2.11),

a+b

(A" — B")® +2(a — b) (A™ — B™)*.

This measures the distance between the ranges A" and B”, and the distance between the midpoints
A™ and B™, with weights “* and 2(a — b) respectively. If —1 < 2 < 3 (4™ — B™)? receives a
larger weight than (A" — B")?; if2 <2<l (A - B")? receives a larger weight than (A™ — B™)?;
and if g = %, the squared differences between ranges and between midpoints receive the same

weight.
Case 4. b =0. Then by Eq.(2.11),

D%((A, B) = CL(AR - BR)2 + C(AL — BL)2 .

This measures the distance between the left bounds and the distance between the right bounds,
with weights ¢ and a respectively. If 0 < a < ¢, (A — Bp)? receives a larger weight than
(A — Bp)*; if 0 < ¢ < a, (Ag — Bg)® receives a larger weight than (A, — B;)* and if 0 < a = ,
the squared differences between left bounds and right bounds receive the same weight. The choice
of such a kernel K is equivalent to the choice of weighting function W (\) which follows a Bernoulli
distribution with W(0) = ¢, W (1) = a, where a + ¢ = 1.

Case 5. Suppose a # ¢, b # 0, where a, b and ¢ satisfy Eq.(2.6). Then by Eq.(2.11)

D%(A, B) =a (AR - BR)2 + C(AL - BL>2 —2b (AR - BR) (AL - BL)

= DI (4 BV 4 (a2t o) (A"~ B 4 (a— o) (A~ BT) (A"~ B").

Here, D%(A, B) can capture information in the left bound difference A; — By, the right bound
difference Ar — Bpg, and their cross product (Ar — Bg) (AL — Bp), or equivalently, the infor-
mation in the range difference A” — B", the level difference A™ — B™, and their cross product
(A" — B") (A™ — B™). The utilization of the cross product information will enhance estimation

efficiency, as will be seen below.
2.2 Stationarity of an Interval Time Series Process

To introduce the concept of weak stationarity for the interval time series process {Y;}, we first

12



define the autocovariance function of {Y;} based on support function s4 and kernel K.

Definition 2.4: The autocovariance function of a stochastic interval time series process {Y;},

denoted +y,(j), is a scalar defined by
7(j) =cov(Y},Y,_;) =F <Syt — Su,,5Y_, — Sut—j>K7 j=0,+£1,£2, ..,

where p, = E(Y;), and <Syt = Sp S, — S’”*j>K is the inner product with respect to the kernel

K(u,v) on S° = {—1,1}. In particular, the variance of Y; is
7:(0) = E||Y; — Nt”?{ =F [D%((Y;fuut)] =F <3Yt — Sp,s Sy, — Sut>K7

and v,(j) = v,(—J) for all integers j, provided the kernel K (u,v) is symmetric.

Note that «,(j) has the form of covariance between two random intervals X and Z:
cov(X,Z) = E(sx — Suy,52 = Suy) -

Thus v,(j) could be interpreted as the covariance of Y; with its lagged value Y;_;. When {Y;} is

a stochastic point-valued process, we have

E <8yt — Su,s SYi_, — Sm_j> =L [(Yt — ) (Yij — ,Utfj)} ;

K

subject to the restriction that f(u,v)GSO dK(u,v) = K(1,1) + K(—1,—1) + 2K(1,—1) = 1, which
is consistent with the definition of the autocovariance function of a point-valued time series.

We now define weak stationarity of a stochastic interval time series process.
Definition 2.5: If neither the mean p, nor the autocovariance ~,(j), for each j, of a stochastic
interval time series process {Y;} depends on time t, then {Y;} is weakly stationary with respect to
Dy, or covariance stationary with respect to D .

Suppose {Y;} is a weakly stationary interval process with respect to Dg. Then an induced

stochastic point-valued process according to Eq.(2.12) is also weakly stationary. Given Eq.(2.13)

and the interval process Y;, we can obtain a bivariate point-valued process of the left and right

bounds of Y, :
v =y,
}/;(1) = YR,ta

the range (or difference) of Y; as a measure of ‘volatility’

Y, = Y;l — Yto = Sy,(1) + sy,(—=1) = Yr: — Y14,

) )
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and the midpoint of Y; as a measure of ‘level’

1 Yo+ Yr:
YTI’L = Y05 — _ — 9 g .
t t Sy, (2> 5

These point processes are in essence measurable linear transformations of Y; based on its support
function, and as a result, their probabilistic properties are determined by (€2, F, P) on which Y; is
defined. Thus {Y;}, {Y;"}, and the bivariate point process {(Yz:, Yr+)'} are all weakly stationary
processes if Y; is weakly stationary with respect to Dg.

If v(j) = 0 for all j # 0, we say that the weakly stationary interval process {Y;} with respect
to D is a white noise process with respect to Dg. This arises when {Y;} is an independent and
identically distributed (i.i.d.) sequence. Of course, zero autocorrelation of {Y;} across different
lags does not necessarily imply serial independence of {Y;}, as is the case with the conventional
time series analysis.

Next we define strict stationarity of a stochastic interval time series process.

Definition 2.6: Let P be the joint distribution function of the stochastic interval time series
sequence {Y1,Ys,...}, and let P,y be the joint distribution function of the stochastic interval
time series sequence {Y;y1,Yr1o,...}. The stochastic interval time series process {Y;} is strictly

stationary if P, 1 = Py for all 7 > 1.

In accordance with Definition 2.6, we could introduce the concept of ergodicity for a strictly
stationary interval process, which is essentially the same as that for a point-valued process. For

more discussion on ergodicity, see White (1999, Definition 3.33).

2.3 Law of Large Numbers for Weakly Stationary Interval Processes

The strong law of large numbers with the Hausdorff metric dy of i.i.d. random compact
subsets of finite-dimensional Euclidean space R? was first proved by Artstein and Vitale (1975),
and further studied by Cressie (1978), Hiai (1984), and Puri and Ralescu (1983, 1985), Molchanov
(1993), Li, Ogura, and Kreinovich (2002). In partial identification analysis, related works applying
random set theory include Molchanov (2005) who metrises the weak convergence of random closed
sets; Beresteanu and Molinari (2008) who use limit theorems for i.i.d. random sets to establish
consistency of their estimator for the sharp identification region of the parameter vector with
respect to the Hausdorff metric; see also the references therein.

However, these limit theories are not available for the Dy metric, particularly in a time series
context. Below, we prove the weak law of large numbers (WLLN) for both the first and second

moments of a stationary interval process.

Theorem 2.1. Let {Y;t}tT:1 be a random interval sample of size T from a weakly stationary with

respect to Dy interval process {Yi} with E(Y;) = p for all t, E(sy, — 5,,5v,_; — su)x = 7(J) for
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all t and j, and Y372 |7(j)| < oo . Then Yr 25 poas T — oo, where Yy = T7! ZtT:1Yt is the
sample mean of {Yt}thl , and the convergence is with respect to the Dy metric in the sense that

limp_ P [DK(}_/T, W) > e] =0, for any given constant € > 0.

Theorem 2.1 provides the conditions of ergodicity in mean for a stochastic interval time series
process, that is, when the autocovariance function v(j) is absolutely summable, the sample mean
Y7 converges to the population mean y of a weakly stationary interval process {Y;} with respect
to Dg. In Theorem 2.1, the sample average Y7 and the population mean 4 are both defined on

IR, i.e., both are interval-valued. When they are point-valued, we have

Dk (Yp, 1) = dg(Yr, 1) = |Yr — p

9

subject to f(u v)es0

point-valued time series process, i.e., limp ., P HYT — ,u! > e} = 0 for each € > 0.

dK(u,v) = 1. Thus, Theorem 2.1 coincides with the familiar WLLN for a

Next, we show that the sample autocovariance of a stationary interval process converges in

probability to its autocovariance.

Theorem 2.2. Let {Yt}tT:1 be a random sample of size T from a stationary ergodic stochastic
interval time series process {Y;} such that E HYtH?( < oo for all t. Suppose the conditions of

Theorem 2.1 hold. Then for each given j € {0,+1,£2 ...},

T
G =T (5w = SvmSvi, — 1) — ()
t=j+1

as T — oo, where Yy =T} Zthl Y; is the sample mean of {Y}}tT:l.

Theorem 2.2 provides sufficient conditions that a weakly stationary interval process with re-
spect to D is ergodic in second moments. Since the weighted inner product (-,-)x is a scalar,

the convergence in probability in Theorem 2.2 is with respect to either the Dy or dgy metric.
2.4 Autoregressive Conditional Interval Models

To capture the dynamics of a stochastic interval process {Y;}, we first propose a class of

Autoregressive Conditional Interval (ACI) Models of order (p, q):

p q
Yi=ao+Blo+ Y BYisj+ Y vy +u, (2.15)

Jj=1 J=1

or compactly,
B(L)Y; = ag + Bolo + A(L)uy

where ag, 3, (j =0,...,p), 7; (j = 1,...,q) are unknown scalar parameters, Iy = [—35, 3] is a unit
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interval; ag+ 5ylo = [ap — %BO, o+ %60] is a constant interval intercept; A(L) = 1 —1—2}1-:17ij and
B(L)=1- Z?:l I6] ij , where L is the lag operator; u; is an interval innovation. We assume that
{u:} is a interval martingale difference sequence (IMDS) with respect to the information set I;_1,
that is, E(u|l;—1) = [0,0] a.s. It is noted that the parameters in ACI models are scalar-valued
rather than set-valued.

The ACI(p,q) model is an interval generalization of the well-known ARMA (p, q) model for
a point-valued time series process. It can be used to forecast intervals of economic processes,
such as the GDP growth rate, the inflation rate, the stock price, the long-term and short-term
interest rates, and the bid-ask spread. This is often of direct interest for policy makers and
practitioners. When ¢ = 0, Eq.(2.15) becomes an ACI(p,0) model, analogous to an AR(p) model

for a point-valued time series:

p
Y, = ag + Bolo + ZﬁjYi—j + U

Jj=1

When p = 0, Eq.(2.15) becomes an ACI(0, ¢) model, analogous to an MA(g) model for a point-

valued time series:

q
Y; = Qg + BOIO + Zvjut_j + uy.
j=1

If all the roots of B(z) = 0 lie outside the unit circle, an ACI(p, q) process can be rewritten as a
distributed lag of {us, s < t}, which is an ACI(0,00) process,
Y, = B(L) (ao+ Bolo) + B( ) A(L)uy

= B(1) Y+ Bolo) Za]ut s

where {«;} is given by B(L)""A(L) = X524, L7. On the other hand, if all the roots of A(z) =0
lie outside the unit circle, an ACI(p,q) model is an invertible process with u; expressed as the

linear summation of {Yj, s < t}, which is an ACI(o0, 0) process,

u = AL)B(L)Y: — A(L) oo + Bylo)

= —AQ) Mo+ Bolo) + Y NYi,

=0

where {);} is given by B(L)"'A(L) = X532\, L7
An ACI(p, q) model of an interval process can be extended to an ACIX(p,q,s) model by
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incorporating exogenous explanatory interval variables:

p q s
}/; = + 50[0 + Zﬁj}/},] + Z ’yjut,j -+ Z 5_/7Xt7j -+ Ug, (216)
j=1 j=1 §=0
where X; = (Xyy, ..., X )’ is an exogenous stationary interval vector process, and 0; = (0,1, ...,6;.7)
is the corresponding point-valued parameter vector. When ¢ = 0, i.e., when there is no MA com-

ponent, the ACIX(p,0, s) model is an interval time series regression model:

p s
Yi=ao+Blo+ Y BYie i+ Y 05X+ u, (2.17)
j=1 j=0
where all explanatory interval variables are observable. This covers both static (with p = 0) or
dynamic (with p > 0) interval time series regression models.

ACIX(p, q,s) models can be used to capture temporal dependence in an interval process. In
particular, it can be used to capture some well-known empirical stylized facts in economics and
finance, such as volatility (or range) clustering and level effect (i.e., correlation between volatility
and level). For example, 3; > 0 indicates that a wide interval at time ¢ is likely to be followed by
another wide interval in the next period, which can capture range clustering.

Another advantage of modelling an ACIX(p, ¢, s) process is that one can derive some important
univariate point-valued ARMAX(p, ¢, s) models as special cases, provided the derived point models
are defined by the support function as in Eq.(2.12). For example, by Eq.(2.12) and taking the
difference between Yt(l) and Y;(O), the left and right bounds of an ACIX(p, ¢, s) model, we obtain
an ARMAX(p, ¢, s) type range model

p q s
Y =Bo+ ) B4 Y i+ ) 0K+, (2.18)
j=1 j=1 =0

where uy is a MDS such that E(u}|l;-1) = E(urs — up¢|l;—1) = 0 a.s., given E(u|l;—1) = [0,0]
a.s. This delivers an alternative dynamic range model to Chou (2005) for modelling the range
dynamics of a time series. The difference is that the derived range model in Eq.(2.18), with an
ACIX(p, ¢, s) model as the data generating process (DGP), has an additive innovation while Chou
(2005) has a multiplicative innovation. Our approach has an advantage, that is, we can use an
interval sample, rather than the range sample only, to estimate the ACIX model more efficiently
even if the interest is in range modelling.

Similarly, we can obtain an ARMAX(p, ¢, s) level model with A\ = % in Eq. (2.12):
p q s
Y =ag+ > BV A Y SX 4, (2.19)
j=1 j=1 Jj=0
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where u}" is a MDS such that E(u}"|I;—1) = E(%uw + %uR7t|It_1) =0 a.s., given E(w|l;_1) =0
a.s. This can be used to forecast the trend of a time series process.

Finally, we can obtain a bivariate ARMAX(p, ¢, s) model for the boundaries of Y} :

{ YLt:OéO 250"’2] 1BYLt ]+Zj 173uLt J+Z] =0 ]XLt ]+uLt7 (220)

Y= a0+ 580+ 20 B;Yri—j + 21y Viure—j + 25— 05X Ry + Ury,

where E (ur4|l;—1) = E(ug¢|li—1) = 0 a.s. given E (u|l;—1) = [0,0] a.s.
3. Minimum Distance Estimation

We now propose a minimum distance estimation method for an ACIX(p, ¢, s) model. We first
impose a set of regularity conditions:
Assumption 1. {V}} is a strictly stationary and ergodic interval stochastic process with E || Y;||5 <
00, and it follows an ACIX(p, g, s) process in Eq.(2.16), where the interval innovation u; is an IMDS
with respect to the information set I,_1, that is, E(w|l,_1) = [0,0] a.s., and X, = (X1, ..., X5)'
is an exogenous strictly stationary ergodic interval vector process.
Assumption 2. Put A(z) = 1+ 77,2/ and B(z) = 1 —3_%_, 8;27. The roots of A(z) =
and B(z) = 0 lie outside the unit circle |z| = 1.
Assumption 3. (i) The parameter space © is a finite-dimensional compact space of R¥ where k =
p4q-+(s+1)J42. (ii) 6" is an interior point in ©, where 6° = (aq, B¢, 51, .-, B Y15 s Vs 05 - 0%)
is the true parameter vector value given in Eq.(2.16).
Assumption 4. The assumed initial values are Y; = % for —p+1 <t <0, uy = 1y for
—q+1<t<0and X; = Xg for —s < t < 0, where there exists 0 < C < oo such that
E'supgee 1Yol < C, E supgee ||@0||§< < C, Esupyeq 1 Xoll < C.
Assumption 5. The square matrices E[(s%, 3%);(] and E[(S%, Sus(0)) K (Sus(0) 3%);(]
are positive definite for all # in a small neighborhood of 6°.
3.1 Minimum Dy -Distance Estimation

Given that E(Y;|I;_1) is the optimal solution to minimize E[D%(Y;, A(I;_1))], as is estab-
lished in Lemma 2.1, we will propose an estimation method that minimizes a sample analog of
E[D?(Y;, A(I;_1))]. As an advantage, our method does not require specification of the distribu-
tion of the interval population. Also, the proposed method provides a unified framework that can
generate various point-valued estimators (e.g., conditional least squares estimators based on the
range and/or midpoint sample information) as special examples; see Section 3.2 below.

We define the minimum D g-distance estimator as follows:
0=a in Qr(0
rg min Qr(0),
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where TQr(6) is the sum of squared norm of residuals of the ACIX(p, ¢, s) model in (2.16), namely

Qr() = = al), (31)
@(0) = @Ol (3.2)

and . .
uy(0) =Y; — | (a0 + Bolo) Zﬂ Yij 25;Xt—j - Z%Ut—j(e) : (3.3)

Since we only observe {Y;, X/} from time ¢ = 1 to time ¢ = T', we have to assume some initial

values for {Y;};_ ol (X}, 1 and {u, (0 ) _44+1 in computing the values for the interval error

process {u(0)}.
We first establish consistency of .

Theorem 3.1. Under Assumptions 1, 2, 3(i) and 4, as T — oo,
R

Intuitively, the statistics Qr(f) converges in probability to E[D%(Y;, Z/(0)#)] uniformly in © as
T — oo. Furthermore, the true model parameter #° is the unique minimizer of E[D2 (Y}, Z/(0)0]
given the IMDS condition on the interval innovation process {u;}. It then follows from the
extremum estimator theorem (e.g., Amemiya (1985)) that 6 2> 6° as T — oc.

Next, we derive the asymptotic normality of 0.

Theorem 8.2. Under Assumptions 1-5, as T — oo,
VT (0 — 6°) = N(0, M~ (6°)V(6°) M~ (6%)),

where V(0°) = E[aqg(go) dqégojo)], M%) = E[agg—a(z?)], q:(0) is defined as in Eq.(3.2) and all the

derivatives are evaluated at 6°.

The asymptotic variance of VT (0—6°), i.e., M~1(6°)V (8°)M~1(6°), can be consistently estimated,

as shown below.

Theorem 8.3. Under Assumptions 1-5, as T — oo,




where ¢ (0) is defined in Eq.(3.2) and all derivatives are evaluated at the estimator 6 and the

assumed initial values for Yy, Xy, uy(0) with t < 0. Then, as T — oo,

M () Vir(0) My (B) — M~ (6°)V (6°) M (6°) - 0,

We note that the asymptotic variance of /T 6 cannot be simplified even under conditional
homoskedasticity that var(us|I;_,) = 0% for an arbitrary kernel K.

When the ACIX(p, g, s) model becomes an ACIX(p, 0, s) model as in Eq.(2.17), namely, when
there is no MA component in the ACIX(p,q,s) model, the minimum Dg-distance estimator 0
has a convenient closed form that is similar to the conventional OLS estimator. This is stated

below.

Corollary 3.1. Suppose Assumptions 1-5 hold, and {Y;} follows the ACIX(p,0,s) process in
Eq.(2.17). Then the minimum D -distance estimator 0 has the closed form

-1

T T
) /
0 = E <SZt7SZt>K 2 : <5Zt7SYt>K7
t=14max(p,s) t=1+4max(p,s)

where Zy = ([1,1], Iy, Yi_1, ..., Yiep, X1, X1, ooy X1_). When T — o0, 0 - 6°, and
ﬁ@ - 00) i) N(O’ E~ |:<SZ“S/Zt>K} E [<SZt’SUt>K <Sut’8/Zt>K] E™ [<3Zt7 S/Zt>KD

Furthermore, as T — 00,

T

T D sz = B (520550

t=1+4max(p,s)
T

T_l Z <8Zu Sﬂt>K <S7lt’ S,Zt>K o E [(SZt7 SUt>K <Suz7 S/Zt>K} ’

t=14max(p,s)
where 1, =Y, — Z,0.

3.2 Examples of Minimum Dg-Distance Estimators

This section explores how the results in Theorems 3.1-3.3 can be used to derive various esti-

mators as special cases. Based on the estimated interval residuals {;(6)}L,, define

T T
2.0(0), QF(0) =T~ 12 Re(0), QF(O) =T71) i o(0)ip(6)

t;l t= T t=1 T (34)
=T [@OF, Qo) =T Y [y ) =Ty

t=1 t=1

QL(9)
Q7 (0)
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where uy(0) and dp(f) are the left and right bounds of @, (6), u;(0) = ur.(0) — Gr.(0) and
a(0) = 24,,4(0) + 3tig.(0) are the range and midpoint of @;(#). Combining Egs.(2.11) and (3.4),

we obtain

Qr(0) = aQ¥(9) + cQ(0) — 20Q%%(9)
_ %b“@;(e) +(a—2b+¢)Om(6) + (a— ) O (6). (3.5)

Case 1: Conditional Least Squares Estimators Based on Univariate Point Data

Suppose we choose a kernel K with (a,b,c¢) = (1,1,1). Then
Qr(6) = Q(6"),

which is the sum of squared residuals of the conditional dynamic range model in Eq.(2.18). In

this case, the minimum Dg-distance estimator solves

AT

0 = in Q1(6).
arg min Q7-(0)
The estimator 6 cannot identify the level parameter ay, because 0" is based on the range sample

(Y7, X7}, which contains no level information of the interval process {Y;}.

! ). Then

Suppose we choose a kernel K with (a,b,c¢) = (Z>

11
401
which is the sum of squared residuals of the conditional dynamic level (i.e., midpoint) model in
Eq.(2.19). In this case, the minimum Dg-distance estimator solves

0 =arg min QT (0).

The estimator 6 can consistently estimate the level parameter «q, but it cannot identify the scale
parameter (3, because 0™ is based on the midpoint sample {Y;", XZ“}tTZI, which contains no range
information of the interval process {Y;}.

Given the fitted values for both range and mid-point processes, we can construct a one-step-

ahead predictor for interval variable Y; using information I, :

. N ORI I
E(Yi|l-) = Y = SV, V" + 5Y ]

where th and Yt’” are one-step-ahead point predictors for ¥, and Y, based on Egs.(2.19) and
(2.18) respectively.
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Both estimators § and @ are convenient and they can consistently estimate partial parameters
in the ACIX(p, ¢, s) model. However, besides the failure in identifying level parameter «q or scale
parameter (3,, these estimators are not expected to be most efficient because they use the range

and level sample information separately.
Case 2: Constrained Conditional Least Squares Estimators Based on Bivariate Point Samples

Now we consider the choice of kernel K with ¢ = ¢ > 0 and b = 0. Then

1, i 1
2Qr0) = QrO) +QO) = 3 7 [10.(0) + 5, (0)]

This is the sum of squared residuals of the bivariate ARMAX model in Eq.(2.20) for the left bound
Y7+ and right bound Yx; of the interval process {Y;}. Thus, the minimum D x-distance estimator
6 becomes the constrained conditional least squares estimator for the bivariate ARMAX(p, ¢, s)
model for the left and right bounds of Y;; it is consistent for all parameters 6° in the ACIX model.

Given the fitted values for the bivariate ARMAX(p, ¢, s) model for Y7, and Yz, we can also

construct a one-step-ahead predictor for interval variable Y; using information I;_;:
B(Yillr) = [Vig Vi

where YM and YR,t are one-step-ahead point predictors for Y, ; and Yr; based on Eq.(2.20).

Case 3: Constrained Conditional Quasi-Maximum Likelihood Estimators

The bivariate ARMAX(p, ¢, s) model for the (Y74, Yr:)" can also be consistently estimated by
the constrained conditional quasi-maximum likelihood method (CCQML) based on the bivariate
point-valued sample {Y7;, Yr;}7_;. Assuming that the bivariate innovation {ur;, ug;} follows
i.5.d.N(0,X9), where ¥ is a 2 x 2 unknown variance-covariance matrix, we obtain the log-Gaussian

likelihood function given the bivariate sample {Y7 s, Yz}, as follows:

T 1 <&

L(9.%) = FE -5 > (uri(8), ure(0) 7 (ure(6), ura(6))',

t=1

where u(0) and up(0) are the left and right bounds of u;(#) defined in Eq.(3.3). The CCQML
estimator,

0, vech(S ) - L(0,%),
( ;vech(2) arg(e,z)re%afmw (6,%)

consistently estimate the unknown parameter 6° given the IMDS condition that E(u|l,_;) = 0.

We note that
" A A T “ ~ o
—L(0,%) = hl |E| + leQT( ) + ZQZQT( ) — 2212@%]%(9)’
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where f]ij is the (4, j)-th component of the variance-covariance estimator S, This first looks rather
similar to the objective function Qr(6) in Eq.(3.5) of the minimum Dj-distance estimator, with
the choice of kernel K as K (1,1) = 3y, K (1,-1) = K(=1,1) = &y = 39, K (—1,-1) =
IO (this correspondence between a kernel K and a matrix, e.g., f], will be simply represented
as K = f], and our notation will follow this convention throughout this paper). However, we
cannot interpret the CCQML estimator as a special case of the minimum Dg-distance estimator
because for the minimum Dg-distance estimation, the kernel K is prespecified, whereas for the
CCQML, both 6 and vech(X) are unknown parameters and have to be estimated simultaneously.
We will examine the relative efficiency between the minimum D g-distance estimator and various

alternative estimators for 6° in subsequent sections.

4. Efficiency and T'wo-Stage Minimum Distance
Estimation

The minimum D g-distance method provides consistent estimation for an ACIX model without
having to specify the full distribution of the interval population. Different choices of kernel K will
deliver different minimum Dg-distance estimators for °, and all of them are consistent for 6°,
provided the kernels satisfy Eq.(2.6). As discussed earlier, different choices of K imply different
ways of utilizing the sample information of the interval process. Now, a question arises naturally:
What is the optimal choice of kernel K, if any? Below, we derive an optimal kernel that yields a
minimum D g-distance estimator with the minimum asymptotic variance among a large class of
kernels that satisfy Eq.(2.6). We first impose a condition on the interval innovation process {u;}.
Assumption 6. The interval innovation process {u;} satisfies var(us|I;_1) = 0% < 0o, and the
derived bivariate point process {uy, ug;} satisfies var(uy s, up|li—1) = X°, where 3° is a finite
symmetric positive definite matrix.

This is a conditional homoskedasticity assumption on both {u;} and {ur; ugr:}. The i.i.d.

condition for {u;} and {ur;, ug.+} is a sufficient but not necessary condition for Assumption 6.

Theorem 4.1: Under Assumptions 1-6, the choice of kernel K°P'(u,v) with

K%(1,1) = var(urg ¢),
KP(—1,1) = K% (1,-1) = cov(urs, ury),
KP(=1,-1) = var(ugy)

delivers a minimum Dy -distance estimator

T
. 1 2 /
— arg I@Iélél ? ; DKopt [Y;, Zt(e)g] )

~opt

0
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which is asymptotically most efficient among all symmetric positive definite kernels K that satisfy

FEq.(2.6), with the minimum asymptotic variance

Qopt — ||KoptH |:E—1 <S%, Slaut> ]
20 20 / [opt
where ||KoPt|| = K°Pt(1, 1) K°P(—1, —1) — K°P(—1,1)K°P (1, —1).

To explore the intuition behind Theorem 4.1, we note that when kernel K is used, the

objective function of the minimum D g-distance estimator becomes

Qr(68) = var(ug)Q7(6) + var(up) Qf(6) — 2cov(urp, up, ) Q7™ (6).

Thus, K°P* downweights the sample squared distance components that have larger sampling vari-
ations. Specifically, it discounts the sum of squared residuals of the right bound if the right bound
disturbance ug, has a large variance, and discounts the sum of squared residuals of the left bound
if the left bound disturbance uy; has a large variance. The use of K also corrects correlations
between the left and right bound disturbances. Such weighting and correlation correction are sim-
ilar in spirit to the optimal weighting matrix in GLS. We note that the optimal choice of kernel
K°P! is not unique. For any constant ¢ # 0, the kernel cK°" is also optimal.

The results in Theorem 4.1 do not apply if the conditional homoscedasticity condition in As-
sumption 6 is violated. We leave derivation of the optimal kernel under conditional heteroscedas-
ticity for future study.

The optimal Dg-distance estimator is not feasible because the optimal kernel K°P', which
depends on the DGP, is infeasible. However, we can consider a two-stage minimum D g-distance
estimation method: In Step 1, we obtain a preliminary consistent estimator 0 of 6°. For example,
it can be a minimum Dg-distance estimator with an arbitrary prespecified kernel K satisfying
Eq.(2.6). We then compute the estimated residuals {i;(#)} and construct an estimator for the

optimal kernel Kt

Kopt -1 § uL t

This is consistent for K°?*. Then, in Step 2, we obtain a minimum Dg-distance estimator with

the choice of K = K°Pt:

%) %>

)i t(é) i

~opt /
0 —argrenelél ZDKW Y, Z,(0)0] .

This two-stage minimum D g-distance estimator is asymptotically most efficient among the class

of kernels satisfying Eq.(2.6), as is shown in Theorem 4.2 below.
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Theorem 4.2. Under Assumptions 1-6, as T — oo, the two-stage minimum D g -distance estimator
VTOF — %) 25 N(0, ),

where QP is the minimum asymptotic variance as given in Theorem 4.1.

Interestingly, when the left and right bounds ur,; and ur; of the interval innovation u, follow an
~opt
i.7.d. bivariate Gaussian distribution, the two-stage minimum D g-distance estimator 6 " achieves

the Cramer-Rao lower bound. This is stated in Theorem 4.3.

Theorem 4.3. Suppose Assumptions 1-6 hold and {ur 4, up} ~i.i.d. N(0, X°). Then as T — oo,
the two-stage minimum D -distance estimator 8" achieves the Cramer-Rao lower bound of the
constrained mazximum likelihood estimator for the bivariate ARMAX (p, q, s) model for the left and
right bounds of the interval process {Y;}.

Although they are asymptotically efficient, we note that the constrained maximum likelihood
estimator for the bivariate ARMAX(p, q,s) model for the left and right bounds of the interval
process {Y;} is not numerically identical to the two-stage minimum D g-distance estimator o

When the bivariate process (ur ¢, ugy) is not i.i.d. Gaussian, the CCQML estimator @QML
based on the Gaussian likelihood is consistent but not optimal for °. It could be shown that the
two-stage minimum D g-distance estimator 9Opt is asymptotically equivalent to @Q ML, but only
in first order. Their efficiency differs in second order asympototic analysis, as is established in

Theorem 4.4 below.

Assumption 7. (i) Y77 > F |E[alt (%) mtafh(,‘p )323,15(9“,0 )| < 0o. The notation here indi-

cates that each element in E[alta(“; e 83,5'9 )8255}:5(9‘,”0)] is absolute summable over all j and [. (ii)
2 O (0 0 2
D e 0 D0 D he o0 Jojpata mt_g,f“o )altélh(f )2 lghge, ]| < oo. The notation indicates that each

D214 (%) Ol (%) Ol (¢°) 8%L_1 (¢°)

506 oh Sh Ak is absolute summable over all j, k and I.

element in E|

Theorem 4.4. Suppose Assumptions 1-5 and 7 hold. Then we have

~ opt

avar(\/_QQML) — avar(\/_ )= ( He—e}) U (_He—a}) 7
where
O (°) Ol (¢°) 1 OPlii(¢”) Pl(¢°) 10l (¢°) Ol a(¢°)
j—z—:oo ZZ_:OO { |: on Hhh 3h@0/ +E 000N Hhh Oh 66/

Hyy = E[%], Hp, = E[%], and ° = (0°,h°) with h° =vech(XP).

Theorem 4.4 suggests that the asymptotic variances of \/TéQML and \/T@Dpt are different
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in second order asymptotics, and the difference depends on the third order cumulants of the

Ol (¢°) 0le(¢?) 2 (oY)
0> and S5

The interaction terms are generally non-zero when (ur, ug:) is not Gaussian. Thus, we expect

prespecified log-likelihood function, particularly on the interactions among

that their finite sample performances will differ. Since @Q L involves more parameters to estimate
~opt ~opt

than 6 p, it is expected that 6 " will be more efficient in small samples and finite samples,

particularly when there exists conditional heteroscedasticity. This is confirmed in our simulation

study.
5. Hypothesis Testing

In this section, we are interested in testing the hypothesis of interest:
Hy: RO =r,

where R is a ¢ X k nonstochastic matrix of full rank, ¢ <k, r is a ¢ X 1 nonstochastic vector, and
k is the dimension of parameter # in the ACIX(p, ¢, s) model of Eq.(2.16).

We will propose a Lagrange Multiplier (LM) test and a Wald test based on the minimum
Dg-distance estimation. We first consider the LM test. Consider the following constrained D -

distance minimization problem

0 = arg min Qr(6),

subject to Rf = r. Define the Lagrange function
Ly(6.2) = Qr(9) + N (r — RQ),
where A is the multiplier. Let 6 and )\ denote the solutions that maximize L (0, )), that is,
(0,)\) = arg Igleiél Lr(6,)\).
Then we can construct a LM test for Hy based on .
Theorem 5.1: Suppose Assumptions 1-5 and Hy hold. Define
LM = [TX’R'MT(Z))R] [R’M;l(é)VT(é)MT—l(é)R]l [R’MT(é)RX}

where Mp(0) and Vy(0) are defined in the same way as My (0) and Vi () in Theorem 3.3 respec-

tively, with the constrained minimum Dy -distance estimator 6. Then LM L, Xg as T — oo.

We note that the LM test only requires the minimum D g-distance estimation under Hy.
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Alternatively, we can construct a Wald test statistic that only involves the minimum Dy-

distance estimation under the alternative hypothesis to Hy (i.e., without parameter restriction).

Theorem 5.2: Suppose Assumptions 1-5 and Hy hold. Define a Wald test statistic
. e e
W= [T(Re - r)'} [RMT—l(e)VT(e)MT—l(e)R'] [(Re - r)]
where 0, Mp(0) and Vi(0) are defined in the same way as Mp(0) and Vp(0) in Theorem 3.3

respectively. Then, W L, Xg as ' — oo.

The Wald test WV is essentially based on the comparison between the unrestricted and restricted
minimum D y-distance estimators 6 and 0, but the test statistic W only involves the unrestricted
parameter estimator 0.

Because we do not assume a probability distribution for the interval process {Y;}, we cannot

construct a likelihood ratio test for H.
6. Simulation Study

We now investigate the finite sample properties of conditional least squares (CLS), constrained
conditional least squares (CCLS), CCQML, minimum D x-distance (with a prespecified kernel K')
and two-stage minimum D g-distance estimators via a Monte Carlo study. We will consider two
sets of experiments. In the first experiment, the interval data are generated from an empirically
relevant ACI process. In the second set of experiments, the interval data are constructed from a

bivariate ARMA process.
6.1 ACI-Based Data Generating Processes
We first consider an ACI(1,1) model as the DGP:

Y, = ap + Bolo + B1Yi—1 + vyue—1 + uy, (6.1)

where parameter values 6° = (g, 8y, 31,7,) are obtained from the minimum Dg-distance esti-
mates of the ACI(1,1) model based on the real interval data of the S&P 500 daily index from
January 3, 1988 to September 18, 2009, and the kernel K used is with (a,b,c) = (5,3,5). The
minimum and maximum S&P 500 closing price values of day ¢ form the raw interval-valued ob-
servations in this period, denoted as { P, ..., Pr}. Then we convert the raw interval price sample
data to a weakly stationary interval sample, denoted {Y7,...,Yr}, by taking the logarithm and
Hukuhara difference as Y; = In(P;) — In (P,—1) . The initial values of Y; and u; for ¢ = 0 are set

to be Y7 and [0, 0], respectively. We obtain the minimum Dy-distance parameter estimates and
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use them as the true parameter values in DGP (6.1). To simulate the interval innovations {u;} in

(6.1), we first compute the estimated model residuals
e =Yy = (o + IoBy + B1Ye-1 + A1)

based on the S&P 500 data. We then generate {u;},_, via the naive bootstrapping from {a;},_,,
with 7" = 100, 250, 500, and 1000, respectively. For each sample size T', we perform 1000 replica-
tions. For each replication, we estimate model parameters of an ACI(1,1) model using CLS, CCLS,
CCQML, minimum D g-distance and two-stage minimum D x-distance methods respectively. Two
parameter estimates of CLS are obtained, i.e., 0" = (BO,Bl,%) and 0 = (&O,Bl,%), based on
range and midpoint data, respectively. We consider 4 kernels with a = ¢, one of which yields the
CCLS estimator Occrs for the bivariate model of the left and right bounds of Y; in Eq.(2.20).
Another 6 kernels with the form of Case 5 in Section 2.1 are considered. The two-stage minimum
Dg-distance estimator 6™ is obtained from a kernel K with (a,b,c) = (10,8, 16) in the first stage.

We compute the bias, standard deviation (SD), and root mean square error (RMSE) for each

estimator:
Bias(0;) = L 1000(@@) - 90)
‘ 1000 — ! e
SD@;) = |— 120030@@) - 9-)2] "
! 1000 — ! ! ’

RMSE (éz> = [Bias2(éi) + SDg(éz’)} 1/2,

m=1 "1

Tables 1-4 report Bias, SD, and RMSE of CLS, CCLS, CCQML, minimum D g-distance (de-

noted as 9) and two-stage minimum Dg-distance estimators respectively. Several observations

where 0; = Wloo 21000 9@), and 0; = o, BO, Bl, 44, respectively.

emerge. First, for all estimators, the RMSE converges to zero as the sample size T increases. In
particular, the minimum D g-distance estimator 0 displays robust performance for various ker-
nels. Second, both the interval-based minimum D g-distance estimators and the bivariate-point
based estimators outperform the estimators 0" and " in terms of RMSE. The two-stage minimum
Dy-distance estimator 9Opt dominates the minimum D g-distance estimator 0 with most kernels,
confirming the efficiency result in Theorems 4.1-4.2. The estimator o outperforms @QML for
all parameters in 6° in terms of RMSE. Intuitively, CCQML has more unknown parameters to
estimate than the two-stage minimum D g-distance estimator 90pt, thus §” has more desirable
performance than @Q M in finite sample.

~  ~opt ~ ~ ~
Lastly, comparing @, 0™ and Oonrr with 0" and Gr, the efficiency gain over the CLS estima-
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tors based on either the level or range sample separately is enormous as 1" becomes large. This is
apparently due to the fact that § and ™" utilize the level, range and their correlation information
in the interval data. On the other hand, while the estimators 0" and 0" can consistently estimate
model parameters, 0™ is better than § . Data examination shows that this is due to more varia-
tions in level of Y; rather than in range over time. This highlights the importance of utilizing level

information of asset prices even when interest is in modelling the range (or volatility) dynamics.

6.2 Bivariate Point-Valued Data Generating Processes with Conditional Homoscedas-
ticity

This section investigates the finite sample properties of CCLS, CCQML, minimum D g-distance
and two-stage minimum D g -distance estimators when the DGP of (Y, ;, Yr.)' are various bivariate
point processes with innovations (ur, ;, ug;) ~ i.i.d. f(0,3°), where f(0,3°) is a bivariate density
function and X° = F[(ur, urs) (UL, ury)]-

We consider the following bivariate point process as the DGP:

{ Yi:= o — %ﬁo + B1Yr 1 + Yure—1 +urg, (6.2)

Yrt = ap + %50 + B1YRt—1 + V1UR—1 + UR,

where parameter values #° = (ag, By, 31,7,)" are obtained in the same way as in Section 6.1 based
on the actual S&P 500 daily data. Bivariate point innnovation {ur ¢, ug,},, are generated with
sample sizes of T" = 100, 250, and 500 respectively, and three distributions are considered: bivariate
Gaussian, bivariate Student-¢5, and bivariate mixture with ur; = aicor + €11, Urs = a2c0r + €2
where ¢ follows i.i.d. EXP(1) — 1 for ¢ = 0,1,2, and they are jointly independent. Different
values of constants a;, as result in different 3° for the mixed distribution. For each distribution,
corr(ur ¢, urt) = 0 and —0.6 are considered. For each sample size 7', we perform 1000 replications.
For each replication, we compute CCQML estimator @Q ML, minimum Dg-distance estimators 0
from prespecified kernels and two-stage minimum Dg-distance estimator 6" In particular, the
prespecified kernels include the one that yields the CCLS estimator Occrs for Eq.(2.20), as well
as a kernel that assigns the same weights to the midpoint and range (see K, in the tables below).
6™ is obtained from the kernel with (a,b,c) = (10,8,16) in the first step. We also include the
infeasible optimal kernel K°P* = X° to obtain the infeasible asymptotically most efficient minimum
D g-distance estimator 920; this allows us to study the impact of estimating the unknown K in
the two-stage minimum D g-distance estimation.

We report Bias, SD, and RMSE of parameter estimates in Tables 5-1 to 8-1. All estimates con-
verge to their true parameter values respectively in terms of RMSE as T increases. For a bivariate
point i.i.d. Gaussian innovation (ur ., ug:)’, the two-stage minimum Dg-distance estimator 90pt

is as efficient as the constrained maximum likelihood estimator for the bivariate model of the left
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and right bounds of Y}, which is consistent with the result in Theorem 4.3. The estimator 6" also
significantly outperforms @ with arbitrary choices of kernel K. It confirms the adaptive capability
of our two-stage minimum D g-distance estimator.

When the bivariate innovation (ur, ug:)" follows a Student-t; or mixed distribution, 9Opt is
still the most efficient in the class of minimum D g-distance estimators, which is consistent with
Theorem 4.2. Moreover, o generally outperforms éQML. Note that the efficiency gain of o
over the CCQML estimator is more substantial under asymmetric mixture distribution errors in
finite samples. We also observe that @Opt outperforms @CCLS when corr(ur s, ug:) = —0.6. This
implies that since 9CCLS ignores the (negative) correlation between the left and right bounds, it
is not efficient under the bivariate point-valued DGP. Finally, ™" is almost the same efficient as
the infeasible asymptotically efficient estimator fso as T increases. This indicates that the first

stage estimation has negligible impact on the efficiency of the two-stage minimum D g-distance

estimator.
6.3 Bivariate Point-Valued Data Generating Processes with Conditional Heteroscedas-
ticity

To get an idea about the finite sample performances of different estimators under the neglected

conditional heteroscedasticity in (ur ¢, ugr+)’, we consider a constant conditional correlation (CCC)-

GARCH (1,1) model for (ury,ug:)’. Following DGP1 in McCloud and Hong (2011), we have
urt =~/hrtzre, Urt = \/hrtzrt, and

hpe=0.4+0.15u7 , ; +0.8hp; 1,
hR,t =02 =+ 0.21132’15,1 + O-7hR,t717

ii.d. 1
(20 7)ot N[O’ (p f)}

where p = 0, and —0.6 respectively. We then generate the bivariate innovation {ur s, up}i, from

(6.3) with T = 100, 250, and 500 respectively. {Y;}Z, is then generated from (6.2), where the

(6.3)

true parameter values 0° = (v, By, B1,71) are obtained in the same way as previous experiments.
For each sample size T', we perform 1000 replications. For each replication, we compute CCQML
estimator 9QML, minimum Dg-distance estimators @ from prespecified kernels, and two-stage
minimum D g-distance estimator @Opt. The prespecified kernels include both cases with b > 0 and
b< 0. 8™ is obtained from a kernel with (a,b,c) = (10,8,16) in the first step.

Several conclusions can be drawn from the results of parameter estimates reported in Tables
5-2 to 8-2. First, all minimum D g-distance and CCQML estimators converge in terms of RMSE
as T increases, under neglected conditional heteroskedasticity of (ur ¢, ur:)’, although the bias and

~opt
the variance of most estimates are larger than under conditional homoscedasticity. Second, 0"
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clearly outperforms @Q vz in finite samples. And compared to the results in Section 6.2, o yields
a larger gain over 9Q vz when there exists serial dependence in higher moments of (ur, ugr:)'.
In fact, the class of minimum Dg-distance estimators with arbitrary kernels with b < 0 also
outperform @Q ML-

In addition to (6.3), we also examined DGP6 in McCloud and Hong (2011), i.e., DDC-GARCH
(1,1) model, as our DGP for (ur s, ug:). Due to the similar patterns of simulation results emerg-
ing from the DCC-GARCH(1,1) parameterization in terms of ranking different estimators, the
experiment details are not reported here, yet are available from the authors on request.

Overall, the simulation results in Tables 1-8 generally reveal the desirable properties of the

two-stage minimum Dg-distance estimator relative to many others.
7. Empirical Application

In this section, we examine the explanatory power of bond market factors for excess stock
returns when stock market factors are present. Fama and French (1993) consider two bond market
factors, TERM; and DFEF;, where TERM, is the difference between the monthly long-term
government bond return LG, and the risk-free interest rate Ry, and DEF; is the difference
between the return on a market portfolio of long-term corporate bonds LC;, and LG;. Fama and
French (1993) find that these two bond market factors alone are significant in explaining excess
stock returns. However, they find that the inclusion of three stock-factors (i.e., Ry,: — Ry, SM By,
HML;) in regressions for stocks kill the significance of TERM,; and DEF;. There are at least
two possibilities for insignificance of TERM; and DEF;. The first is that the three stock market
factors contain all information in TERM; and DEF}, and thus the bond market factors become
insignificant when the stock market factors are included. The second possibility is that the OLS
estimator used in Fama and French (1993) is not efficient because it does not exploit the level
information of asset returns and interest rates. In this case, it may become significant if we use
the more efficient two-stage minimum D g-distance estimator. Our aim here is to explore whether
the significance of bond market factors will be wiped out by the stock-market factors by using an
interval CAPM model when a more efficient estimation method is used.

Fama and French’s (1993) five-factor Capital Asset Pricing Model (CAMP) is
Ri— Ry = By + By(Ront — Rpt) + BoSM By + By HM L, + B,TERM + B, DEF +¢,,  (7.1)

where R; is a portfolio return, Ry, is the risk-free interest rate, R,,; is the market portfolio return,
SM B, is the the difference between the return on the small portfolio and the return on the large
portfolio, HM L, is the difference between the return on the high book-to-market portfolio and
the return on the low book-to-market portfolio, and T ERM,; and DEF; are defined as above.
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Given the definition of variables in the Fama and French’s (1993) model, (7.1) can be viewed

as a ‘range’ or ‘difference’ model of the following interval CAPM:
Yie = o + Bolo + 51 X1t + B Xop + B3 X3 + B4 Xar + B X5t + wy, (7.2)

where 7 = 1,..., 25, E(utut—l) = [0,0], E/t = [th, Rt], Xlt = [th, Rmt];

1

Xy = {g(B/Lt+B/Mt+B/Ht)a%(S/Lt‘i‘S/Mt‘f‘S/Ht)}a

Xao = |08/t B/L). 55/, + B/H)|.

and Xy = [Rp, LGy, X5 = [LGy, LCY].

Using the monthly data from French’s website, we estimate model parameters 3,, (5, (s,
B4, B5 by OLS based on Fama and French’s (1993) model (7.1) and by the two-stage minimum
Dg-distance estimator based on the interval CAPM model (7.2) for each portfolio. To obtain
a reliable standard error for each parameter estimator, we use the bootstrap method as follows.
We first estimate Fama and French’s (1993) model in (7.1) with OLS and the interval CAPM in
(7.1) with the minimum D g-distance method for each of the 25 portfolios, and use the obtained
parameter estimates as the true parameter values in the corresponding model. The estimation
is based on the monthly data with the same sample period as in Fama and French (1993). The
generations of the point innovations {e,},_, for (7.1) and the interval innovation {u,},_, for (7.2)
are the same as described in Section 6.1. We generate 500 bootstrap samples and obtain 500
bootstrap estimates for each parameter, which are then used to compute the estimated standard
error of each parameter estimate and the associated t-test statistic. For each bootstrap sample,
we estimate model parameters using the OLS estimator for Fama and French’s (1993) model,
and obtain estimate the interval version of Fama and French’s (1993) model using the two-stage
minimum Dy-distance estimator 9Opt. For comparison, we also include minimum D g-distance
estimators with various choices of kernel K, and CCQML.

Table 9 reports the t-statistics for 5 groups of stock returns in terms of the book-to-market
quantiles, each of which includes 5 groups in terms of the size quantiles. For each combination of
two kinds of quantiles, we report the t-statistics of the OLS, the minimum Dg-distance estima-
tors, the two-stage minimum D g-distance estimator 9Opt, and the CCQML estimator 9Q mrL- The
estimates for aq in (7.2) are not reported here, since Fama and French’s (1993) model does not
include this level parameter.

Table 9 shows some interesting findings. First, the minimum D g-distance estimators, @Q ML

and 0™ for most of the 25 stock portfolios reveal strong evidence that the default risk factor
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DFEF; is significant in capturing the variation of excess stock returns, compared to the critical
value of 1.96 at the 5% significance level. Generally, i yields larger t-statistics than 9Q ML, and
both of them have large t-statistics than OLS. On the other hand, there is not an overwhelming
pattern for the effect of TERM; on excess stock returns for 25 portfolios. Data inspection shows
the risk-free rate Ry, does not variate much over time relative to the long-term government bond
return LG;. As a result, the use of interval bond factor Xy, contains about the same information
as the differenced T'ERM,; factor. In contrast, the significance of the two bond-market factors
is still wiped out in the OLS regression on stock returns, as has been documented in Fama and
French (1993). Thus, our evidence confirms the invaluable ‘level” information contained in interval
data compared to the point-valued data used in Fama and French (1993) which only contains the

‘range’ or ‘difference’ information.
8. Conclusion

Interval-valued data are not uncommon in economics. Compared to the point-valued data,
interval-valued data contains more information including both level and range characteristics of
the underlying stochastic process. This informational advantage can be exploited for more efficient
estimation and inference, even if the interest is in range or difference modelling. Interval forecasts
are also often of direct interest in many applications in economics.

This paper is perhaps the first attempt to model interval-valued time series data. We intro-
duce an analytical framework for stationary interval-valued time series processes. To capture the
dynamics of a stationary interval time series, we propose a new class of autoregressive conditional
interval (ACIX) models with exogenous variables and develop a class of minimum Dg-distance es-
timators. We establish the asymptotic theory for consistency, asymptotic normality and efficiency
of the proposed estimators and exploit the relationships among various estimators that utilizes
the interval sample information in different ways. In particular, we derive the optimal kernel func-
tion that yields an asymptotically most efficient estimator for an ACIX model among the class of
symmetric positive definite kernels, and propose an asymptotically efficient two-stage minimum
Dg-distance estimator. Simulation studies show that the two-stage minimum D g-distance es-
timator outperform various estimators such as the conditional least squares estimators that are
based on the range information and/or midpoint information of the interval sample, and the con-
ditional qausi-maximum likelihood estimator based on the bivariate model for the left and right
bounds of the interval process. In an empirical study on asset pricing, we document that unlike
the conclusion of Fama and French (1993), some bond market factors, particularly the default

risk factor, are significant in explaining the variation of excess stock returns even after the stock
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market factors are controlled. This highlights the gain of utilizing the level information of risk
premium even when the interest is in range or difference modelling (i.e., excess risk premium).
The proposed ACIX models are the interval version of the ARMAX models for point-valued
time series data. More flexible nonlinear models for interval time series, such as Markov-Chain
regime switching models, autoregressive threshold models, and smooth transition models, can also
be considered to capture nonlinear (e.g., asymmetric) features in the dynamic structure of station-
ary interval time series. On the other hand, the interval version of vector autoregression (VAR)
or VARMA models can be considered to explore cross-dependence between different time series
processes. Furthermore, one can consider nonstationary interval time series and the cointegrating
relationships between nonstationary interval time series. Finally, interval modelling can also be

considered in cross-sectional econometrics. All of these will be explored in future research.
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TABLE 1. Bias, SD and RMSE of Estimates for Parameter o in ACI (1,1)

(1071
T =100 T =250 T = 500 T = 1000
a/b/c Bias S.D RMSE Bias S.D RMSE Bias S.D RMSE | Bias S.D RMSE
K, N/A| NJ/A| N/A| N/A| NJ/A| NJ/A| N/A| NJ/A| NJ/A| N/A| N/A| N/A
K, —0.2444 | 2.6801 | 2.6912 | 0.4071 | 1.3415 | 1.4019 | 1.1184 | 0.9330 | 1.4565 | 0.4688 | 0.6446 | 0.7970

CCQML | —0.2657 | 2.3823 | 2.3971 | 0.3592 | 1.2203 | 1.2721 | 1.0741 | 0.7732 | 1.3235 | 0.4505 | 0.5451 | 0.7071
CCLS —0.2512 | 2.5193 | 2.5318 | 0.3867 | 1.3134 | 1.3691 | 1.0977 | 0.8682 | 1.3995 | 0.4487 | 0.5478 | 0.7081
10/2/10 | —0.2347 | 2.5253 | 2.5362 | 0.3712 | 1.2564 | 1.3101 | 1.0924 | 0.8737 | 1.3989 | 0.4484 | 0.5668 | 0.7227
10/6/10 | —0.2395 | 2.4510 | 2.4627 | 0.3680 | 1.2540 | 1.3069 | 1.0820 | 0.8274 | 1.3621 | 0.4605 | 0.5750 | 0.7367
10/8/10 | —0.2344 | 2.5636 | 2.5743 | 0.3694 | 1.2334 | 1.2876 | 1.0951 | 0.8402 | 1.3803 | 0.4697 | 0.5795 | 0.7460
10/8/16 | —0.2794 | 2.4169 | 2.4330 | 0.3576 | 1.2124 | 1.2640 | 1.0679 | 0.7677 | 1.3152 | 0.4508 | 0.5409 | 0.7041

10/8/17.5 | —0.2985 | 2.5048 | 2.5225 | 0.3602 | 1.2129 | 1.2653 | 1.0783 | 0.8376 | 1.3654 | 0.4506 | 0.5392 | 0.7027
10/8/19 | —0.2796 | 2.4242 | 2.4403 | 0.3588 | 1.2284 | 1.2797 | 1.0641 | 0.7643 | 1.3101 | 0.4523 | 0.5421 | 0.7060
10/6/6 —0.2438 | 2.4409 | 2.4531 | 0.3611 | 1.2251 | 1.2772 | 1.0766 | 0.7798 | 1.3293 | 0.4542 | 0.5481 | 0.7119
10/4/6 —0.2591 | 2.3690 | 2.3831 | 0.3516 | 1.2017 | 1.2521 | 1.0708 | 0.7713 | 1.3197 | 0.4479 | 0.5354 | 0.6981
10/2/6 —0.2494 | 2.3760 | 2.3891 | 0.3555 | 1.2028 | 1.2542 | 1.0688 | 0.7685 | 1.3164 | 0.4495 | 0.5361 | 0.6996

Kert —0.2817 | 2.3445 | 2.3613 | 0.3404 | 1.2074 | 1.2545 | 1.05641 | 0.7661 | 1.3031 | 0.4471 | 0.5390 | 0.7003

Notes: (1) ACI (1,1) Model: Yi= ap+Bolo+B;Yi—1+7 ue—1+us.
(2) The kernel K used is of the form K(1,1) =a, K(1,—1) = K(—1,1) = band K(—1,—1) = ¢, and the values of a/b/c are
listed in the first column of the table. K,,, K,, CCQML,CCLS, and K°P! denote the estimates of 8", 8", Oomr, Occrs and 9% with
special kernels, respectively.

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.



TABLE 2. Bias, SD and RMSE of Estimates for 5, in ACI (1,1)

By(10~7)
T =100 T = 250 T =500 T = 1000
a/b/c Bias S.D RMSE Bias S.D RMSE Bias S.D RMSE | Bias S.D RMSE
K, —0.9955 | 3.0874 | 3.2439 | —0.4164 | 1.4739 | 1.5316 | —0.1285 | 0.9769 | 0.9853 | —0.0436 | 0.6091 | 0.6102
Km N/A| N/A| N/A N/A| N/A| N/A N/A| N/A| NJ/A N/A| N/A| N/A

CCQML | —0.8701 | 2.6894 | 2.8267 | —0.4099 | 1.3943 | 1.4533 | —0.1311 | 0.8321 | 0.8424 | —0.0344 | 0.5611 | 0.5622
CcCLS —0.9051 | 2.7350 | 2.8809 | —0.4257 | 1.4680 | 1.5285 | —0.1262 | 0.8351 | 0.8446 | —0.0310 | 0.5660 | 0.5669
10/2/10 | —0.9247 | 2.8410 | 2.9877 | —0.4149 | 1.4129 | 1.4726 | —0.1258 | 0.8431 | 0.8524 | —0.0303 | 0.5662 | 0.5670
10/6/10 | —0.9024 | 2.8262 | 2.9668 | —0.4096 | 1.4204 | 1.4783 | —0.1328 | 0.8514 | 0.8617 | —0.0315 | 0.5817 | 0.5825
10/8/10 | —0.9095 | 2.9480 | 3.0851 | —0.3979 | 1.4372 | 1.4912 | —0.1307 | 0.9091 | 0.9185 | —0.0364 | 0.5838 | 0.5849
10/8/16 | —0.8614 | 2.7421 | 2.8743 | —0.3985 | 1.3815 | 1.4378 | —0.1290 | 0.8311 | 0.8411 | —0.0340 | 0.5617 | 0.5627
10/8/17.5 | —0.8656 | 2.7661 | 2.8983 | —0.4011 | 1.3816 | 1.4386 | —0.1282 | 0.8289 | 0.8387 | —0.0331 | 0.5633 | 0.5643
10/8/19 | —0.8615 | 2.7690 | 2.8999 | —0.4045 | 1.4038 | 1.4609 | —0.1291 | 0.8267 | 0.8367 | —0.0337 | 0.5647 | 0.5657
10/6/6 —0.8810 | 2.6996 | 2.8397 | —0.4035 | 1.3844 | 1.4420 | —0.1316 | 0.8297 | 0.8401 | —0.0354 | 0.5644 | 0.5655
10/4/6 —0.8805 | 2.6806 | 2.8216 | —0.4019 | 1.3806 | 1.4379 | —0.1340 | 0.8278 | 0.8386 | —0.0344 | 0.5612 | 0.5622
10/2/6 —0.9015 | 2.7442 | 2.8884 | —0.4110 | 1.4060 | 1.4649 | —0.1347 | 0.8357 | 0.8465 | —0.0337 | 0.5644 | 0.5654
Kert —0.8521 | 2.6601 | 2.7933 | —0.3998 | 1.3662 | 1.4235 | —0.1373 | 0.8267 | 0.8380 | —0.0393 | 0.5618 | 0.5632

Notes: (1) ACI (1,1) Model: Yi= ap+Bolo+08;Yi—1+7;we—1+us.
(2) The kernel K used is of the form K (1,1) =a, K(1,—1) = K(—1,1) = b,and K(—1,—1) = ¢, and the values of a/b/c are
listed in the first column of the table. K,,, K,, CCQML, CCLS, and K°Pt denote the estimates of ém, ér, @QML, @CCLS and @Opt with
special kernels, respectively.

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.



TABLE 3. Bias, SD and RMSE of Estimates for 5, in ACI (1,1)

B,(102)
T =100 T =250 T = 500 T = 1000
a/b/c Bias | S.D RMSE | Bias S.D | RMSE | Bias S.D RMSE | Bias S.D | RMSE
K, 3.3167 | 12.6959 | 13.1219 | 1.8339 | 9.2751 9.4547 | 1.7655 | 11.8061 | 11.9374 | 1.5155 | 7.6049 | 7.7544

K, 2.7914 | 9.6545 | 10.0499 | 2.0051 | 8.2841 8.5233 | 1.1157 | 5.7954 | 5.9018 | 1.0054 | 7.0858 | 7.1567
CCQML | 1.4442 | 4.8959 | 5.1045 | 1.1878 | 3.3584 | 3.5623 | 0.6951 2.5448 | 2.6380 | 0.4484 | 1.8921 1.9445
CcCLS 2.1260 | 7.3187 | 7.6213 | 1.5549 | 6.3869 | 6.5735 | 0.9379 | 4.0115 | 4.1197 | 0.5439 | 3.2607 | 3.3057
10/2/10 | 2.1730 | 8.7214 | 8.9880 | 1.3087 | 4.7696 | 4.9459 | 0.8060 | 4.1959 | 4.2726 | 0.5650 | 4.7373 | 4.7709
10/6/10 | 1.7548 | 6.1015 | 6.3489 | 1.3739 | 6.4817 | 6.6257 | 0.7111 | 4.2881 4.3467 | 0.7729 | 5.1305 | 5.1884
10/8/10 | 2.6150 | 10.6366 | 10.9533 | 1.4524 | 5.7874 | 5.9669 | 1.1199 | 6.2604 | 6.3598 | 1.0061 | 4.2246 | 4.3427
10/8/16 | 1.6027 | 5.4063 | 5.6388 | 1.0325 | 3.1755 | 3.3391 | 0.5714 | 2.1095 | 2.1855 | 0.4718 | 1.6899 1.7545
10/8/17.5 | 1.8857 | 8.3394 | 8.5499 | 1.0520 | 2.9983 | 3.1775 | 0.6714 | 3.5870 | 3.6493 | 0.4593 | 1.5850 1.6502
10/8/19 | 1.6029 | 5.8121 6.0291 | 1.2322 | 3.8259 | 4.0195 | 0.5014 | 1.9390 | 2.0027 | 0.5116 | 1.9221 1.9890
10/6/6 1.8598 | 5.8567 | 6.1449 | 1.1452 | 3.9028 | 4.0673 | 0.6328 | 2.0452 | 2.1409 | 0.6074 | 2.16564 | 2.2490
10/4/6 1.3525 | 4.6540 | 4.8465 | 0.9408 | 3.1199 | 3.2587 | 0.5693 | 2.0440 | 2.1218 | 0.4444 | 1.9204 1.9711
10/2/6 1.6464 | 5.6329 | 5.8686 | 1.1112 | 3.7431 3.9046 | 0.6017 | 2.3274 | 2.4039 | 0.4506 | 1.9171 1.9693
Kort 1.4759 | 3.8888 | 4.1594 | 1.0640 | 2.7109 | 2.9123 | 0.5954 | 1.7252 1.8251 | 0.4791 | 1.4757 | 1.5516

Notes: (1) ACI (1,1) Model: Yi= ap+Bolo+08;Yi—1+7 ue—1+us.

(2) The kernel K used is of the form K (1,1) = a, K(1,—1) = K(—1,1) = b,and K(—1,—1) = ¢, and the values of a/b/c are
listed in the first column of the table. K,,, K,, CCQML,CCLS, and K°Pt denote the estimates of ém, ér, 9QML, échs and éom with
special kernels, respectively.

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.

(4) Bias is in —1.



TABLE 4. Bias, SD and RMSE of Estimates for v, in ACI (1,1)

41(1073%)
T =100 T =250 T =500 T = 1000
a/b/c Bias S.D RMSE Bias S.D RMSE Bias S.D RMSE Bias S.D RMSE
K. 1.3155 | 11.1962 | 11.2732 | 0.9540 | 8.7449 | 8.7968 | 1.3237 | 11.7092 | 11.7837 | 1.3032 | 7.3769 | 7.4911
K,, 0.9474 7.5063 7.5659 | 0.8086 | 7.1238 | 7.1695 | 0.6311 5.5730 5.6086 | 0.8032 | 7.0894 | 7.1347

CCQRML 0.0119 | 3.8593 | 3.8594 | 0.3591 | 2.5143 | 2.5398 | 0.2542 | 2.1876 | 2.2023 | 0.2390 | 1.7857 | 1.8016
CcCLS 0.6861 | 5.3655 | ©5.4092 | 0.6021 | 5.6838 | 5.7156 | 0.4957 | 3.6479 | 3.6814 | 0.3393 | 3.1898 | 3.2078
10/2/10 0.8254 | 7.2288 | 7.2758 | 0.4247 | 4.0132 | 4.0356 | 0.3595 | 3.9539 | 3.9702 | 0.3710 | 4.7699 | 4.7843
10/6/10 0.3976 | 4.6541 | 4.6710 | 0.5765 | 6.1216 | 6.1487 | 0.3275 | 4.1325 | 4.1454 | 0.5852 | 5.0710 | 5.1046
10/8/10 1.1149 | 9.4532 | 9.5187 | 0.6830 | 5.2189 | 5.2634 | 0.7946 | 6.0790 | 6.1307 | 0.8215 | 4.0581 | 4.1404
10/8/16 0.0414 | 4.0590 | 4.0592 | 0.1274 | 2.3714 | 2.3748 | 0.1520 | 1.9601 | 1.9660 | 0.2547 | 1.5249 | 1.5460
10/8/17.5 0.3295 | 7.5442 | 7.5514 | 0.1354 | 2.2202 | 2.2243 | 0.2504 | 3.5176 | 3.5265 | 0.2404 | 1.4375 | 1.4574
10/8/19 0.0339 | 4.3048 | 4.3049 | 0.2961 | 3.2550 | 3.2684 | 0.1059 | 1.9063 | 1.9283 | 0.2901 | 1.7531 | 1.7563
10/6/6 0.3309 | 4.3804 | 4.3929 | 0.4110 | 2.9218 | 2.9505 | 0.2118 | 1.8934 | 1.9052 | 0.4031 | 1.8694 | 1.9124
10/4/6 —0.0512 | 3.6302 | 3.6305 | 0.1862 | 2.5041 | 2.5110 | 0.1328 | 1.9850 | 1.9894 | 0.2586 | 1.7289 | 1.7482
10/2/6 0.2150 | 4.3349 | 4.3403 | 0.2654 | 2.9104 | 2.9224 | 0.1566 | 2.4103 | 2.4154 | 0.2663 | 1.7962 | 1.8158
Kept 0.1942 | 2.2471 | 2.2555 | 0.2623 | 1.6412 | 1.6621 | 0.1756 | 1.4768 | 1.4872 | 0.2766 | 1.3554 | 1.3833

Notes: (1) ACI (1,1) Model: Yi= ap+Bolo+L8;Yi—1+7;we—1+us.
(2) The kernel K used is of the form K(1,1) =a, K(1,—1) = K(—1,1) = b,and K(—1,—1) = ¢, and the values of a/b/c
are listed in the first column of the table. K,,, K,, CCQML, CCLS and K°P! denote the estimates of ém, y, éQML, fcors and 0" with
special kernels, respectively.

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.



TABLE 5-1. Bias, SD and RMSE of Estimates for o in Bivariate Point Processes

Qg

Gaussian T =100 T =250 T =500
p=0 Bias SD RMSE Bias SD RMSE Bias SD RMSE
CML 0.8298 | 10.4484 | 10.4813 | 0.0875 | 4.5728 | 4.5736 | 0.1289 | 3.1884 | 3.1910
CCLS/Kso | 0.8910 | 10.3927 | 10.4308 | 0.0874 | 4.5699 | 4.5708 | 0.1279 | 3.1871 | 3.1896
Ku 1.6795 | 12.5311 | 12.6432 | 0.1126 | 4.6332 | 4.6345 | 0.1440 | 3.2005 | 3.2037
Kape 1.9464 | 12.6272 | 12.7763 | 0.1127 | 4.6201 | 4.6214 | 0.1459 | 3.2097 | 3.2130
Kort 0.9150 | 10.5101 | 10.5499 | 0.0888 | 4.5743 | 4.5751 | 0.1288 | 3.1883 | 3.1909
p=—0.6 Bias SD RMSE Bias SD RMSE Bias SD RMSE
Kso 0.4817 4.9127 | 4.9363 0.2110 | 2.7353 | 2.7435 | 0.1624 | 1.8384 | 1.8456
CML 0.5179 4.9574 | 4.9844 0.2253 | 2.7462 | 2.7554 | 0.1721 | 1.8447 | 1.8527
CcCLS 0.5455 5.1733 | 5.2020 0.2301 | 2.7679 | 2.7774 | 0.1811 | 1.8765 | 1.8852
Ky 0.6453 5.4616 | 5.4996 0.2667 | 2.8377 | 2.8502 | 0.2037 | 1.9197 | 1.9305
Kape 0.6742 5.5054 | 5.5465 0.2603 | 2.8170 | 2.8290 | 0.2093 | 1.9203 | 1.9316
Kort 0.5043 4.9415 | 4.9672 0.2132 | 2.7366 | 2.7449 | 0.1640 | 1.8409 | 1.8482

Student-t5 T =100 T = 250 T = 500
p=20 Bias SD RMSE Bias SD RMSE Bias SD RMSE

CCQML | —0.0145 | 10.6060 | 10.6060 | 0.1766 | 6.5325 | 6.5349 | 0.1132 | 4.5059 | 4.5073
CCLS/Kyso | —0.0037 | 10.5816 | 10.5816 | 0.1703 | 6.5337 | 6.5359 | 0.1089 | 4.5096 | 4.5110

Kap 0.0553 | 10.6478 | 10.6479 | 0.1584 | 6.6086 | 6.6105 | 0.1037 | 4.4946 | 4.4958
Kape 0.0737 | 10.6761 | 10.6763 | 0.1770 | 6.6169 | 6.6193 | 0.1172 | 4.5284 | 4.5299
Kort 0.0086 | 10.5553 | 10.5554 | 0.1692 | 6.5298 | 6.5320 | 0.1067 | 4.5028 | 4.5040
p=—0.6 Bias SD RMSE Bias SD RMSE Bias SD RMSE
Kso 0.4362 3.7112 | 3.7367 0.2854 | 2.1600 | 2.1787 | 0.1225 | 1.4629 | 1.4680
cCCQML 0.6472 4.1205 4.1710 0.3542 2.2327 | 2.2606 0.1468 1.4707 | 1.4780
CCLS 0.6387 4.2634 | 4.3110 0.3469 | 2.3343 | 2.3600 | 0.1378 | 1.5118 | 1.5181
Kup 0.9005 5.1942 | 5.2717 0.4344 | 2.5368 | 2.5737 | 0.1688 | 1.5575 | 1.5667
Kape 0.9104 5.2289 | 5.3076 0.4208 | 2.5524 | 2.5869 | 0.1822 | 1.5898 | 1.6002
Kort 0.5208 3.9127 | 3.9472 0.2948 | 2.1671 | 2.1871 | 0.1237 | 1.4593 | 1.4646
Mixture T =100 T = 250 T = 500
p=20 Bias SD RMSE Bias SD RMSE Bias SD RMSE

CCQML 0.0658 8.4540 | 8.4542 | —0.0773 | 4.9371 | 4.9377 | —0.1493 | 3.4264 | 3.4296
CCLS/Kso | 0.0786 8.4136 | 8.4139 | —0.0690 | 4.9420 | 4.9425 | —0.1471 | 3.4214 | 3.4245

Kap 0.0020 8.3888 | 8.3888 | —0.0896 | 4.9567 | 4.9575 | —0.1429 | 3.4239 | 3.4268
Kope 0.0162 8.4071 | 8.4071 | —0.0990 | 4.9636 | 4.9646 | —0.1396 | 3.4177 | 3.4205
Kert 0.0795 8.4058 | 8.4061 | —0.0753 | 4.9324 | 4.9330 | —0.1487 | 3.4213 | 3.4245
p=—0.6 Bias SD RMSE Bias SD RMSE Bias SD RMSE
Ko —0.0745 | 8.4408 | 8.4412 | —0.0075 | 4.9528 | 4.9529 | —0.1205 | 3.2849 | 3.2871
CCQML —0.1694 | 8.7365 | 8.7381 | —0.0158 | 4.9525 | 4.9525 | —0.1258 | 3.2913 | 3.2937
CcCLS —0.0760 | 8.4720 | 8.4724 | —0.0289 | 4.9360 | 4.9361 | —0.1201 | 3.2890 | 3.2912
Kap —0.0592 | 8.6159 | 8.6161 | —0.0395 | 4.9151 | 4.9153 | —0.1169 | 3.2980 | 3.3001
Kope —0.0447 | 8.5978 | 8.5979 | —0.0262 | 4.9635 | 4.9636 | —0.1388 | 3.3032 | 3.3062
Kert —0.0922 | 8.4661 | 8.4666 | —0.0102 | 4.9456 | 4.9456 | —0.1203 | 3.2841 | 3.2863

Notes: (1) The first column with CML, CCQML, CCLS, Ko and K°P! denote the estimates of constrained maximum likelihood, 9QML,
fccrs, Oso and 0" respectively. Kgp, and Kgpe are with (a,b,c) = (10,6,10) and (a,b, c) = (10,8, 19) respectively.
(2) Bivariate Gaussian, Student-¢s and Mixture densities for ur, ; and ug with p = 0 and p = —0.6 are considered respectively,
where p = corr(uLAt, uR,t)A @CCLS coincides with @Eo as p = 0.
(3) Bias,’SD and the standard error of each parameter are computed based on 1000 bootstrap replications.



TABLE 6-1. Bias, SD and RMSE of Estimates for 5, in Bivariate Point Processes

Bo

Gaussian T =100 T =250 T =500
p=0 Bias SD RMSE Bias SD RMSE Bias SD RMSE
CML 3.7740 | 27.4147 | 27.6733 | 0.5808 9.2854 | 9.3036 | 0.4462 | 6.3235 | 6.3393
CCLS/Kso | 3.7685 | 26.8171 | 27.0805 | 0.5789 9.2782 | 9.2962 | 0.4447 | 6.3213 | 6.3370
K 2.4366 | 26.6792 | 26.7903 | 0.5898 9.3354 | 9.3540 | 0.4737 | 6.3971 6.4146
Kape 3.1966 | 27.6164 | 27.8008 | 0.5803 9.3357 | 9.3538 | 0.4819 | 6.4178 | 6.4359
Kort 3.8291 | 27.4404 | 27.7062 | 0.5831 9.2838 | 9.3021 | 0.4456 | 6.3234 | 6.3390
p=—0.6 Bias SD RMSE Bias SD RMSE Bias SD RMSE
Ko —1.2941 | 18.3142 | 18.3599 | 0.0843 | 10.3981 | 10.3984 | 0.1530 | 7.4041 7.4057
CML —1.3490 | 18.4992 | 18.5484 | 0.0659 | 10.4546 | 10.4548 | 0.1469 | 7.4240 | 7.4255
CCLS —1.4203 | 18.9489 | 19.0020 | 0.0161 | 10.5036 | 10.5036 | 0.1333 | 7.4698 | 7.4710
Kap —1.5256 | 19.7844 | 19.8431 | —0.0336 | 10.6743 | 10.6743 | 0.1183 | 7.5408 | 7.5418
Kape —1.5610 | 19.8056 | 19.8670 | —0.0274 | 10.6681 | 10.6681 | 0.1143 | 7.5481 7.5490
Kort —1.3223 | 18.4163 | 18.4637 | 0.0749 | 10.4089 | 10.4092 | 0.1525 | 7.4032 | 7.4047

Student-ts T =100 T = 250 T = 500
p=20 Bias SD RMSE Bias SD RMSE Bias SD RMSE

CCQML 0.3259 | 21.6623 | 21.6647 | 0.9509 | 13.0973 | 13.1318 | 0.3293 | 9.4160 | 9.4217
CCLS/Kso | 0.1868 | 21.4437 | 21.4445 | 0.9124 | 13.0114 | 13.0433 | 0.3112 | 9.3943 | 9.3995

K 0.0646 | 21.8261 | 21.8262 | 1.0303 | 13.2285 | 13.2685 | 0.3782 | 9.6245 | 9.6320
Kape 0.0573 | 21.9014 | 21.9015 | 1.0184 | 13.2651 | 13.3041 | 0.3956 | 9.6312 | 9.6393
Kort 0.1828 | 21.4460 | 21.4468 | 0.9210 | 13.0578 | 13.0902 | 0.3167 | 9.4036 | 9.4090
p=—0.6 Bias SD RMSE Bias SD RMSE Bias SD RMSE
Kso —0.2537 | 14.6822 | 14.6844 | 0.2862 7.7471 | 7.7524 | 0.0418 | 5.3364 | 5.3366
CCQML —0.1864 | 15.5568 | 15.5579 | 0.3711 8.0034 | 8.0120 | 0.0776 | 5.3833 | 5.3839
CCLS —0.1612 | 15.8848 | 15.8856 | 0.3681 7.9860 | 7.9945 | 0.0749 | 5.4009 | 5.4014
Ku —0.2414 | 17.2679 | 17.2695 | 0.4290 8.3241 | 8.3352 | 0.1053 | 5.4979 | 5.4989
Kape —0.0431 | 17.8152 | 17.8152 | 0.4169 8.3125 | 8.3230 | 0.0858 | 5.4759 | 5.4766
Kort —0.2248 | 14.9109 | 14.9126 | 0.2838 7.8137 | 7.8188 | 0.0419 | 5.3498 | 5.3500
Mixture T =100 T = 250 T = 500
p=20 Bias SD RMSE Bias SD RMSE Bias SD RMSE

CCQML 0.7685 | 17.0311 | 17.0484 | 0.8283 9.9686 | 10.0029 | 0.6215 | 6.9869 | 7.0144
CCLS/Kso | 0.7274 | 16.8214 | 16.8372 | 0.8206 9.9568 | 9.9905 | 0.6232 | 6.9798 | 7.0076

Kap 0.6616 | 17.2002 | 17.2129 | 0.8763 | 10.1292 | 10.1671 | 0.6565 | 7.1338 | 7.1639
Kope 0.6536 | 17.1318 | 17.1443 | 0.8623 | 10.1256 | 10.1622 | 0.6373 | 7.1200 | 7.1485
Kort 0.6925 | 16.8890 | 16.9032 | 0.8072 9.9304 | 9.9632 | 0.6110 | 6.9705 | 6.9972
p=—0.6 Bias SD RMSE Bias SD RMSE Bias SD RMSE
Kxo 0.7688 | 34.1301 | 34.1387 | —0.1418 | 20.2516 | 20.2521 | 0.2496 | 13.7079 | 13.7102
CCQML 1.0859 | 36.2240 | 36.2403 | —0.1072 | 20.4502 | 20.4505 | 0.4022 | 14.1563 | 14.1620
CcCLS 0.7947 | 34.4177 | 34.4268 | —0.1309 | 20.5699 | 20.5703 | 0.3367 | 13.9342 | 13.9383
Kop 0.8134 | 35.0657 | 35.0751 | —0.1126 | 20.8044 | 20.8047 | 0.3784 | 14.0688 | 14.0739
Kope 0.8824 | 34.9502 | 34.9613 | —0.1065 | 20.8457 | 20.8460 | 0.3369 | 14.0391 | 14.0432
Kort 0.7295 | 34.0558 | 34.0636 | —0.1729 | 20.3123 | 20.3130 | 0.2664 | 13.7573 | 13.7599

Notes: (1) The first column with CML, CCQML, CCLS, Ko and K°P! denote the estimates of constrained maximum likelihood, @QML,
Ocors, Oso and o respectively. Ky and Kgp, are with (a,b,c¢) = (10,6, 10) and (a, b, c) = (10,8, 19) respectively.
(2) Bivariate Gaussian, Student-¢s and Mixture densities for ur, ; and ug with p = 0 and p = —0.6 are considered respectively,
where p = corr(uL_’t, uR’t). éCCLs coincides with égn as p = 0.

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.



TABLE 7-1. Bias, SD and RMSE of Estimates for 5, in Bivariate Point Processes

B1

Gaussian T =100 T = 250 T =500
p=20 Bias SD RMSE Bias SD RMSE Bias SD RMSE
CML 3.7740 | 27.4147 | 27.6733 | 0.5808 9.2854 | 9.3036 | 0.4462 | 6.3235 | 6.3393
CCLS/Kso | 3.7685 | 26.8171 | 27.0805 | 0.5789 9.2782 | 9.2962 | 0.4447 | 6.3213 | 6.3370
K 2.4366 | 26.6792 | 26.7903 | 0.5898 9.3354 | 9.3540 | 0.4737 | 6.3971 6.4146
Kape 3.1966 | 27.6164 | 27.8008 | 0.5803 9.3357 | 9.3538 | 0.4819 | 6.4178 | 6.4359
Kort 3.8291 | 27.4404 | 27.7062 | 0.5831 9.2838 | 9.3021 | 0.4456 | 6.3234 | 6.3390
p=—0.6 Bias SD RMSE Bias SD RMSE Bias SD RMSE
Ko —1.2941 | 18.3142 | 18.3599 | 0.0843 | 10.3981 | 10.3984 | 0.1530 | 7.4041 7.4057
CML —1.3490 | 18.4992 | 18.5484 | 0.0659 | 10.4546 | 10.4548 | 0.1469 | 7.4240 | 7.4255
CcCLS —1.4203 | 18.9489 | 19.0020 | 0.0161 | 10.5036 | 10.5036 | 0.1333 | 7.4698 | 7.4710
Ku —1.5256 | 19.7844 | 19.8431 | —0.0336 | 10.6743 | 10.6743 | 0.1183 | 7.5408 | 7.5418
Kape —1.5610 | 19.8056 | 19.8670 | —0.0274 | 10.6681 | 10.6681 | 0.1143 | 7.5481 7.5490
Kort —1.3223 | 18.4163 | 18.4637 | 0.0749 | 10.4089 | 10.4092 | 0.1525 | 7.4032 | 7.4047

Student-ts T =100 T =250 T =500
p=20 Bias SD RMSE Bias SD RMSE Bias SD RMSE

CCQML 0.3259 | 21.6623 | 21.6647 | 0.9509 | 13.0973 | 13.1318 | 0.3293 | 9.4160 | 9.4217
CCLS/Kyso | 0.1868 | 21.4437 | 21.4445 | 0.9124 | 13.0114 | 13.0433 | 0.3112 | 9.3943 | 9.3995

Kap 0.0646 | 21.8261 | 21.8262 | 1.0303 | 13.2285 | 13.2685 | 0.3782 | 9.6245 | 9.6320
Kape 0.0573 | 21.9014 | 21.9015 | 1.0184 | 13.2651 | 13.3041 | 0.3956 | 9.6312 | 9.6393
Kort 0.1828 | 21.4460 | 21.4468 | 0.9210 | 13.0578 | 13.0902 | 0.3167 | 9.4036 | 9.4090
p=—0.6 Bias SD RMSE Bias SD RMSE Bias SD RMSE
Ko —0.2537 | 14.6822 | 14.6844 | 0.2862 7.7471 | 7.7524 | 0.0418 | 5.3364 | 5.3366
CCQML —0.1864 | 15.5568 | 15.5579 | 0.3711 8.0034 | 8.0120 | 0.0776 | 5.3833 | 5.3839
cCLS —0.1612 | 15.8848 | 15.8856 | 0.3681 7.9860 | 7.9945 | 0.0749 | 5.4009 | 5.4014
Kap —0.2414 | 17.2679 | 17.2695 | 0.4290 8.3241 | 8.3352 | 0.1053 | 5.4979 | 5.4989
Kape —0.0431 | 17.8152 | 17.8152 | 0.4169 8.3125 | 8.3230 | 0.0858 | 5.4759 | 5.4766
Keopt —0.2248 | 14.9109 | 14.9126 | 0.2838 7.8137 | 7.8188 | 0.0419 | 5.3498 | 5.3500
Mixture T =100 T = 250 T =500
p=0 Bias SD RMSE Bias SD RMSE Bias SD RMSE

CCQML 0.7685 | 17.0311 | 17.0484 | 0.8283 9.9686 | 10.0029 | 0.6215 | 6.9869 | 7.0144
CCLS/Kyso | 0.7274 | 16.8214 | 16.8372 | 0.8206 9.9568 | 9.9905 | 0.6232 | 6.9798 | 7.0076

Kap 0.6616 | 17.2002 | 17.2129 | 0.8763 | 10.1292 | 10.1671 | 0.6565 | 7.1338 | 7.1639
Kope 0.6536 | 17.1318 | 17.1443 | 0.8623 | 10.1256 | 10.1622 | 0.6373 | 7.1200 | 7.1485
Keort 0.6925 | 16.8890 | 16.9032 | 0.8072 9.9304 | 9.9632 | 0.6110 | 6.9705 | 6.9972
p=—0.6 Bias SD RMSE Bias SD RMSE Bias SD RMSE
Kso 0.7688 | 34.1301 | 34.1387 | —0.1418 | 20.2516 | 20.2521 | 0.2496 | 13.7079 | 13.7102
CCQML 1.0859 | 36.2240 | 36.2403 | —0.1072 | 20.4502 | 20.4505 | 0.4022 | 14.1563 | 14.1620
CCLS 0.7947 | 34.4177 | 34.4268 | —0.1309 | 20.5699 | 20.5703 | 0.3367 | 13.9342 | 13.9383
Kap 0.8134 | 35.0657 | 35.0751 | —0.1126 | 20.8044 | 20.8047 | 0.3784 | 14.0688 | 14.0739
Kope 0.8824 | 34.9502 | 34.9613 | —0.1065 | 20.8457 | 20.8460 | 0.3369 | 14.0391 | 14.0432
Kort 0.7295 | 34.0558 | 34.0636 | —0.1729 | 20.3123 | 20.3130 | 0.2664 | 13.7573 | 13.7599

Notes: (1) The first column with CML, CCQML, CCLS, Kxo and K°P* denote the estimates of constrained maximum likelihood, éQML,
Ocers, Oso and o respectively. Kgp and Kgpe are with (a, b, ¢) = (10,6, 10) and (a,b, ¢) = (10, 8, 19) respectively.
(2) Bivariate Gaussian, Student-ts and Mixture densities for uy, ¢ and ugr ¢ with p = 0 and p = —0.6 are considered respectively,
where p = corr(uL,t, UR,t)- Occrs coincides with fxo as p = 0.

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.



TABLE 8-1. Bias, SD and RMSE of Estimates v, in Bivariate Point Processes

71

Gaussian T =100 T =250 T =500
p=0 Bias SD RMSE Bias SD RMSE Bias SD RMSE
CML 8.4453 | 9.4949 | 12.7073 | 0.8998 | 5.5124 5.5854 | 0.3648 | 3.9454 | 3.9622
CCLS/Kso | 8.2679 | 8.8920 | 12.1419 | 0.8974 | 5.4600 5.5332 | 0.3725 | 3.9283 3.9460
K 11.4850 | 7.7109 | 13.8334 | 0.9066 | 6.3690 6.4332 | 0.3545 | 4.5923 4.6059
Kape 11.0291 | 7.0202 | 13.0738 | 0.9256 | 6.3887 | 6.4554 | 0.3883 | 4.6795 | 4.6955
Kert 8.7537 | 9.0957 | 12.6237 | 0.9015 | 5.5045 5.5778 | 0.3650 | 3.9456 3.9625
p=—0.6 Bias SD RMSE Bias SD RMSE Bias SD RMSE
Kso 1.9869 | 9.7370 | 9.9376 | 0.9657 | 5.7332 5.8140 | 0.3956 | 4.1090 4.1280
CML 2.2679 | 9.8667 | 10.1240 | 1.0748 | 5.7914 | 5.8903 | 0.4519 | 4.1387 | 4.1633
CCLS 2.3898 | 11.3345 | 11.5836 | 0.9910 | 6.5930 6.6671 | 0.4234 | 4.8319 | 4.8504
Kaup 2.8237 | 13.0718 | 13.3733 | 1.0923 | 7.5764 | 7.6548 | 0.4656 | 5.5542 5.5737
Kape 2.9483 | 13.0215 | 13.3511 | 1.1055 | 7.5309 7.6117 | 0.4966 | 5.5726 5.5947
Kopt 2.0775 9.8796 | 10.0956 | 0.9675 | 5.7819 5.8623 | 0.3867 | 4.1259 4.1440

Student-ts T =100 T = 250 T = 500
p=0 Bias SD RMSE Bias SD RMSE Bias SD RMSE

CCQML 3.1779 | 16.5411 | 16.8436 | 0.9417 | 10.0557 | 10.0997 | 0.2883 | 7.3200 | 7.3257
CCLS/Kyso | 29034 | 15.5630 | 15.8315 | 0.8499 | 9.7332 | 9.7702 | 0.2661 | 7.1633 | 7.1683

Kap 2.7815 | 18.1555 | 18.3673 | 1.1267 | 11.0026 | 11.0602 | 0.2518 | 8.2875 | 8.2913
Kope 2.5072 | 18.4031 | 18.5731 | 1.1503 | 11.0933 | 11.1527 | 0.2912 | 8.3810 | 8.3860
Kort 2.9203 | 15.5951 | 15.8661 | 0.8445 | 9.7674 | 9.8039 | 0.2447 | 7.1731 | 7.1773
p=—0.6 Bias SD RMSE Bias SD RMSE Bias SD RMSE
Ko 3.1537 | 15.9424 | 16.2514 | 0.8519 | 10.0569 | 10.0929 | 0.2965 | 7.3499 | 7.3559

CCQML 3.3597 | 17.6944 | 18.0106 | 1.0495 | 10.6465 | 10.6981 | 0.4882 | 8.2301 | 8.2445
CCLS 3.0205 | 21.7619 | 21.9705 | 1.2138 | 13.4193 | 13.4741 | 0.4726 | 9.9201 | 9.9314

Ky 3.1531 | 22.9097 | 23.1257 | 1.2456 | 13.9726 | 14.0281 | 0.4933 | 10.3169 | 10.3287

Kope 3.1721 | 22.6396 | 22.8608 | 1.2028 | 13.9364 | 13.9882 | 0.5022 | 10.3075 | 10.3197

Kopt 3.1857 | 16.0071 | 16.3210 | 0.8690 | 10.0662 | 10.1037 | 0.2759 | 7.3581 | 7.3633
Mixture T =100 T =250 T = 500

p=0 Bias SD RMSE | Bias SD RMSFE | Bias SD RMSE

CCQML 4.2318 | 17.2183 | 17.7307 | 1.5269 | 10.5734 | 10.6831 | 0.8042 | 7.3589 | 7.4027
CCLS/Kyso | 3.7932 | 16.2449 | 16.6819 | 1.4703 | 10.1369 | 10.2430 | 0.7806 | 7.1689 | 7.2112

Kap 3.6155 | 19.0562 | 19.3961 | 1.6763 | 11.7443 | 11.8633 | 0.8165 | 8.5842 | 8.6230
Koape 3.3665 | 19.3084 | 19.5997 | 1.7073 | 11.9231 | 12.0447 | 0.7111 | 8.5085 | 8.5382
Kert 3.7985 | 16.2124 | 16.6515 | 1.4231 | 10.1247 | 10.2242 | 0.7491 | 7.1541 7.1932
p=—0.6 Bias SD RMSE Bias SD RMSE Bias SD RMSE
Ko 4.2468 | 16.6675 | 17.2000 | 1.6779 | 9.7319 | 9.8755 | 0.8281 | 7.4169 7.4629

CCQML 5.5143 | 19.5446 | 20.3076 | 1.8861 | 10.7381 | 10.9025 | 1.1146 | 8.7967 | 8.8670
CcCLS 4.6667 | 18.3164 | 18.9016 | 1.7353 | 11.4024 | 11.5337 | 0.9506 | 8.6531 | 8.7051

Kap 4.9730 | 21.0036 | 21.5843 | 1.8271 | 13.1429 | 13.2693 | 1.0335 | 9.8146 | 9.8689
Kape 4.6610 | 20.9544 | 21.4665 | 1.8625 | 12.9952 | 13.1280 | 0.9434 | 9.8626 | 9.9076
Kort 4.1638 | 16.6509 | 17.1637 | 1.6462 | 9.7713 | 9.9090 | 0.8318 | 7.4221 | 7.4686

Notes. (1) The first column with CML, CCQML,CCLS, Kxo and K°°* denote the estimates of constrained maximum likelihood, @QML,
Ocors, Oso and o respectively. Kyp and Ky are with (a,b,¢) = (10,6, 10) and (a, b, c) = (10,8, 19) respectively.
(2) Bivariate Gaussian, Student-¢s and Mixture densities for ur, ; and ug with p = 0 and p = —0.6 are considered respectively,
where p = corr(uL_’t, uR’t). éCCLs coincides with égn as p = 0.

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.



TABLE 5-2. Bias, SD and RMSE of Estimates for oy in CCC-GARCH (1,1)
Gy
T =100 T =250 T =500
p= Bias SD RMSE Bias SD RMSE Bias SD RMSE
0, 0.3262 | 18.3641 | 18.3670 | 0.1281 | 11.0255 | 11.0262 | 0.1701 | 8.0849 | 8.0867
CCQML | 0.3238 | 18.2934 | 18.2963 | 0.0844 | 11.0194 | 11.0197 | 0.1697 | 8.1314 | 8.1332
CCLS | 0.2741 | 18.3073 | 18.3094 | 0.1177 | 10.9255 | 10.9261 | 0.1694 | 8.0684 | 8.0702
Ku | 0.2579 | 18.6976 | 18.6994 | 0.1007 | 10.9248 | 10.9253 | 0.1713 | 8.0712 | 8.0730
Kaper | 0.3400 | 18.7300 | 18.7331 | 0.1212 | 10.9768 | 10.9774 | 0.1820 | 8.0918 | 8.0939
Kupez | 0.3100 | 18.2593 | 18.2619 | 0.0892 | 10.8993 | 10.8996 | 0.1550 | 8.0230 | 8.0245
K. 03960 | 17.1907 | 17.1952 | 0.1161 | 10.9484 | 10.9490 | 0.1873 | 8.0161 | 8.0183
K)o | 04379 | 17.3478 | 17.3533 | 0.0953 | 10.9437 | 10.9441 | 0.1777 | 8.0109 | 8.0128
KD, | 04394 | 17.3298 | 17.3354 | 0.1033 | 10.9445 | 10.9450 | 0.1703 | 8.0031 | 8.0049
KoP'[70.4464 | 17.2188 | 17.2246 | 0.0831 | 10.8478 | 10.8482 | 0.1709 | 7.9976 | 7.9994
T =100 T =250 T =500

p=—0.6 Bias SD RMSE Bias SD RMSE Bias SD RMSE
b, 0.3730 | 12.1746 | 12.1803 | 0.2035 | 8.2096 | 82122 | —0.1535 | 5.8634 | 5.8654
CCQML | 0.6090 | 13.1052 | 13.1194 | 0.1867 | 8.2369 | 8.2390 | 0.1860 | 5.9337 | 5.9366
CCLS | 0.4006 | 12.3911 | 12.3976 | 0.1885 | 8.1870 | 8.1892 | —0.1420 | 5.8972 | 5.8989
Ka | 03177 | 12,6940 | 12.6980 | 0.1879 | 82176 | 8.2197 | —0.1325 | 5.9305 | 5.9320
Kuper | 03294 | 12,7519 | 12.7562 | 0.1939 | 8.2223 | 8.2246 | —0.1496 | 5.9215 | 5.9233
Kapez | 0.3253 | 12.5633 | 12.5675 | 0.1975 | 8.1671 | 8.1695 | —0.1346 | 5.8999 | 5.9015
K | 04154 | 12,6040 | 12.6108 | 0.2015 | 8.2275 | 8.2300 | 0.2106 | 5.9590 | 5.9627
K.,) | 05273 | 12.3723 | 12.3836 | 0.2110 | 8.2136 | 8.2163 | 0.1867 | 5.9071 | 5.9101
K, 05242 | 12.2964 | 12.3076 | 0.1951 | 8.2253 | 8.2276 | 0.1916 | 5.9155 | 5.9186
Kort [ 0.5115 | 12.0509 | 12.0617 | 0.1662 | 8.1129 | 8.1146 | —0.1502 | 5.8319 | 5.8333

Notes: (1) The first column with CCQML, CCLS and K°Pt denote the estimates of éQML,
estimator 7 respectively. Kab/KC(L;) are with (a, b, ¢) = (10,6, 10) and (10, —6, 10) respectively. Kape; is with (a,b,c¢) = (10,8,19) for
(a,b,c) = (10,—3,2.5) for i =1 and (10, —4, 3) for i = 2.

(2) Constant conditional correlation for ur, ; and ur ¢ with p = 0 and p = —0.6 are considered respectively. 0, is from the kernel

i =1 and (10,2,6) for i = 2. K. is with

abci

with (a,b,¢) = (1, p,1).

fccrs, and two-stage minimum D g -distance

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.




TABLE 6-2. Bias, SD and RMSE of Estimates for 3, in CCC-GARCH (1,1)

Bo

T =100 T =250 T = 500
p=0 Bias SD | RMSE | Bias SD | RMSE | Bias SD | RMSE
0, 1.5832 | 36.9517 | 36.9856 | 0.8096 | 22.2116 | 22.2264 | 0.5589 | 16.2638 | 16.2734
CCQML | 1.7432 | 38.5877 | 38.6271 | 0.7815 | 22.1291 | 22.1429 | 0.7069 | 16.2564 | 16.2718
CCLS | 1.6927 | 37.1014 | 37.1400 | 0.6939 | 21.8755 | 21.8865 | 0.5547 | 16.2169 | 16.2264
Kb 1.9383 | 38.1556 | 38.2048 | 0.6352 | 21.8275 | 21.8368 | 0.5720 | 16.3784 | 16.3884
Kupe1 | 1.9302 | 37.8494 | 37.8986 | 0.6820 | 21.9591 | 21.9697 | 0.5775 | 16.4972 | 16.5073
Kupez | 15620 | 37.2145 | 37.2472 | 0.6712 | 21.7046 | 21.7149 | 0.5454 | 16.1487 | 16.1579
K | —0.2536 | 34.7072 | 34.7081 | 0.6049 | 21.9392 | 21.9475 | 0.4842 | 15.9856 | 15.9929
K | —0.2246 | 34.9345 | 34.9352 | 0.5747 | 21.8082 | 21.8158 | 0.5303 | 15.9720 | 15.9808
K), | —0.2628 | 34.7820 | 34.7830 | 0.5765 | 21.8167 | 21.8243 | 0.5503 | 15.9736 | 15.9831
Kort ] —0.1908 | 34.6822 | 34.6827 | 0.5420 | 21.7177 | 21.7245 | 0.5371 | 15.9058 | 15.9149

T =100 T = 250 T = 500
p=—0.6 | Bias SD | RMSE | Bias SD | RMSE | Bias SD | RMSE
0, —0.1764 | 41.2049 | 41.2052 | 0.9344 | 26.2614 | 26.2781 | 0.6604 | 19.8438 | 19.8547
CCQML | —0.3959 | 41.1092 | 41.1111 | 1.1400 | 26.3765 | 26.4012 | 0.7314 | 19.6244 | 19.6380
CCLS | —0.3646 | 41.3780 | 41.3796 | 0.8330 | 26.1217 | 26.1350 | 0.7121 | 19.9028 | 19.9156
K. | —0.2591 | 41.7327 | 41.7335 | 0.8224 | 26.1503 | 26.1632 | 0.7377 | 19.9933 | 20.0069
Kape1 | —0.1719 | 41.6554 | 41.6558 | 0.8072 | 26.2531 | 26.2655 | 0.7449 | 20.0790 | 20.0929
Kupez | —0.2549 | 41.4431 | 41.4439 | 0.8150 | 26.0364 | 26.0492 | 0.7160 | 19.8347 | 19.8476
K | 02083 | 42.2806 | 42.2817 | 0.8938 | 26.4456 | 26.4607 | 0.6468 | 19.8235 | 19.8340
K\ | —0.9515 | 41.0943 | 41.1053 | 0.8497 | 26.0677 | 26.0816 | 0.6262 | 19.4292 | 19.4393
k'), | —0.8702 | 41.2807 | 41.2899 | 0.9330 | 26.1331 | 26.1497 | 0.6166 | 19.4309 | 19.4407
Kort | —0.5937 | 40.1934 | 40.1977 | 0.9182 | 25.7977 | 25.8141 | 0.5763 | 19.3842 | 19.3928

Notes: (1) The first column with CCQML, CCLS and K°Pt denote the estimates of éQML, @CCL& and two-stage minimum D g -distance
estimator 7 respectively. Kab/KC(L;) are with (a, b, ¢) = (10,6, 10) and (10, —6, 10) respectively. Kape; is with (a,b,c¢) = (10,8,19) for
(a,b,c) = (10,—3,2.5) for i =1 and (10, —4, 3) for s = 2.

(2) Constant conditional correlation for ur, ; and ur ¢ with p = 0 and p = —0.6 are considered respectively. 0, is from the kernel

i=1and (10,2,6) for i = 2. K, is with

abci

with (a,b,¢) = (1, p,1).

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.




TABLE 7-2. Bias, SD and RMSE of Estimates for 3, in CCC-GARCH (1,1)

by
T =100 T = 250 T = 500
p=0 Bias SD RMSE Bias SD RMSE Bias SD RMSE
0, —5.1700 | 23.3402 | 23.9059 | —1.8568 | 15.8522 | 15.9606 | —0.9422 | 11.7112 | 11.7491

CCQML | —6.8071 | 26.0490 | 26.9237 | —1.8205 | 15.4964 | 15.6030 | —1.1804 | 12.8178 | 12.8720
CCLS —4.8740 | 22.0649 | 22.5968 | —1.6444 | 14.9143 | 15.0046 | —0.9085 | 11.3070 | 11.3434

K. | —5.1082 | 24.0989 | 24.6343 | —1.5737 | 15.8136 | 15.8917 | —0.8970 | 11.9478 | 11.9814
Kaper | —5.2323 | 24.5890 | 25.1395 | —1.5684 | 16.3361 | 16.4112 | —0.9375 | 12.4469 | 12.4821
Kupes | —4.5885 | 21.1834 | 21.6747 | —1.5237 | 14.2489 | 14.3302 | —0.7890 | 10.7557 | 10.7846
K | —4.4438 | 20.6082 | 21.0819 | —1.6554 | 14.2130 | 14.3091 | —0.6782 | 10.3726 | 10.3948
KL | —4.4396 | 202261 | 20.7076 | —1.5819 | 13.6926 | 13.7837 | —0.6446 | 10.0951 | 10.1156
K(), | —4.4845 | 20.1118 | 20.6057 | —1.5886 | 13.6684 | 13.7604 | —0.6692 | 10.0957 | 10.1178
Kort [ —3.9911 | 19.5291 | 19.9327 | —1.4666 | 13.2740 | 13.3548 | —0.6488 | 9.7382 | 9.7598

T = 100 T =250 T = 500
p=—0.6 Bias SD RMSE Bias SD RMSE Bias SD RMSE
b, —5.1139 | 23.1467 | 23.7049 | —1.8138 | 15.6059 | 15.7110 | —1.3468 | 12.2553 | 12.3291

CCQML | —5.1057 | 22.4803 | 23.0528 | —2.1822 | 15.1071 | 15.2639 | —1.3685 | 11.2132 | 11.2964
CCLS —5.3099 | 24.1066 | 24.6845 | —1.7459 | 15.7767 | 15.8730 | —1.4848 | 12.4950 | 12.5829

K. | —5.7424 | 25.9332 | 26.5613 | —1.8016 | 16.7059 | 16.8027 | —1.5657 | 13.1845 | 13.2771
Kaper | —5.8670 | 25.7590 | 26.4187 | —1.7448 | 16.8426 | 16.9327 | —1.5415 | 13.2432 | 13.3327
Kuper | —5.2287 | 24.1880 | 24.7466 | —1.7667 | 15.7318 | 15.8307 | —1.4833 | 12.4906 | 12.5784
K | —5.2628 | 23.3868 | 23.9717 | —1.7896 | 15.9658 | 16.0657 | —1.0475 | 12.1638 | 12.2088
K() | —3.7596 | 20.5259 | 20.8673 | —1.8321 | 13.9451 | 14.0649 | —0.8708 | 10.2275 | 10.2646
K | —3.7202 | 20.7477 | 21.0786 | —1.8359 | 14.1548 | 14.2734 | —0.9050 | 10.3940 | 10.4333
KoP' | —4.0383 | 19.7016 | 20.1112 | —1.6706 | 13.4004 | 13.5041 | —0.8012 | 9.9381 | 9.9703

Notes: (1) The first column with CCQML, CCLS, and K°Pt denote the estimates of éQML, éCCLS, and two-stage minimum D g-distance
estimator 07" respectively. Kab/Kég) are with (a, b, c) = (10,6, 10) and (10, —6, 10) respectively. Kgpe; is with (a,b,c¢) = (10,8,19) for
i=1and (10,2,6) for i = 2. K',) is with (a,b,c) = (10, —3,2.5) for i = 1 and (10, —4,3) for i = 2.

(2) Constant conditional correlation for ur, ; and ur ¢ with p = 0 and p = —0.6 are considered respectively. é,) is from the kernel
with (a,b,¢) = (1, p,1).

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.



TABLE 8-2. Bias, SD and RMSE of Estimates for v, in CCC-GARCH (1,1)
71

p=20 T =100 T =250 T = 500
Bias SD RMSE Bias SD RMSE Bias SD RMSE
0, 3.4481 | 23.7807 | 24.0294 | 1.3455 | 16.3966 | 16.4517 | 0.5192 | 12.2486 | 12.2596
CCQML | 5.1979 | 24.6054 | 25.1485 | 1.0617 | 15.7562 | 15.7919 | 0.6052 | 11.9287 | 11.9441
CcCLS 3.1517 | 22.3783 | 22.5992 | 1.1039 | 15.3862 | 15.4257 | 0.4547 | 11.8826 | 11.8913
Kap 3.3173 | 24.3267 | 24.5519 | 0.9726 | 16.2556 | 16.2846 | 0.3874 | 12.6170 | 12.6230
Kaper 3.4418 | 24.8162 | 25.0538 | 1.0046 | 16.8454 | 16.8753 | 0.4035 | 13.1492 | 13.1554
Kapeo 2.8967 | 21.5026 | 21.6968 | 0.9317 | 14.6547 | 14.6843 | 0.3479 | 11.2991 | 11.3044
Ké;) 3.3135 | 20.9494 | 21.2099 | 0.8890 | 14.7091 | 14.7360 | 0.2619 | 10.7972 | 10.8004
Kib_(?l 3.1719 | 20.6452 | 20.8874 | 0.7863 | 14.1628 | 14.1846 | 0.2258 | 10.5434 | 10.5458
K, 5 3.2349 | 20.4939 | 20.7477 | 0.8111 | 14.1222 | 14.1455 | 0.2374 | 10.5563 | 10.5590
Kert 3.3985 | 19.8049 | 20.0943 | 0.6973 | 13.6731 | 13.6908 | 0.2699 | 10.1557 | 10.1593

T =100 T =250 T = 500
p=—0.6 Bias SD RMSE Bias SD RMSE Bias SD RMSE
0, 3.9923 | 23.6568 | 23.9913 | 1.3351 | 16.0954 | 16.1507 | 0.7671 | 12.5065 | 12.5300
CCQML | 3.8581 | 22.6455 | 22.9718 | 1.5001 | 15.0078 | 15.0826 | 0.8370 | 11.5454 | 11.5757
CCLS 4.0327 | 24.7236 | 25.0504 | 1.2187 | 16.3211 | 16.3665 | 0.9641 | 12.6448 | 12.6815
Ka 4.4080 | 26.6215 | 26.9840 | 1.2331 | 17.2795 | 17.3234 | 1.0707 | 13.3057 | 13.3487
Kaper 4.5906 | 26.3725 | 26.7691 | 1.2059 | 17.4410 | 17.4826 | 1.0302 | 13.3751 | 13.4148
Kapeo 3.8728 | 24.8842 | 25.1838 | 1.1989 | 16.2415 | 16.2857 | 0.9941 | 12.6078 | 12.6469
K(S;) 4.1370 | 23.8643 | 24.2202 | 1.2463 | 16.5218 | 16.5687 | 0.5322 | 12.7415 | 12.7527
K{E;c)l 2.3757 | 21.3781 | 21.5097 | 1.1880 | 14.2453 | 14.2947 | 0.3812 | 10.7022 | 10.7089
K(Egc)z 2.4046 | 21.5325 | 21.6664 | 1.2171 | 14.4368 | 14.4880 | 0.4215 | 10.8099 | 10.8181
Kort 2.7108 | 20.2394 | 20.4201 | 1.0267 | 13.7417 | 13.7800 | 0.2870 | 10.3725 | 10.3764

Notes: (1) The first column with CCQML, CCLS and K°Pt denote the estimates of éQML, @CCL& and two-stage minimum D g -distance
estimator 7 respectively. Kab/KC(L;) are with (a, b, ¢) = (10,6, 10) and (10, —6, 10) respectively. Kape; is with (a,b,c¢) = (10,8,19) for
(a,b,c) = (10,—3,2.5) for i =1 and (10, —4, 3) for i = 2.

(2) Constant conditional correlation for ur, ; and ur ¢ with p = 0 and p = —0.6 are considered respectively. 0, is from the kernel

i =1 and (10,2,6) for i = 2. K, is with

with (a,b,¢) = (1, p,1).

abci

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.




TABLE 9. t-statistics for the 5-factor CAPM

BE/ME Quantile Group Low BE/ME Quantile Group 2

Small OLS | CCLS Ko | Kue | CCQML Kert | OLS | CCLS Ko | Kape | CCQML Kort
Bo -3.69 | —1.03 | —1.04 | —1.04 —1.04 —1.04 | —1.06 —-1.17 | —1.18 | —1.18 —1.18 —1.17

B4 39.79 8.39 9.03 9.68 10.21 10.68 | 46.57 8.60 9.43 | 10.25 11.16 11.41

Bs 35.19 8.22 8.31 | 10.27 14.62 19.79 | 45.16 7.89 8.04 | 10.27 17.37 20.98

Bs | =576 | —6.99 | —6.56 | —8.32 —12.23 | —16.05 3.28 | —5.93 | —5.55 | —=7.30 —12.55 | —14.83

B, —221| —0.61| —0.64 | —0.65 —0.65 | —0.67 | —2.50 | —0.43 | —0.45 | —0.46 —0.47 | —0.48

Bs —1.54 | —3.35 | —2.74 | —4.05 —5.37 —5.81 | —2.86 —3.44 | —2.92 | —4.31 —5.84 —6.08

2| Bo —1.45 —-1.10 | —1.10 | —1.10 —1.10 —-1.10 | =0.27 | —1.28 | —1.29 | —1.29 —1.29 —1.27
B4 50.19 9.63 | 10.26 | 10.93 11.88 12.17 | 56.87 9.97 | 10.88 | 12.05 13.51 13.82

Bs 32.39 6.79 6.83 8.32 14.83 18.71 | 36.38 6.23 6.32 8.81 19.38 21.10

B85 | —13.10 | —6.30 | —5.90 | —7.38 —13.57 | —16.71 0.89 | —4.82 | —4.51 | —6.72 —14.80 | —16.04

B4 —1.05 —0.04 | —0.04 | —0.04 —0.05 —0.06 | —0.62 —0.11 | —0.12 | —0.24 —-0.24 —0.25

Bs | —2.33 | —=3.01 | —2.37 | —3.64 —5.78 | —6.07 | —1.08 | —2.52 | —2.07 | —3.12 —5.43 | —5.57

3| Bo —0.37 —1.21 | —1.21 | —1.21 —1.21 —1.20 1.45 —1.40 | —1.41 | —1.41 —1.41 —1.37
B4 53.22 10.75 | 11.44 | 12.20 13.62 13.72 | 48.27 11.22 | 12.21 | 13.25 15.15 15.15

Bs 23.27 5.42 5.44 6.63 15.93 18.26 | 21.97 4.51 4.57 5.81 19.88 20.84

Bs | —12.87 | —5.22 | —4.88 | —6.12 —15.00 | —16.96 1.35 —-3.43 | —3.20 | —4.20 —14.43 | —15.08

By | —0.36 0.00 0.00 0.01 0.00 | —-0.02 0.76 0.25 0.27 0.27 0.28 0.27

Bs —0.93 | —2.17 | —1.68 | —2.66 —5.22 —5.32 | —0.36 —1.83 | —1.47 | —2.38 —5.19 —5.32

4| By 1.70 | —1.29 | —1.29 | —1.30 —1.30 —1.27 | —2.09 —1.51 | —1.52 | —1.52 —1.52 —1.49
B 50.28 12.14 | 12.81 13.58 15.46 15.42 | 45.92 12.83 | 13.83 | 14.92 17.47 17.52

Ba 10.32 3.53 3.53 4.24 15.45 16.21 8.33 2.14 2.16 2.70 20.14 20.30

Bs | —14.44 —3.96 | —3.69 | —4.56 —17.00 | —17.77 0.55 —1.61 | —1.49 | —1.94 —14.69 | —14.80

By 0.32 0.37 0.39 0.40 0.41 0.41 0.86 0.47 0.49 0.50 0.58 0.58

Bs —1.54 —1.61 | —1.20 | —1.95 —5.23 —5.22 | —=0.72 —1.14 | —0.88 | —1.48 —6.89 —7.03
Big | B, 3.32 —1.42 | —1.43 | —1.43 —1.43 —1.38 | —0.31 —1.63 | —1.64 | —1.64 —1.64 —1.61
B4 51.25 14.57 | 15.09 | 15.80 19.79 19.66 | 51.01 15.05 | 15.89 | 16.90 20.47 20.53

Bs —-7.96 | —0.14 | —0.14 | —0.16 —1.23 —1.21 | —6.94 | —1.58 | —1.58 -1.91 -21.15 -20.81

Bs | —15.67 | —1.41 | —1.31 | —1.57 —15.16 | —14.90 | —0.32 1.21 1.14 1.40 15.76 15.60

Ba 0.90 0.31 0.32 0.33 0.39 0.38 | —0.50 0.30 0.31 0.32 0.34 0.33

Bs 0.88 0.73 0.53 0.83 3.01 2.99 | —1.39 0.19 0.14 0.23 —1.43 | —1.45

Notes: (1) Fama and French’s 5-Factor CAPM: ER;;= B+06, EM+55SM B+ HM Li+5,TERM 45 DEF+¢;. Interval CAPM:
Yi= ao+Bolo+B1 X1+ B2 Xot+83 X3t +8, Xar+85 X5 +ug, where i = 1,..,25.
(2) The first row with OLS, CCQML, CCLS and K°P! denote the estimates of OLS, Ogur, @cors, and two-stage minimum
D g -distance estimator e respectively. Kyp and Kgp. are with (a,b,¢) = (10,6, 10) and (10,8, 19) respectively.

(3) The standard error of each parameter estimate is compared based on 500 bootstrap replications.



TABLE 9. [Continued] t-statistics for the 5-factor CAPM

BE/ME Quantile Group 3

BE/ME Quantile Group 4

Small OLS | CCLS Kop | Kape | CCQML Kert | OLS | CCLS Ku | Kape | CCQML Kert
Bo | —1.23 | —1.28 | —1.28 | —1.28 —-1.28 | —1.27 1.26 | —1.36 | —1.37 | —1.37 —-137 | —-1.35
By | 53.51 8.93 9.90 | 10.85 12.04 12.15 | 52.48 9.20 | 10.30 | 11.38 12.76 12.80
By | 46.59 7.39 7.56 9.87 19.26 21.75 | 47.03 7.06 7.25 9.65 20.70 22.50
Bs 9.72 | —=5.09 | —4.77 | —6.42 —12.57 | —13.98 | 14.39 | —4.40 | —4.12 | —5.67 —12.09 | —13.01
B4 | —0.15 | —0.20 | —0.21 | —0.22 —-0.22 | -024] -1.38 | —0.64 | —0.68 | —0.70 —0.72 —0.74
Bs | =029 | —2.69 | —2.32 | —3.43 —4.73 | —4.87 0.82 | —2.34 | —-2.04 | —-3.01 —4.12 —4.23

2 | Bo 258 | —1.39 | —1.40 | —1.40 —1.40 | —1.37 286 | —1.58 | —1.59 | —1.59 —-1.59 | —1.56
B, | 54.15 10.14 | 11.22 | 12.30 13.95 13.95 | 56.81 10.98 | 12.31 | 13.66 15.81 15.79
By | 34.86 5.77 5.89 7.69 20.67 21.98 | 30.51 4.37 4.49 6.05 23.78 24.25
B 8.85 | —3.81 | —3.56 | —4.81 -12.96 | —13.70 | 17.00 | —-1.92 | —1.78 | —2.50 -9.97 | —10.16
B4 1.61 0.41 0.44 0.46 0.47 0.46 3.57 0.58 0.62 0.64 0.68 0.69
Bs | —0.67 | —2.35 | —1.98 | —3.07 -5.01 —5.15 211 | -1.27| -1.09 | —1.70 —-298 | —-3.13

3| Bo 0.02 | —1.56 | —1.56 | —1.56 —-1.56 | —1.53 239 | —-172 | —-1.73 | —1.73 -1.73 | —1.65
B, | 46.61 11.56 | 12.81 | 14.08 16.37 16.37 | 51.57 12.36 | 13.84 | 15.35 19.24 19.37
By | 18.83 3.69 3.77 4.96 23.23 23.55 | 17.29 2.15 2.20 2.96 25.16 25.19
Ba 9.77 | —1.86 | —1.73 | —2.36 —11.34 | —11.50 | 17.20 0.21 0.21 0.28 2.58 2.56
Ba 2.00 0.54 0.58 0.60 0.65 0.66 3.05 0.64 0.69 0.71 0.97 0.97
Bs 037 | —144 | —1.20 | —1.93 —4.18 | —4.36 1.66 | —0.69 | —0.59 | —0.94 —2.74 | -2.78

4| By 049 | —-1.67 | —1.68 | —1.68 —1.68 | —1.57 1.07 | —-1.80 | —1.81 | —1.81 —1.81 —1.75
By | 45.41 13.21 | 14.47 | 15.80 19.67 19.66 | 46.39 13.25 | 14.74 | 16.27 19.76 19.87
B 7.80 1.10 1.11 1.44 19.29 19.20 8.31 0.11 0.10 0.14 0.92 0.91
Bs 8.61 0.25 0.24 0.31 4.74 4.65 | 16.21 2.16 2.03 2.78 20.99 20.87
B4 1.30 0.63 0.67 0.69 0.95 0.95 4.53 1.54 1.64 1.68 2.11 2.14
Bs | —0.50 | —0.87 | —=0.70 | —1.16 —5.59 | —5.57 0.66 | —0.37 | —=0.31 | —0.51 —1.42 —1.47

Big | By | —0.44 | —1.74 | —1.75 | —1.75 -175 | -1.72 | -0.65 | —1.96 | —1.97 | —1.97 —-1.97 | —-1.95
B1 | 38.59 15.56 | 16.49 | 17.57 20.64 20.73 | 52.41 15.87 | 17.13 | 18.47 20.98 21.09
By | =728 | —3.24 | =3.24 | —3.95 —-17.92 | —17.83 | —7.83 | —4.82 | —4.87 | —6.10 —14.98 | —14.89
Bs 5.52 3.28 3.06 3.81 17.46 17.40 | 17.53 6.38 5.94 7.64 18.91 18.81
Ba 0.47 0.60 0.62 0.63 0.67 0.66 | —0.62 | —0.03 | —0.03 | —0.03 —0.05 —0.06
Bs | —0.76 0.80 0.61 0.98 3.17 3.16 | —0.14 1.11 0.89 1.38 2.64 2.66




TABLE 9. [Continued)] t-statistics for 5-Factor CAPM

BE/ME Quantile Group High

Small OLS | CCLS Koy | Kape | CCQML Keort
Bo 1.02 | —1.48 | —1.48 | —1.48 —1.48 | —1.46
B; | 51.01 9.28 | 10.54 | 11.79 13.31 13.34
Bs | 46.60 6.86 7.11 9.75 21.73 23.58
Bs | 2076 | —3.51 | —3.29 | —4.68 —10.32 | —11.08
B4 | —1.92 | —0.80 | —0.86 | —0.89 —-0.92 | -0.96
Bs 0.36 | —2.45 | —2.20 | —3.17 —4.14 | —4.28

2| By 1.25 | —-1.70 | =1.70 | —1.71 —-1.71 —1.67
By | 57.83 11.12 | 12.66 | 14.23 16.67 16.74
By | 32.13 4.21 4.36 6.05 24.54 25.18
Bs | 2354 | —0.96 | —0.89 | —1.30 —5.53 | —5.65
64| —095 | —0.22| —-0.24 | —0.24 -0.30 | —0.35
Bs | —1.07 | —2.09 | —1.85 | —2.80 —4.47 | —4.79

3| By 053 | —-1.76 | —1.77 | —1.77 —-1.77 | —-1.73
By | 45.46 11.66 | 13.27 | 14.90 17.75 17.91
By | 21.51 3.01 3.11 4.31 20.72 21.02
Bs | 21.28 0.26 0.26 0.35 1.75 1.76
B4 1.42 0.88 0.95 0.98 1.14 1.18
Bs | —248 | —2.30 | —2.03 | —3.10 -5.50 | —5.87
4| By 0.64 | —1.88 | —1.89 | —1.89 —-189 | —-1.84
B, | 44.92 13.27 | 14.93 | 16.63 20.16 20.49
Bs 9.74 0.35 0.35 0.48 2.76 2.79
Bs | 17.23 2.53 2.37 3.34 21.49 21.39
B4 1.22 0.55 0.59 0.61 0.70 0.71
Bs | —0.47 | —0.92 | —0.79 | —1.25 —-2.73 | —-2.92

Big | By | —1.90 | —2.08 | —2.08 | —2.09 —-2.09 | -2.07
81 | 36.22 15.38 | 17.00 | 18.64 21.13 21.28
By | —1.37 | —4.09 | —4.19 | —5.45 —11.94 | —11.87
Bs | 17.03 7.07 6.59 8.83 19.51 19.39
B4 | —2.18 | —0.28 | —0.29 | —0.29 -0.32 | -0.33
Bs | —2.62 | —0.80 | —0.68 | —1.03 —1.62 —1.64




