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ABSTRACT

An interval-valued observation in a time period contains more information than a point-valued

observation in the same time period. Examples of interval data include the maximum and min-

imum temperatures in a day, the maximum and minimum GDP growth rates in a year, the

maximum and minimum asset prices in a trading day, the bid and ask prices in a trading period,

the long term and short term interests, and the top 10% income and bottom 10% income of a

cohort in a year, etc. Interval forecasts may be of direct interest in practice, as it contains informa-

tion on the range of variation and the level or trend of economic processes. More importantly, the

informational advantage of interval data can be exploited for more e¢ cient econometric estimation

and inference.

We propose a new class of autoregressive conditional interval (ACI) models for interval-valued

time series data. A minimum distance estimation method is proposed to estimate the parameters

of an ACI model, and the consistency, asymptotic normality and asymptotic e¢ ciency of the

proposed estimator are established. It is shown that a two-stage minimum distance estimator is

asymptotically most e¢ cient among a class of minimum distance estimators, and it achieves the

Cramer-Rao lower bound when the left and right bounds of the interval innovation process follow

a bivariate normal distribution. Simulation studies show that the two-stage minimum distance

estimator outperforms conditional least squares estimators based on the ranges and/or midpoints

of the interval sample, as well as the conditional quasi-maximum likelihood estimator based on

the bivariate left and right bound information of the interval sample. In an empirical study on

asset pricing, we document that when return interval data is used, some bond market factors,

particularly the default risk factor, are signi�cant in explaining excess stock returns, even after

the stock market factors are controlled in regressions. This di¤ers from the previous �ndings (e.g.,

Fama and French (1993)) in the literature.

Key Words: Asymptotic normality, Asset Pricing, Autoregressive conditional interval models,

Interval time series, Level, Mean squared error, Minimum distance estimation, Range

JEL NO: C4, C2



1. Introduction

Time series analysis has been concerned with modelling the dynamics of a stochastic point-

valued time series process. This paper is perhaps a �rst attempt to model the dynamics of a

stochastic interval-valued time series which exhibits both �range�and �level�characteristics of the

underlying process. A regular real-valued interval is a set of ordered real numbers de�ned by

y = [a; b] = fy 2 Rj a � y � b; where a; b 2 Rg. More generally, one can represent a certain
region in the n-dimensional Euclidean space by an interval vector, that is, a n-tuple of intervals;

see Moore, Kearfott and Cloud (2009). A stochastic interval time series is a sequence of interval-

valued random variables indexed by time t.

There exists a relatively large body of evidence of interval-valued data in economics and �nance.

In microeconomics, interval-valued observations are often used to provide rigorous enclosures of

the actual point data due to incomplete information (e.g., Manski (1995, 2003, 2007, 2013),

Manski and Tamer (2002), Andrews and Shi (2009), Andrews and Soares (2010), Beresteanu and

Molinari (2008), Chernozhukov, Hong, and Tamer (2007), Chernozhukov, Rigobon and Stoker

(2010), Bontemps, Magnac and Maurin (2012)). In time series analysis, however, interval data in

a time period often contain richer information than point-based observations in the same period

since an interval captures both the �range�(or �variability�) and �level�(or �trend�) characteristics

of the underlying process. A well-known example of interval-valued time series processes is the

daily temperatures, e.g., [YL;t; YR;t], where the left and right bounds denote the minimum and

maximum temperatures in day t respectively. In macroeconomics, the minimum and maximum

annualized monthly GDP growth rates form an annual interval-valued GDP growth rate data

that indicates the range within which it varies in a given year. In �nance, an interval can be an

alternative volatility measure, due to its dual natures in assessing the �uctuating range as well as

the level of an asset price during a trading period, e.g., Pt = [PL;t; PR;t]. In study of the dynamics

of bid-ask price spread of an asset, one can construct an interval data [YL;t; YR;t] to present the

bid-ask price spread, where YL;t and YR;t are the ask and bid prices of the asset at time t. In asset

pricing modelling, YL;t and YR;t denote the risk-free and equity returns, respectively. Besides the

interval-valued observations formed by the minimum and maximum point observations, quantile-

based data are also informative. In study of income inequality, for example, the bottom 10% and

top 10% quantiles of the incomes of a cohort can be used as a robust measure of income inequality.

Interval forecasts may be of direct interest in practice because, compared to point forecasts, in-

tervals contain rich information about the variability and the trend of economic processes. Russell

and Engle (2009) argued that the high-frequency �nancial time series reveal subtle characteristics,

e.g., irregular temporal spacing, strong diurnal patterns and complex dependence that present
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obstacles for traditional forecasting methods. In addition, it is rather di¢ cult to accurately fore-

cast the entire sequence of intraday prices for one day ahead. Thus, interval modelling may be an

alternative way to analyze intraday time series. Other examples are interval forecasts of temper-

atures, GDP growth rates, in�ation rates, bid and ask prices, as well as long-term and short term

interest rates in a given time period.

Since an interval observation in a time period provides more information than a point-valued

observation in the same time period, this informational advantage can be exploited for more

e¢ cient estimation and inference in econometrics. To elaborate this, let us consider volatility

modelling as an example, which has been a central theme in �nancial econometrics. Most studies

on volatility modelling employ point-based data, e.g., the daily closing price of an asset rather

than the interval data consisting of the maximum and minimum prices in a trading day. This is

the case for the popular GARCH and Stochastic Volatility (SV) models in the literature. Although

GARCH and SV models aim to study the dynamics of volatility of an asset price, the closing price

observations fail to capture the ��uctuation�information within a time period. A development in

the literature that improves upon GARCH and SV models is to use range observations, based on

the di¤erence between the maximum and minimum asset prices in a time period, which are more

informative than returns based on closing prices. Early models of this class include Parkinson

(1980) and Beckers (1983). More recently, Alizadeh, Brandt and Diebold (2002) have used range

observations of stock prices to obtain more e¢ cient estimation for SV models. See also Diebold

and Yilmaz (2009) for the use of range observations as measures for volatility. Chou (2005), on

the other hand, develops a class of Conditional Autoregressive Range (CARR) models to capture

the dynamics of the range of an asset price. Chou (2005) documents that CARR models have

better forecasts of volatility than GARCH models, indicating the gain of utilizing range data over

point-valued closing price data. However, an inherent drawback of the CARR models is that using

range as a volatility measure is unable to simultaneously capture the dual empirical features, i.e.,

�variability�and �level�. For example, the same range observations in di¤erent time periods may

have the same range but distinct price levels.

It is possible to capture the dual features of range and level by a bivariate point-valued model for

the left and right bounds of an interval process. Existing methods include modelling and estimating

the two univariate point-valued processes separately or joint modelling with vector autogression;

see Maia, Carvalho and Ludermir (2008), Neto, Carvalho and Freire (2008), Neto and Carvalho

(2010), Arroyo, Espínola and Maté (2011), Arroyo, González-Rivera, and Maté (2011), Lin and

González-Rivera (2013), and the references therein. However, a bivariate point-valued sample

may not e¢ ciently make use of the information of the underlying interval process, and possible

limitations often arise in handling separate classical studies; see Gil, González-Rodríguez, Colubi
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and Montenegro (2007), Blanco-Fernández, Corral and González-Rodríguez (2011). Furthermore,

a certain region which an interval vector presents, e.g., a squared box which a bivariate interval

vector presents, contains at least twice simultaneous equations as a single interval model, which

may involve a large number of unknown model parameters.

To capture the dynamics of an interval process, to forecast an interval and to explore the

potential gain of using interval time series data over using point-valued time series data, we

propose a new class of autoregressive conditional interval (ACIX thereof) models for interval-

valued time series processes, possibly with exogenous explanatory interval variables. We develop

an asymptotic theory for estimation, testing and inference. In addition to direct interest in interval

forecasts by policy makers and practitioners, the advantages of ACIX models over the existing

volatility and range models are at least twofold. First, it utilizes the information of both range

and level contained in interval data, and thus it is expected to yield more e¢ cient estimation and

inference than based on point-valued data. Consider the case of modelling the conditional range

of the daily price of some asset where there are more variabilities in the level sample than in the

range sample. Since range and level are generally correlated, it may not be e¢ cient to estimate

parameters in a range model by using the range information alone. Instead, one may obtain more

e¢ cient parameter estimation for an ACIX model with an interval sample, thus providing more

accurate forecasts for range.

A parsimonious ACIX model provides a simple and convenient uni�ed framework to infer the

dynamics of the interval population, which can also be used to derive some important point-

based time series models as special cases. For example, when interval data are transformed to

the point-valued �range�, the ACIX model then yields an ARMAX-type range model, which is

an alternative to Chou�s (2005) CARR model. Because our approach is based on the concept

of extended interval for which the left bound needs not to be smaller than the right bound,

the aforementioned advantages of our methodology also carry over to a large class of point-valued

regression models, where the regressand and regressors are de�ned as di¤erences between economic

variables. See Section 7 for an example of capital asset pricing modelling (Fama and French

(1993)).

The remainder of this paper is organized as follows. Section 2 introduces basic algebra of

intervals, interval time series, and the class of ACIX models. In Section 3, we propose a minimum

distance estimation method and establish the asymptotic theory of consistency and normality of

the proposed estimators. We also show how various estimators for the point-based models can be

derived as special cases of the proposed minimum distance estimator. Section 4 derives the optimal

weighting function that yields the asymptotic most e¢ cient minimum distance estimator, and

proposes a feasible asymptotically most e¢ cient two-stage minimum distance estimator. Section
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5 develops a Lagrange Multiplier test and a Wald test for the hypotheses on model parameters.

Section 6 presents a simulation study, comparing the performance of the proposed two-stage

minimum distance estimator with various parameter estimators in �nite samples. It is con�rmed

that more e¢ cient parameter estimation can be obtained when interval data rather than point-

valued data are utilized, and the proposed two-stage minimum distance estimator performs the

best in �nite sample, con�rming our asymptotic analysis. Section 7 is an empirical study of Fama-

French�s (1993) asset pricing model, comparing the OLS estimator and the proposed two stage

interval-based minimum distance estimator. We document that the use of interval risk premium

data yields overwhelming evidence that the default risk factor is signi�cant in explaining excess

stock returns even when stock risk factors are controlled, a result that the previous literature and

the OLS estimation fail to reveal (see Fama and French (1993)). Section 8 concludes the paper.

All mathematical proofs are collected in the Mathematical Appendix.

2. Interval Time Series and ACIX Model
In this section, we �rst introduce some basis concepts and analytic tools for stochastic interval

time series. We then propose a parsimonious class of autoregressive conditional interval models

with exogenous explanatory variables (ACIX) to capture the dynamics of interval time series

processes. Both static and dynamic interval time series regression models are included as special

cases.

2.1 Preliminary

To begin with, we �rst de�ne an extended random interval.

De�nition 2.1: An extended random interval Y on a probability space (
;z; P ) is a measurable
mapping Y : 
 ! IR, where IR is the space of closed sets of ordered numbers in R, as Y (!) =

[YL(!); YR(!)], where YL(!); YR(!) 2 R for all ! 2 
 denote the left and right bounds of Y (!)
respectively, together with the following three compositions called addition, scalar multiplication

and di¤erence, respectively:

(i) Addition, symbolized by +, which is a binary composition in IR:

A+B = [AL +BL; AR +BR];

(ii) Scalar multiplication, symbolized by �, which is a symmetric function from R� IR to IR:

� � A = [� � AL; � � AR];

(iii) Di¤erence (Hukuhara (1967)), symbolized by �H , which is a binary composition in IR:

A�H B = [AL �BL; AR �BR]:
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As a special case, a real-valued scalar a 2 R can be presented by a �degenerate interval�, or a

�trivial interval� such that a = [a; a]. An example of degenerate intervals is the zero interval:

A = [0; 0]. The mapping Y : 
 ! IR in De�nition 2.1 is �strongly measurable�with respect to

the �-�eld generated by the topology induced by the Hausdor¤ metric dH ; see Li, Ogura, and

Kreinovich (2002, De�nition 1.2.1 ). Speci�cally, for each interval X, we have Y �1(X) 2 z; where
Y �1(X) = f! 2 
 : Y (!) \X 6= �g is the inverse image of Y .
For each ! 2 
, Y (!) is a set of ordered real-valued numbers, changing continuously from

YL(!) to YR(!). To de�ne the probability distribution of an extended random interval Y , we

denote the Borel �eld of IR as B(IR). Given a B(IR)-measurable random interval Y , we de�ne a

sub-�-�eld zY by
zY = �

�
Y �1(�); � 2 B(IR)

	
;

where Y �1(�) = f! 2 
 : Y (!) 2 �g. Then zY is a sub-�-�eld of z with respect to which Y is

measurable. The distribution of a random interval Y is a probability measure P on B(IR) de�ned

by

FY (�) = P
�
Y �1(�)

�
; � 2 B(IR):

Consider as an example the interval in which the S&P 500 stock index in day t �uctuates as an

extended random interval Yt de�ned on the probability space (
;z; P ), and the outcome of the
experiment corresponds to a point ! 2 
. Then the measuring process is carried out to obtain an
interval in day t: Yt(!) = [YL;t(!); YR;t(!)]. Unlike a bivariate random vector X : 
X ! R2 of the

left and right boundaries of Y where X(!X) = (YL(!X); YR(!X))0 for !X 2 
X , the measurable
mapping Y : 
 ! IR is a univariate random set of ordered numbers in the space of IR. Unless

there exists a probability measure PX on B(R2) such that

PX
�
X�1(�X)

�
= P

�
Y �1(�)

�
,

for each �X 2 B(R2) and � 2 B(IR) such that YL(!X) = YL(!), YR(!X) = YR(!) and X�1(�X) =

f!X 2 
X : X(!X) 2 �Xg, modelling an interval population Y cannot be simply equated to joint
modelling a bivariate point-valued random vector for the left and right bounds of Y . The latter

approach may not retain all information in a set of ordered numbers for each interval observation

due to the fact that the two probability measures are not identical.

In De�nition 2.1, we do not impose the conventional restriction of YL � YR for regular inter-
vals that has been imposed in the conventional interval analysis (see Moore, Kearfott, and Cloud

(2009)). This is the reason we call Y as an extended interval. Our extension ensures the complete-

ness of IR and the consistency among the compositions introduced in De�nition 2.1. Let � = �1
and Yt = [1; 3], for example. Then the extension ensures that � � Yt = �1� [1; 3] = [�1;�3] 2 IR.
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This is not a regular interval. Furthermore, for all � 2 R; Yt 2 IR;

� � Yt + (��) � Yt = [�YL;t � �YL;t; �YR;t � �YR;t] = [0; 0];

which implies that a symmetric element with respect to addition exists. Conversely,

[0; 0]�H (��) � Yt = [0 + �YL;t; 0 + �YR;t] = � � Yt:

The concept of extended interval together with Hukuhara�s di¤erence is suitable for econo-

metric modelling of interval data. One example is the �rst di¤erence of some interval process

Xt:

Yt = Xt �H Xt�1 = [XL;t �XL;t�1; XR;t �XR;t�1] ;

which becomes a stationary interval process although the original interval seriesXt is not. Hukuhara

introduced this di¤erence operation to deal with the fact that the regular interval space, i.e., with

the restriction YL;t � YR;t, is not a linear space due to the lack of a symmetric element with respect
to the addition operation, which is addressed by our extension of the interval space. Below our

notation follows a convention throughout the paper: the scalar multiplication, e.g., � � A, will be
presented as �A, while the Hukuhara di¤erence A�H B is simply represented as A�B.
De�nition 2.1 also greatly extends the scope of applications of our methodology. For example,

it covers the case of an extended interval with the risk-free rate as the left bound and the market

portfolio return as the right bound, where the risk-free rate is not necessarily smaller than the

market portfolio return. See Section 7 for applications to asset pricing modelling.

It may be noted that the concept of extended random interval di¤ers from that of a con�dence

interval in statistical analysis, even if the restriction YL � YR is imposed. The objective here is to
learn about the probability distribution of an �interval population�rather than a �point population�,

and the forecast aims at the �true interval�or the �conditional expectation of an interval�of the

underlying stochastic interval process. In contrast, the conventional con�dence interval of a point-

valued time series is to learn about the uncertainty or dispersion of a point population or its

estimator given a prespeci�ed con�dence level.

Next, we de�ne a stochastic interval time series process.

De�nition 2.2: A stochastic interval time series process is a sequence of extended random intervals

indexed by time t 2 Z � f0;�1;�2; :::g, denoted fYt = [YL;t; YR;t]g1t=�1.

A segment fY1; Y2; :::; YTg from t = 1 to T of the interval time series fYtg constitutes an
interval time series random sample of size T . A realization of this random sample, denoted as

fy1; y2; :::; yTg, is called an interval time series data set with size T . Our main objective is to use
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the observed interval data to infer the dynamic structure of the interval time series fYtg and to use
it for forecasts and other applications. For example, a leading object of interest is the conditional

mean E(YtjIt�1); where It�1 = fYt�1; :::; Y1g is the information set available at time t� 1.
Following Aumann�s (1965) de�nition of expectation of random sets, we now introduce the

expectation of extended random intervals.

De�nition 2.3: If Yt is an extended random interval on (
;z; P ), then the expectation of Yt is
an extended interval de�ned by

�t � E(Yt) =
�
E (f) jf : 
! R; f 2 L1; f 2 Yt a.s. [P ]

	
provided E (jYtj) <1 with jYtj = supfjyj, y 2 Yt(!)j.

In order to quantify the variation of a random interval Yt around its expectation �t, to de�ne

the autocovariance function of an interval time series process fYtg, and particularly to develop a
minimum distance estimation method for an interval time series model, we need a suitable distance

measure between intervals.

A basic idea of a distance measure between intervals is to consider the set of the absolute

di¤erences between all possible pairs of elements (points) of the intervals A and B, with respect

to a suitable weighting function. The Hausdor¤ metric dH (Munkres, 1999) has been widely

used in measuring the distance between random sets (e.g., Artstein and Vitale (1975), Puri and

Ralescu (1983, 1985), Cressie (1978), Hiai (1984), Li, Ogura and Kreinovich (2002), Molchanov

(2005), Beresteanu and Molinari (2008), Beresteanu, Molchanov and Molinari (2011, 2012), Chan-

drasekhar, Chernozhukov, Molinari and Schrimpf (2012)). It is de�ned on a normed space � as

follows:

dH(A;B) = max

�
sup
a2A

inf
b2B

d(a; b); sup
b2B

inf
a2A

d(a; b)

�
;

where d(a; b) = ka� bk� is the norm de�ned on �, and A;B 2 %(�) which is the family of all
non-empty subsets of �. If � is a p-dimensional Euclidean space Rp, dH(A;B) can be written as

dH(A;B) = max

�
sup
a2A

d(a;B); sup
b2B

d(b; A)

�
= sup

u2Sp�1
jsA(u)� sB(u)j ; (2.1)

where Sp�1 = fu 2 Rp : kukRp = 1g is the unit sphere in Rp, and sA(u) is called a support

function of the set A de�ned as

sA(u) = sup
a2A

hu; ai , u 2 Rp; (2.2)

where h�:�i is an inner product. See Minkowsky (1911).
Eq.(2.1) indicates that dH only considers the least upper bound of the set of absolute di¤erences
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between all pairs of support functions in p�1 directions of tangent planes with weight 1. As shown
in Näther (1997, 2000), the Fréchet expectation of a random set Yt is not with respect to dH . As

a special case of random sets, the interval expectation E(YtjIt�1) is not the optimal solution of
the minimization problem, namely,

E(YtjIt�1) 6= arg min
A2IR

E
�
d2H(Yt; A(It�1))

�
:

Thus, dH is not a suitable metric to develop a minimum distance estimation method for a condi-

tional expectation model of an interval process.

Körner and Näther (2002) developed a distance measure called DK metric. For any pair of

sets A;B 2 zc(Rp),

DK(A;B) =

sZ
(u;v)2sp�1

[sA(u)� sB(u)] [sA(v)� sB(v)] dK(u; v);

where zc(Rp) is the space of convex compact sets, h�; �iK denote the inner product in Sp�1 with
respect to kernel K(u; v); and K(u; v) is a symmetric positive de�nite weighting function on Sp�1

which ensures that DK(A;B) is a metric for zc(Rp). When p = 1, the above random sets become

extended random intervals, and the generalized zc(R) space is IR. For any pair of extended
intervals A;B 2 IR;

DK(A;B) =

sZ
(u;v)2s0

[sA(u)� sB(u)] [sA(v)� sB(v)] dK(u; v); (2.3)

where the unit space S0 = fu 2 R1; juj = 1g = f1;�1g is a set consisting of only two numbers, 1
and �1. Here, the support function becomes

sA(u) =

�
supa2A fu � aju 2 S0g if AL � AR;
infa2A fu � aju 2 S0g if AR < AL;

=

�
AR u = 1;

�AL u = �1; (2.4)

and sA(u) = A if A is a degenerate interval where AL = AR.

The space of support functions sA(u) in Eq.(2.4) is linear, namely

sA+B = sA + sB;

s�A = �sA; for all � 2 R;

sA�B = sA � sB: (2.5)

The usual support function in Eq.(2.2) is sublinear since that s�A = �sA only holds for � � 0.
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Our extension of the regular interval space, which allows AL > AR for IR, ensures that it holds

for all � 2 R. When AL � AR, it is the usual support function as in Eq.(2.2). The result

that sA�B = sA � sB shows that the support function of a Hukuhara di¤erence between two
extended intervals, is equal to the di¤erence between the corresponding support functions of the

two intervals. For more discussions on support functions, see Rockafellar (1970), Romanowska

and Smith (1989), Choi and Smith (2003), Li, Ogura, and Kreinovich (2002), Molchanov (2005),

Beresteanu and Molinari (2008), Beresteanu, Molchanov and Molinari (2011, 2012), Bontemps,

Magnac and Maurin (2012), Chandrasekhar, Chernozhukov, Molinari and Schrimpf (2012).

The kernel K(u; v) is a symmetric positive de�nite function such that for u; v 2 S0 = f1;�1g,8<:
K(1; 1) > 0;

K(1; 1)K(�1;�1) > K(1;�1)2;
K(1;�1) = K(�1; 1):

(2.6)

For A;B 2 IR, the mapping h�; �iK : IR ! R is a linear functional on IR:, with respect to any

kernel K satisfying Eq.(2.6). This is because that the support functions form an inner product

space (or unitary space), provided the inner product with respect to kernelK for each A;B;C 2 IR
satis�es the following operation rules:8>>>>><>>>>>:

hsA; sBiK = hsB; sAiK ;
hsA+B; sCiK = hsA; sCiK + hsB; sCiK ,
hs�A; sBiK = � hsA; sBiK , for all � 2 R,
hsA; sAiK � 0,
hsA; sAiK = 0 i¤ A = [0; 0]:

(2.7)

The norm for A 2 IR with respect to kernel K is de�ned as the nonnegative square root of

hsA; sAiK , i.e.,
kAkK = DK(A; [0; 0]) =

q
hsA; sAiK ; (2.8)

and similarly,

kA�BkK = DK(A;B) =
q
hsA�B; sA�BiK : (2.9)

The DK-metric has certain desirable properties. Most importantly, sA(u) is an isometry between

IR and a cone of the Hilbert subspace endowed with the generic L2-type DK distance respect to

K(u; v), which implies the suitability for the least squares estimation method of time series models

for the conditional mean of an interval process. This is stated in Lemma 2.1 below.

Lemma 2.1: Suppose A(It�1) is a measurable interval function of information set It�1: Then

E(YtjIt�1) = arg min
A2IR

E
�
D2
K(Yt; A(It�1))

�
: (2.10)
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See Näther (1997, 2000) for a generalized result of random sets, but not in a time series context.

Numerically the DK(A;B) in Eq.(2.3) has a simple quadratic form and is easy to compute. It

follows from the de�nitions of sA(u) and K(u; v) that

D2
K(A;B) = K(1; 1) (AR �BR)2 +K(�1;�1)(AL �BL)2 � 2K(1;�1)(AR �BR)(AL �BL)

=

�
AR �BR
�(AL �BL)

�0 �
K(1; 1) K(1;�1)
K(�1; 1) K(�1;�1)

� �
AR �BR
�(AL �BL)

�
: (2.11)

Recall that the crucial criterion of a distance between intervals A and B is to consider the set

of the absolute di¤erences between all possible pairs of elements (points) of A and B, with a

proper weighting function to include the maximum amount of useful information contained in

intervals. However, Eq.(2.11) might lead to a misunderstanding that D2
K(A;B) only considers a

weighted average of distances between the two boundary points of intervals A and B, and ignores

the distances between interior points. Below we elaborate sA(u) and K(u; v) to gain insight into

the numerical equality in Eq.(2.11).

Intuitively, the support function sA(u) is an alternate representation of A 2 IR in terms of the
positions of two tangent planes, i.e., the left and right bounds, that enclose the interval A. Li,

Ogura and Kreinovich (2002, Corollary 1.2.8) verify that sA(u) of the extended random interval

A de�ned on (
;z; P ) is measurable, by which we can derive any point-valued random variable

A(�)(!) 2 A(!) :

A(�)(!) = �sA(!)(1)� (1� �)sA(!)(�1) = �AR + (1� �)AL (2.12)

for � 2 [0; 1]. For instance, for each ! 2 
; � = 0, 1 and 0:5 yield the left and right bounds, and
the midpoint of A(!) respectively:

AL(!) � A(0)(!) = �sA(!)(�1);

AR(!) � A(1)(!) = sA(!)(1);

Am(!) � A(0:5)(!) =
AL(!) + AR(!)

2
: (2.13)

Bertoluzza, Corral and Salas (1995) �rst introduced a dW distance for intervals, which was later

generalized to the DK metric by Körner and Näther (2002). The dW distance is de�ned as

dW (A;B) =

sZ
[0;1]

(A(�) �B(�))2dW (�) , for all A;B 2 IR

where W (�) is a probability measure on the real Borel space ([0; 1]), B([0; 1]). The dW (A;B)

measure involves not only distances between extreme points with weights W (0) and W (1), but
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also distances between interior points in the intervals with weights W (�), 0 < � < 1.

It is interesting to see that the DK metric as a generalization of the dW metric preserves

this property (González-Rodríguez, Blanco-Fernández, Corral and Colubi (2007)). The simpler

expression of the DK metric in Eq.(2.11) than dW (A;B) lies in the fact that it measures the

distance between each pair of points in intervals A and B in terms of the support functions,

�
A(�) �B(�)

�2
= [�AR + (1� �)AL � �BR � (1� �)BL]2

= �2 (AR �BR)2 + (1� �)2(AL �BL)2 + 2�(1� �) (AR �BR) (AL �BL) :

(2.14)

Instead of considering an integral for (A(�)�B(�))2 with respect to W (�), Eq.(2.14) suggests that
the value of K(u; v) for each pair of (u; v) 2 S0 can be interpreted as

K(1; 1) =

Z 1

0

�2dW (�);

K(1;�1) = K(�1; 1) =
Z 1

0

�(�� 1)dW (�);

K(�1;�1) =

Z 1

0

(1� �)2dW (�):

These identities suggest that the choice of kernelK is equivalent to the choice of a certain weighting

function W (�): Thus, although D2
K(A;B) can be simply computed by the distances between

extreme points with respect to kernel K(u; v), it is in essence an integral over the distances

between all pairs of points in intervals A and B with a weighting function W (�) implied by the

choice of K(u; v).

We now explore some special choices of kernel K(u; v) and discuss their implication on captur-

ing the information contained in intervals. For notational convenience, we denote a generic choice

of a symmetric kernel K as K(1; 1) = a, K(1;�1) = K(�1; 1) = b, K(�1;�1) = c, where a, b
and c satisfy Eq.(2.6).

Case 1. (a; b; c) = (1
4
;�1

4
; 1
4
):

This kernel K corresponds to the choice of weighting function W (�) as a degenerate distribu-

tion: W (�) = 1 for � = 1
2
and 0 otherwise. The DK metric becomes

D2
K(A;B) = (A

m �Bm)2 ;

which measures the distance between midpoints of A and B. Note that kernel K is not positive

de�nite here.

11



Case 2. (a; b; c) = (1; 1; 1). In this case, we have

D2
K(A;B) = (A

r �Br)2 ;

which measures the distance between ranges of A and B. Note that kernel K is not positive

de�nite here.

Case 3. a = c, jbj < a. Then by Eq.(2.11),

D2
K(A;B) =

a+ b

2
(Ar �Br)2 + 2(a� b) (Am �Bm)2 :

This measures the distance between the ranges Ar and Br, and the distance between the midpoints

Am and Bm, with weights a+b
2
and 2(a � b) respectively. If �1 < b

a
< 3

5
, (Am �Bm)2 receives a

larger weight than (Ar �Br)2; if 3
5
< b

a
< 1, (Ar �Br)2 receives a larger weight than (Am �Bm)2;

and if b
a
= 3

5
, the squared di¤erences between ranges and between midpoints receive the same

weight.

Case 4. b = 0. Then by Eq.(2.11),

D2
K(A;B) = a (AR �BR)

2 + c (AL �BL)2 :

This measures the distance between the left bounds and the distance between the right bounds,

with weights c and a respectively. If 0 < a < c, (AL �BL)2 receives a larger weight than
(AR �BR)2; if 0 < c < a, (AR �BR)2 receives a larger weight than (AL �BL)2; and if 0 < a = c,
the squared di¤erences between left bounds and right bounds receive the same weight. The choice

of such a kernelK is equivalent to the choice of weighting functionW (�) which follows a Bernoulli

distribution with W (0) = c, W (1) = a, where a+ c = 1.

Case 5. Suppose a 6= c, b 6= 0, where a; b and c satisfy Eq.(2.6). Then by Eq.(2.11)

D2
K(A;B) = a (AR �BR)

2 + c(AL �BL)2 � 2b (AR �BR) (AL �BL)

=
a+ 2b+ c

4
(Ar �Br)2 + (a� 2b+ c) (Am �Bm)2 + (a� c) (Ar �Br) (Am �Bm) :

Here, D2
K(A;B) can capture information in the left bound di¤erence AL � BL, the right bound

di¤erence AR � BR, and their cross product (AR �BR) (AL � BL), or equivalently, the infor-
mation in the range di¤erence Ar � Br, the level di¤erence Am � Bm, and their cross product
(Ar �Br) (Am �Bm). The utilization of the cross product information will enhance estimation
e¢ ciency, as will be seen below.

2.2 Stationarity of an Interval Time Series Process

To introduce the concept of weak stationarity for the interval time series process fYtg, we �rst
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de�ne the autocovariance function of fYtg based on support function sA and kernel K.

De�nition 2.4: The autocovariance function of a stochastic interval time series process fYtg,
denoted 
t(j); is a scalar de�ned by


t(j) � cov(Yt; Yt�j) = E
D
sYt � s�t ; sYt�j � s�t�j

E
K
; j = 0;�1;�2; :::;

where �t = E (Yt), and
D
sYt � s�t ; sYt�j � s�t�j

E
K
is the inner product with respect to the kernel

K(u; v) on S0 = f�1; 1g. In particular, the variance of Yt is


t(0) = E kYt � �tk
2
K = E

�
D2
K(Yt; �t)

�
= E



sYt � s�t ; sYt � s�t

�
K
;

and 
t(j) = 
t(�j) for all integers j, provided the kernel K(u; v) is symmetric.
Note that 
t(j) has the form of covariance between two random intervals X and Z:

cov(X;Z) = E


sX � s�X ; sZ � s�Z

�
K
:

Thus 
t(j) could be interpreted as the covariance of Yt with its lagged value Yt�j. When fYtg is
a stochastic point-valued process, we have

E
D
sYt � s�t ; sYt�j � s�t�j

E
K
= E

�
(Yt � �t)(Yt�j � �t�j)

�
;

subject to the restriction that
R
(u;v)2S0 dK(u; v) = K(1; 1) +K(�1;�1) + 2K(1;�1) = 1; which

is consistent with the de�nition of the autocovariance function of a point-valued time series.

We now de�ne weak stationarity of a stochastic interval time series process.

De�nition 2.5: If neither the mean �t nor the autocovariance 
t(j); for each j; of a stochastic

interval time series process fYtg depends on time t, then fYtg is weakly stationary with respect to
DK, or covariance stationary with respect to DK.

Suppose fYtg is a weakly stationary interval process with respect to DK . Then an induced

stochastic point-valued process according to Eq.(2.12) is also weakly stationary. Given Eq.(2.13)

and the interval process Yt, we can obtain a bivariate point-valued process of the left and right

bounds of Yt : (
Y
(0)
t = YL;t;

Y
(1)
t = YR;t;

the range (or di¤erence) of Yt as a measure of �volatility�

Y rt � Y 1t � Y 0t = sYt(1) + sYt(�1) = YR;t � YL;t;
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and the midpoint of Yt as a measure of �level�

Y mt � Y 0:5t = sYt

�
1

2

�
=
YL;t + YR;t

2
:

These point processes are in essence measurable linear transformations of Yt based on its support

function, and as a result, their probabilistic properties are determined by (
;z; P ) on which Yt is
de�ned. Thus fY rt g, fY mt g, and the bivariate point process f(YL;t; YR;t)0g are all weakly stationary
processes if Yt is weakly stationary with respect to DK .

If 
(j) = 0 for all j 6= 0, we say that the weakly stationary interval process fYtg with respect
to DK is a white noise process with respect to DK . This arises when fYtg is an independent and
identically distributed (i.i.d.) sequence. Of course, zero autocorrelation of fYtg across di¤erent
lags does not necessarily imply serial independence of fYtg ; as is the case with the conventional
time series analysis:

Next we de�ne strict stationarity of a stochastic interval time series process.

De�nition 2.6: Let P1 be the joint distribution function of the stochastic interval time series

sequence fY1; Y2; :::g, and let P�+1 be the joint distribution function of the stochastic interval
time series sequence fY�+1; Y�+2; :::g. The stochastic interval time series process fYtg is strictly
stationary if P�+1 = P1 for all � � 1.

In accordance with De�nition 2.6, we could introduce the concept of ergodicity for a strictly

stationary interval process, which is essentially the same as that for a point-valued process. For

more discussion on ergodicity, see White (1999, De�nition 3.33).

2.3 Law of Large Numbers for Weakly Stationary Interval Processes

The strong law of large numbers with the Hausdor¤ metric dH of i.i.d. random compact

subsets of �nite-dimensional Euclidean space Rd was �rst proved by Artstein and Vitale (1975),

and further studied by Cressie (1978), Hiai (1984), and Puri and Ralescu (1983, 1985), Molchanov

(1993), Li, Ogura, and Kreinovich (2002). In partial identi�cation analysis, related works applying

random set theory include Molchanov (2005) who metrises the weak convergence of random closed

sets; Beresteanu and Molinari (2008) who use limit theorems for i.i.d. random sets to establish

consistency of their estimator for the sharp identi�cation region of the parameter vector with

respect to the Hausdor¤ metric; see also the references therein.

However, these limit theories are not available for the DK metric, particularly in a time series

context. Below, we prove the weak law of large numbers (WLLN) for both the �rst and second

moments of a stationary interval process.

Theorem 2.1. Let fYtgTt=1 be a random interval sample of size T from a weakly stationary with

respect to DK interval process fYtg with E (Yt) = � for all t, EhsYt � s�; sYt�j � s�iK = 
(j) for
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all t and j, and
P1

j=�1 j
(j)j <1 . Then �YT
p�! � as T !1, where �YT = T�1

PT
t=1 Yt is the

sample mean of fYtgTt=1 ; and the convergence is with respect to the DK metric in the sense that

limT!1 P
�
DK( �YT ; �) � �

�
= 0, for any given constant � > 0.

Theorem 2.1 provides the conditions of ergodicity in mean for a stochastic interval time series

process, that is, when the autocovariance function 
(j) is absolutely summable, the sample mean
�YT converges to the population mean � of a weakly stationary interval process fYtg with respect
to DK . In Theorem 2.1, the sample average �YT and the population mean � are both de�ned on

IR, i.e., both are interval-valued. When they are point-valued, we have

DK( �YT ; �) = dH( �YT ; �) =
�� �YT � ��� ;

subject to
R
(u;v)2S0 dK(u; v) = 1. Thus, Theorem 2.1 coincides with the familiar WLLN for a

point-valued time series process, i.e., limT!1 P
��� �YT � ��� � �� = 0 for each � > 0:

Next, we show that the sample autocovariance of a stationary interval process converges in

probability to its autocovariance.

Theorem 2.2. Let fYtgTt=1 be a random sample of size T from a stationary ergodic stochastic

interval time series process fYtg such that E kYtk2K < 1 for all t. Suppose the conditions of

Theorem 2.1 hold. Then for each given j 2 f0;�1;�2; :::g,


̂(j) � T�1
TX

t=j+1



sYt � s �YT ; sYt�j � s �YT

�
K

p�! 
(j)

as T !1; where �YT = T�1
PT

t=1 Yt is the sample mean of fYtg
T
t=1.

Theorem 2.2 provides su¢ cient conditions that a weakly stationary interval process with re-

spect to DK is ergodic in second moments. Since the weighted inner product h�; �iK is a scalar,

the convergence in probability in Theorem 2.2 is with respect to either the DK or dH metric.

2.4 Autoregressive Conditional Interval Models

To capture the dynamics of a stochastic interval process fYtg, we �rst propose a class of
Autoregressive Conditional Interval (ACI) Models of order (p; q):

Yt = �0 + �0I0 +

pX
j=1

�jYt�j +

qX
j=1


jut�j + ut; (2.15)

or compactly,

B(L)Yt = �0 + �0I0 + A(L)ut

where �0, �j (j = 0; :::; p), 
j (j = 1; :::; q) are unknown scalar parameters, I0 = [�1
2
; 1
2
] is a unit
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interval; �0+�0I0 = [�0� 1
2
�0; �0+

1
2
�0] is a constant interval intercept; A(L) = 1+�

q
j=1
jL

j and

B(L) = 1�
Pp

j=1 �jL
j, where L is the lag operator; ut is an interval innovation. We assume that

futg is a interval martingale di¤erence sequence (IMDS) with respect to the information set It�1,
that is, E(utjIt�1) = [0; 0] a:s. It is noted that the parameters in ACI models are scalar-valued
rather than set-valued.

The ACI(p; q) model is an interval generalization of the well-known ARMA (p; q) model for

a point-valued time series process. It can be used to forecast intervals of economic processes,

such as the GDP growth rate, the in�ation rate, the stock price, the long-term and short-term

interest rates, and the bid-ask spread. This is often of direct interest for policy makers and

practitioners. When q = 0; Eq.(2.15) becomes an ACI(p; 0) model, analogous to an AR(p) model

for a point-valued time series:

Yt = �0 + �0I0 +

pX
j=1

�jYt�j + ut:

When p = 0; Eq.(2.15) becomes an ACI(0; q) model, analogous to an MA(q) model for a point-

valued time series:

Yt = �0 + �0I0 +

qX
j=1


jut�j + ut:

If all the roots of B(z) = 0 lie outside the unit circle, an ACI(p; q) process can be rewritten as a

distributed lag of fus; s � tg, which is an ACI(0,1) process,

Yt = B(L)�1(�0 + �0I0) +B(L)
�1A(L)ut

= B(1)�1(�0 + �0I0) +
1X
j=0

�jut�j;

where f�jg is given by B(L)�1A(L) = �1j=0�jLj: On the other hand, if all the roots of A(z) = 0
lie outside the unit circle, an ACI(p; q) model is an invertible process with ut expressed as the

linear summation of fYs; s � tg, which is an ACI(1; 0) process,

ut = A(L)�1B(L)Yt � A(L)�1(�0 + �0I0)

= �A(1)�1(�0 + �0I0) +
1X
j=0

�jYt�j;

where f�jg is given by B(L)�1A(L) = �1j=0�jLj:
An ACI(p; q) model of an interval process can be extended to an ACIX(p; q; s) model by
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incorporating exogenous explanatory interval variables:

Yt = �0 + �0I0 +

pX
j=1

�jYt�j +

qX
j=1


jut�j +

sX
j=0

�0jXt�j + ut; (2.16)

whereXt = (X1t; :::; XJt)
0 is an exogenous stationary interval vector process, and �j = (�j;1; :::; �j;J)0

is the corresponding point-valued parameter vector. When q = 0, i.e., when there is no MA com-

ponent, the ACIX(p; 0; s) model is an interval time series regression model:

Yt = �0 + �0I0 +

pX
j=1

�jYt�j +

sX
j=0

�0jXt�j + ut; (2.17)

where all explanatory interval variables are observable. This covers both static (with p = 0) or

dynamic (with p > 0) interval time series regression models.

ACIX(p; q; s) models can be used to capture temporal dependence in an interval process. In

particular, it can be used to capture some well-known empirical stylized facts in economics and

�nance, such as volatility (or range) clustering and level e¤ect (i.e., correlation between volatility

and level). For example, �1 > 0 indicates that a wide interval at time t is likely to be followed by

another wide interval in the next period, which can capture range clustering.

Another advantage of modelling an ACIX(p; q; s) process is that one can derive some important

univariate point-valued ARMAX(p; q; s) models as special cases, provided the derived point models

are de�ned by the support function as in Eq.(2.12). For example, by Eq.(2.12) and taking the

di¤erence between Y (1)t and Y (0)t , the left and right bounds of an ACIX(p; q; s) model, we obtain

an ARMAX(p; q; s) type range model

Y rt = �0 +

pX
j=1

�jY
r
t�j +

qX
j=1


ju
r
t�j +

sX
j=0

�0jX
r
t�j + u

r
t ; (2.18)

where urt is a MDS such that E(u
r
t jIt�1) = E(uR;t � uL;tjIt�1) = 0 a:s:, given E(utjIt�1) = [0; 0]

a:s. This delivers an alternative dynamic range model to Chou (2005) for modelling the range

dynamics of a time series. The di¤erence is that the derived range model in Eq.(2.18), with an

ACIX(p; q; s) model as the data generating process (DGP), has an additive innovation while Chou

(2005) has a multiplicative innovation. Our approach has an advantage, that is, we can use an

interval sample, rather than the range sample only, to estimate the ACIX model more e¢ ciently

even if the interest is in range modelling.

Similarly, we can obtain an ARMAX(p; q; s) level model with � = 1
2
in Eq. (2.12):

Y mt = �0 +

pX
j=1

�jY
m
t�j +

qX
j=1


ju
m
t�j +

sX
j=0

�0jX
m
t�j + u

m
t ; (2.19)
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where umt is a MDS such that E(u
m
t jIt�1) = E(12uL;t +

1
2
uR;tjIt�1) = 0 a:s:, given E(utjIt�1) = 0

a:s. This can be used to forecast the trend of a time series process.

Finally, we can obtain a bivariate ARMAX(p; q; s) model for the boundaries of Yt :(
YL;t = �0 � 1

2
�0 +

Pp
j=1 �jYL;t�j +

Pq
j=1 
juL;t�j +

Ps
j=0 �

0
jXL;t�j + uL;t;

YR;t = �0 +
1
2
�0 +

Pp
j=1 �jYR;t�j +

Pq
j=1 
juR;t�j +

Ps
j=0 �

0
jXR;t�j + uR;t;

(2.20)

where E (uL;tjIt�1) = E(uR;tjIt�1) = 0 a:s: given E (utjIt�1) = [0; 0] a:s.

3. Minimum Distance Estimation

We now propose a minimum distance estimation method for an ACIX(p; q; s) model. We �rst

impose a set of regularity conditions:

Assumption 1. fYtg is a strictly stationary and ergodic interval stochastic process withE kYtk4K <
1; and it follows an ACIX(p; q; s) process in Eq.(2.16), where the interval innovation ut is an IMDS
with respect to the information set It�1, that is, E(utjIt�1) = [0; 0] a:s., and Xt = (X1t; :::; XJt)

0

is an exogenous strictly stationary ergodic interval vector process.

Assumption 2. Put A(z) = 1 +
Pq

j=1 
jz
j and B(z) = 1 �

Pp
j=1 �jz

j. The roots of A(z) = 0

and B(z) = 0 lie outside the unit circle jzj = 1.
Assumption 3. (i) The parameter space � is a �nite-dimensional compact space ofRk where k =

p+q+(s+1)J+2. (ii) �0 is an interior point in �; where �0 = (�0; �0; �1; :::; �p; 
1; :::; 
q; �
0
0; :::; �

0
s)
0

is the true parameter vector value given in Eq.(2.16).

Assumption 4. The assumed initial values are Yt = Ŷ0 for �p + 1 � t � 0, ut = û0 for

�q + 1 � t � 0 and Xt = X̂0 for �s � t � 0, where there exists 0 < C < 1 such that

E sup�2� jjŶ0jj2K < C, E sup�2� kû0k
2
K < C, E sup�2� jjX̂0jj2K < C.

Assumption 5. The square matrices E[hs @ut(�)
@�

; s0@ut(�)
@�

iK ] and E[hs @ut(�)
@�

; sut(�)iKhsut(�); s @ut(�)
@�

iK ]
are positive de�nite for all � in a small neighborhood of �0.

3.1 Minimum DK-Distance Estimation

Given that E(YtjIt�1) is the optimal solution to minimize E[D2
K(Yt; A(It�1))], as is estab-

lished in Lemma 2.1, we will propose an estimation method that minimizes a sample analog of

E[D2
K(Yt; A(It�1))]. As an advantage, our method does not require speci�cation of the distribu-

tion of the interval population. Also, the proposed method provides a uni�ed framework that can

generate various point-valued estimators (e.g., conditional least squares estimators based on the

range and/or midpoint sample information) as special examples; see Section 3.2 below.

We de�ne the minimum DK-distance estimator as follows:

�̂ = argmin
�2�

Q̂T (�);
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where TQ̂T (�) is the sum of squared norm of residuals of the ACIX(p; q; s) model in (2.16), namely

Q̂T (�) =
1

T

TX
t=1

qt(�); (3.1)

qt(�) = kut(�)k2K ; (3.2)

and

ut(�) = Yt �
"
(�0 + �0I0)�

pX
j=1

�jYt�j �
sX
j=0

�0jXt�j �
qX
j=1


jut�j(�)

#
: (3.3)

Since we only observe fYt; X 0
tg from time t = 1 to time t = T , we have to assume some initial

values for fYtg0t=�p+1 ; fXtg0t=�s+1 and fut(�)g
0
t=�q+1 in computing the values for the interval error

process fut(�)g.
We �rst establish consistency of �̂:

Theorem 3.1. Under Assumptions 1, 2, 3(i) and 4, as T !1;

�̂
p! �0:

Intuitively, the statistics Q̂T (�) converges in probability to E[D2
K(Yt; Z

0
t(�)�)] uniformly in � as

T ! 1: Furthermore, the true model parameter �0 is the unique minimizer of E[D2
K(Yt; Z

0
t(�)�]

given the IMDS condition on the interval innovation process futg. It then follows from the

extremum estimator theorem (e.g., Amemiya (1985)) that �̂
p! �0 as T !1:

Next, we derive the asymptotic normality of �̂.

Theorem 3.2. Under Assumptions 1-5, as T !1;

p
T (�̂ � �0) L�! N(0;M�1(�0)V (�0)M�1(�0));

where V (�0) = E[@qt(�
0)

@�
@qt(�

0)
@�0 ], M(�

0) = E[@
2qt(�

0)
@�@�0 ], qt(�) is de�ned as in Eq.(3.2) and all the

derivatives are evaluated at �0.

The asymptotic variance of
p
T (�̂��0), i.e.,M�1(�0)V (�0)M�1(�0), can be consistently estimated,

as shown below.

Theorem 3.3. Under Assumptions 1-5, as T !1;

M̂T (�̂) =
1

T

TX
t=1

@2qt(�̂)

@�@�0
p�!M(�0);

V̂T (�̂) =
1

T

TX
t=1

@qt(�̂)

@�

@qt(�̂)

@�0
p�! V (�0);
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where qt(�) is de�ned in Eq.(3.2) and all derivatives are evaluated at the estimator �̂ and the

assumed initial values for Yt, Xt, ut(�) with t � 0. Then, as T !1;

M̂�1
T (�̂)V̂T (�̂)M̂

�1
T (�̂)�M�1(�0)V (�0)M�1(�0)

p�! 0:

We note that the asymptotic variance of
p
T �̂ cannot be simpli�ed even under conditional

homoskedasticity that var(utjIt�1) = �2K for an arbitrary kernel K.
When the ACIX(p; q; s) model becomes an ACIX(p; 0; s) model as in Eq.(2.17), namely, when

there is no MA component in the ACIX(p; q; s) model, the minimum DK-distance estimator �̂

has a convenient closed form that is similar to the conventional OLS estimator. This is stated

below.

Corollary 3.1. Suppose Assumptions 1-5 hold, and fYtg follows the ACIX (p; 0; s) process in
Eq.(2.17). Then the minimum DK-distance estimator �̂ has the closed form

�̂ =

24 TX
t=1+max(p;s)



sZt ; s

0
Zt

�
K

35�1 TX
t=1+max(p;s)

hsZt ; sYtiK ;

where Zt = ([1; 1]; I0; Yt�1; :::; Yt�p; X 0
t; X

0
t�1; :::; X

0
t�s)

0: When T !1, �̂ p�! �0, and

p
T (�̂ � �0) L�! N(0; E�1

�

sZt ; s

0
Zt

�
K

�
E
�
hsZt ; sutiK



sut ; s

0
Zt

�
K

�
E�1

�

sZt ; s

0
Zt

�
K

�
):

Furthermore, as T !1,

T�1
TX

t=1+max(p;s)



sZt ; s

0
Zt

�
K

p�! E
�

sZt ; s

0
Zt

�
K

�
;

T�1
TX

t=1+max(p;s)

hsZt ; sûtiK


sût ; s

0
Zt

�
K

p�! E
�
hsZt ; sutiK



sut ; s

0
Zt

�
K

�
;

where ût = Yt � Z 0t�̂:

3.2 Examples of Minimum DK-Distance Estimators

This section explores how the results in Theorems 3.1�3.3 can be used to derive various esti-

mators as special cases. Based on the estimated interval residuals fût(�)gTt=1; de�ne8>>>><>>>>:
Q̂LT (�) = T

�1
TX
t=1

û2L;t(�), Q̂
R
T (�) = T

�1
TX
t=1

û2R;t(�), Q̂
LR
T (�) = T

�1
TX
t=1

ûL;t(�)ûR;t(�)

Q̂rT (�) = T
�1

TX
t=1

[ûrt (�)]
2 , Q̂mT (�) = T

�1
TX
t=1

[ûmt (�)]
2 , Q̂mrT (�) = T

�1
TX
t=1

ûrt (�)û
m
t (�)

(3.4)
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where ûL;t(�) and ûR;t(�) are the left and right bounds of ût(�), ûrt (�) = ûR;t(�) � ûL;t(�) and
ûmt (�) =

1
2
ûL;t(�)+

1
2
ûR;t(�) are the range and midpoint of ût(�). Combining Eqs.(2.11) and (3.4),

we obtain

Q̂T (�) = aQ̂RT (�) + cQ̂
L
T (�)� 2bQ̂LRT (�)

=
a+ 2b+ c

4
Q̂rT (�) + (a� 2b+ c) Q̂mT (�) + (a� c) Q̂mrT (�): (3.5)

Case 1: Conditional Least Squares Estimators Based on Univariate Point Data

Suppose we choose a kernel K with (a; b; c) = (1; 1; 1): Then

Q̂T (�) = Q̂
r
T (�

r);

which is the sum of squared residuals of the conditional dynamic range model in Eq.(2.18). In

this case, the minimum DK-distance estimator solves

�̂
r
= argmin

�2�
Q̂rT (�):

The estimator �̂
r
cannot identify the level parameter �0, because �̂

r
is based on the range sample

fY rt ; Xr
t g
T
t=1, which contains no level information of the interval process fYtg.

Suppose we choose a kernel K with (a; b; c) = (1
4
;�1

4
; 1
4
). Then

Q̂T (�) = Q̂
m
T (�);

which is the sum of squared residuals of the conditional dynamic level (i.e., midpoint) model in

Eq.(2.19). In this case, the minimum DK-distance estimator solves

�̂
m
= argmin

�2�
Q̂mT (�):

The estimator �̂
m
can consistently estimate the level parameter �0, but it cannot identify the scale

parameter �0, because �̂
m
is based on the midpoint sample fY mt ; Xm

t g
T
t=1, which contains no range

information of the interval process fYtg.
Given the �tted values for both range and mid-point processes, we can construct a one-step-

ahead predictor for interval variable Yt using information It�1:

Ê(YtjIt�1) =
�
Ŷ mt � 1

2
Ŷ rt ; Ŷ

m
t +

1

2
Ŷ rt

�
;

where Ŷ mt and Ŷ rt are one-step-ahead point predictors for Y
m
t and Y rt based on Eqs.(2.19) and

(2.18) respectively.
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Both estimators �̂
r
and �̂

m
are convenient and they can consistently estimate partial parameters

in the ACIX(p; q; s) model. However, besides the failure in identifying level parameter �0 or scale

parameter �0, these estimators are not expected to be most e¢ cient because they use the range

and level sample information separately.

Case 2: Constrained Conditional Least Squares Estimators Based on Bivariate Point Samples

Now we consider the choice of kernel K with a = c > 0 and b = 0. Then

1

a
Q̂T (�) = Q̂

L
T (�) + Q̂

R
T (�) =

TX
t=1

1

T

�
û2L;t(�) + û

2
R;t(�)

�
:

This is the sum of squared residuals of the bivariate ARMAX model in Eq.(2.20) for the left bound

YL;t and right bound YR;t of the interval process fYtg. Thus, the minimum DK-distance estimator

�̂ becomes the constrained conditional least squares estimator for the bivariate ARMAX(p; q; s)

model for the left and right bounds of Yt; it is consistent for all parameters �
0 in the ACIX model.

Given the �tted values for the bivariate ARMAX(p; q; s) model for YL;t and YR;t, we can also

construct a one-step-ahead predictor for interval variable Yt using information It�1:

Ê(YtjIt�1) =
h
ŶL;t; ŶR;t

i
;

where ŶL;t and ŶR;t are one-step-ahead point predictors for YL;t and YR;t based on Eq.(2.20).

Case 3: Constrained Conditional Quasi-Maximum Likelihood Estimators

The bivariate ARMAX(p; q; s) model for the (YL;t; YR;t)0 can also be consistently estimated by

the constrained conditional quasi-maximum likelihood method (CCQML) based on the bivariate

point-valued sample fYL;t; YR;tgTt=1. Assuming that the bivariate innovation fuL;t; uR;tg0 follows
i.i.d.N(0;�0), where �0 is a 2�2 unknown variance-covariance matrix, we obtain the log-Gaussian
likelihood function given the bivariate sample fYL;t; YR;tgTt=1 as follows:

L̂(�;�) =
T

2
ln j��1j � 1

2

TX
t=1

(uL;t(�); uR;t(�)) �
�1(uL;t(�); uR;t(�))

0;

where uLt(�) and uR;t(�) are the left and right bounds of ut(�) de�ned in Eq.(3.3). The CCQML

estimator, �
�̂; vech(�̂)

�
= arg max

(�;�)2��R2�2
L̂(�;�);

consistently estimate the unknown parameter �0 given the IMDS condition that E(utjIt�1) = 0.
We note that

�L̂(�̂; �̂) = T

2
ln j�̂j+ �̂11Q̂RT (�̂) + �̂22Q̂LT (�̂)� 2�̂12Q̂LRT (�̂);
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where �̂ij is the (i; j)-th component of the variance-covariance estimator �̂. This �rst looks rather

similar to the objective function Q̂T (�) in Eq.(3.5) of the minimum DK-distance estimator, with

the choice of kernel K as K (1; 1) = �̂11, K (1;�1) = K (�1; 1) = �̂12 = �̂21, K (�1;�1) =
�̂22 (this correspondence between a kernel K and a matrix, e.g., �̂, will be simply represented

as K = �̂, and our notation will follow this convention throughout this paper). However, we

cannot interpret the CCQML estimator as a special case of the minimum DK-distance estimator

because for the minimum DK-distance estimation, the kernel K is prespeci�ed, whereas for the

CCQML, both � and vech(�) are unknown parameters and have to be estimated simultaneously.

We will examine the relative e¢ ciency between the minimum DK-distance estimator and various

alternative estimators for �0 in subsequent sections.

4. E¢ ciency and Two-Stage Minimum Distance
Estimation

The minimum DK-distance method provides consistent estimation for an ACIX model without

having to specify the full distribution of the interval population. Di¤erent choices of kernel K will

deliver di¤erent minimum DK-distance estimators for �
0, and all of them are consistent for �0,

provided the kernels satisfy Eq.(2.6). As discussed earlier, di¤erent choices of K imply di¤erent

ways of utilizing the sample information of the interval process. Now, a question arises naturally:

What is the optimal choice of kernel K, if any? Below, we derive an optimal kernel that yields a

minimum DK-distance estimator with the minimum asymptotic variance among a large class of

kernels that satisfy Eq.(2.6). We �rst impose a condition on the interval innovation process futg.

Assumption 6. The interval innovation process futg satis�es var(utjIt�1) = �2K < 1, and the
derived bivariate point process fuL;t; uR;tg satis�es var(uL;t; uR;tjIt�1) = �0, where �0 is a �nite
symmetric positive de�nite matrix.

This is a conditional homoskedasticity assumption on both futg and fuL;t; uR;tg. The i.i.d.
condition for futg and fuL;t; uR;tg is a su¢ cient but not necessary condition for Assumption 6.

Theorem 4.1: Under Assumptions 1-6, the choice of kernel Kopt(u; v) with

Kopt(1; 1) = var(uL;t);

Kopt(�1; 1) = Kopt(1;�1) = cov(uL;t; uR;t);

Kopt(�1;�1) = var(uR;t)

delivers a minimum DK-distance estimator

~�
opt
= argmin

�2�

1

T

TX
t=1

D2
Kopt [Yt; Z

0
t(�)�] ;
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which is asymptotically most e¢ cient among all symmetric positive de�nite kernels K that satisfy

Eq.(2.6), with the minimum asymptotic variance


opt =


Kopt



 hE�1 Ds @ut
@�
; s0@ut

@�

E
Kopt

i
where jjKoptjj � Kopt(1; 1)Kopt(�1;�1)�Kopt(�1; 1)Kopt(1;�1):

To explore the intuition behind Theorem 4.1, we note that when kernel Kopt is used, the

objective function of the minimum DK-distance estimator becomes

Q̂T (�) = var(uL;t)Q̂RT (�) + var(uR;t)Q̂
L
T (�)� 2cov(uL;t; uR;t)Q̂LRT (�):

Thus, Kopt downweights the sample squared distance components that have larger sampling vari-

ations. Speci�cally, it discounts the sum of squared residuals of the right bound if the right bound

disturbance uR;t has a large variance, and discounts the sum of squared residuals of the left bound

if the left bound disturbance uL;t has a large variance. The use of Kopt also corrects correlations

between the left and right bound disturbances. Such weighting and correlation correction are sim-

ilar in spirit to the optimal weighting matrix in GLS. We note that the optimal choice of kernel

Kopt is not unique. For any constant c 6= 0, the kernel cKopt is also optimal.

The results in Theorem 4.1 do not apply if the conditional homoscedasticity condition in As-

sumption 6 is violated. We leave derivation of the optimal kernel under conditional heteroscedas-

ticity for future study.

The optimal DK-distance estimator is not feasible because the optimal kernel Kopt, which

depends on the DGP, is infeasible. However, we can consider a two-stage minimum DK-distance

estimation method: In Step 1, we obtain a preliminary consistent estimator �̂ of �0. For example,

it can be a minimum DK-distance estimator with an arbitrary prespeci�ed kernel K satisfying

Eq.(2.6). We then compute the estimated residuals fût(�̂)g and construct an estimator for the
optimal kernel Kopt:

K̂opt = T�1
TX
t=1

"
û2L;t(�̂); ûL;t(�̂)ûR;t(�̂)

ûR;t(�̂)ûL;t(�̂); û
2
R;t(�̂)

#
.

This is consistent for Kopt. Then, in Step 2, we obtain a minimum DK-distance estimator with

the choice of K = K̂opt:

�̂
opt
= argmin

�2�

1

T

TX
t=1

D2
K̂opt [Yt; Z

0
t(�)�] :

This two-stage minimum DK-distance estimator is asymptotically most e¢ cient among the class

of kernels satisfying Eq.(2.6), as is shown in Theorem 4.2 below.
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Theorem 4.2. Under Assumptions 1-6, as T !1, the two-stage minimum DK-distance estimator

p
T (�̂

opt

K � �0) p�! N(0;
opt);

where 
opt is the minimum asymptotic variance as given in Theorem 4.1.

Interestingly, when the left and right bounds uL;t and uR;t of the interval innovation ut follow an

i.i.d. bivariate Gaussian distribution, the two-stage minimum DK-distance estimator �̂
opt
achieves

the Cramer-Rao lower bound. This is stated in Theorem 4.3.

Theorem 4.3. Suppose Assumptions 1-6 hold and fuL;t; uR;tg �i.i.d. N(0, �0). Then as T !1;
the two-stage minimum DK-distance estimator �̂

opt
achieves the Cramer-Rao lower bound of the

constrained maximum likelihood estimator for the bivariate ARMAX (p; q; s) model for the left and

right bounds of the interval process fYtg.

Although they are asymptotically e¢ cient, we note that the constrained maximum likelihood

estimator for the bivariate ARMAX(p; q; s) model for the left and right bounds of the interval

process fYtg is not numerically identical to the two-stage minimum DK-distance estimator �̂
opt
.

When the bivariate process (uL;t; uR;t)0 is not i.i.d. Gaussian, the CCQML estimator �̂QML

based on the Gaussian likelihood is consistent but not optimal for �0. It could be shown that the

two-stage minimum DK-distance estimator �̂
opt
is asymptotically equivalent to �̂QML, but only

in �rst order. Their e¢ ciency di¤ers in second order asympototic analysis, as is established in

Theorem 4.4 below.

Assumption 7. (i)
P1

j=�1
P1

l=�1 jE[
@lt('0)
@�

@lt�j('0)
@h0

@2lt�l('0)
@h@�0 ]j < 1. The notation here indi-

cates that each element in E[@lt('
0)

@�

@lt�j('0)
@h0

@2lt�l('0)
@h@�0 ] is absolute summable over all j and l. (ii)P1

j=�1
P1

l=�1
P1

k=�1 jE[
@2lt('0)
@�@h0

@lt�j('0)
@h

@lt�l('0)
@h0

@2lt�k('0)
@h@�0 ]j <1. The notation indicates that each

element in E[@
2lt('0)
@�@h0

@lt�j('0)
@h

@lt�l('0)
@h0

@2lt�k('0)
@h@�0 ] is absolute summable over all j, k and l.

Theorem 4.4. Suppose Assumptions 1-5 and 7 hold. Then we have

avar(
p
T �̂QML)� avar(

p
T �̂

opt
) = T�1

�
�H�1

��0

�
	
�
�H�1

��0

�
;

where

	 = �
1X

j=�1

1X
l=�1

�
E

�
@lt('

0)

@�

@lt�j('
0)

@h0
H�1
hh

@2lt�l('
0)

@h@�0

�
+ E

�
@2lt('

0)

@�@h0
H�1
hh

@lt�j('
0)

@h

@lt�l('
0)

@�0

��

H��0 = E[
@2lt('0)
@�@�0 ], Hhh = E[

@2lt('0)
@h@h0 ], and '

0 = (�0; h0) with h0 =vech(�0).

Theorem 4.4 suggests that the asymptotic variances of
p
T �̂QML and

p
T �̂

opt
are di¤erent
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in second order asymptotics, and the di¤erence depends on the third order cumulants of the

prespeci�ed log-likelihood function, particularly on the interactions among @lt('0)
@�

,@lt('
0)

@h
and @l2t ('

0)

@�@h0 .

The interaction terms are generally non-zero when (uL;t; uR;t)0 is not Gaussian. Thus, we expect

that their �nite sample performances will di¤er. Since �̂QML involves more parameters to estimate

than �̂
opt
, it is expected that �̂

opt
will be more e¢ cient in small samples and �nite samples,

particularly when there exists conditional heteroscedasticity. This is con�rmed in our simulation

study.

5. Hypothesis Testing

In this section, we are interested in testing the hypothesis of interest:

H0 : R�
0 = r;

where R is a q� k nonstochastic matrix of full rank, q � k, r is a q� 1 nonstochastic vector, and
k is the dimension of parameter � in the ACIX(p; q; s) model of Eq.(2.16).

We will propose a Lagrange Multiplier (LM) test and a Wald test based on the minimum

DK-distance estimation. We �rst consider the LM test. Consider the following constrained DK-

distance minimization problem

�̂ = argmin
�2�

Q̂T (�);

subject to R� = r: De�ne the Lagrange function

LT (�; �) = Q̂T (�) + �
0(r �RQ);

where � is the multiplier. Let ~� and ~� denote the solutions that maximize LT (�; �), that is,

(~�; ~�) = argmin
�2�

LT (�; �):

Then we can construct a LM test for H0 based on ~�:

Theorem 5.1: Suppose Assumptions 1-5 and H0 hold. De�ne

LM =
h
T ~�

0
R0M̂T (~�)R

i h
R0M̂�1

T (
~�)V̂T (~�)M̂

�1
T (
~�)R

i�1 h
R0M̂T (~�)R~�

i
where M̂T (~�) and V̂T (~�) are de�ned in the same way as M̂T (�̂) and V̂T (�̂) in Theorem 3.3 respec-

tively, with the constrained minimum DK-distance estimator ~�. Then LM
L�! �2q as T ! 1:

We note that the LM test only requires the minimum DK-distance estimation under H0.
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Alternatively, we can construct a Wald test statistic that only involves the minimum DK-

distance estimation under the alternative hypothesis to H0 (i.e., without parameter restriction).

Theorem 5.2: Suppose Assumptions 1-5 and H0 hold. De�ne a Wald test statistic

W =
h
T (R�̂ � r)0

i h
RM̂�1

T (�̂)V̂T (�̂)M̂
�1
T (�̂)R

0
i�1 h

(R�̂ � r)
i

where �̂, M̂T (�̂) and V̂T (�̂) are de�ned in the same way as M̂T (�̂) and V̂T (�̂) in Theorem 3.3

respectively. Then, W L�! �2q as T !1:

TheWald testW is essentially based on the comparison between the unrestricted and restricted

minimum DK-distance estimators �̂ and ~�, but the test statistic W only involves the unrestricted

parameter estimator �̂.

Because we do not assume a probability distribution for the interval process fYtg; we cannot
construct a likelihood ratio test for H0.

6. Simulation Study

We now investigate the �nite sample properties of conditional least squares (CLS), constrained

conditional least squares (CCLS), CCQML, minimum DK-distance (with a prespeci�ed kernel K)

and two-stage minimum DK-distance estimators via a Monte Carlo study. We will consider two

sets of experiments. In the �rst experiment, the interval data are generated from an empirically

relevant ACI process. In the second set of experiments, the interval data are constructed from a

bivariate ARMA process.

6.1 ACI-Based Data Generating Processes

We �rst consider an ACI(1; 1) model as the DGP:

Yt = �0 + �0I0 + �1Yt�1 + 
1ut�1 + ut; (6.1)

where parameter values �0 = (�0; �0; �1; 
1)
0 are obtained from the minimum DK-distance esti-

mates of the ACI(1; 1) model based on the real interval data of the S&P 500 daily index from

January 3, 1988 to September 18, 2009, and the kernel K used is with (a; b; c) = (5; 3; 5). The

minimum and maximum S&P 500 closing price values of day t form the raw interval-valued ob-

servations in this period, denoted as fP1; :::; PTg. Then we convert the raw interval price sample
data to a weakly stationary interval sample, denoted fY1; :::; YTg, by taking the logarithm and

Hukuhara di¤erence as Yt = ln(Pt) � ln (Pt�1) : The initial values of Yt and ut for t = 0 are set

to be �YT and [0; 0] ; respectively. We obtain the minimum DK-distance parameter estimates and
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use them as the true parameter values in DGP (6.1). To simulate the interval innovations futg in
(6.1), we �rst compute the estimated model residuals

ût = Yt � (�̂0 + I0�̂0 + �̂1Yt�1 + 
̂1ût�1)

based on the S&P 500 data. We then generate futgTt=1 via the naive bootstrapping from fûtgTt=1,
with T = 100; 250; 500, and 1000, respectively. For each sample size T , we perform 1000 replica-

tions. For each replication, we estimate model parameters of an ACI(1,1) model using CLS, CCLS,

CCQML, minimum DK-distance and two-stage minimum DK-distance methods respectively. Two

parameter estimates of CLS are obtained, i.e., �̂
r
= (�̂0; �̂1; 
̂1) and �̂

m
= (�̂0; �̂1; 
̂1), based on

range and midpoint data, respectively. We consider 4 kernels with a = c, one of which yields the

CCLS estimator �̂CCLS for the bivariate model of the left and right bounds of Yt in Eq.(2.20).

Another 6 kernels with the form of Case 5 in Section 2.1 are considered. The two-stage minimum

DK-distance estimator �̂
opt
is obtained from a kernel K with (a; b; c) = (10; 8; 16) in the �rst stage.

We compute the bias, standard deviation (SD), and root mean square error (RMSE) for each

estimator:

Bias(�̂i) =
1

1000

1000X
m=1

(�̂
(m)

i � �̂0i );

SD(�̂i) =

"
1

1000

1000X
m=1

(�̂
(m)

i � ��i)2
#1=2

;

RMSE
�
�̂i

�
=

h
Bias2(�̂i) + SD

2(�̂i)
i1=2

;

where ��i = 1
1000

P1000
m=1 �̂

(m)

i , and �̂i = �̂0; �̂0; �̂1; 
̂1, respectively.

Tables 1-4 report Bias, SD, and RMSE of CLS, CCLS, CCQML, minimum DK-distance (de-

noted as �̂) and two-stage minimum DK-distance estimators respectively. Several observations

emerge. First, for all estimators, the RMSE converges to zero as the sample size T increases. In

particular, the minimum DK-distance estimator �̂ displays robust performance for various ker-

nels. Second, both the interval-based minimum DK-distance estimators and the bivariate-point

based estimators outperform the estimators �̂
r
and �̂

m
in terms of RMSE. The two-stage minimum

DK-distance estimator �̂
opt
dominates the minimum DK-distance estimator �̂ with most kernels,

con�rming the e¢ ciency result in Theorems 4.1�4.2. The estimator �̂
opt
outperforms �̂QML for

all parameters in �0 in terms of RMSE. Intuitively, CCQML has more unknown parameters to

estimate than the two-stage minimum DK-distance estimator �̂
opt
, thus �̂

opt
has more desirable

performance than �̂QML in �nite sample.

Lastly, comparing �̂, �̂
opt
and �̂QML with �̂

m
and �̂

r
, the e¢ ciency gain over the CLS estima-
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tors based on either the level or range sample separately is enormous as T becomes large. This is

apparently due to the fact that �̂ and �̂
opt
utilize the level, range and their correlation information

in the interval data. On the other hand, while the estimators �̂
r
and �̂

m
can consistently estimate

model parameters, �̂
m
is better than �̂

r
. Data examination shows that this is due to more varia-

tions in level of Yt rather than in range over time. This highlights the importance of utilizing level

information of asset prices even when interest is in modelling the range (or volatility) dynamics.

6.2 Bivariate Point-Valued Data Generating Processes with Conditional Homoscedas-

ticity

This section investigates the �nite sample properties of CCLS, CCQML, minimumDK-distance

and two-stage minimumDK-distance estimators when the DGP of (YL;t; YR;t)0 are various bivariate

point processes with innovations (uL;t; uR;t)0 � i.i.d. f(0;�0), where f(0;�0) is a bivariate density
function and �0 = E[(uL;t; uR;t)0(uL;t; uR;t)].

We consider the following bivariate point process as the DGP:�
YL;t = �0 � 1

2
�0 + �1YL;t�1 + 
1uL;t�1 + uL;t;

YR;t = �0 +
1
2
�0 + �1YR;t�1 + 
1uR;t�1 + uR;t;

(6.2)

where parameter values �0 = (�0; �0; �1; 
1)
0 are obtained in the same way as in Section 6.1 based

on the actual S&P 500 daily data. Bivariate point innnovation fuL;t; uR;tgTt=1 are generated with
sample sizes of T = 100, 250, and 500 respectively, and three distributions are considered: bivariate

Gaussian, bivariate Student-t5, and bivariate mixture with uL;t = a1"0t + "1t, uR;t = a2"0t + "2t

where "it follows i.i.d. EXP (1) � 1 for i = 0; 1; 2, and they are jointly independent. Di¤erent

values of constants a1, a2 result in di¤erent �0 for the mixed distribution. For each distribution,

corr(uL;t; uR;t) = 0 and �0:6 are considered. For each sample size T , we perform 1000 replications.
For each replication, we compute CCQML estimator �̂QML, minimum DK-distance estimators �̂

from prespeci�ed kernels and two-stage minimum DK-distance estimator �̂
opt
. In particular, the

prespeci�ed kernels include the one that yields the CCLS estimator �̂CCLS for Eq.(2.20), as well

as a kernel that assigns the same weights to the midpoint and range (see Kab in the tables below).

�̂
opt
is obtained from the kernel with (a; b; c) = (10; 8; 16) in the �rst step. We also include the

infeasible optimal kernel Kopt = �0 to obtain the infeasible asymptotically most e¢ cient minimum

DK-distance estimator �̂�0; this allows us to study the impact of estimating the unknown Kopt in

the two-stage minimum DK-distance estimation.

We report Bias, SD, and RMSE of parameter estimates in Tables 5-1 to 8-1. All estimates con-

verge to their true parameter values respectively in terms of RMSE as T increases. For a bivariate

point i.i.d. Gaussian innovation (uL;t; uR;t)0, the two-stage minimum DK-distance estimator �̂
opt

is as e¢ cient as the constrained maximum likelihood estimator for the bivariate model of the left
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and right bounds of Yt, which is consistent with the result in Theorem 4.3. The estimator �̂
opt
also

signi�cantly outperforms �̂ with arbitrary choices of kernel K. It con�rms the adaptive capability

of our two-stage minimum DK-distance estimator.

When the bivariate innovation (uL;t; uR;t)0 follows a Student-t5 or mixed distribution, �̂
opt
is

still the most e¢ cient in the class of minimum DK-distance estimators, which is consistent with

Theorem 4.2. Moreover, �̂
opt
generally outperforms �̂QML. Note that the e¢ ciency gain of �̂

opt

over the CCQML estimator is more substantial under asymmetric mixture distribution errors in

�nite samples. We also observe that �̂
opt
outperforms �̂CCLS when corr(uL;t; uR;t) = �0:6. This

implies that since �̂CCLS ignores the (negative) correlation between the left and right bounds, it

is not e¢ cient under the bivariate point-valued DGP. Finally, �̂
opt
is almost the same e¢ cient as

the infeasible asymptotically e¢ cient estimator �̂�0 as T increases. This indicates that the �rst

stage estimation has negligible impact on the e¢ ciency of the two-stage minimum DK-distance

estimator.

6.3 Bivariate Point-Valued Data Generating Processes with Conditional Heteroscedas-

ticity

To get an idea about the �nite sample performances of di¤erent estimators under the neglected

conditional heteroscedasticity in (uL;t; uR;t)0, we consider a constant conditional correlation (CCC)-

GARCH (1,1) model for (uL;t; uR;t)0. Following DGP1 in McCloud and Hong (2011), we have

uL;t =
p
hL;tzL;t, uR;t =

p
hR;tzR;t, and8>>><>>>:

hL;t = 0:4 + 0:15u
2
L;t�1 + 0:8hL;t�1;

hR;t = 0:2 + 0:2u
2
R;t�1 + 0:7hR;t�1;

(zL;t; zR;t)
0jIt�1

i.i.d.� N

�
0;

�
1 �

� 1

�� (6.3)

where � = 0, and �0:6 respectively. We then generate the bivariate innovation fuL;t; uR;tgTt=1 from
(6.3) with T = 100, 250, and 500 respectively. fYtgTt=1 is then generated from (6.2), where the

true parameter values �0 = (�0; �0; �1; 
1)
0 are obtained in the same way as previous experiments.

For each sample size T , we perform 1000 replications. For each replication, we compute CCQML

estimator �̂QML, minimum DK-distance estimators �̂ from prespeci�ed kernels, and two-stage

minimum DK-distance estimator �̂
opt
. The prespeci�ed kernels include both cases with b > 0 and

b < 0. �̂
opt
is obtained from a kernel with (a; b; c) = (10; 8; 16) in the �rst step.

Several conclusions can be drawn from the results of parameter estimates reported in Tables

5-2 to 8-2. First, all minimum DK-distance and CCQML estimators converge in terms of RMSE

as T increases, under neglected conditional heteroskedasticity of (uL;t; uR;t)0, although the bias and

the variance of most estimates are larger than under conditional homoscedasticity. Second, �̂
opt
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clearly outperforms �̂QML in �nite samples. And compared to the results in Section 6.2, �̂
opt
yields

a larger gain over �̂QML when there exists serial dependence in higher moments of (uL;t; uR;t)0.

In fact, the class of minimum DK-distance estimators with arbitrary kernels with b < 0 also

outperform �̂QML.

In addition to (6.3), we also examined DGP6 in McCloud and Hong (2011), i.e., DDC-GARCH

(1,1) model, as our DGP for (uL;t; uR;t)0. Due to the similar patterns of simulation results emerg-

ing from the DCC-GARCH(1,1) parameterization in terms of ranking di¤erent estimators, the

experiment details are not reported here, yet are available from the authors on request.

Overall, the simulation results in Tables 1-8 generally reveal the desirable properties of the

two-stage minimum DK-distance estimator relative to many others.

7. Empirical Application
In this section, we examine the explanatory power of bond market factors for excess stock

returns when stock market factors are present. Fama and French (1993) consider two bond market

factors, TERMt and DEFt, where TERMt is the di¤erence between the monthly long-term

government bond return LGt and the risk-free interest rate Rft, and DEFt is the di¤erence

between the return on a market portfolio of long-term corporate bonds LCt, and LGt. Fama and

French (1993) �nd that these two bond market factors alone are signi�cant in explaining excess

stock returns. However, they �nd that the inclusion of three stock-factors (i.e., Rmt�Rft, SMBt,
HMLt) in regressions for stocks kill the signi�cance of TERMt and DEFt. There are at least

two possibilities for insigni�cance of TERMt and DEFt. The �rst is that the three stock market

factors contain all information in TERMt and DEFt, and thus the bond market factors become

insigni�cant when the stock market factors are included. The second possibility is that the OLS

estimator used in Fama and French (1993) is not e¢ cient because it does not exploit the level

information of asset returns and interest rates. In this case, it may become signi�cant if we use

the more e¢ cient two-stage minimum DK-distance estimator. Our aim here is to explore whether

the signi�cance of bond market factors will be wiped out by the stock-market factors by using an

interval CAPM model when a more e¢ cient estimation method is used.

Fama and French�s (1993) �ve-factor Capital Asset Pricing Model (CAMP) is

Rit �Rft = �0 + �1(Rmt �Rft) + �2SMBt + �3HMLt + �4TERM + �5DEF + "t; (7.1)

where Rt is a portfolio return, Rft is the risk-free interest rate, Rmt is the market portfolio return,

SMBt is the the di¤erence between the return on the small portfolio and the return on the large

portfolio, HMLt is the di¤erence between the return on the high book-to-market portfolio and

the return on the low book-to-market portfolio, and TERMt and DEFt are de�ned as above.
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Given the de�nition of variables in the Fama and French�s (1993) model, (7.1) can be viewed

as a �range�or �di¤erence�model of the following interval CAPM:

Yit = �0 + �0I0 + �1X1t + �2X2t + �3X3t + �4X4t + �5X5t + ut; (7.2)

where i = 1,..., 25, E(utjIt�1) = [0; 0], Yt = [Rft; Rt], X1t = [Rft; Rmt],

X2t =

�
1

3
(B=Lt +B=Mt +B=Ht);

1

3
(S=Lt + S=Mt + S=Ht)

�
;

X3t =

�
1

2
(S=Lt +B=Lt);

1

2
(S=Ht +B=Ht)

�
;

and X4t = [Rft; LGt], X5t = [LGt; LCt].

Using the monthly data from French�s website, we estimate model parameters �1, �2, �3,

�4, �5 by OLS based on Fama and French�s (1993) model (7.1) and by the two-stage minimum

DK-distance estimator based on the interval CAPM model (7.2) for each portfolio. To obtain

a reliable standard error for each parameter estimator, we use the bootstrap method as follows.

We �rst estimate Fama and French�s (1993) model in (7.1) with OLS and the interval CAPM in

(7.1) with the minimum DK-distance method for each of the 25 portfolios, and use the obtained

parameter estimates as the true parameter values in the corresponding model. The estimation

is based on the monthly data with the same sample period as in Fama and French (1993). The

generations of the point innovations f"tgTt=1 for (7.1) and the interval innovation futg
T
t=1 for (7.2)

are the same as described in Section 6.1. We generate 500 bootstrap samples and obtain 500

bootstrap estimates for each parameter, which are then used to compute the estimated standard

error of each parameter estimate and the associated t-test statistic. For each bootstrap sample,

we estimate model parameters using the OLS estimator for Fama and French�s (1993) model,

and obtain estimate the interval version of Fama and French�s (1993) model using the two-stage

minimum DK-distance estimator �̂
opt
. For comparison, we also include minimum DK-distance

estimators with various choices of kernel K; and CCQML.

Table 9 reports the t-statistics for 5 groups of stock returns in terms of the book-to-market

quantiles, each of which includes 5 groups in terms of the size quantiles. For each combination of

two kinds of quantiles, we report the t-statistics of the OLS, the minimum DK-distance estima-

tors, the two-stage minimum DK-distance estimator �̂
opt
, and the CCQML estimator �̂QML. The

estimates for �0 in (7.2) are not reported here, since Fama and French�s (1993) model does not

include this level parameter.

Table 9 shows some interesting �ndings. First, the minimum DK-distance estimators, �̂QML

and �̂
opt
for most of the 25 stock portfolios reveal strong evidence that the default risk factor
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DEFt is signi�cant in capturing the variation of excess stock returns, compared to the critical

value of 1:96 at the 5% signi�cance level. Generally, �̂
opt
yields larger t-statistics than �̂QML; and

both of them have large t-statistics than OLS. On the other hand, there is not an overwhelming

pattern for the e¤ect of TERMt on excess stock returns for 25 portfolios. Data inspection shows

the risk-free rate Rft does not variate much over time relative to the long-term government bond

return LGt. As a result, the use of interval bond factor X4t contains about the same information

as the di¤erenced TERMt factor. In contrast, the signi�cance of the two bond-market factors

is still wiped out in the OLS regression on stock returns, as has been documented in Fama and

French (1993). Thus, our evidence con�rms the invaluable �level�information contained in interval

data compared to the point-valued data used in Fama and French (1993) which only contains the

�range�or �di¤erence�information.

8. Conclusion

Interval-valued data are not uncommon in economics. Compared to the point-valued data,

interval-valued data contains more information including both level and range characteristics of

the underlying stochastic process. This informational advantage can be exploited for more e¢ cient

estimation and inference, even if the interest is in range or di¤erence modelling. Interval forecasts

are also often of direct interest in many applications in economics.

This paper is perhaps the �rst attempt to model interval-valued time series data. We intro-

duce an analytical framework for stationary interval-valued time series processes. To capture the

dynamics of a stationary interval time series, we propose a new class of autoregressive conditional

interval (ACIX) models with exogenous variables and develop a class of minimum DK-distance es-

timators. We establish the asymptotic theory for consistency, asymptotic normality and e¢ ciency

of the proposed estimators and exploit the relationships among various estimators that utilizes

the interval sample information in di¤erent ways. In particular, we derive the optimal kernel func-

tion that yields an asymptotically most e¢ cient estimator for an ACIX model among the class of

symmetric positive de�nite kernels, and propose an asymptotically e¢ cient two-stage minimum

DK-distance estimator. Simulation studies show that the two-stage minimum DK-distance es-

timator outperform various estimators such as the conditional least squares estimators that are

based on the range information and/or midpoint information of the interval sample, and the con-

ditional qausi-maximum likelihood estimator based on the bivariate model for the left and right

bounds of the interval process. In an empirical study on asset pricing, we document that unlike

the conclusion of Fama and French (1993), some bond market factors, particularly the default

risk factor, are signi�cant in explaining the variation of excess stock returns even after the stock
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market factors are controlled. This highlights the gain of utilizing the level information of risk

premium even when the interest is in range or di¤erence modelling (i.e., excess risk premium).

The proposed ACIX models are the interval version of the ARMAX models for point-valued

time series data. More �exible nonlinear models for interval time series, such as Markov-Chain

regime switching models, autoregressive threshold models, and smooth transition models, can also

be considered to capture nonlinear (e.g., asymmetric) features in the dynamic structure of station-

ary interval time series. On the other hand, the interval version of vector autoregression (VAR)

or VARMA models can be considered to explore cross-dependence between di¤erent time series

processes. Furthermore, one can consider nonstationary interval time series and the cointegrating

relationships between nonstationary interval time series. Finally, interval modelling can also be

considered in cross-sectional econometrics. All of these will be explored in future research.
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TABLE 1. Bias, SD and RMSE of Estimates for Parameter �0 in ACI (1,1)

�̂0(10
�4)

T = 100 T = 250 T = 500 T = 1000

a/b/c Bias S.D RMSE Bias S.D RMSE Bias S.D RMSE Bias S.D RMSE

Kr N=A N=A N=A N=A N=A N=A N=A N=A N=A N=A N=A N=A

Km �0:2444 2:6801 2:6912 0:4071 1:3415 1:4019 1:1184 0:9330 1:4565 0:4688 0:6446 0:7970

CCQML �0:2657 2:3823 2:3971 0:3592 1:2203 1:2721 1:0741 0:7732 1:3235 0:4505 0:5451 0:7071

CCLS �0:2512 2:5193 2:5318 0:3867 1:3134 1:3691 1:0977 0:8682 1:3995 0:4487 0:5478 0:7081

10=2=10 �0:2347 2:5253 2:5362 0:3712 1:2564 1:3101 1:0924 0:8737 1:3989 0:4484 0:5668 0:7227

10=6=10 �0:2395 2:4510 2:4627 0:3680 1:2540 1:3069 1:0820 0:8274 1:3621 0:4605 0:5750 0:7367

10=8=10 �0:2344 2:5636 2:5743 0:3694 1:2334 1:2876 1:0951 0:8402 1:3803 0:4697 0:5795 0:7460

10=8=16 �0:2794 2:4169 2:4330 0:3576 1:2124 1:2640 1:0679 0:7677 1:3152 0:4508 0:5409 0:7041

10=8=17:5 �0:2985 2:5048 2:5225 0:3602 1:2129 1:2653 1:0783 0:8376 1:3654 0:4506 0:5392 0:7027

10=8=19 �0:2796 2:4242 2:4403 0:3588 1:2284 1:2797 1:0641 0:7643 1:3101 0:4523 0:5421 0:7060

10=6=6 �0:2438 2:4409 2:4531 0:3611 1:2251 1:2772 1:0766 0:7798 1:3293 0:4542 0:5481 0:7119

10=4=6 �0:2591 2:3690 2:3831 0:3516 1:2017 1:2521 1:0708 0:7713 1:3197 0:4479 0:5354 0:6981

10=2=6 �0:2494 2:3760 2:3891 0:3555 1:2028 1:2542 1:0688 0:7685 1:3164 0:4495 0:5361 0:6996

Kopt �0:2817 2:3445 2:3613 0:3404 1:2074 1:2545 1:0541 0:7661 1:3031 0:4471 0:5390 0:7003

Notes: (1) ACI (1,1) Model: Yt= �0+�0I0+�1Yt�1+
1ut�1+ut:

(2) The kernel K used is of the form K(1; 1) = a, K(1;�1) = K(�1; 1) = b;and K(�1;�1) = c, and the values of a=b=c are
listed in the �rst column of the table. Km, Kr, CCQML,CCLS, and Kopt denote the estimates of �̂

m
, �̂

r
, �̂QML, �̂CCLS and �̂

opt
with

special kernels, respectively.

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.



TABLE 2. Bias, SD and RMSE of Estimates for �0 in ACI (1,1)

�̂0(10
�4
)

T = 100 T = 250 T = 500 T = 1000

a/b/c Bias S.D RMSE Bias S.D RMSE Bias S.D RMSE Bias S.D RMSE

Kr �0:9955 3:0874 3:2439 �0:4164 1:4739 1:5316 �0:1285 0:9769 0:9853 �0:0436 0:6091 0:6102

Km N=A N=A N=A N=A N=A N=A N=A N=A N=A N=A N=A N=A

CCQML �0:8701 2:6894 2:8267 �0:4099 1:3943 1:4533 �0:1311 0:8321 0:8424 �0:0344 0:5611 0:5622

CCLS �0:9051 2:7350 2:8809 �0:4257 1:4680 1:5285 �0:1262 0:8351 0:8446 �0:0310 0:5660 0:5669

10=2=10 �0:9247 2:8410 2:9877 �0:4149 1:4129 1:4726 �0:1258 0:8431 0:8524 �0:0303 0:5662 0:5670

10=6=10 �0:9024 2:8262 2:9668 �0:4096 1:4204 1:4783 �0:1328 0:8514 0:8617 �0:0315 0:5817 0:5825

10=8=10 �0:9095 2:9480 3:0851 �0:3979 1:4372 1:4912 �0:1307 0:9091 0:9185 �0:0364 0:5838 0:5849

10=8=16 �0:8614 2:7421 2:8743 �0:3985 1:3815 1:4378 �0:1290 0:8311 0:8411 �0:0340 0:5617 0:5627

10=8=17:5 �0:8656 2:7661 2:8983 �0:4011 1:3816 1:4386 �0:1282 0:8289 0:8387 �0:0331 0:5633 0:5643

10=8=19 �0:8615 2:7690 2:8999 �0:4045 1:4038 1:4609 �0:1291 0:8267 0:8367 �0:0337 0:5647 0:5657

10=6=6 �0:8810 2:6996 2:8397 �0:4035 1:3844 1:4420 �0:1316 0:8297 0:8401 �0:0354 0:5644 0:5655

10=4=6 �0:8805 2:6806 2:8216 �0:4019 1:3806 1:4379 �0:1340 0:8278 0:8386 �0:0344 0:5612 0:5622

10=2=6 �0:9015 2:7442 2:8884 �0:4110 1:4060 1:4649 �0:1347 0:8357 0:8465 �0:0337 0:5644 0:5654

Kopt �0:8521 2:6601 2:7933 �0:3998 1:3662 1:4235 �0:1373 0:8267 0:8380 �0:0393 0:5618 0:5632

Notes: (1) ACI (1,1) Model: Yt= �0+�0I0+�1Yt�1+
1ut�1+ut:

(2) The kernel K used is of the form K(1; 1) = a, K(1;�1) = K(�1; 1) = b;and K(�1;�1) = c, and the values of a=b=c are
listed in the �rst column of the table. Km, Kr, CCQML, CCLS, and Kopt denote the estimates of �̂

m
, �̂

r
, �̂QML, �̂CCLS and �̂

opt
with

special kernels, respectively.

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.



TABLE 3. Bias, SD and RMSE of Estimates for �1 in ACI (1,1)

�̂1(10
�2)

T = 100 T = 250 T = 500 T = 1000

a=b=c Bias S:D RMSE Bias S:D RMSE Bias S:D RMSE Bias S:D RMSE

Kr 3:3167 12:6959 13:1219 1:8339 9:2751 9:4547 1:7655 11:8061 11:9374 1:5155 7:6049 7:7544

Km 2:7914 9:6545 10:0499 2:0051 8:2841 8:5233 1:1157 5:7954 5:9018 1:0054 7:0858 7:1567

CCQML 1:4442 4:8959 5:1045 1:1878 3:3584 3:5623 0:6951 2:5448 2:6380 0:4484 1:8921 1:9445

CCLS 2:1260 7:3187 7:6213 1:5549 6:3869 6:5735 0:9379 4:0115 4:1197 0:5439 3:2607 3:3057

10=2=10 2:1730 8:7214 8:9880 1:3087 4:7696 4:9459 0:8060 4:1959 4:2726 0:5650 4:7373 4:7709

10=6=10 1:7548 6:1015 6:3489 1:3739 6:4817 6:6257 0:7111 4:2881 4:3467 0:7729 5:1305 5:1884

10=8=10 2:6150 10:6366 10:9533 1:4524 5:7874 5:9669 1:1199 6:2604 6:3598 1:0061 4:2246 4:3427

10=8=16 1:6027 5:4063 5:6388 1:0325 3:1755 3:3391 0:5714 2:1095 2:1855 0:4718 1:6899 1:7545

10=8=17:5 1:8857 8:3394 8:5499 1:0520 2:9983 3:1775 0:6714 3:5870 3:6493 0:4593 1:5850 1:6502

10=8=19 1:6029 5:8121 6:0291 1:2322 3:8259 4:0195 0:5014 1:9390 2:0027 0:5116 1:9221 1:9890

10=6=6 1:8598 5:8567 6:1449 1:1452 3:9028 4:0673 0:6328 2:0452 2:1409 0:6074 2:1654 2:2490

10=4=6 1:3525 4:6540 4:8465 0:9408 3:1199 3:2587 0:5693 2:0440 2:1218 0:4444 1:9204 1:9711

10=2=6 1:6464 5:6329 5:8686 1:1112 3:7431 3:9046 0:6017 2:3274 2:4039 0:4506 1:9171 1:9693

Kopt 1:4759 3:8888 4:1594 1:0640 2:7109 2:9123 0:5954 1:7252 1:8251 0:4791 1:4757 1:5516

Notes: (1) ACI (1,1) Model: Yt= �0+�0I0+�1Yt�1+
1ut�1+ut:

(2) The kernel K used is of the form K(1; 1) = a, K(1;�1) = K(�1; 1) = b;and K(�1;�1) = c, and the values of a=b=c are
listed in the �rst column of the table. Km, Kr, CCQML,CCLS, and Kopt denote the estimates of �̂

m
, �̂

r
, �̂QML, �̂CCLS and �̂

opt
with

special kernels, respectively.

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.

(4) Bias is in �1.



TABLE 4. Bias, SD and RMSE of Estimates for 
1 in ACI (1,1)


̂1(10
�2)

T = 100 T = 250 T = 500 T = 1000

a/b/c Bias S.D RMSE Bias S.D RMSE Bias S.D RMSE Bias S.D RMSE

Kr 1:3155 11:1962 11:2732 0:9540 8:7449 8:7968 1:3237 11:7092 11:7837 1:3032 7:3769 7:4911

Km 0:9474 7:5063 7:5659 0:8086 7:1238 7:1695 0:6311 5:5730 5:6086 0:8032 7:0894 7:1347

CCQML 0:0119 3:8593 3:8594 0:3591 2:5143 2:5398 0:2542 2:1876 2:2023 0:2390 1:7857 1:8016

CCLS 0:6861 5:3655 5:4092 0:6021 5:6838 5:7156 0:4957 3:6479 3:6814 0:3393 3:1898 3:2078

10=2=10 0:8254 7:2288 7:2758 0:4247 4:0132 4:0356 0:3595 3:9539 3:9702 0:3710 4:7699 4:7843

10=6=10 0:3976 4:6541 4:6710 0:5765 6:1216 6:1487 0:3275 4:1325 4:1454 0:5852 5:0710 5:1046

10=8=10 1:1149 9:4532 9:5187 0:6830 5:2189 5:2634 0:7946 6:0790 6:1307 0:8215 4:0581 4:1404

10=8=16 0:0414 4:0590 4:0592 0:1274 2:3714 2:3748 0:1520 1:9601 1:9660 0:2547 1:5249 1:5460

10=8=17:5 0:3295 7:5442 7:5514 0:1354 2:2202 2:2243 0:2504 3:5176 3:5265 0:2404 1:4375 1:4574

10=8=19 0:0339 4:3048 4:3049 0:2961 3:2550 3:2684 0:1059 1:9063 1:9283 0:2901 1:7531 1:7563

10=6=6 0:3309 4:3804 4:3929 0:4110 2:9218 2:9505 0:2118 1:8934 1:9052 0:4031 1:8694 1:9124

10=4=6 �0:0512 3:6302 3:6305 0:1862 2:5041 2:5110 0:1328 1:9850 1:9894 0:2586 1:7289 1:7482

10=2=6 0:2150 4:3349 4:3403 0:2654 2:9104 2:9224 0:1566 2:4103 2:4154 0:2663 1:7962 1:8158

Kopt 0:1942 2:2471 2:2555 0:2623 1:6412 1:6621 0:1756 1:4768 1:4872 0:2766 1:3554 1:3833

Notes: (1) ACI (1,1) Model: Yt= �0+�0I0+�1Yt�1+
1ut�1+ut:

(2) The kernel K used is of the form K(1; 1) = a, K(1;�1) = K(�1; 1) = b;and K(�1;�1) = c, and the values of a=b=c
are listed in the �rst column of the table. Km, Kr, CCQML, CCLS and Kopt denote the estimates of �̂

m
, �̂

r
, �̂QML, �̂CCLS and �̂

opt
with

special kernels, respectively.

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications:



TABLE 5-1. Bias, SD and RMSE of Estimates for �0 in Bivariate Point Processes

�̂0
Gaussian T = 100 T = 250 T = 500

� = 0 Bias SD RMSE Bias SD RMSE Bias SD RMSE

CML 0:8298 10:4484 10:4813 0:0875 4:5728 4:5736 0:1289 3:1884 3:1910

CCLS/K�0 0:8910 10:3927 10:4308 0:0874 4:5699 4:5708 0:1279 3:1871 3:1896

Kab 1:6795 12:5311 12:6432 0:1126 4:6332 4:6345 0:1440 3:2005 3:2037

Kabc 1:9464 12:6272 12:7763 0:1127 4:6201 4:6214 0:1459 3:2097 3:2130

Kopt 0:9150 10:5101 10:5499 0:0888 4:5743 4:5751 0:1288 3:1883 3:1909

� = �0:6 Bias SD RMSE Bias SD RMSE Bias SD RMSE

K�0 0:4817 4:9127 4:9363 0:2110 2:7353 2:7435 0:1624 1:8384 1:8456

CML 0:5179 4:9574 4:9844 0:2253 2:7462 2:7554 0:1721 1:8447 1:8527

CCLS 0:5455 5:1733 5:2020 0:2301 2:7679 2:7774 0:1811 1:8765 1:8852

Kab 0:6453 5:4616 5:4996 0:2667 2:8377 2:8502 0:2037 1:9197 1:9305

Kabc 0:6742 5:5054 5:5465 0:2603 2:8170 2:8290 0:2093 1:9203 1:9316

Kopt 0:5043 4:9415 4:9672 0:2132 2:7366 2:7449 0:1640 1:8409 1:8482

Student-t5 T = 100 T = 250 T = 500

� = 0 Bias SD RMSE Bias SD RMSE Bias SD RMSE

CCQML �0:0145 10:6060 10:6060 0:1766 6:5325 6:5349 0:1132 4:5059 4:5073

CCLS/K�0 �0:0037 10:5816 10:5816 0:1703 6:5337 6:5359 0:1089 4:5096 4:5110

Kab 0:0553 10:6478 10:6479 0:1584 6:6086 6:6105 0:1037 4:4946 4:4958

Kabc 0:0737 10:6761 10:6763 0:1770 6:6169 6:6193 0:1172 4:5284 4:5299

Kopt 0:0086 10:5553 10:5554 0:1692 6:5298 6:5320 0:1067 4:5028 4:5040

� = �0:6 Bias SD RMSE Bias SD RMSE Bias SD RMSE

K�0 0:4362 3:7112 3:7367 0:2854 2:1600 2:1787 0:1225 1:4629 1:4680

CCQML 0:6472 4:1205 4:1710 0:3542 2:2327 2:2606 0:1468 1:4707 1:4780

CCLS 0:6387 4:2634 4:3110 0:3469 2:3343 2:3600 0:1378 1:5118 1:5181

Kab 0:9005 5:1942 5:2717 0:4344 2:5368 2:5737 0:1688 1:5575 1:5667

Kabc 0:9104 5:2289 5:3076 0:4208 2:5524 2:5869 0:1822 1:5898 1:6002

Kopt 0:5208 3:9127 3:9472 0:2948 2:1671 2:1871 0:1237 1:4593 1:4646

Mixture T = 100 T = 250 T = 500

� = 0 Bias SD RMSE Bias SD RMSE Bias SD RMSE

CCQML 0:0658 8:4540 8:4542 �0:0773 4:9371 4:9377 �0:1493 3:4264 3:4296

CCLS/K�0 0:0786 8:4136 8:4139 �0:0690 4:9420 4:9425 �0:1471 3:4214 3:4245

Kab 0:0020 8:3888 8:3888 �0:0896 4:9567 4:9575 �0:1429 3:4239 3:4268

Kabc 0:0162 8:4071 8:4071 �0:0990 4:9636 4:9646 �0:1396 3:4177 3:4205

Kopt 0:0795 8:4058 8:4061 �0:0753 4:9324 4:9330 �0:1487 3:4213 3:4245

� = �0:6 Bias SD RMSE Bias SD RMSE Bias SD RMSE

K�0 �0:0745 8:4408 8:4412 �0:0075 4:9528 4:9529 �0:1205 3:2849 3:2871

CCQML �0:1694 8:7365 8:7381 �0:0158 4:9525 4:9525 �0:1258 3:2913 3:2937

CCLS �0:0760 8:4720 8:4724 �0:0289 4:9360 4:9361 �0:1201 3:2890 3:2912

Kab �0:0592 8:6159 8:6161 �0:0395 4:9151 4:9153 �0:1169 3:2980 3:3001

Kabc �0:0447 8:5978 8:5979 �0:0262 4:9635 4:9636 �0:1388 3:3032 3:3062

Kopt �0:0922 8:4661 8:4666 �0:0102 4:9456 4:9456 �0:1203 3:2841 3:2863

Notes: (1) The �rst column with CML, CCQML, CCLS, K�0 and K
opt denote the estimates of constrained maximum likelihood, �̂QML,

�̂CCLS , �̂�0 and �̂
opt

respectively. Kab and Kabc are with (a; b; c) = (10; 6; 10) and (a; b; c) = (10; 8; 19) respectively.

(2) Bivariate Gaussian, Student-t5 and Mixture densities for uL;t and uR;t with � = 0 and � = �0:6 are considered respectively,
where � = corr(uL;t; uR;t). �̂CCLS coincides with �̂�0 as � = 0:

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.



TABLE 6-1. Bias, SD and RMSE of Estimates for �0 in Bivariate Point Processes

�̂0

Gaussian T = 100 T = 250 T = 500

� = 0 Bias SD RMSE Bias SD RMSE Bias SD RMSE

CML 3:7740 27:4147 27:6733 0:5808 9:2854 9:3036 0:4462 6:3235 6:3393

CCLS/K�0 3:7685 26:8171 27:0805 0:5789 9:2782 9:2962 0:4447 6:3213 6:3370

Kab 2:4366 26:6792 26:7903 0:5898 9:3354 9:3540 0:4737 6:3971 6:4146

Kabc 3:1966 27:6164 27:8008 0:5803 9:3357 9:3538 0:4819 6:4178 6:4359

Kopt 3:8291 27:4404 27:7062 0:5831 9:2838 9:3021 0:4456 6:3234 6:3390

� = �0:6 Bias SD RMSE Bias SD RMSE Bias SD RMSE

K�0 �1:2941 18:3142 18:3599 0:0843 10:3981 10:3984 0:1530 7:4041 7:4057

CML �1:3490 18:4992 18:5484 0:0659 10:4546 10:4548 0:1469 7:4240 7:4255

CCLS �1:4203 18:9489 19:0020 0:0161 10:5036 10:5036 0:1333 7:4698 7:4710

Kab �1:5256 19:7844 19:8431 �0:0336 10:6743 10:6743 0:1183 7:5408 7:5418

Kabc �1:5610 19:8056 19:8670 �0:0274 10:6681 10:6681 0:1143 7:5481 7:5490

Kopt �1:3223 18:4163 18:4637 0:0749 10:4089 10:4092 0:1525 7:4032 7:4047

Student-t5 T = 100 T = 250 T = 500

� = 0 Bias SD RMSE Bias SD RMSE Bias SD RMSE

CCQML 0:3259 21:6623 21:6647 0:9509 13:0973 13:1318 0:3293 9:4160 9:4217

CCLS/K�0 0:1868 21:4437 21:4445 0:9124 13:0114 13:0433 0:3112 9:3943 9:3995

Kab 0:0646 21:8261 21:8262 1:0303 13:2285 13:2685 0:3782 9:6245 9:6320

Kabc 0:0573 21:9014 21:9015 1:0184 13:2651 13:3041 0:3956 9:6312 9:6393

Kopt 0:1828 21:4460 21:4468 0:9210 13:0578 13:0902 0:3167 9:4036 9:4090

� = �0:6 Bias SD RMSE Bias SD RMSE Bias SD RMSE

K�0 �0:2537 14:6822 14:6844 0:2862 7:7471 7:7524 0:0418 5:3364 5:3366

CCQML �0:1864 15:5568 15:5579 0:3711 8:0034 8:0120 0:0776 5:3833 5:3839

CCLS �0:1612 15:8848 15:8856 0:3681 7:9860 7:9945 0:0749 5:4009 5:4014

Kab �0:2414 17:2679 17:2695 0:4290 8:3241 8:3352 0:1053 5:4979 5:4989

Kabc �0:0431 17:8152 17:8152 0:4169 8:3125 8:3230 0:0858 5:4759 5:4766

Kopt �0:2248 14:9109 14:9126 0:2838 7:8137 7:8188 0:0419 5:3498 5:3500

Mixture T = 100 T = 250 T = 500

� = 0 Bias SD RMSE Bias SD RMSE Bias SD RMSE

CCQML 0:7685 17:0311 17:0484 0:8283 9:9686 10:0029 0:6215 6:9869 7:0144

CCLS/K�0 0:7274 16:8214 16:8372 0:8206 9:9568 9:9905 0:6232 6:9798 7:0076

Kab 0:6616 17:2002 17:2129 0:8763 10:1292 10:1671 0:6565 7:1338 7:1639

Kabc 0:6536 17:1318 17:1443 0:8623 10:1256 10:1622 0:6373 7:1200 7:1485

Kopt 0:6925 16:8890 16:9032 0:8072 9:9304 9:9632 0:6110 6:9705 6:9972

� = �0:6 Bias SD RMSE Bias SD RMSE Bias SD RMSE

K�0 0:7688 34:1301 34:1387 �0:1418 20:2516 20:2521 0:2496 13:7079 13:7102

CCQML 1:0859 36:2240 36:2403 �0:1072 20:4502 20:4505 0:4022 14:1563 14:1620

CCLS 0:7947 34:4177 34:4268 �0:1309 20:5699 20:5703 0:3367 13:9342 13:9383

Kab 0:8134 35:0657 35:0751 �0:1126 20:8044 20:8047 0:3784 14:0688 14:0739

Kabc 0:8824 34:9502 34:9613 �0:1065 20:8457 20:8460 0:3369 14:0391 14:0432

Kopt 0:7295 34:0558 34:0636 �0:1729 20:3123 20:3130 0:2664 13:7573 13:7599

Notes: (1) The �rst column with CML, CCQML, CCLS, K�0 and K
opt denote the estimates of constrained maximum likelihood, �̂QML,

�̂CCLS , �̂�0 and �̂
opt

respectively. Kab and Kabc are with (a; b; c) = (10; 6; 10) and (a; b; c) = (10; 8; 19) respectively.

(2) Bivariate Gaussian, Student-t5 and Mixture densities for uL;t and uR;t with � = 0 and � = �0:6 are considered respectively,
where � = corr(uL;t; uR;t). �̂CCLS coincides with �̂�0 as � = 0:

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.



TABLE 7-1. Bias, SD and RMSE of Estimates for �1 in Bivariate Point Processes

�̂1

Gaussian T = 100 T = 250 T = 500

� = 0 Bias SD RMSE Bias SD RMSE Bias SD RMSE

CML 3:7740 27:4147 27:6733 0:5808 9:2854 9:3036 0:4462 6:3235 6:3393

CCLS/K�0 3:7685 26:8171 27:0805 0:5789 9:2782 9:2962 0:4447 6:3213 6:3370

Kab 2:4366 26:6792 26:7903 0:5898 9:3354 9:3540 0:4737 6:3971 6:4146

Kabc 3:1966 27:6164 27:8008 0:5803 9:3357 9:3538 0:4819 6:4178 6:4359

Kopt 3:8291 27:4404 27:7062 0:5831 9:2838 9:3021 0:4456 6:3234 6:3390

� = �0:6 Bias SD RMSE Bias SD RMSE Bias SD RMSE

K�0 �1:2941 18:3142 18:3599 0:0843 10:3981 10:3984 0:1530 7:4041 7:4057

CML �1:3490 18:4992 18:5484 0:0659 10:4546 10:4548 0:1469 7:4240 7:4255

CCLS �1:4203 18:9489 19:0020 0:0161 10:5036 10:5036 0:1333 7:4698 7:4710

Kab �1:5256 19:7844 19:8431 �0:0336 10:6743 10:6743 0:1183 7:5408 7:5418

Kabc �1:5610 19:8056 19:8670 �0:0274 10:6681 10:6681 0:1143 7:5481 7:5490

Kopt �1:3223 18:4163 18:4637 0:0749 10:4089 10:4092 0:1525 7:4032 7:4047

Student-t5 T = 100 T = 250 T = 500

� = 0 Bias SD RMSE Bias SD RMSE Bias SD RMSE

CCQML 0:3259 21:6623 21:6647 0:9509 13:0973 13:1318 0:3293 9:4160 9:4217

CCLS/K�0 0:1868 21:4437 21:4445 0:9124 13:0114 13:0433 0:3112 9:3943 9:3995

Kab 0:0646 21:8261 21:8262 1:0303 13:2285 13:2685 0:3782 9:6245 9:6320

Kabc 0:0573 21:9014 21:9015 1:0184 13:2651 13:3041 0:3956 9:6312 9:6393

Kopt 0:1828 21:4460 21:4468 0:9210 13:0578 13:0902 0:3167 9:4036 9:4090

� = �0:6 Bias SD RMSE Bias SD RMSE Bias SD RMSE

K�0 �0:2537 14:6822 14:6844 0:2862 7:7471 7:7524 0:0418 5:3364 5:3366

CCQML �0:1864 15:5568 15:5579 0:3711 8:0034 8:0120 0:0776 5:3833 5:3839

CCLS �0:1612 15:8848 15:8856 0:3681 7:9860 7:9945 0:0749 5:4009 5:4014

Kab �0:2414 17:2679 17:2695 0:4290 8:3241 8:3352 0:1053 5:4979 5:4989

Kabc �0:0431 17:8152 17:8152 0:4169 8:3125 8:3230 0:0858 5:4759 5:4766

Kopt �0:2248 14:9109 14:9126 0:2838 7:8137 7:8188 0:0419 5:3498 5:3500

Mixture T = 100 T = 250 T = 500

� = 0 Bias SD RMSE Bias SD RMSE Bias SD RMSE

CCQML 0:7685 17:0311 17:0484 0:8283 9:9686 10:0029 0:6215 6:9869 7:0144

CCLS/K�0 0:7274 16:8214 16:8372 0:8206 9:9568 9:9905 0:6232 6:9798 7:0076

Kab 0:6616 17:2002 17:2129 0:8763 10:1292 10:1671 0:6565 7:1338 7:1639

Kabc 0:6536 17:1318 17:1443 0:8623 10:1256 10:1622 0:6373 7:1200 7:1485

Kopt 0:6925 16:8890 16:9032 0:8072 9:9304 9:9632 0:6110 6:9705 6:9972

� = �0:6 Bias SD RMSE Bias SD RMSE Bias SD RMSE

K�0 0:7688 34:1301 34:1387 �0:1418 20:2516 20:2521 0:2496 13:7079 13:7102

CCQML 1:0859 36:2240 36:2403 �0:1072 20:4502 20:4505 0:4022 14:1563 14:1620

CCLS 0:7947 34:4177 34:4268 �0:1309 20:5699 20:5703 0:3367 13:9342 13:9383

Kab 0:8134 35:0657 35:0751 �0:1126 20:8044 20:8047 0:3784 14:0688 14:0739

Kabc 0:8824 34:9502 34:9613 �0:1065 20:8457 20:8460 0:3369 14:0391 14:0432

Kopt 0:7295 34:0558 34:0636 �0:1729 20:3123 20:3130 0:2664 13:7573 13:7599

Notes: (1) The �rst column with CML, CCQML, CCLS, K�0 and K
opt denote the estimates of constrained maximum likelihood, �̂QML,

�̂CCLS , �̂�0 and �̂
opt

respectively. Kab and Kabc are with (a; b; c) = (10; 6; 10) and (a; b; c) = (10; 8; 19) respectively.

(2) Bivariate Gaussian, Student-t5 and Mixture densities for uL;t and uR;t with � = 0 and � = �0:6 are considered respectively,
where � = corr(uL;t; uR;t). �̂CCLS coincides with �̂�0 as � = 0:

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications:



TABLE 8-1. Bias, SD and RMSE of Estimates 
1 in Bivariate Point Processes


̂1

Gaussian T = 100 T = 250 T = 500

� = 0 Bias SD RMSE Bias SD RMSE Bias SD RMSE

CML 8:4453 9:4949 12:7073 0:8998 5:5124 5:5854 0:3648 3:9454 3:9622

CCLS/K�0 8:2679 8:8920 12:1419 0:8974 5:4600 5:5332 0:3725 3:9283 3:9460

Kab 11:4850 7:7109 13:8334 0:9066 6:3690 6:4332 0:3545 4:5923 4:6059

Kabc 11:0291 7:0202 13:0738 0:9256 6:3887 6:4554 0:3883 4:6795 4:6955

Kopt 8:7537 9:0957 12:6237 0:9015 5:5045 5:5778 0:3650 3:9456 3:9625

� = �0:6 Bias SD RMSE Bias SD RMSE Bias SD RMSE

K�0 1:9869 9:7370 9:9376 0:9657 5:7332 5:8140 0:3956 4:1090 4:1280

CML 2:2679 9:8667 10:1240 1:0748 5:7914 5:8903 0:4519 4:1387 4:1633

CCLS 2:3898 11:3345 11:5836 0:9910 6:5930 6:6671 0:4234 4:8319 4:8504

Kab 2:8237 13:0718 13:3733 1:0923 7:5764 7:6548 0:4656 5:5542 5:5737

Kabc 2:9483 13:0215 13:3511 1:1055 7:5309 7:6117 0:4966 5:5726 5:5947

Kopt 2:0775 9:8796 10:0956 0:9675 5:7819 5:8623 0:3867 4:1259 4:1440

Student-t5 T = 100 T = 250 T = 500

� = 0 Bias SD RMSE Bias SD RMSE Bias SD RMSE

CCQML 3:1779 16:5411 16:8436 0:9417 10:0557 10:0997 0:2883 7:3200 7:3257

CCLS/K�0 2:9034 15:5630 15:8315 0:8499 9:7332 9:7702 0:2661 7:1633 7:1683

Kab 2:7815 18:1555 18:3673 1:1267 11:0026 11:0602 0:2518 8:2875 8:2913

Kabc 2:5072 18:4031 18:5731 1:1503 11:0933 11:1527 0:2912 8:3810 8:3860

Kopt 2:9203 15:5951 15:8661 0:8445 9:7674 9:8039 0:2447 7:1731 7:1773

� = �0:6 Bias SD RMSE Bias SD RMSE Bias SD RMSE

K�0 3:1537 15:9424 16:2514 0:8519 10:0569 10:0929 0:2965 7:3499 7:3559

CCQML 3:3597 17:6944 18:0106 1:0495 10:6465 10:6981 0:4882 8:2301 8:2445

CCLS 3:0205 21:7619 21:9705 1:2138 13:4193 13:4741 0:4726 9:9201 9:9314

Kab 3:1531 22:9097 23:1257 1:2456 13:9726 14:0281 0:4933 10:3169 10:3287

Kabc 3:1721 22:6396 22:8608 1:2028 13:9364 13:9882 0:5022 10:3075 10:3197

Kopt 3:1857 16:0071 16:3210 0:8690 10:0662 10:1037 0:2759 7:3581 7:3633

Mixture T = 100 T = 250 T = 500

� = 0 Bias SD RMSE Bias SD RMSE Bias SD RMSE

CCQML 4:2318 17:2183 17:7307 1:5269 10:5734 10:6831 0:8042 7:3589 7:4027

CCLS/K�0 3:7932 16:2449 16:6819 1:4703 10:1369 10:2430 0:7806 7:1689 7:2112

Kab 3:6155 19:0562 19:3961 1:6763 11:7443 11:8633 0:8165 8:5842 8:6230

Kabc 3:3665 19:3084 19:5997 1:7073 11:9231 12:0447 0:7111 8:5085 8:5382

Kopt 3:7985 16:2124 16:6515 1:4231 10:1247 10:2242 0:7491 7:1541 7:1932

� = �0:6 Bias SD RMSE Bias SD RMSE Bias SD RMSE

K�0 4:2468 16:6675 17:2000 1:6779 9:7319 9:8755 0:8281 7:4169 7:4629

CCQML 5:5143 19:5446 20:3076 1:8861 10:7381 10:9025 1:1146 8:7967 8:8670

CCLS 4:6667 18:3164 18:9016 1:7353 11:4024 11:5337 0:9506 8:6531 8:7051

Kab 4:9730 21:0036 21:5843 1:8271 13:1429 13:2693 1:0335 9:8146 9:8689

Kabc 4:6610 20:9544 21:4665 1:8625 12:9952 13:1280 0:9434 9:8626 9:9076

Kopt 4:1638 16:6509 17:1637 1:6462 9:7713 9:9090 0:8318 7:4221 7:4686

Notes. (1) The �rst column with CML, CCQML,CCLS, K�0 and K
opt denote the estimates of constrained maximum likelihood, �̂QML,

�̂CCLS , �̂�0 and �̂
opt

respectively. Kab and Kabc are with (a; b; c) = (10; 6; 10) and (a; b; c) = (10; 8; 19) respectively.

(2) Bivariate Gaussian, Student-t5 and Mixture densities for uL;t and uR;t with � = 0 and � = �0:6 are considered respectively,
where � = corr(uL;t; uR;t). �̂CCLS coincides with �̂�0 as � = 0.

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.



TABLE 5-2. Bias, SD and RMSE of Estimates for �0 in CCC-GARCH (1,1)
�̂0

T = 100 T = 250 T = 500

� = 0 Bias SD RMSE Bias SD RMSE Bias SD RMSE

�̂� 0:3262 18:3641 18:3670 0:1281 11:0255 11:0262 0:1701 8:0849 8:0867

CCQML 0:3238 18:2934 18:2963 0:0844 11:0194 11:0197 0:1697 8:1314 8:1332

CCLS 0:2741 18:3073 18:3094 0:1177 10:9255 10:9261 0:1694 8:0684 8:0702

Kab 0:2579 18:6976 18:6994 0:1007 10:9248 10:9253 0:1713 8:0712 8:0730

Kabc1 0:3400 18:7300 18:7331 0:1212 10:9768 10:9774 0:1820 8:0918 8:0939

Kabc2 0:3100 18:2593 18:2619 0:0892 10:8993 10:8996 0:1550 8:0230 8:0245

K
(�)
ab 0:3960 17:1907 17:1952 0:1161 10:9484 10:9490 0:1873 8:0161 8:0183

K
(�)
abc1 0:4379 17:3478 17:3533 0:0953 10:9437 10:9441 0:1777 8:0109 8:0128

K
(�)
abc2 0:4394 17:3298 17:3354 0:1033 10:9445 10:9450 0:1703 8:0031 8:0049

Kopt 0:4464 17:2188 17:2246 0:0831 10:8478 10:8482 0:1709 7:9976 7:9994

T = 100 T = 250 T = 500

�= �0:6 Bias SD RMSE Bias SD RMSE Bias SD RMSE

�̂� 0:3730 12:1746 12:1803 0:2035 8:2096 8:2122 �0:1535 5:8634 5:8654

CCQML 0:6090 13:1052 13:1194 0:1867 8:2369 8:2390 0:1860 5:9337 5:9366

CCLS 0:4006 12:3911 12:3976 0:1885 8:1870 8:1892 �0:1420 5:8972 5:8989

Kab 0:3177 12:6940 12:6980 0:1879 8:2176 8:2197 �0:1325 5:9305 5:9320

Kabc1 0:3294 12:7519 12:7562 0:1939 8:2223 8:2246 �0:1496 5:9215 5:9233

Kabc2 0:3253 12:5633 12:5675 0:1975 8:1671 8:1695 �0:1346 5:8999 5:9015

K
(�)
ab 0:4154 12:6040 12:6108 0:2015 8:2275 8:2300 0:2106 5:9590 5:9627

K
(�)
abc1 0:5273 12:3723 12:3836 0:2110 8:2136 8:2163 0:1867 5:9071 5:9101

K
(�)
abc2 0:5242 12:2964 12:3076 0:1951 8:2253 8:2276 0:1916 5:9155 5:9186

Kopt 0:5115 12:0509 12:0617 0:1662 8:1129 8:1146 �0:1502 5:8319 5:8338

Notes: (1) The �rst column with CCQML, CCLS and Kopt denote the estimates of �̂QML, �̂CCLS , and two-stage minimum DK -distance
estimator �̂

opt
respectively. Kab=K

(�)
ab are with (a; b; c) = (10; 6; 10) and (10;�6; 10) respectively. Kabci is with (a; b; c) = (10; 8; 19) for

i = 1 and (10; 2; 6) for i = 2. K
(�)
abci is with (a; b; c) = (10;�3; 2:5) for i = 1 and (10;�4; 3) for i = 2.

(2) Constant conditional correlation for uL;t and uR;t with � = 0 and � = �0:6 are considered respectively. �̂� is from the kernel

with (a; b; c) = (1; �; 1):

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.



TABLE 6-2. Bias, SD and RMSE of Estimates for �0 in CCC-GARCH (1,1)
�̂0

T = 100 T = 250 T = 500

� = 0 Bias SD RMSE Bias SD RMSE Bias SD RMSE

�̂� 1:5832 36:9517 36:9856 0:8096 22:2116 22:2264 0:5589 16:2638 16:2734

CCQML 1:7432 38:5877 38:6271 0:7815 22:1291 22:1429 0:7069 16:2564 16:2718

CCLS 1:6927 37:1014 37:1400 0:6939 21:8755 21:8865 0:5547 16:2169 16:2264

Kab 1:9383 38:1556 38:2048 0:6352 21:8275 21:8368 0:5720 16:3784 16:3884

Kabc1 1:9302 37:8494 37:8986 0:6820 21:9591 21:9697 0:5775 16:4972 16:5073

Kabc2 1:5620 37:2145 37:2472 0:6712 21:7046 21:7149 0:5454 16:1487 16:1579

K
(�)
ab �0:2536 34:7072 34:7081 0:6049 21:9392 21:9475 0:4842 15:9856 15:9929

K
(�)
abc1 �0:2246 34:9345 34:9352 0:5747 21:8082 21:8158 0:5303 15:9720 15:9808

K
(�)
abc2 �0:2628 34:7820 34:7830 0:5765 21:8167 21:8243 0:5503 15:9736 15:9831

Kopt �0:1908 34:6822 34:6827 0:5420 21:7177 21:7245 0:5371 15:9058 15:9149

T = 100 T = 250 T = 500

� = �0:6 Bias SD RMSE Bias SD RMSE Bias SD RMSE

�̂� �0:1764 41:2049 41:2052 0:9344 26:2614 26:2781 0:6604 19:8438 19:8547

CCQML �0:3959 41:1092 41:1111 1:1400 26:3765 26:4012 0:7314 19:6244 19:6380

CCLS �0:3646 41:3780 41:3796 0:8330 26:1217 26:1350 0:7121 19:9028 19:9156

Kab �0:2591 41:7327 41:7335 0:8224 26:1503 26:1632 0:7377 19:9933 20:0069

Kabc1 �0:1719 41:6554 41:6558 0:8072 26:2531 26:2655 0:7449 20:0790 20:0929

Kabc2 �0:2549 41:4431 41:4439 0:8150 26:0364 26:0492 0:7160 19:8347 19:8476

K
(�)
ab �0:2983 42:2806 42:2817 0:8938 26:4456 26:4607 0:6468 19:8235 19:8340

K
(�)
abc1 �0:9515 41:0943 41:1053 0:8497 26:0677 26:0816 0:6262 19:4292 19:4393

K
(�)
abc2 �0:8702 41:2807 41:2899 0:9330 26:1331 26:1497 0:6166 19:4309 19:4407

Kopt �0:5937 40:1934 40:1977 0:9182 25:7977 25:8141 0:5763 19:3842 19:3928

Notes: (1) The �rst column with CCQML, CCLS and Kopt denote the estimates of �̂QML, �̂CCLS , and two-stage minimum DK -distance
estimator �̂

opt
respectively. Kab=K

(�)
ab are with (a; b; c) = (10; 6; 10) and (10;�6; 10) respectively. Kabci is with (a; b; c) = (10; 8; 19) for

i = 1 and (10; 2; 6) for i = 2. K
(�)
abci is with (a; b; c) = (10;�3; 2:5) for i = 1 and (10;�4; 3) for i = 2.

(2) Constant conditional correlation for uL;t and uR;t with � = 0 and � = �0:6 are considered respectively. �̂� is from the kernel

with (a; b; c) = (1; �; 1):

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.



TABLE 7-2. Bias, SD and RMSE of Estimates for �1 in CCC-GARCH (1,1)

�̂1
T = 100 T = 250 T = 500

� = 0 Bias SD RMSE Bias SD RMSE Bias SD RMSE

�̂� �5:1700 23:3402 23:9059 �1:8568 15:8522 15:9606 �0:9422 11:7112 11:7491

CCQML �6:8071 26:0490 26:9237 �1:8205 15:4964 15:6030 �1:1804 12:8178 12:8720

CCLS �4:8740 22:0649 22:5968 �1:6444 14:9143 15:0046 �0:9085 11:3070 11:3434

Kab �5:1082 24:0989 24:6343 �1:5737 15:8136 15:8917 �0:8970 11:9478 11:9814

Kabc1 �5:2323 24:5890 25:1395 �1:5684 16:3361 16:4112 �0:9375 12:4469 12:4821

Kabc2 �4:5885 21:1834 21:6747 �1:5237 14:2489 14:3302 �0:7890 10:7557 10:7846

K
(�)
ab �4:4438 20:6082 21:0819 �1:6554 14:2130 14:3091 �0:6782 10:3726 10:3948

K
(�)
abc1 �4:4396 20:2261 20:7076 �1:5819 13:6926 13:7837 �0:6446 10:0951 10:1156

K
(�)
abc2 �4:4845 20:1118 20:6057 �1:5886 13:6684 13:7604 �0:6692 10:0957 10:1178

Kopt �3:9911 19:5291 19:9327 �1:4666 13:2740 13:3548 �0:6488 9:7382 9:7598

T = 100 T = 250 T = 500

� = �0:6 Bias SD RMSE Bias SD RMSE Bias SD RMSE

�̂� �5:1139 23:1467 23:7049 �1:8138 15:6059 15:7110 �1:3468 12:2553 12:3291

CCQML �5:1057 22:4803 23:0528 �2:1822 15:1071 15:2639 �1:3685 11:2132 11:2964

CCLS �5:3099 24:1066 24:6845 �1:7459 15:7767 15:8730 �1:4848 12:4950 12:5829

Kab �5:7424 25:9332 26:5613 �1:8016 16:7059 16:8027 �1:5657 13:1845 13:2771

Kabc1 �5:8670 25:7590 26:4187 �1:7448 16:8426 16:9327 �1:5415 13:2432 13:3327

Kabc2 �5:2287 24:1880 24:7466 �1:7667 15:7318 15:8307 �1:4833 12:4906 12:5784

K
(�)
ab �5:2628 23:3868 23:9717 �1:7896 15:9658 16:0657 �1:0475 12:1638 12:2088

K
(�)
abc1 �3:7596 20:5259 20:8673 �1:8321 13:9451 14:0649 �0:8708 10:2275 10:2646

K
(�)
abc2 �3:7202 20:7477 21:0786 �1:8359 14:1548 14:2734 �0:9050 10:3940 10:4333

Kopt �4:0383 19:7016 20:1112 �1:6706 13:4004 13:5041 �0:8012 9:9381 9:9703

Notes: (1) The �rst column with CCQML, CCLS, and Kopt denote the estimates of �̂QML, �̂CCLS , and two-stage minimum DK -distance
estimator �̂

opt
respectively. Kab=K

(�)
ab are with (a; b; c) = (10; 6; 10) and (10;�6; 10) respectively. Kabci is with (a; b; c) = (10; 8; 19) for

i = 1 and (10; 2; 6) for i = 2. K
(�)
abci is with (a; b; c) = (10;�3; 2:5) for i = 1 and (10;�4; 3) for i = 2.

(2) Constant conditional correlation for uL;t and uR;t with � = 0 and � = �0:6 are considered respectively. �̂� is from the kernel

with (a; b; c) = (1; �; 1):

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.



TABLE 8-2. Bias, SD and RMSE of Estimates for 
1 in CCC-GARCH (1,1)


̂1

� = 0 T = 100 T = 250 T = 500

Bias SD RMSE Bias SD RMSE Bias SD RMSE

�̂� 3:4481 23:7807 24:0294 1:3455 16:3966 16:4517 0:5192 12:2486 12:2596

CCQML 5:1979 24:6054 25:1485 1:0617 15:7562 15:7919 0:6052 11:9287 11:9441

CCLS 3:1517 22:3783 22:5992 1:1039 15:3862 15:4257 0:4547 11:8826 11:8913

Kab 3:3173 24:3267 24:5519 0:9726 16:2556 16:2846 0:3874 12:6170 12:6230

Kabc1 3:4418 24:8162 25:0538 1:0046 16:8454 16:8753 0:4035 13:1492 13:1554

Kabc2 2:8967 21:5026 21:6968 0:9317 14:6547 14:6843 0:3479 11:2991 11:3044

K
(�)
ab 3:3135 20:9494 21:2099 0:8890 14:7091 14:7360 0:2619 10:7972 10:8004

K
(�)
abc1 3:1719 20:6452 20:8874 0:7863 14:1628 14:1846 0:2258 10:5434 10:5458

K
(�)
abc2 3:2349 20:4939 20:7477 0:8111 14:1222 14:1455 0:2374 10:5563 10:5590

Kopt 3:3985 19:8049 20:0943 0:6973 13:6731 13:6908 0:2699 10:1557 10:1593

T = 100 T = 250 T = 500

� = �0:6 Bias SD RMSE Bias SD RMSE Bias SD RMSE

�̂� 3:9923 23:6568 23:9913 1:3351 16:0954 16:1507 0:7671 12:5065 12:5300

CCQML 3:8581 22:6455 22:9718 1:5001 15:0078 15:0826 0:8370 11:5454 11:5757

CCLS 4:0327 24:7236 25:0504 1:2187 16:3211 16:3665 0:9641 12:6448 12:6815

Kab 4:4080 26:6215 26:9840 1:2331 17:2795 17:3234 1:0707 13:3057 13:3487

Kabc1 4:5906 26:3725 26:7691 1:2059 17:4410 17:4826 1:0302 13:3751 13:4148

Kabc2 3:8728 24:8842 25:1838 1:1989 16:2415 16:2857 0:9941 12:6078 12:6469

K
(�)
ab 4:1370 23:8643 24:2202 1:2463 16:5218 16:5687 0:5322 12:7415 12:7527

K
(�)
abc1 2:3757 21:3781 21:5097 1:1880 14:2453 14:2947 0:3812 10:7022 10:7089

K
(�)
abc2 2:4046 21:5325 21:6664 1:2171 14:4368 14:4880 0:4215 10:8099 10:8181

Kopt 2:7108 20:2394 20:4201 1:0267 13:7417 13:7800 0:2870 10:3725 10:3764

Notes: (1) The �rst column with CCQML, CCLS and Kopt denote the estimates of �̂QML, �̂CCLS , and two-stage minimum DK -distance
estimator �̂

opt
respectively. Kab=K

(�)
ab are with (a; b; c) = (10; 6; 10) and (10;�6; 10) respectively. Kabci is with (a; b; c) = (10; 8; 19) for

i = 1 and (10; 2; 6) for i = 2. K
(�)
abci is with (a; b; c) = (10;�3; 2:5) for i = 1 and (10;�4; 3) for i = 2.

(2) Constant conditional correlation for uL;t and uR;t with � = 0 and � = �0:6 are considered respectively. �̂� is from the kernel

with (a; b; c) = (1; �; 1):

(3) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.



TABLE 9. t-statistics for the 5-factor CAPM
BE/ME Quantile Group Low BE/ME Quantile Group 2

Small OLS CCLS Kab Kabc CCQML Kopt OLS CCLS Kab Kabc CCQML Kopt

�0 �3:69 �1:03 �1:04 �1:04 �1:04 �1:04 �1:06 �1:17 �1:18 �1:18 �1:18 �1:17
�1 39:79 8:39 9:03 9:68 10:21 10:68 46:57 8:60 9:43 10:25 11:16 11:41

�2 35:19 8:22 8:31 10:27 14:62 19:79 45:16 7:89 8:04 10:27 17:37 20:98

�3 �5:76 �6:99 �6:56 �8:32 �12:23 �16:05 3:28 �5:93 �5:55 �7:30 �12:55 �14:83
�4 �2:21 �0:61 �0:64 �0:65 �0:65 �0:67 �2:50 �0:43 �0:45 �0:46 �0:47 �0:48
�5 �1:54 �3:35 �2:74 �4:05 �5:37 �5:81 �2:86 �3:44 �2:92 �4:31 �5:84 �6:08

2 �0 �1:45 �1:10 �1:10 �1:10 �1:10 �1:10 �0:27 �1:28 �1:29 �1:29 �1:29 �1:27
�1 50:19 9:63 10:26 10:93 11:88 12:17 56:87 9:97 10:88 12:05 13:51 13:82

�2 32:39 6:79 6:83 8:32 14:83 18:71 36:38 6:23 6:32 8:81 19:38 21:10

�3 �13:10 �6:30 �5:90 �7:38 �13:57 �16:71 0:89 �4:82 �4:51 �6:72 �14:80 �16:04
�4 �1:05 �0:04 �0:04 �0:04 �0:05 �0:06 �0:62 �0:11 �0:12 �0:24 �0:24 �0:25
�5 �2:33 �3:01 �2:37 �3:64 �5:78 �6:07 �1:08 �2:52 �2:07 �3:12 �5:43 �5:57

3 �0 �0:37 �1:21 �1:21 �1:21 �1:21 �1:20 1:45 �1:40 �1:41 �1:41 �1:41 �1:37
�1 53:22 10:75 11:44 12:20 13:62 13:72 48:27 11:22 12:21 13:25 15:15 15:15

�2 23:27 5:42 5:44 6:63 15:93 18:26 21:97 4:51 4:57 5:81 19:88 20:84

�3 �12:87 �5:22 �4:88 �6:12 �15:00 �16:96 1:35 �3:43 �3:20 �4:20 �14:43 �15:08
�4 �0:36 0:00 0:00 0:01 0:00 �0:02 0:76 0:25 0:27 0:27 0:28 0:27

�5 �0:93 �2:17 �1:68 �2:66 �5:22 �5:32 �0:36 �1:83 �1:47 �2:38 �5:19 �5:32
4 �0 1:70 �1:29 �1:29 �1:30 �1:30 �1:27 �2:09 �1:51 �1:52 �1:52 �1:52 �1:49

�1 50:28 12:14 12:81 13:58 15:46 15:42 45:92 12:83 13:83 14:92 17:47 17:52

�2 10:32 3:53 3:53 4:24 15:45 16:21 8:33 2:14 2:16 2:70 20:14 20:30

�3 �14:44 �3:96 �3:69 �4:56 �17:00 �17:77 0:55 �1:61 �1:49 �1:94 �14:69 �14:80
�4 0:32 0:37 0:39 0:40 0:41 0:41 0:86 0:47 0:49 0:50 0:58 0:58

�5 �1:54 �1:61 �1:20 �1:95 �5:23 �5:22 �0:72 �1:14 �0:88 �1:48 �6:89 �7:03
Big �0 3:32 �1:42 �1:43 �1:43 �1:43 �1:38 �0:31 �1:63 �1:64 �1:64 �1:64 �1:61

�1 51:25 14:57 15:09 15:80 19:79 19:66 51:01 15:05 15:89 16:90 20:47 20:53

�2 �7:96 �0:14 �0:14 �0:16 �1:23 �1:21 �6:94 �1:58 �1:58 -1:91 -21:15 -20:81
�3 �15:67 �1:41 �1:31 �1:57 �15:16 �14:90 �0:32 1:21 1:14 1:40 15:76 15:60

�4 0:90 0:31 0:32 0:33 0:39 0:38 �0:50 0:30 0:31 0:32 0:34 0:33

�5 0:88 0:73 0:53 0:83 3:01 2:99 �1:39 0:19 0:14 0:23 �1:43 �1:45

Notes: (1) Fama and French�s 5-Factor CAPM:ERit= �0+�1EM t+�2SMBt+�3HMLt+�4TERM t+�5DEF t+"t. Interval CAPM:

Yt= �0+�0I0+�1X1t+�2X2t+�3X3t+�4X4t+�5X5t+ut, where i = 1;..; 25:

(2) The �rst row with OLS, CCQML, CCLS and Kopt denote the estimates of OLS, �̂QML, �̂CCLS , and two-stage minimum
DK -distance estimator �̂

opt
respectively. Kab and Kabc are with (a; b; c) = (10; 6; 10) and (10; 8; 19) respectively.

(3) The standard error of each parameter estimate is compared based on 500 bootstrap replications.



TABLE 9. [Continued] t-statistics for the 5-factor CAPM

BE/ME Quantile Group 3 BE/ME Quantile Group 4
Small OLS CCLS Kab Kabc CCQML Kopt OLS CCLS Kab Kabc CCQML Kopt

�0 �1:23 �1:28 �1:28 �1:28 �1:28 �1:27 1:26 �1:36 �1:37 �1:37 �1:37 �1:35
�1 53:51 8:93 9:90 10:85 12:04 12:15 52:48 9:20 10:30 11:38 12:76 12:80

�2 46:59 7:39 7:56 9:87 19:26 21:75 47:03 7:06 7:25 9:65 20:70 22:50

�3 9:72 �5:09 �4:77 �6:42 �12:57 �13:98 14:39 �4:40 �4:12 �5:67 �12:09 �13:01
�4 �0:15 �0:20 �0:21 �0:22 �0:22 �0:24 �1:38 �0:64 �0:68 �0:70 �0:72 �0:74
�5 �0:29 �2:69 �2:32 �3:43 �4:73 �4:87 0:82 �2:34 �2:04 �3:01 �4:12 �4:23

2 �0 2:58 �1:39 �1:40 �1:40 �1:40 �1:37 2:86 �1:58 �1:59 �1:59 �1:59 �1:56
�1 54:15 10:14 11:22 12:30 13:95 13:95 56:81 10:98 12:31 13:66 15:81 15:79

�2 34:86 5:77 5:89 7:69 20:67 21:98 30:51 4:37 4:49 6:05 23:78 24:25

�3 8:85 �3:81 �3:56 �4:81 �12:96 �13:70 17:00 �1:92 �1:78 �2:50 �9:97 �10:16
�4 1:61 0:41 0:44 0:46 0:47 0:46 3:57 0:58 0:62 0:64 0:68 0:69

�5 �0:67 �2:35 �1:98 �3:07 �5:01 �5:15 2:11 �1:27 �1:09 �1:70 �2:98 �3:13
3 �0 0:02 �1:56 �1:56 �1:56 �1:56 �1:53 2:39 �1:72 �1:73 �1:73 �1:73 �1:65

�1 46:61 11:56 12:81 14:08 16:37 16:37 51:57 12:36 13:84 15:35 19:24 19:37

�2 18:83 3:69 3:77 4:96 23:23 23:55 17:29 2:15 2:20 2:96 25:16 25:19

�3 9:77 �1:86 �1:73 �2:36 �11:34 �11:50 17:20 0:21 0:21 0:28 2:58 2:56

�4 2:00 0:54 0:58 0:60 0:65 0:66 3:05 0:64 0:69 0:71 0:97 0:97

�5 0:37 �1:44 �1:20 �1:93 �4:18 �4:36 1:66 �0:69 �0:59 �0:94 �2:74 �2:78
4 �0 0:49 �1:67 �1:68 �1:68 �1:68 �1:57 1:07 �1:80 �1:81 �1:81 �1:81 �1:75

�1 45:41 13:21 14:47 15:80 19:67 19:66 46:39 13:25 14:74 16:27 19:76 19:87

�2 7:80 1:10 1:11 1:44 19:29 19:20 8:31 0:11 0:10 0:14 0:92 0:91

�3 8:61 0:25 0:24 0:31 4:74 4:65 16:21 2:16 2:03 2:78 20:99 20:87

�4 1:30 0:63 0:67 0:69 0:95 0:95 4:53 1:54 1:64 1:68 2:11 2:14

�5 �0:50 �0:87 �0:70 �1:16 �5:59 �5:57 0:66 �0:37 �0:31 �0:51 �1:42 �1:47
Big �0 �0:44 �1:74 �1:75 �1:75 �1:75 �1:72 �0:65 �1:96 �1:97 �1:97 �1:97 �1:95

�1 38:59 15:56 16:49 17:57 20:64 20:73 52:41 15:87 17:13 18:47 20:98 21:09

�2 �7:28 �3:24 �3:24 �3:95 �17:92 �17:83 �7:83 �4:82 �4:87 �6:10 �14:98 �14:89
�3 5:52 3:28 3:06 3:81 17:46 17:40 17:53 6:38 5:94 7:64 18:91 18:81

�4 0:47 0:60 0:62 0:63 0:67 0:66 �0:62 �0:03 �0:03 �0:03 �0:05 �0:06
�5 �0:76 0:80 0:61 0:98 3:17 3:16 �0:14 1:11 0:89 1:38 2:64 2:66



TABLE 9. [Continued] t-statistics for 5-Factor CAPM
BE/ME Quantile Group High

Small OLS CCLS Kab Kabc CCQML Kopt

�0 1:02 �1:48 �1:48 �1:48 �1:48 �1:46
�1 51:01 9:28 10:54 11:79 13:31 13:34

�2 46:60 6:86 7:11 9:75 21:73 23:58

�3 20:76 �3:51 �3:29 �4:68 �10:32 �11:08
�4 �1:92 �0:80 �0:86 �0:89 �0:92 �0:96
�5 0:36 �2:45 �2:20 �3:17 �4:14 �4:28

2 �0 1:25 �1:70 �1:70 �1:71 �1:71 �1:67
�1 57:83 11:12 12:66 14:23 16:67 16:74

�2 32:13 4:21 4:36 6:05 24:54 25:18

�3 23:54 �0:96 �0:89 �1:30 �5:53 �5:65
�4 �0:95 �0:22 �0:24 �0:24 �0:30 �0:35
�5 �1:07 �2:09 �1:85 �2:80 �4:47 �4:79

3 �0 0:53 �1:76 �1:77 �1:77 �1:77 �1:73
�1 45:46 11:66 13:27 14:90 17:75 17:91

�2 21:51 3:01 3:11 4:31 20:72 21:02

�3 21:28 0:26 0:26 0:35 1:75 1:76

�4 1:42 0:88 0:95 0:98 1:14 1:18

�5 �2:48 �2:30 �2:03 �3:10 �5:50 �5:87
4 �0 0:64 �1:88 �1:89 �1:89 �1:89 �1:84

�1 44:92 13:27 14:93 16:63 20:16 20:49

�2 9:74 0:35 0:35 0:48 2:76 2:79

�3 17:23 2:53 2:37 3:34 21:49 21:39

�4 1:22 0:55 0:59 0:61 0:70 0:71

�5 �0:47 �0:92 �0:79 �1:25 �2:73 �2:92
Big �0 �1:90 �2:08 �2:08 �2:09 �2:09 �2:07

�1 36:22 15:38 17:00 18:64 21:13 21:28

�2 �1:37 �4:09 �4:19 �5:45 �11:94 �11:87
�3 17:03 7:07 6:59 8:83 19:51 19:39

�4 �2:18 �0:28 �0:29 �0:29 �0:32 �0:33
�5 �2:62 �0:80 �0:68 �1:03 �1:62 �1:64


