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Abstract

The ability to allow for flexible forms of unobserved heterogeneity is an essential ingredient

in modern microeconometrics. In this paper we extend the application of instrumental variable

(IV) methods to a wide class of problems in which multiple values of unobservable variables can

be associated with particular combinations of observed endogenous and exogenous variables.

In our Generalized Instrumental Variable (GIV) models, in contrast to traditional IV models,

the mapping from unobserved heterogeneity to endogenous variables need not admit a unique

inverse. The class of GIV models allows unobservables to be multivariate and to enter non-

separably into the determination of endogenous variables, thereby removing strong practical

limitations on the role of unobserved heterogeneity. Important examples include models with

discrete or mixed continuous/discrete outcomes and continuous unobservables, and models with

excess heterogeneity where many combinations of different values of multiple unobserved vari-

ables, such as random coefficients, can deliver the same realizations of outcomes. We use tools

from random set theory to study identification in such models and provide a sharp characteriza-

tion of the identified set of structures admitted. We demonstrate the application of our analysis

to a continuous outcome model with an interval-censored endogenous explanatory variable.
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1 Introduction

In this paper we extend the application of instrumental variable (IV) methods to a wide class

of problems in which multiple values of unobservable variables can be associated with particular

combinations of observed endogenous and exogenous variables.

We study models that admit a residual correspondence ρ such that

U ∈ ρ (Y,Z) , (1.1)

where Y,Z denote observed endogenous and exogenous variables, respectively, and where U denotes

unobserved heterogeneity. The endogenous variables Y ≡ (Y1, Y2) include variables Y1 modeled as

the outcome of an economic process and variables Y2 that enter into their determination, i.e. “right-

hand-side” endogenous variables which are allowed to be stochastically dependent with unobserved

heterogeneity. The exogenous variables Z ≡ (Z1, Z2) are restricted in the degree to which they are

stochastically dependent with U . Variation in variables Z1, sometimes referred to as “exogenous

covariates”, may affect ρ (Y,Z), while variables Z2 are excluded instruments with respect to which

ρ (Y, Z) is restricted to be invariant.

The residual correspondence will be defined through a structural relation given by

h (Y,Z, U) = 0, (1.2)

relating values of observed and unobserved variables. Then ρ (Y,Z) is precisely the set of values of

U such that (1.2) holds:

ρ (Y,Z) = U (Y,Z;h) ≡ {u ∈ RU : (1.2) holds when U = u.} , (1.3)

where RU denotes the support of U .

On the other hand, IV models typically require that the residual ρ (Y,Z) be unique, so that

U = ρ (Y,Z) , (1.4)

for some function ρ (Y,Z). This requires that the structural relation (1.2) produces a unique value of

U for almost every realization of (Y,Z). The Generalized Instrumental Variable (GIV) models that

give rise to only (1.1) are typically partially identifying although they include as special cases point

identifying models, such as classical IV models, for which the solution to (1.2) in U is guaranteed

unique. We provide a sharp characterization of the identified set of admissible structures delivered

by GIV models, and examples of the sets obtained in particular cases.

The extension of IV methods to models with (1.1) allows for unobservables to be multivari-

ate and to enter nonseparably into the determination of Y . This can be important in practice, as
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failure to allow for these possibilities places strong limitations on the role of unobserved heterogene-

ity, ruling out for example random coefficients and discrete-valued outcomes. Restrictions on the

structural relation h that guarantee the existence of a residual function as in (1.4) include additive

separability in U , or strict monotonicity of h in scalar U , so that h has a unique inverse. Important

cases in which invertibility fails and where GIV models deliver new results include models with

discrete or mixed continuous/discrete outcomes and continuous unobservables, and models with

excess heterogeneity where many combinations of values of multiple unobserved variables, such

as random coefficients, can deliver the same realizations of outcomes. Even in fully parametric

non-linear models invertibility can fail, and there may be only set identification.1

In this paper we relax this invertibility restriction, thereby substantially increasing the range

of problems to which IV models can be applied. In the previous papers Chesher (2010), Chesher

and Smolinski (2012), Chesher, Rosen, and Smolinski (2013), Chesher and Rosen (2012, 2013a,

2013b) we have given some results for particular cases in which outcomes are discrete. Here we

present a complete development and results for a general case which includes problems in which

outcomes may be continuous or discrete. Unlike our previous analyses, we consider conditional

mean and conditional quantile restrictions on unobservables given exogenous variables, in addition

to stochastic independence restrictions. We also provide a novel result allowing for characterization

of the identified set for structural function h when U and Z are independent, but the distribution

of U is completely unrestricted.

A simple and perhaps leading example of an econometric model where there is invertibility and

that can be written in the more restrictive form (1.4) is the linear model with a single endogenous

covariate, where ρ (Y,Z) = Y1 − Y2β. The instrument Z is excluded from the structural relation

and hence from ρ, and is assumed exogenous, for example through the conditional mean restriction

E [U |Z] = 0. Given this, the parameter β, and hence the distribution of U , are identified under

the classical rank condition set out by Koopmans, Rubin, and Leipnik (1950).

Many model specifications, both linear and non-linear, as well as parametric, semiparametric,

and nonparametric, yield residual functions of the form (1.4). The recent literature on nonpara-

metric IV models achieves identification from (1.4) in conjunction with completeness conditions,

as in Newey and Powell (2003), Chernozhukov and Hansen (2005), Hall and Horowitz (2005),

Chernozhukov, Imbens, and Newey (2007), Blundell, Chen, and Kristensen (2007), Darolles, Fan,

Florens, and Renault (2011), and Chen, Chernozhukov, Lee, and Newey (2011). These completeness

conditions on the conditional distribution of endogenous covariates Y2 given exogenous variables Z

can be viewed as nonparametric analogs of the classical rank condition, and have been a central

focus in recent papers by D’Haultfoeuille (2011), Andrews (2011), and Canay, Santos, and Shaikh

(2012).

1Examples of parametric non-linear models where there is a residual correspondence as in (1.1) but not a residual
function as in (1.4), include those of Ciliberto and Tamer (2009) and Section 4 of Chesher, Rosen, and Smolinski
(2013).
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The literature on nonparametric IV models has significantly advanced applied researchers’ abil-

ity to deal with endogeneity beyond the classical linear setup. Although many models produce

residual functions of the form (1.4), the requirement of a unique U associated with observed (Y,Z)

is not innocuous. When there is no such residual function whereby residual U satisfies some in-

dependence restrictions with respect to instrument Z, for example conditional mean independence

or stochastic independence, then the usual derivation of identification from completeness condi-

tions does not go through. The requirement that U belong to some residual correspondence as in

(1.1) is more generally applicable, but completeness conditions are generally insufficient for point

identification, even if they are thought to hold.

In this paper we provide a sharp characterization of the identified set of structures admitted

by GIV models where (1.1) holds but (1.4) may not, equivalently IV models where the mapping

between outcomes Y and variables (Z,U) need not admit an inverse in U . Like classical IV models

however, our models embody two types of restrictions:

1. Restrictions on the joint distribution of unobserved variables and exogenous covariates. In

linear models there is typically a conditional mean independence restriction and in nonlinear

models there is often a stochastic independence restriction.

2. Restrictions on the way in which exogenous covariates feature in structural relationships.

These include exclusion restrictions and possibly other restrictions on structural relationships,

for example index or parametric restrictions.

IV models often leave the determination of some endogenous variables unspecified, in which case

they are incomplete, limited information models.

A central object in our identification analysis is the random set U (Y,Z;h) defined in (1.3). We

use random set theory methods reviewed in Molchanov (2005) and introduced into econometric

identification analysis by Beresteanu, Molchanov, and Molinari (2011), with particular use of a

result known as Artstein’s Inequality from Artstein (1983). We extend our analysis employing the

distribution of random sets in the space of unobserved heterogeneity as in for example Chesher,

Rosen, and Smolinski (2013) and Chesher and Rosen (2012b) to the much more general class of

GIV models considered here.

The paper proceeds as follows. In Section 2 we provide an informal overview of our results

and present some leading examples of GIV models to which our analysis applies. In Section 3 we

lay out the formal restrictions of GIV models and provide identification analysis. This includes a

new generalization of the classical notion of observational equivalence, e.g. Koopmans and Reiersøl

(1950), Hurwicz (1950), Rothenberg (1971), and Bowden (1973) to models where a structure need

not generate a unique distribution of outcomes given other observed variables. We use the notion

of selectionability from random set theory, and in particular show how it can be applied in the

space of unobserved heterogeneity to incorporate restrictions on unobserved variables of the sort
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commonly used in econometric models. We demonstrate how this is done in models invoking

stochastic independence, conditional mean, and conditional quantile restrictions. In Section 4 we

illustrate the set identifying power of GIV models though application of our results to a continuous

outcome model with an interval-censored endogenous explanatory variable. Section 5 concludes.

All proofs are provided in the Appendix.

Notation: We use capital Roman letters A to denote random variables and lower case letters a to

denote particular realizations. For probability measure P, P (·|a) is used to denote the conditional

probability measure given A = a. We write RA to denote the support of random vector A, and

RA1···Am to denote the joint support of random vectors A1, ..., Am. RA1|a2 denotes the support of

random vector A1 conditional on A2 = a2. qA|B (τ |b) denotes the τ conditional quantile of A given

B = b. A ‖ B means that random vectors A and B are stochastically independent. ∅ denotes the

empty set. Script font (S) is reserved for sets, and sans serif font (S) is reserved for collections

of sets. The sign ⊆ is used to indicate nonstrict inclusion so “A ⊆ B” includes A = B, while

“A ⊂ B” means A ⊆ B but A 6= B. A/B denotes elements of the set A that do not belong to

B, A/B ≡ {a ∈ A : a /∈ B}. cl (A) denotes the closure of A. Ch (S|z) denotes the containment

functional of random set U (Y, Z;h) conditional on Z = z, defined in Section 3.2. The notation

F . A is used to indicate that the distribution F of a random vector is selectionable with respect

to the distribution of random set A, as defined in Section 3.1. 1 [E ] denotes the indicator function,

taking the value 1 if the event E occurs and 0 otherwise. For any real number c, |c|+ and |c|− denote

the positive and negative parts of c, respectively. Rm denotes m dimensional Euclidean space, and

for any vector v ∈ Rm, ‖v‖ indicates the Euclidean norm: ‖v‖ =
√
v21 + · · ·+ v2m. Finally, in order

to deal with sets of measure zero and conditions required to hold almost everywhere, we use the

“sup” and “inf” operators to denote “essential supremum” and “essential infimum” with respect

to the underlying measure when these operators are applied to functions of random variables (e.g.

conditional probabilities, expectations, or quantiles). Thus supz∈Z f (z) denotes the smallest value

of c ∈ R such that P [f (Z) > c] = 0 and infz∈Z f (z) denotes the largest value of c ∈ R such that

P [f (Z) < c] = 0.

2 Examples and Informal Overview

The structural function h : RY ZU → R such that (1.2) holds with probability one determines the

feasible values of endogenous variables Y when (Z,U) = (z, u). We define the zero level sets of h

for each (y, z) ∈ RY Z and (z, u) ∈ RZU , respectively as

U (y, z;h) ≡ {u : h (y, z, u) = 0}, Y (u, z;h) ≡ {y : h (y, z, u) = 0}.

These level sets are dual to each other in that for all z and all functions h, a value u∗ lies in

U (y∗, z;h) if and only if y∗ lies in Y (u∗, z;h). Duality will be exploited to good effect.
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In contrast to conventional IV models, GIV models admit structural functions h for which the

level sets U (y, z;h) may have cardinality exceeding one. However, in both IV and GIV models

Y (u, z;h) may have cardinality greater than one, in which case the model is incomplete. When

this happens there are values y and y′ such that the level sets U (y, z;h) and U (y′, z;h) have non-

empty intersection. This occurs in particular when the model does not specify the way in which

endogenous explanatory variables Y2 are determined, even if Y1 is uniquely determined by (Y2, Z, U).

Some leading examples follow. Each of these may be combined with alternative restrictions on the

joint distribution of (U,Z), for example U ‖ Z, E [U |Z] = 0, qU |Z (τ |Z) = 0, and/or parametric

restrictions on the distribution of U .

2.1 Examples

Example 1. A classical linear IV model with an instrument exclusion restriction has structural

function

h (y, z, u) = y1 − α− βy2 − u,

in which case Y (u, z;h) = {((α+ βy2 + u) , y2) : y2 ∈ RY2}. The level set U (y, z;h) is the singleton

set {(y1 − α − βy2)}. In this instance the realization of exogenous variables z does not enter into

h and so z = z2.

Example 2. A binary outcome, threshold crossing GIV model with Y1 = 1 [g (Y2, Z1) < U ] and U

normalized uniformly distributed on [0, 1], as studied in Chesher (2010) and Chesher and Rosen

(2013), has structural function

h(y, z, u) = y1 |u− g (y2, z1)|− + (1− y1) |u− g (y2, z1)|+ ,

where y1 ∈ {0, 1}. The corresponding level sets are pairs of values of (y1, y2),

Y (u, z;h) = {(1[g(y2, z1) < u], y2) : y2 ∈ RY2},

and intervals

U (y, z;h) =
[0, g (y2, z1)] if y1 = 0,

(g (y2, z1) , 1] if y1 = 1.

Example 3. Multiple discrete choice with endogenous explanatory variables as studied in Chesher,

Rosen, and Smolinski (2013). The structural function is

h(y, z, u) =

∣∣∣∣ min
k∈{1,...,M}

(πy1 (y2, z1, uj)− πk (y2, z1, uk))

∣∣∣∣
−

,

where πj (y2, z1, uj) is the random utility associated with choice j ∈ J ≡ {1, . . . ,M} and u =
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(u1, . . . , uM ) is a vector of unobserved preference heterogeneity. Y1 is the outcome or choice variable

and Y2 are endogenous explanatory variables. Z1 are exogenous variables allowed to enter the utility

functions π1, ...πM , while Z2 are excluded exogenous variables, or instruments. The level sets are

thus

Y (u, z;h) =

{(
arg max

j∈J
πj (y2, z1, uj) , y2

)
: y2 ∈ RY2

}
,

and

U (y, z;h) =

{
u ∈ RU : y1 = arg max

j∈J
πj (y2, z1, uj)

}
.

Example 4. A continuous outcome random coefficients model with endogeneity has structural

function

h(y, z, u) = y1 − (β2 + u2) y2 − (β1 + u1) .

The random coefficients are (β2 + U2) and (β1 + U1), with mean (β1, β2). The level sets are

Y (u, z;h) = {((β2 + u2) y2 + (β1 + u1) , y2) : y2 ∈ RY2} ,

and

U (y, z;h) = {(y1 − β1 − β2y2 − u2y2, u2) : u2 ∈ RU2} .

Example 5. Interval censored endogenous explanatory variables. Let g (·, ·, ·) : R × Rk × R → R
be increasing in its first argument and strictly increasing in its third argument such that

Y1 = g (Y ∗2 , Z1, U) ,

where endogenous variable Y ∗2 ∈ R is interval censored with

P [Y2l ≤ Y ∗2 ≤ Y2u] = 1,

for observed variables Y2l, Y2u. There is no restriction on the process determining the realizations

of the censoring variables Y2l, Y2u. The structural function is

h(y, z, u) = |y1 − g (y2l, z1, u)|− + |g (y2u, z1, u)− y1|+ ,

with y ≡ (y1, y2l, y2u), and y2l ≤ y2u. The resulting level sets are

Y (u, z;h) = {y ∈ RY : g (y2l, z1, u) ≤ y1 ≤ g (y2u, z1, u) ∧ y2l ≤ y2u} ,

and

U (y, z;h) =
[
g−1 (y2u, z1, y1) , g

−1 (y2l, z1, y1)
]

,
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where the function g−1 (·, ·, ·) is the inverse of g (·, ·, ·) with respect to its third argument, so that

for all y2, z1, and u,

g−1 (y2, z1, g (y2, z1, u)) = u.

GIV models have numerous applications and many other incomplete models that include re-

strictions on the distribution of unobserved variables and exogenous covariates fall in this class of

models. Examples include models with structural relationships defined by a system of inequalities

such as the Haile and Tamer (2003) model of ascending English auctions, simultaneous equations

models admitting multiple solutions such as the oligopoly entry game of Bresnehan and Reiss (1989,

1991) and Tamer (2003), and models with a nonadditive scalar unobservable and no monotonicity

restriction as studied by Hoderlein and Mammen (2007).

2.2 The approach and the main results

A model M comprises a collection of admissible structures. A structure is a pair
(
h,GU |Z

)
where

h is a structural function previously defined and GU |Z is shorthand for the collection of conditional

distributions,

GU |Z ≡
{
GU |Z (·|z) : z ∈ RZ

}
,

where GU |Z(S|z) denotes the probability mass placed on any set S ⊆ RU |z when U ∼ GU |Z (·|z).
The modelM can restrict both the structural function h and the distributions GU |Z . For exampleM
may admit structures

(
h,GU |Z

)
such that h is nonparametrically specified and sufficiently smooth

and collections GU |Z of unknown form but such that U and Z are independently distributed.

Alternatively the model may restrict h to be known up to a finite dimensional parameter vector with

an index structure, or require for example that E [U |Z] = 0, or that GU |Z (·|z) be parametrically

specified.

The sampling process identifies a collection of probability distributions denoted

FY |Z ≡
{
FY |Z (·|z) : z ∈ RZ

}
where FY |Z (T |z) denotes the probability mass placed on any set T ⊆ RY |z. Our identification anal-

ysis answers the question: precisely which admissible structures
(
h,GU |Z

)
are capable of generating

the collection of conditional distributions FY |Z?

We begin by revisiting the notion of observational equivalence. Classical definitions of obser-

vational equivalence, e.g. those of Koopmans and Reiersøl (1950), Hurwicz (1950), Rothenberg

(1971), and Bowden (1973) require that a given structure produce for each z ∈ RZ a unique con-

ditional distribution of endogenous variables FY |Z (·|z). In our framework a structure
(
h,GU |Z

)
produces a collection of random sets

{
Y (U, z;h) : U ∼ GU |Z (·|z) , z ∈ RZ

}
. Conditional on Z = z,
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the random set Y (U, z;h) can be viewed as a collection of its selections, where the selection of

a random set Y is any random variable Y such that Pr [Y ∈ Y] = 1. Thus a structure
(
h,GU |Z

)
admitted by our model generally produces collections of compatible distributions for FY |Z (·|z).

We therefore generalize the classical notion of observational equivalence to allow structures

that permit collections of conditional distributions FY |Z (·|z), each z ∈ RZ . This formalizes the

logic underlying previous identification analyses in incomplete models, while introducing some

interesting subtleties. For example, the collection of conditional distributions produced by two

different structures may be different yet overlap, so that whether or not the two structures are

observationally distinct depends on the identified conditional distributions FY |Z . This cannot

happen when structures produce unique collections FY |Z . The identified set of structures
(
h,GU |Z

)
are then precisely those such that FY |Z (·|z) is selectionable with respect to the distribution of

Y (U, z;h) given Z = z, for almost every z ∈ RZ .2 This set may be empty, allowing for the

possibility that model M of Restriction A4 is misspecified.

In Theorem 1 of Section 3, we show that because of the dual relationship between the two level

sets of the structural function h, U(y, z;h) and Y(u, z;h), the probability distribution FY |Z (·|z)
is selectionable with respect to the distribution of Y(U, z;h) when U ∼ GU |Z (·|z) if and only

if GU |Z (·|z) is selectionable with respect to the distribution of the random set U (Y, z;h) when

Y ∼ FY |Z (·|z). Using this result we show that we can completely characterize observational

equivalence, and hence identified sets of model structures, through selectionability of GU |Z (·|z)
with respect to the conditional distribution of U (Y, z;h). This result, formalized in Theorem 2,

facilitates the imposition of restrictions directly on the joint distribution of U and Z, i.e. restrictions

on the distribution of unobserved heterogeneity, common to econometric modeling.

The selectionability criteria provide a widely applicable characterization of the identified set of

structures
(
h,GU |Z

)
. Selectionability can be characterized in a variety of ways, and depending on

which restrictions are imposed on the conditional distributions of unobserved heterogeneity GU |Z ,

different characterizations may prove more or less convenient. One such way is through the use

of the containment functional of the random set U (Y, Z;h) defined in (1.3), as we show at the

end of Section 3.2 in Corollary 1. This produces a generally applicable characterization comprising

a collection of conditional moment inequalities. The collection of implied moment inequalities is

potentially extremely large. In Section 3.3 we employ the notion of core-determining test sets to

exploit the underlying geometry of possible realizations of random sets U (Y, Z;h) and thereby

produce a reduction in the number of inequality restrictions necessary to characterize the identified

set. We refine the containment functional characterization of the identified set by reducing the

number of conditional moment restrictions required, and also by providing conditions whereby

some of these inequalities must in fact hold with equality.

2A distribution F of a random variable is said to be selectionable with respect to the distribution of random set
Y if there exists a random variable, say W , with distribution F , and a random set, say Ỹ, with the same distribution
as Y, such that W ∈ Ỹ with probability one. See Definition 1, Section 3.1 for the formal definition.
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Up to this point, our identification analysis holds no matter what restrictions are imposed on

GU |Z . In Section 3.4 we consider three types of restrictions on the joint distribution of U and Z

common to the econometrics literature, namely stochastic independence, mean independence, and

quantile independence restrictions. Under stochastic independence we show how the containment

functional characterization of Corollary 1 simplifies. We provide characterizations allowing for the

distribution of unobserved heterogeneity to be either restricted to some known family, or completely

unrestricted. With only mean independence imposed rather than stochastic independence, we

employ the Aumann expectation to characterize the identified set, and show how, when applicable,

the support function of random set U (Y,Z;h) can be used for computational gains. The ideas

here follow closely those of Beresteanu, Molchanov, and Molinari (2011), although unlike their

analysis we continue to consider characterizations through random sets in RU . We then provide

a characterization of identified sets in models with conditional quantile restrictions and interval-

valued random sets U (Y, Z;h), such as those used in models with censored variables. In Section 4

we illustrate the identifying power of each of these restrictions on GU |Z in the context of Example

5 above, featuring a censored endogenous explanatory variable.

3 Identified sets for GIV models

We impose the following restrictions throughout.

Restriction A1: (Y,Z, U) are random vectors defined on a probability space (Ω,F ,P), endowed

with the Borel sets on Ω. The support of (Y, Z, U) is a subset of Euclidean space. �

Restriction A2: A collection of conditional distributions

FY |Z ≡
{
FY |Z (·|z) : z ∈ RZ

}
is identified by the sampling process. �

Restriction A3: There is an F-measurable function h (·, ·, ·) : RY ZU → R such that

P [h (Y,Z, U) = 0] = 1,

and there is a collection of conditional distributions

GU |Z ≡
{
GU |Z (·|z) : z ∈ RZ

}
,

where for all S ⊆ RU |z, GU |Z (S|z) ≡ P [U ∈ S|z] denotes a conditional distribution of U given

Z = z. �

Restriction A4: The pair
(
h,GU |Z

)
belongs to a known set of admissible structuresM such that

h (·, ·, ·) : RY ZU → R is continuous in its first and third arguments. �
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Restriction A1 defines the probability space on which (Y, Z, U) reside and restricts their support

to Euclidean space. Restriction A2 requires that, for each z ∈ RZ , the conditional distribution of Y

given Z = z is identified. Random sampling of observations from P is sufficient, but not required.

Restriction A3 posits the existence of structural relation h and provides notation for the collection

of conditional distributions GU |Z of U given Z induced by population measure P. Restrictions

A1-A3 place restrictions on neither the properties of h nor GU |Z . These restrictions are maintained

throughout.

Restriction A4 imposes model M, the collection of admissible structures
(
h,GU |Z

)
. Unlike

restrictions A1-A3, restriction A4 is refutable based on knowledge of FY |Z . Our characterizations

of identified sets given admissible structures M entail those structures
(
h,GU |Z

)
∈ M that under

Restrictions A1-A3 could possibly deliver the identified conditional distributions FY |Z . It is possible

of course that there is no
(
h,GU |Z

)
belonging to M such that P [h (Y,Z, U) = 0] = 1 for some

random variable U with conditional distributions belonging to GU |Z . We allow for this possibility,

noting that in such cases the identified set of structures delivered by our results is empty, which

would indicate that the model is misspecified. Continuity of h (y, z, u) in y and u guarantees that

Y (U,Z;h) and U (Y,Z;h) are random closed sets, but can be relaxed.3

In places we will find it convenient to refer separately to collections of admissible structural

functions and distributions GU |Z . Notationally these are defined as the following projections ofM.

H ≡
{
h :
(
h,GU |Z

)
∈M for some GU |Z

}
,

GU |Z ≡
{
GU |Z :

(
h,GU |Z

)
∈M for some h

}
.

The model M could, but does not necessarily, consist of the full product space H× GU |Z .

Restrictions A1-A4 are noticeably weak. This is intentional, and not without consequence. The

identification analysis built up in Sections 3.1 and 3.2 below is set out with only these restrictions

in place, and is thus extremely general. The analysis characterizes the identified set of model

structures, and the level of generality allows for the possibility that these sets are either large or

small, for example the entire admissible space at one extreme, or a singleton point at the other.

The identifying power of any particular model manifests through three different mechanisms: (i)

restrictions on the class of functions h; (ii) restrictions on the joint distribution of (U,Z), embodied

through the admitted collections GU |Z , and (iii) the joint distribution of (Y,Z). The first two

mechanisms are part of the model specification, withM constituting the set of structures
(
h,GU |Z

)
deemed admissible for the generation of (Y,Z). A researcher may restrict these to belong to more

or less restrictive classes, parametric, semiparametric, or nonparametric. For example, h could be

allowed to be any sufficiently smooth function, or it could be restricted to a parametric family as

3Note that continuity of the function h does not rule out either Y or U being discrete-valued. Continuity itself is
not essential, and may be relaxed as long as the relevant random sets can be shown to be closed in some topology.
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in a linear index model. Likewise GU |Z could be collections of conditional distributions such that

E [U |Z] = 0, qU |Z (τ |z) = 0, U ‖ Z, or U ‖ Z with GU |Z (·|z) restricted to a parametric family. We

consider various types of restrictions on GU |Z in Section 3.4 below.

The third source of identifying power, the joint distribution of (Y, Z), is identified and hence

left completely unrestricted. This may initially appear at odds with results requiring rank or

completeness conditions, but in fact is not. Such conditions are used to ensure point identification.

We allow for set identification, and so these are not required. Rather, we provide characterizations

of identified sets in the class of models we study. If there is “sufficient variation” in the distribution

of (Y, Z) to achieve point identification, such as the usual rank condition in a linear IV model,

our characterization reduces to a singleton set. Thus, such conditions are not required in our set

identification analysis, but are still very much of interest in consideration of which qualities of

observed data may result in identified sets that are singleton points, or more generally affect the

size of the identified set.

More broadly, the generality of our identification analysis offers a formal framework for the

consideration of which models M and qualities of the joint distribution of (Y,Z) may be usefully

applied. Given a joint distribution for (Y,Z), the use of less restrictive models will logically result

in larger identified sets than will more restrictive models. A sufficiently general model may have

so little identifying power as to be uninformative. This is useful for researchers to know when

considering which models to employ in practice, and can be used to motivate the incorporation of

further restrictions that may be deemed credible.

3.1 Observational Equivalence and Selectionability in Outcome Space

The standard definition of observational equivalence in the econometrics literature presumes the

existence of a unique joint distribution of observed variables, FY Z (·, ·;m), for any structure m ≡(
h,GU |Z

)
∈ M, equivalently a unique conditional distribution FY (·|z;m) for each z ∈ RZ , given

identification of FZ .4 Two structures m, m′ are then observationally equivalent if they produce the

same conditional distribution a.e. z ∈ RZ , that is if

FY (·|z;m) = FY
(
·|z;m′

)
a.e. z ∈ RZ .

As such, the classical notion of observational equivalence of two structures is a property for which

the identified conditional distributions FY |Z are irrelevant.

As previously discussed, the requirement that each m produce a unique FY (·|z;m) for each z

is important to relax when working with an incomplete model, since a given structure can generate

4For classical treatments of observational equivalence, see for example Koopmans and Reiersøl (1950), Hurwicz
(1950), Rothenberg (1971), and Bowden (1973). For definitions in a fully nonparametric setting see e.g. Matzkin
(2007, 2008).
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a collection of possible FY (·|z;m) for each z.5 For such models, the property of observational

equivalence of two structures m, m′ in contrast generally depends upon the collection of conditional

distributions FY |Z . This is because for any z ∈ RZ there may be some FY |Z (·|z) that belong to

the sets of conditional distributions generated by both m and m′, and yet there may be other

FY |Z (·|z) that belong to the set of conditional distributions generated by one structure, but not

the other. Thus, in the following development, we define observational equivalence with respect to

the (identified) collection of population distributions FY |Z , and a corresponding notion of potential

observational equivalence, which is a property of two structures that is irrespective of FY |Z .

To provide formal definitions of these properties we begin by recalling the definition of a random

selection from a random set as set out for example by Molchanov (2005, Definition 2.2, p. 26).

We then use the related notion of selectionability in our subsequent discussion of observational

equivalence.

Definition 1 Let W andW denote a random vector and random set defined on the same probability

space. W is a selection of W, denoted W ∈ Sel (W), if W ∈ W with probability one. The

distribution FW of random vector W is selectionable with respect to the distribution of random

set W, which we abbreviate FW 4 W, if there exists random variable W̃ distributed FW and a

random set W̃ with the same distribution as W such that W̃ ∈ W̃ with probability one.

A given structure m =
(
h,GU |Z

)
induces a distribution for the random outcome set Y (U,Z;h)

conditional on Z = z, for all z ∈ RZ . If Y (U,Z;h) is a singleton set with probability one, then the

model is complete, and the conditional distribution of Y (U,Z;h) given Z = z is simply that of {Y }
given Z = z for each z ∈ RZ . In this case, again for each z ∈ RZ , FY |Z (·|z) is the only conditional

distribution of Y given Z = z that is selectionable with respect to the conditional distribution

of Y (U,Z;h), and our definition of observational equivalence below simplifies to the classical one.

If, on the other hand, the model is incomplete, so that Y (U,Z;h) is non-singleton with positive

probability, then h (Y, Z, U) = 0 dictates only that Y ∈ Y (U,Z;h), which is insufficient to uniquely

determine the conditional distributions FY |Z . That is, there are for at least some z ∈ RZ , multiple

FY |Z (·|z) satisfying FY |Z (·|z) 4 Y (U,Z;h) given Z = z. The very definition of selectionability of

FY |Z (·|z) from the distribution of Y (U,Z;h) given Z = z for almost every z ∈ RZ characterizes

those distributions for which h (Y,Z, U) = 0 can hold with probability one for the given
(
h,GU |Z

)
.

Those distributions FY |Z (·|z) that are selectionable with respect to the conditional distribution of

Y (U,Z;h) when U ∼ GU |Z (·|z) are precisely those conditional distributions that can be generated

by the structure
(
h,GU |Z

)
.

5In our formulation of observational equivalence and characterizations of identified sets, we continue to work with
conditional distributions of endogenous and latent variables, FY (·|z) and GU (·|z), respectively, for almost every
z ∈ RZ . Knowledge of the distribution of Z, FZ , combined with FY (·|z) or GU (·|z) a.e. z ∈ Z is equivalent to
knowledge of the joint distribution of (Y,Z) denoted FY Z , or that of (U,Z), denoted GUZ , respectively. We show
formally in Appendix B that our characterizations using selectionability conditional on Z = z, a.e. z ∈ RZ , are
indeed equivalent to using analogous selectionability criteria for the joint distributions FY Z or GUZ .
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This leads to the following formal definitions of potential observational equivalence and obser-

vational equivalence with respect to a particular collection of conditional distributions FY |Z .

Definition 2 Under Restrictions A1-A3, two structures
(
h,GU |Z

)
and

(
h′,G′U |Z

)
are potentially

observationally equivalent if there exists a collection of conditional distributions FY |Z such that

FY |Z (·|z) 4 Y (U, z;h) when U ∼ GU |Z (·|z) and FY |Z (·|z) 4 Y (U, z;h′) when U ∼ G′U |Z (·|z) for

almost every z ∈ RZ . Two structures
(
h,GU |Z

)
and

(
h′,G′U |Z

)
are observationally equivalent

with respect to FY |Z =
{
FY |Z (·|z) : z ∈ RZ

}
if FY |Z (·|z) 4 Y (U, z;h) when U ∼ GU |Z (·|z) and

FY |Z (·|z) 4 Y (U, z;h′) when U ∼ G′U |Z (·|z) for almost every z ∈ RZ .

The closely related definition of the identified set of structures
(
h,GU |Z

)
is as follows.6

Definition 3 Under Restrictions A1-A4, the identified set of structures
(
h,GU |Z

)
with respect

to the collection of distributions FY |Z are those structures such that the conditional distributions

FY |Z (·|z) ∈ FY |Z are selectionable with respect to the conditional distributions of random set

Y (U, z;h) when U ∼ GU |Z (·|z), a.e. z ∈ RZ :

M∗ ≡
{(
h,GU |Z

)
∈M : FY |Z (·|z) 4 Y (U, z;h) when U ∼ GU |Z (·|z) , a.e. z ∈ RZ

}
. (3.1)

Selectionability of observed conditional distributions from the random outcome set Y (U, z;h)

provides a convenient and extremely general characterization of identified sets in a broad class

of econometric models. A task that remains is how, in any particular model, to characterize

the set of structures for which the given selectionability criteria holds. Any characterization of

selectionability will suffice. Beresteanu, Molchanov, and Molinari (2011) show for example how

one can cast selectionability in terms of the support function of the Aumann Expectation of the

random outcome set in order to characterize identified sets in a broad class of econometric models.

Given Definition 3 for the identified set of model structures, we can now define set identification

of structural features. As is standard, we define a structural feature ψ (·, ·) as any functional of

a structure
(
h,GU |Z

)
. Examples include the structural function h, ψ

(
h,GU |Z

)
= h, the distribu-

tions of unobserved heterogeneity, ψ
(
h,GU |Z

)
= GU |Z , and counterfactual probabilities such as the

probability that a component of Y is guaranteed to exceed a given threshold conditional on Z = z.

Definition 4 The identified set of structural features ψ (·, ·) under Restrictions A1-A4 is

Ψ ≡
{
ψ
(
h,GU |Z

)
:
(
h,GU |Z

)
∈M∗

}
.

Depending on the context, a variety of different features may be of interest. The identified set

of structures M∗ can be used to ascertain the identified set of any such feature. We thus take the

6The identified set M∗ depends upon the collection of conditional distributions FY |Z , although we do not make
this dependence explicit in our notation.
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identified set of structures M∗ as the main object of interest, and unless we specify a particular

feature of interest, reference to only the “identified set” without qualification refers to M∗.7

A key component of econometric models are restrictions on the joint distribution of U and Z.

The use of the Aumann Expectation of random outcome set Y (U, z;h) and associated support

function dominance criteria can be convenient in models with conditional mean restrictions, as dis-

cussed by Beresteanu, Molchanov, and Molinari (2012). In models with GU |Z (·|z) parametrically

specified, this approach or a capacity functional characterization of selectionability can be used,

see e.g. Beresteanu, Molchanov, and Molinari (2011) or the related characterization of Galichon

and Henry (2011). Proposed estimation and inference strategies based on these approaches entail

simulation of admissible distributions of GU |Z (·|z), which are then plugged into the outcome cor-

respondence Y (·, ·;h) to generate simulated conditional distributions of random set Y (U,Z;h), see

also Henry, Meango, and Queyranne (2011). In this class of models, that is with the same indepen-

dence restriction and GU |Z (·|z) parametrically specified, our characterization using selectionability

from random sets in U -space provides characterizations of M∗ comprising inequalities that can be

checked via either numerical computation or simulation.

In the following Section we prove the equivalence of a characterization of M∗ and indeed of

observational equivalence put in terms of selectionability of GU |Z (·|z) from the random residual

set U (Y, Z;h). Working in the space of unobserved heterogeneity enables direct and immediate

consideration of any conceivable alternative restrictions on the joint distribution of GU |Z (·|z).
For example, we show in Section 3.4 that when U and Z are assumed independent but the form

of GU |Z (·|z) is left unspecified, characterization of H∗, the identified set of structural functions h,

can be reduced to a collection of inequality restrictions from which GU |Z (·|z) is absent. Character-

izations of identified sets using the selectionability criteria of FY |Z (·|z) from the random outcome

set Y (U, z;h), on the other hand, do explicitly refer to GU |Z (·|z). To check then whether any given

h can be a component of an element
(
h,GU |Z

)
of the identified setM∗, one must then devise a way

to check the selectionability criteria over a nonparametric infinite dimensional class of functions

GU |Z (·|z) for each z ∈ RZ .

3.2 Set Identification via Selectionability in U-Space

In this section a dual relation is derived between random outcome sets Y (U,Z;h) and random

residual sets U (Y, Z;h). This is then used to relate selectionability of FY |Z (·|z) with respect to

Y (U,Z;h) and selectionability of GU |Z (·|z) with respect to U (Y,Z;h). In our setup the condi-

tional distributions of the random sets Y (U,Z;h) and U (Y,Z;h) are completely determined by the

conditional (on Z = z) distributions of U and Y , GU |Z (·|z) and FY |Z (·|z), respectively.

7The identified set of structural features Ψ depends on on both M and the conditional distributions FY |Z , but
for ease of notation we suppress this dependence.
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Theorem 1 Let Restrictions A1-A3 hold. Then for any z ∈ RZ , FY |Z (·|z) is selectionable with

respect to the conditional distribution of Y (U,Z;h) given Z = z if and only if GU |Z (·|z) is selec-

tionable with respect to the conditional distribution of U (Y,Z;h) given Z = z.

With Theorem 1 established, we now characterize the identified set in terms of random variables

and sets in the space of unobserved heterogeneity. As previously expressed, a key advantage to doing

this is the ability to impose restrictions directly on GU |Z through specification of the class GU |Z
admitted by the model M. One can then check whether any such GU |Z ∈ GU |Z are selectionable

with respect to the identified conditional distributions of random set U (Y, Z;h), given identification

of the conditional distributions FY |Z under Restriction A2. That is, in the context of any particular

model, events concerning this random set can be expressed as events involving observable variables,

as we illustrate in the examples of Section 4.

Theorem 2 Let Restrictions A1-A3 hold. Then (i) structures
(
h,GU |Z

)
and

(
h∗,G∗U |Z

)
are obser-

vationally equivalent with respect to FY |Z if and only if GU |Z (·|z) and G∗U |Z (·|z) are selectionable

with respect to the conditional (on Z = z) distributions of random sets U (Y,Z;h) and U (Y, Z;h∗),

respectively, a.e. z ∈ RZ ; and (ii) the identified set of structures
(
h,GU |Z

)
are those such that

GU |Z (·|z) is selectionable with respect to the conditional (on Z = z) distribution of random set

U (Y,Z;h).

Theorem 2 uses duality to express observational equivalence and characterization of the iden-

tified set of structures
(
h,GU |Z

)
in terms of selectionability from the conditional distribution of

U (Y,Z;h). Thus, any conditions that characterize the set of
(
h,GU |Z

)
such that GU |Z is selection-

able with respect to the conditional distribution of U (Y, Z;h) will suffice for characterization of

the identified set.

One such characterization, used in previous papers allowing only discrete outcomes, e.g. Chesher,

Rosen, and Smolinski (2013) and Chesher and Rosen (2013a, 2013b), uses Artstein’s Inequality,

see e.g. Artstein (1983), Norberg (1992), and Molchanov (2005, Section 1.4.8). This result allows

us to characterize the identified setM∗ through the conditional containment functional of random

set U (Y,Z;h), defined as

Ch (S|z) ≡ P [U (Y,Z;h) ⊆ S|z] .

Characterization via the containment functional produces an expression for M∗ in the form of

conditional moment inequalities, as given in the following Corollary.

Corollary 1 Under the restrictions of Theorem 2, the identified set can be written

M∗ ≡
{(
h,GU |Z

)
∈M : ∀S ∈ F (RU ) , Ch (S|z) ≤ GU |Z (S|z) , a.e. z ∈ RZ

}
,

where F (RU ) denotes the collection of all closed subsets of RU .
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Corollary 1 translates the selectionability requirement for characterization of the identified set

to a collection of conditional moment inequalities. The inequalities in this characterization are

for almost every value of the instrument z ∈ RZ as well as all closed test sets S on RU . The

containment functional inequality Ch (S) ≤ GU |Z (S|z) follows immediately from the fact that U

is, by virtue of h (Y, Z, U) = 0, a selection of U (Y,Z;h). Artstein’s inequality establishes that

the inequality holding for all S ∈ F (RU ) guarantees selectionability of GU |Z from the conditional

distribution of U (Y,Z;h), a.e. z ∈ RZ .

3.3 Core Determining Test Sets

We now characterize a smaller collection Q (h, z) of core-determining test sets S for any h, and any

z ∈ RZ , such that if

∀S ∈ Q (h, z) , Ch (S|z) ≤ GU |Z (S|z) , (3.2)

then the same inequality holds for all S ∈ F (RU ). Thus, characterization of the identified set is

reduced to those such that (3.2) holds for all S ∈ Q (h, z).8 Galichon and Henry (2011) initially

introduced core-determining sets for identification analysis in consideration of sets in outcome space,

characterizing such classes of sets for incomplete models that satisfy a monotonicity requirement,

which is not needed here. We extend their definition of such collections by devising core-determining

sets for our characterizations in U -space, and by allowing them to be specific to the structural

relation h and covariate value z.9

Our construction builds on ideas from Chesher, Rosen, and Smolinski (2013), but is much more

widely applicable. We do not require independence of U and Z, and can thus accommodate other

restrictions on GU |Z . We also establish conditions whereby for some of the core-determining sets be-

longing to Q (h, z), the inequality (3.2) must in fact hold with equality. Under these conditions the

initial characterization via inequalities is sharp, but when coupled with the law of total probability

some of these inequalities can be strengthened to equalities. Much is known about observable impli-

cation for models with conditional moment equalities, and recognition that some of the inequalities

must in fact hold with equality can potentially be helpful for estimation and in consideration of

conditions that may feasibly lead to point identification.

For this development we first define the support of the random set U (Y,Z;h) conditional on

Z = z, and the collection of sets comprising unions of such sets. These objects both play important

roles. In this definition and the subsequent analysis we employ the following notation at the cost

8Earlier versions of some results in this section appeared in the 2012 version of the CeMMAP working paper
Chesher and Rosen (2012b), which concerned models with only discrete endogenous variables. In this Section we
provide more general results that cover the broader class of models studied here. In revisions of Chesher and Rosen
(2012b) we refer to the more general results here.

9Through (3.4) in Theorem 3 below, the core-determining set may also be dependent upon GU|Z (·|z), but we
suppress this from the notation.
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of some slight abuse of notation:

∀Y ⊆ RY |z, U (Y, z;h) ≡
⋃
y∈Y
U (y, z;h) .

That is, U (Y, z;h) is the union of sets U (y, z;h) such that y ∈ Y.

Definition 5 Under Restrictions A1-A3, the conditional support of random set U (Y, Z;h)

given Z = z is

U (h, z) ≡
{
U ⊆ RU : ∃y ∈ RY |z such that U = U (y, z;h)

}
.

The collections of all sets that are unions of elements of U (h, z) is denoted

U∗ (h, z) ≡
{
U ⊆ RU : ∃Y ⊆ RY |z such that U = U (Y, z;h)

}
.

Lemma 1 below establishes that for any (h, z) ∈ H ×Z, in order for (3.2) to hold for all closed

S ⊆ RU , it suffices to show only that (3.2) holds for those sets S ∈ U∗ (h, z). To state the result,

we define some additional notation. For any set S ⊆ RU and any (h, z) ∈ H ×RZ , define

US (h, z) ≡ {U ∈ U (h, z) : U ⊆ S} , US (h, z) ≡
{
U ∈ U (h, z) : GU |Z (U ∩ S|z) = 0

}
,

which are the sets U ∈ U (h, z) that are contained in S and that, up to zero measure GU |Z (·|z), do

not hit S, respectively. Define

U
S

(h, z) ≡ U (h, z) /
(
US (h, z) ∪ US (h, z)

)
,

which comprises the sets U ∈ U (h, z) that belong to neither US (h, z) nor US (h, z). For ease

of reference, Table 1 provides a summary of the collections of sets U (h, z), U∗ (h, z), US (h, z),

US (h, z), and U
S

(h, z) used to establish the following Lemma and Theorem 3.

Lemma 1 Let Restrictions A1-A3 hold. Let z ∈ RZ , h ∈ H, and S ⊆ RU . Let US (h, z) denote

the union of all sets in US (h, z),

US (h, z) ≡
⋃

U∈US(h,z)

U . (3.3)

If

Ch (US (h, z) |z) ≤ GU |Z (US (h, z) |z) ,

then

Ch (S|z) ≤ GU |Z (S|z) .

Lemma 1 establishes that if (3.2) holds for all unions of sets in U (h, z), then for that (h, z) it

must hold for all closed test sets S ⊆ RU .

18



Collection Description

U (h, z) Support of U (Y,Z;h) conditional on Z = z.
U∗ (h, z) Sets that are unions of sets in U (h, z).
US (h, z) Sets in U (h, z) that are contained in S.
US (h, z) Sets in U (h, z) with GU |Z measure zero intersection with S.

U
S

(h, z) Sets in U (h, z) contained in neither US (h, z) nor US (h, z).

Table 1: Notation for collections of subsets of RU and sets used in the development of core deter-
mining sets.

Theorem 3 below provides our collection of core-determining test sets Q (h, z), which is a refine-

ment of U∗ (h, z). That is, all sets in the collection of core-determining sets are also unions of sets

in U (h, z). However not all such unions lie in the core-determining collection. Those elements of

U∗ (h, z) that can be excluded from the core-determining collection have the property that each one

can be partitioned into two members of the collection U∗ (h, z) such that (i) each is itself a mem-

ber of the core-determining collection, and (ii) the two sets are disjoint relative to the probability

measure GU |Z (·|z).

Theorem 3 Let Restrictions A1-A3 hold. For any (h, z) ∈ H ×RZ , let Q (h, z) ⊆ U∗ (h, z), such

that for any S ∈ U∗ (h, z) with S /∈ Q (h, z), there exist nonempty collections S1, S2 ∈ US (h, z) with

S1 ∪ S2 = US (h, z) such that

S1 ≡
⋃
T ∈S1

T , S2 ≡
⋃
T ∈S2

T , and GU |Z (S1 ∩ S2|z) = 0, (3.4)

with S1,S2 ∈ Q (h, z). Then Ch (S|z) ≤ GU |Z (S|z) for all S ∈ Q (h, z) implies that Ch (S|z) ≤
GU |Z (S|z) holds for all S ⊆ RU , and in particular for S ∈ F (RU ), so that the collection of sets

Q (h, z) is core-determining.

Note that all sets of the form U (y, z;h) with y ∈ RY are contained in Q (h, z), so that

U (h, z) ⊆ Q (h, z). Theorem 3 implies that the identified sets of Theorem 2 are characterized

by the set of
(
h,GU |Z

)
that satisfy the containment functional inequalities of Corollary 1, but

with Q (h, z) replacing F (RU ). If, as is the case in many models, the sets in U (h, z) are each

connected with boundary of Lebesgue measure zero, and GU |Z (·|z) is absolutely continuous with

respect to Lebesgue measure, then the condition GU |Z (S1 ∩ S2|z) = 0 in (3.4) is implied if the

sets S1 and S2 have non-overlapping interiors. This implication was used for the construction of

core-determining sets in Chesher, Rosen, and Smolinski (2013), in which all elements of U (h, z)

were indeed connected.

To illustrate the results of Theorem 3 in a relatively simple context we refer back to Example

2 of Section 2.1, also studied in Chesher and Rosen (2013). In that model recall that U (y, z;h) =
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[0, g (y2, z1)] when y1 = 0 and U (y, z;h) = (g (y2, z1) , 1] when y1 = 0. Consider a fixed z and

a conjectured structural function h, equivalently g. From Lemma 1 it thus follows that for the

containment function inequality characterization of M∗ in Corollary 1 we need only consider test

sets that are unions of sets of the form [0, g (y2, z1)] or (g (y2, z1) , 1], for y2 ∈ RY2 . The union of

any collection of sets {[0, g (y2, z1)] : y2 ∈ Y2 ⊆ RY2} is simply [0,maxy2∈Y2 g (y2, z1)]. Likewise, the

union of any collection of sets {(g (y2, z1) , 1] : y2 ∈ Y2 ⊆ RY2} is (miny2∈Y2 g (y2, z1) , 1]. Thus, all

unions of sets of the form [0, g (y2, z1)] or (g (y2, z1) , 1] can be expressed as

S = [0, g (y2, z1)] ∪
(
g
(
y′2, z1

)
, 1
]

, for some y2, y
′
2 ∈ RY2 . (3.5)

Consider test sets S as in (3.5). If g (y2, z1) ≥ g (y′2, z1), then S = R. This test set may be

trivially discarded because in this case (3.2) is simply 1 ≤ GU |Z (RU |z), which holds by virtue

of GU |Z (·|z) being a probability measure on RU . If instead g (y2, z1) < g (y′2, z1), then S =

[0, g (y2, z1)] ∪ (g (y′2, z1) , 1] is a union of disconnected sets. Hence GU |Z (S1 ∩ S2|z) = 0, and we

can apply Theorem 3 with S1 = [0, g (y2, z1)] and S2 = (g (y′2, z1) , 1] to conclude that as long as S1
and S2 are included in the collection of core-determining sets Q (h, z), S need not be included in

Q (h, z). Thus it suffices to consider all S ∈ Q (h, z) given by the collection of half-open intervals

with endpoint g (y2, z1) for some y2 ∈ RY2 .

The following Corollary shows that in some models some of the containment functional inequali-

ties for core-determining sets can be replaced by equalities.10 Then the identified set can be written

as a collection of conditional moment inequalities and equalities. The strengthening of inequality

(3.2) to an equality occurs for test sets S ∈ Q (h, z) such that any U (y, z;h) not contained in S lies

fully outside of S. In this case each set U (y, z;h) is either contained in S or contained in Sc, and we

have that Ch (S|z) +Ch (Sc|z) = 1. Likewise GU |Z (S|z) +GU |Z (Sc|z) = 1, and this combined with

the inequalities (3.2) for both S and Sc imply that the weak inequality must hold with equality.

The formal statement of this result follows.

Corollary 2 Define

QE (h, z) ≡ {S ∈ Q (h, z) : ∀y ∈ RY either U (y, z;h) ⊆ S or U (y, z;h) ∩ S = ∅} .

Then, under the conditions of Theorem 3, the collection of equalities and inequalities

Ch (S|z) = GU |Z (S|z) , all S ∈ QE (h, z) ,

Ch (S|z) ≤ GU |Z (S|z) , all S ∈ QI (h, z) ≡ Q (h, z) \QE (h, z) .

holds if and only if Ch (S|z) ≤ GU |Z (S|z) for all S ∈ Q (h, z).

10This is however not the case in the model studied in Example 2.
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It is worth noting in particular that the conditions of the Corollary apply to every test set

S in models where U (Y,Z;h) is a singleton set with probability one. Models with this property

include traditional IV models with additive unobservables such as the classical linear IV model of

Example 1 and the nonparametric IV model of Newey and Powell (2003), as well as IV models

with structural function monotone in a scalar unobservable, for example the quantile IV model

studied by Chernozhukov and Hansen (2005). In such models, the characterization delivered by

the Corollary delivers a collection of only conditional moment equalities.

In general the collection of core-determining sets from Theorem 2 and Corollary 2 may be

infinite. However, in models in which all endogenous variables are discrete and finite, the sets

QE (h, z) and QI (h, z) are finite. In Chesher and Rosen (2012b) we provide an algorithm based

on the characterization of core-determining sets in Theorem 2 and Corollary 2 to construct the

collections QE (h, z) and QI (h, z) in such models.

3.4 Restrictions on the Joint Distribution of (U,Z)

Given a modelM, Theorem 2 provides a characterization of which structures
(
h,GU |Z

)
belong to the

identified set. A key element of econometric models are restrictions on the conditional distributions

of unobserved heterogeneity, i.e. restrictions on the collections GU |Z that are admitted byM. The

generality of Theorem 2 allows for its application whatever the specification ofM, though of course

the size of the identified set M∗ will depend crucially on the restrictions that M embodies.

In this section we consider particular restrictions on admissible collections of conditional dis-

tributions GU |Z , illustrating the use of such restrictions in further characterizing the identified set.

The restrictions we consider are well-known in the literature, namely independence, conditional

mean, conditional quantile, and parametric restrictions, although Theorem 2 can also be applied

with other restrictions.

Stochastic Independence

We begin by considering the implications of stochastic independence of unobservables and exogenous

variables set out in the following restriction.

Restriction SI: For all collections GU |Z of conditional distributions admitted by M, U ‖ Z. �

With this restriction in place, the conditional distributions GU |Z (·|z) cannot vary with z, and

we can simply write GU in place of the collection GU |Z , where for each z, GU |Z (·|z) = GU (·), and

M is then denoted by a collection of structures (h,GU ). Let GU ≡ {GU : ∃h s.t. (h,GU ) ∈M}
denote the collection of distributions of unobserved heterogeneity admitted by model M.

It follows from Theorem 2 that a given structure (h,GU ) ∈M belongs toM∗ if and only if GU

is selectionable with respect to the conditional (on Z = z) distribution of the random set U (Y,Z;h)

induced by FY |Z (·|z) a.e. z ∈ RZ . A characterization of such structures is succinctly given through
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the conditional containment inequality representation, as set out in the following Theorem.

Theorem 4 Let Restrictions A1-A4 and SI hold. Then

M∗ =
{

(h,GU ) ∈M : FY |Z (·|z) 4 Y (U, z;h) when U ∼ GU (·) , a.e. z ∈ RZ
}

(3.6)

=
{

(h,GU ) ∈M : GU (·) 4 U (Y, z;h) when Y ∼ FY |Z (·|z) , a.e. z ∈ RZ
}

, (3.7)

equivalently,

M∗ =

{
(h,GU ) ∈M : ∀SI ∈ QI (h, z) , ∀SE ∈ QE (h, z) ,

Ch (SI |z) ≤ GU (SI) , Ch (SE |z) = GU (SE) , a.e. z ∈ RZ

}
. (3.8)

=

{
(h,GU ) ∈M : ∀K ∈ K (Y) ,

FY |Z (K|z) ≤ GU {Y (U, z;h) ∩ K 6= ∅} , a.e. z ∈ RZ

}
, (3.9)

where K (Y) denotes the collection of compact sets in RY .

Theorem 4 presents various representations of the identified set under restriction SI. The first

two characterizations, (3.6) and (3.7) are direct applications of this restriction to Definition 3.1 and

Theorem 2, respectively. The characterization (3.8) applies Theorem 3 and Corollary 2 to provide a

characterization of the identified set through the conditional containment functional of U (Y,Z;h).

The representation makes use of core-determining sets to reduce the required number of moment

conditions in the characterization, and to distinguish which must hold as equalities and inequalities.

The last characterization, (3.9), characterizes the identified set through conditional moment

inequalities implied by the capacity functional applied to random set Y (U, z;h). These inequalities

closely coincide with characterizations provided by Beresteanu, Molchanov, and Molinari (2011,

Appendix D.2) and Galichon and Henry (2011) in incomplete models of games. These inequalities

must hold applied to all compact sets K ⊆ RY . Galichon and Henry (2011) provide core determin-

ing sets for this characterization in RY when a certain monotonicity condition holds. There are

however many models where the required monotonicity condition does not hold. Nonetheless, the

representation (3.8), and in particular the reduction in moment conditions achieved via the use of

core determining sets on RU given by Theorem 3, still holds.

A further difference between characterizations (3.8) and (3.9) is how they incorporate restric-

tions placed on the distribution of unobserved heterogeneity. Given an admissible distribution GU ,

the use of characterization (3.9) computationally requires that one compute for each compact set K
the probability that the random outcome set Y (U, z;h) hits K. This has typically been achieved by

means of simulation from each conjectured distribution GU , see e.g. Beresteanu, Molchanov, and

Molinari (2011, Appendix D.2) and Henry, Meango, and Queyranne (2011). FY |Z (K|z) is observed

directly. On the other hand, characterization (3.9) requires, for each conjectured distribution GU

and each core-determining set S, computation of GU (S). This can be done again via simulation, or
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by means of numerical integration. The term P [U (Y,Z;h) ⊆ S|z] is, for any fixed h, the probability

of an event concerning only the variables (Y,Z), which is point-identified and can be computed or

estimated directly.

It is important to understand that with Restriction SI imposed, Theorem 4 applies with the

admissible distributions GU either parametrically or non-parametrically specified. For example,

if admissible GU were parameterized by λ ∈ Λ ⊆ Rd we could write GU = {GU (S;λ) : λ ∈ Λ},
and M∗ could be represented by a collection of (h, λ) satisfying the equalities and inequalities of

(3.8), with GU (S;λ) replacing GU (S), for all S = SI ∈ QI (h, z) and all S = SE ∈ QE (h, z). Less

stringent conditions on the class GU , all else equal, will of course result in larger identified sets.

If GU is left completely unrestricted, then the task of checking the containment functional

inequality for all admissible GU is more difficult than with GU parametrically specified. Indeed, it

is not clear how to do this for all such GU .

Fortunately, manipulation of the conditional containment functional inequality representation

in U -space affords a representation of the identified set of structural functions h that does not

explicitly involve the distribution GU . The ability to characterize distribution-free identified sets

using random set theory with statistical independence restrictions is new to the literature. The

formal result follows.

Corollary 3 Let Restrictions A1-A4 and SI hold, and let GU |Z be otherwise unrestricted. Then

the identified set of structural functions h is

H∗ =


h ∈ H : ∀SI ∈ QI (h, z) , ∀SE ∈ QE (h, z) ,

sup
z∈RZ

Ch (SI |z) ≤ inf
z∈RZ

(1− Ch (ScI |z)) , and

sup
z∈RZ

Ch (SE |z) = inf
z∈RZ

(1− Ch (ScE |z)) , a.e. z ∈ RZ

 , (3.10)

and the identified set of structures is

M∗ =


(h,GU ) ∈M : ∀SI ∈ QI (h, z) , ∀SE ∈ QE (h, z) ,

sup
z∈RZ

Ch (SI |z) ≤ GU (SI) ≤ inf
z∈RZ

(1− Ch (ScI |z)) , and

sup
z∈RZ

Ch (SE |z) = GU (SE) = inf
z∈RZ

(1− Ch (ScE |z)) , a.e. z ∈ RZ

 . (3.11)

Corollary 3 shows that with a distribution-free specification, the probability GU (S) can be

profiled out of the containment functional inequality. This holds because for any set S we have

Ch (S|z) ≤ GU (S) , and Ch (Sc|z) ≤ GU (Sc) . (3.12)
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The second equality is equivalent to

GU (S) ≤ 1− Ch (Sc|z) ,

where 1− Ch (Sc|z) is the capacity functional of U (Y,Z;h) applied to argument S conditional on

Z = z.11 Rearranging and combining with (3.12) we have for almost every z ∈ RZ .

Ch (S|z) ≤ GU (S) ≤ 1− Ch (Sc|z) ,

which in combination with Corollary 2 produces the characterizations of Corollary 3.

Mean Independence

The following restriction limits the collection GU |Z to those such that U has conditional mean

zero.12

Restriction MI: GU |Z comprises all collections GU |Z of conditional distributions for U given Z

satisfying E [U |Z = z] = 0, a.e. z ∈ RZ . �

With this restriction imposed on the conditional distributions of unobserved heterogeneity, it is

convenient to characterize the selectionability criterion of Theorem 2 by making use of the Aumann

expectation. Also referred to as the selection expectation, the Aumann expectation of a random

set A is the set of values that are the expectation of some random variable A that is a selection of

A. For clarity we provide the formal definition, repeated from Molchanov (2005, p. 151).

Definition 6 The Aumann expectation of A is

E [A] ≡ cl {E [A] : A ∈ Sel (A) and E [A] <∞} .

The Aumann expectation of A conditional on B = b is

E [A|b] ≡ cl {E [A|b] : A ∈ Sel (A) and E [A|b] <∞} .

The resulting characterization of the identified sets for structural function h and for the structure(
h,GU |Z

)
employing the Aumann expectation with Restriction MI is given in the following Theorem.

11In other words
1− Ch (Sc|z) = P [U (Y,Z;h) ∩ S 6= ∅|z] .

We use 1 − Ch (Sc|z) for the capacity functional rather than introduce further notation or explicitly write out the
longer expression P [U (Y,Z;h) ∩ S 6= ∅|z] repeatedly.

12The use of zero in the restriction is simply a location normalization. The restriction E [U |Z = z] = 0 can be
replaced by E [U |Z = z] = c a.e. z ∈ RZ for any known vector c ∈ RU , and Theorem 5 and Corollary 4 go through
with c in place of 0.
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Theorem 5 Let Restrictions A1-A4 and MI hold and suppose that (Ω,F ,P) is non-atomic. Then

the identified set for structural function h are those functions h such that 0 is an element of the

Aumann expectation of U (Y, Z;h) conditional on Z = z, a.e. z ∈ RZ :

H∗ = {h ∈ H : 0 ∈ E [U (Y,Z;h) |z] , a.e. z ∈ RZ} .

The identified set for
(
h,GU |Z

)
is:

M∗ =
{(
h,GU |Z

)
∈M : h ∈ H∗ and GU |Z (·|z) . U (Y,Z;h) conditional on Z = z, a.e. z ∈ RZ

}
.

Theorem 5 succinctly characterizes H∗ as those h such that 0 ∈ E [U (Y,Z;h) |z] a.e. z ∈ RZ .

The identified set for
(
h,GU |Z

)
is then simply those pairs of

(
h,GU |Z

)
such that 0 ∈ E [U (Y,Z;h) |z]

and GU |Z (·|z) is selectionable with respect to U (Y,Z;h) conditional on Z = z, a.e. z ∈ RZ .

Properties of the random set U (Y, Z;h) can be helpful in characterizing its Aumann expectation,

and consequently in determining whether any particular h is in H∗. For example, if U (Y, Z;h) is

integrably bounded, that is if

E sup {‖U‖ : U ∈ U (Y,Z;h)} <∞, (3.13)

then from Molchanov (2005, Theorem 2.1.47-iv, p. 171), 0 ∈ E [U (Y, Z;h) |z] if and only if

inf
v∈RZ :‖v‖=1

E [m (v,U (Y,Z;h)) |z] ≥ 0, (3.14)

where for any set S,

m (v,S) ≡ sup {v · s : s ∈ S}

denotes the support function of S evaluated at v. Beresteanu, Molchanov, and Molinari (2011) pre-

viously employed Molchanov (2005, Theorem 2.1.47-iv, p. 171) in consideration of the conditional

Aumann expectation of random outcome set Y (Z,U ;h) in characterizing its selections for identifica-

tion analysis, and it can likewise lead to simplifications in determining whether 0 ∈ E [U (Y, Z;h) |z].
Indeed, if structural function h is additively separable in Y , the two representations are equivalent,

differing only by a trivial location shift.

More generally, Theorem 5 does not require the sets U (Y, Z;h) to be integrably bounded,

but only integrable, which is important for dealing with cases where the support of unobserved

heterogeneity RU is unbounded, e.g. when RU is some finite dimensional Euclidean space.

In some commonly occurring models, including all those of Examples 1-5 in Section 2.1, the

random set U (Y, Z;h) is convex with probability one. In such cases the characterization of H∗ can

be simplified further as in the following Corollary. Unlike the simplification afforded by the support

function characterization (3.14), it does not require that U (Y, Z;h) be integrably bounded.
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Corollary 4 Let the restrictions of Theorem 5 hold and suppose U (Y, Z;h) is convex with proba-

bility one. Then

H∗ =

{
h ∈ H : E [u (Y, Z) |z] = 0 a.e. z ∈ RZ ,

for some function u : RY Z → RU with P [u (Y,Z) ∈ U (Y,Z;h)] = 1

}
.

Finally, Theorem 5 can be generalized to characterize H∗ under more general forms of condi-

tional mean restrictions than Restriction MI, as expressed in Restriction MI*.

Restriction MI*: GU |Z comprises all collections GU |Z of conditional distributions for U given Z

such that for some known function d (·, ·) : RU ×RZ → Rkd , E [d (U,Z) |z] = 0 a.e. z ∈ RZ , where

d (u, z) is continuous in u for all z ∈ RZ . �

Restriction MI* requires that the conditional mean of some function taking values in Rkd ,
namely d (U,Z), E [d (U,Z) |z] = 0. This restriction can accommodate models that impose condi-

tional mean restrictions on functions of unobservables U , and nests Restriction MI upon setting

d (U,Z) = U . To express the identified set delivered under such a restriction, we define

D (y, z;h) ≡ {d (u, z) : u ∈ U (y, z;h)} .

Thus the random set D (Y,Z;h) is the set of feasible values for d (U,Z) given observed (Y,Z).

Given the requirement of Restriction MI* that d (·, z) is continuous for each z, the set D (Y,Z;h)

is a random closed set. The same logic as that used for Theorem 5 then yields the following result.

Corollary 5 Let Restrictions A1-A4 and MI* hold and suppose that (Ω,F ,P) is non-atomic. Then

the identified set for structural function h are those such that 0 is an element of the Aumann

expectation of D (Y,Z;h) conditional on Z = z, a.e. z ∈ RZ :

H∗ = {h ∈ H : 0 ∈ E [D (Y, Z;h) |z] , a.e. z ∈ RZ} .

The identified set for
(
h,GU |Z

)
is:

M∗ =
{(
h,GU |Z

)
∈M : h ∈ H∗ and GU |Z (·|z) . U (Y,Z;h) conditional on Z = z, a.e. z ∈ RZ

}
.

Quantile Independence

Our analysis can also accommodate conditional quantile restrictions on unobserved heterogeneity.

To illustrate how in a relatively simple yet useful framework we restrict the analysis of this section

to models with univariate unobserved heterogeneity U ∈ R, where the sets U (y, z;h) are closed

intervals with lower bound u (y, z;h) and upper bound u (y, z;h), formalized in Restriction IS

(interval support) below. The lower and upper bounds may be −∞ and +∞, respectively. This
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restriction can be fruitfully applied to GIV models with censored endogenous or exogenous variables.

We illustrate how in a model with interval censored endogenous variables in Section 4.1.3 below.13

Restriction IS: ∀ (y, z) ∈ RY Z ,

U (y, z;h) = [u (y, z;h) , u (y, z;h)] , (3.15)

where possibly u (y, z;h) = −∞ or u (y, z;h) = +∞, in which case the corresponding endpoint of

the interval (3.15) above is open. �

The conditional quantile restriction is formalized as follows.14

Restriction QI: For some known τ ∈ (0, 1), GU |Z comprises all collections GU |Z of conditional

distributions for U given Z that are continuous in a neighborhood of zero and satisfy the conditional

quantile restriction qU |Z (τ |z) = 0, a.e. z ∈ RZ . �

For random sets U (Y,Z;h) with interval-valued realizations, it is easy to check whether there

exists a random variable that is selectionable with respect to the distribution of U (Y,Z;h) condi-

tional on Z = z. It is well known that the quantile of a generic random variable W distributed FW

is a parameter that respects stochastic dominance. That is, if W̃ ∼ FW̃ , and FW̃ stochastically

dominates FW , then qW (τ) ≤ qW̃ (τ) for any τ ∈ [0, 1]. The smallest and largest selections of ran-

dom set U (Y,Z;h), in terms of stochastic dominance, are those distributions that place all mass

on u (Y,Z;h) and u (Y, Z;h), respectively. Thus, intuitively, the conditional quantiles of u (Y, Z;h)

and u (Y,Z;h) provide sharp bounds on the conditional quantiles of all selections of U (Y,Z;h).

This is formalized with the following result.

Theorem 6 Let Restrictions A1-A4, IS, and QI hold. Then (i) the identified set for structural

function h is

H∗ =

{
h ∈ H : sup

z∈RZ
FY |Z [u (Y,Z;h) ≤ 0|z] ≤ τ ≤ inf

z∈RZ
FY |Z [u (Y, Z;h) ≤ 0|z]

}
. (3.16)

(ii) If u (Y,Z;h) and u (Y, Z;h) are continuously distributed conditional on Z = z, a.e. z ∈ RZ ,

then an equivalent formulation of H∗ is given by

H∗ =

{
h ∈ H : sup

z∈RZ
q (τ , z;h) ≤ 0 ≤ inf

z∈RZ
q (τ , z;h)

}
, (3.17)

13The use of conditional quantile restrictions with non-interval U (y, z;h) and more generally multivariate unob-
served heterogeneity is an interesting line of research. This is so even in models with exogenous covariates absent
instrumental variable restrictions, and as such is logically distinct from the study of generalized instrumental variable
models that is our focus here.

14It is straightforward to modify the conditional quantile restriction to QU|Z (τ |z) = c, for any known c ∈ R, i.e.
the use of c = 0 is simply a scale normalization. The ensuing analysis then carries through replacing 0 with c.
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where

q (τ , z;h) ≡ τ -quantile of u (Y,Z;h) , q (τ , z;h) ≡ τ -quantile of u (Y,Z;h) .

(iii) The identified set for
(
h,GU |Z

)
is:

M∗ =
{(
h,GU |Z

)
∈M : h ∈ H∗ and GU |Z (·|z) . U (Y,Z;h) conditional on Z = z, a.e. z ∈ RZ

}
.

Under Restriction QI, the conditional distributions belonging to GU |Z are continuous in a neigh-

borhood of zero. Indeed, it is common for econometric models to impose that unobserved het-

erogeneity is continuously distributed on its entire support. Given the continuity condition, the

conditional quantile restriction qU |Z (τ |z) = 0 is equivalent to

GU |Z ((−∞, c] |z) = τ ⇔ c = 0.

The inequalities comprising (3.16) then follow from u (Y, Z;h) ≤ U ≤ u (Y,Z;h). These inequalities

also comprise the containment functional inequality Ch (S|z) ≤ GU |Z (S|z) applied to test sets

S = (−∞, 0] and S = [0,∞). In the proof of Theorem 6 we show that for any h, if the containment

functional inequalities hold for these two test sets, then we can find an admissible collection of

conditional distributions GU |Z such that it holds for all closed test sets in RU . From Corollary 1 it

follows that the characterization (3.16) is sharp.

This result helps to illustrate the relative identifying power under Restriction QI as compared

to Restrictions SI. Under Restriction SI, U ‖ Z, to characterize H∗ it suffices to consider Ch (S|z) ≤
GU (S) where GU |Z (S|z) = GU (S) for all core-determining test sets delivered by Theorem 3, which

imply that it will hold for all closed subsets of RU . Under restriction QI, it is enough to consider

Ch (S|z) ≤ GU |Z (S|z) for only two test sets, namely S = (−∞, 0] and S = [0,∞).

The second part of Theorem 6 follows because when u (Y,Z;h) and u (Y,Z;h) are continuous,

the inequalities in (3.16) which involve cumulative distributions FY |Z [·|z] may be inverted. Then

H∗ may be equivalently expressed as inequalities involving the lower and upper envelopes, q (τ , z;h)

and q (τ , z;h), respectively, of conditional quantile functions for selections of U (Y, Z;h). Finally, as

was the case for identified setsM∗ using conditional mean restrictions given in Theorem 5, the third

part of Theorem 6 states that the identified set of structures
(
h,GU |Z

)
are elements of H∗ paired

with distributions GU |Z (·|z) that are selectionable with respect to the conditional distribution of

U (Y,Z;h) given Z = z, a.e. z ∈ RZ .
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4 Illustration: A Model with Interval Censored Endogenous Vari-

able

In this Section we return to Example 5 from Section 2.1, a generalization of a single equation model

with an interval censored exogenous variable studied by Manski and Tamer (2002). Like Manski and

Tamer (2002) we impose no assumption on the censoring process or the realization of the censored

variable relative to the observed interval, but we allow the interval censored explanatory variable

to be endogenous. We consider the identifying power of both independence and conditional mean

restrictions with respect to unobservable U and observed exogenous variables Z, and we provide

numerical illustrations of identified sets given particular data generating structures.

4.1 Identified Sets

The continuously distributed outcome of interest Y1 is determined by the realizations of endogenous

Y ∗2 ∈ R, exogenous Z = (Z1, Z2) ∈ Rkz , and unobservable variable U ∈ R with strictly monotone

CDF Λ (·), such that

Y1 = g (Y ∗2 , Z1, U) , (4.1)

where the function g (·, ·, ·) is increasing in its first argument, and strictly increasing in its third

argument.15 The endogenous variable Y ∗2 is not observed, but there are observed variables Y2l, Y2u

such that

Y ∗2 = Y2l +W × (Y2u − Y2l) , (4.2)

for some unobserved variable W ∈ [0, 1]. There is no restriction on the distribution of W on the unit

interval, and no restriction its stochastic relation to observed variables. Together (U,W ) comprise

a two-dimensional vector of unobserved heterogeneity.

Since nothing is assumed about the censoring process, it is convenient to suppress the unobserved

variable W by replacing (4.2) with the equivalent formulation

P [Y2l ≤ Y ∗2 ≤ Y2u] = 1. (4.3)

The researcher observes a random sample of observations of (Y1, Y2l, Y2u, Z).

The structural function is

h (y, z, u) = |y1 − g (y2l, z1, u)|− + |g (y2u, z1, u)− y1|+ ,

15It is important to note here that U is marginally distributed with CDF Λ (·). At this point, we have yet to
impose restrictions on the joint distribution of (U,Z), so that for any z ∈ RU , The conditional CDF of U |Z = z need
not be Λ (·). It is straightforward to allow g (y∗2 , z1, u) increasing or decreasing in y∗2 for all (z1, u), but we maintain
that g (y∗2 , z1, u) is increasing in this example to simplify the exposition.
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and P [h (Y,Z, U) = 0] = 1 is equivalent to equations (4.1) and (4.3). The level sets in Y -space and

U -space, respectively, are

Y (u, z;h) = {y = (y1, y2l, y2u) ∈ RY : g (y2l, z1, u) ≤ y1 ≤ g (y2u, z1, u)} ,

and

U (y, z;h) =
[
g−1 (y2u, z1, y1) , g

−1 (y2l, z1, y1)
]

, (4.4)

where g−1 denotes the inverse of g in its last argument.

In some of the following developments and indeed in our numerical illustrations we further

restrict h, employing the commonly used linear index structure with additive unobservable. To do

so we let

g (y∗2, z, u) = βy∗2 + z1γ + u, (4.5)

where the first element of z1 is one, and g (and hence h) are now parameterized by (β, γ′)′ ∈
Rdim(z1)+1.

We now consider some alternative restrictions for the collection of conditional distributions

GU |Z .

4.1.1 Stochastic Independence

Consider the restriction U ‖ Z. Each set U (y, z;h) is a closed interval on R and hence connected.

Using Theorem 3 we can express the identified set for h as

P [U (Y,Z;h) ⊆ S|z] ≤ GU (S) (4.6)

for all S ∈ Q (h, z), where Q (h, z) is the collection of intervals that can be formed as unions of sets

of the form
[
g−1 (y2u, z1, y1) , g

−1 (y2l, z1, y1)
]
. If the components of y are continuously distributed

with sufficiently rich support the required test sets may constitute all intervals on R.16 Unless g

has very restricted structure, the conditions for (4.6) to hold with equality will in general not be

satisfied for any test set S, and hence QE (h, z) = ∅ and QI (h, z) = Q (h, z) is the collection of all

intervals on R, which we henceforth denote

Q ≡
{

[a, b] ∈ R2 : a ≤ b
}

.

16If the support of Y1 is limited, application of Theorem 3 may dictate that not all intervals of R need to be
considered as test sets. Nonetheless, this smaller collection core-determining sets will differ for different (h, z). A
characterization based on all intervals, although employing more test sets than necessary, has the advantage of being
invariant to (h, z). Both characterizations - that using the core determining sets of Theorem 3, or that using all
intervals of interval on R - are for the same identified set. That is, both characterizations are sharp.
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Thus we have from Theorem 4 that the identified set is

M∗ = {m ∈M : ∀ [u∗, u
∗] ∈ Q, P [U (Y,Z;h) ⊆ [u∗, u

∗] |z] ≤ Λ (u∗)− Λ (u∗) , a.e. z ∈ RZ} .

Given structural function h, the probability P [U (Y,Z;h) ⊆ [u∗, u
∗] |z] is an event concerning only

observed variables, and is thus identified. Specifically, the containment functional inequality in the

definition of H∗ can be equivalently written

P
[
u∗ ≤ g−1 (Y2u, Z1, Y1) ∧ g−1 (Y2l, Z1, Y1) ≤ u∗|z

]
≤ Λ (u∗)− Λ (u∗) ,

or, using monotonicity of g (y2, z1, u) in its third argument,

P [g (Y2u, Z1, u∗) ≤ Y1 ≤ g (Y2l, Z1, u
∗) |z] ≤ Λ (u∗)− Λ (u∗) . (4.7)

With the added linear index restriction from (4.5) this produces the following representation for

the identified set, where the model M stipulates a collection of admissible parameters β, γ and

CDFs Λ (·).

M∗ =

{
m ∈M : ∀ [u∗, u

∗] ∈ Q,

P [u∗ + βY2u ≤ Y1 − Z1γ ≤ u∗ + βY2l|z] ≤ Λ (u∗)− Λ (u∗) , a.e. z ∈ RZ

}
. (4.8)

We now specialize this result for a model incorporating a parametric restriction for Λ, and for

a model leaving Λ completely unspecified.

Gaussian Unobservables

Suppose in addition to the linear index restriction (4.5) we further restrict Λ (·) to be a Gaussian

CDF with variance σ > 0 so that Λ (u) = Φ
(
σ−1u

)
, where Φ (·) is the standard normal CDF. In

this case the model is fully parameterized by θ ≡ (β, γ′, σ)′, and M can be represented as the

parameter space Θ for admissible θ. Using (4.8) the identified set is now

M∗ =

{
θ ∈ Θ : ∀ [u∗, u

∗] ∈ Q,

P [u∗ + βY2u ≤ Y1 − Z1γ ≤ u∗ + βY2l|z] ≤ Φ
(
σ−1u∗

)
− Φ

(
σ−1u∗

)
, a.e. z ∈ RZ

}
.

(4.9)

Equivalently, we can employ the change of variables t∗ = Φ
(
σ−1u∗

)
and t∗ ≡ Φ

(
σ−1u∗

)
to produce

the following.17

M∗ =

{
θ ∈ Θ : ∀ [t∗, t

∗] ⊆ [0, 1] ,

P
[
t∗ ≤ Φ

(
Y1−βY2u−Z1γ

σ

)
∧ Φ

(
Y1−βY2l−Z1γ

σ

)
≤ t∗|z

]
≤ t∗ − t∗, a.e. z ∈ RZ

}
. (4.10)

17This can also be derived by normalizing the distribution of unobserved heterogeneity U to be uniform on the
unit interval and defining g (y2, z1, u) = βy2 + z1γ + σΦ−1 (u).
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Using (4.9), the identified set can be represented as the set of parameter values θ satisfying the

collection of conditional moment inequalities

E [m (θ;Y,Z, u∗, u
∗) |z] ≤ 0, all u∗, u

∗ ∈ R s.t. u∗ ≤ u∗, a.e. z ∈ RZ ,

with moment function

m (θ;Y, Z.t∗, t
∗) ≡ 1 [u∗ + βY2u ≤ Y1 − Z1γ ≤ u∗ + βY2l]−

(
Φ
(
σ−1u∗

)
− Φ

(
σ−1u∗

))
.

Distribution-Free Unobservables

Suppose now that we impose the independence restriction U ‖ Z and the same additive index

structure for g, but without imposing a parametric restriction on unobserved heterogeneity. If Y ∗2
were observed, we would require a location normalization for identification of the first component

of γ, the intercept. Thus it will be prudent to incorporate a location normalization in our model

with Y ∗2 censored as well, for example that the median of U |Z = z is zero. Since Y1 is continuously

distributed, there is no scale normalization to be made.

We apply Corollary 3 to obtain the identified set h, equivalently that for parameters θ ≡ (β, γ′)′.

To do so, we start with

P [u∗ + βY2u ≤ Y1 − Z1γ ≤ u∗ + βY2l|z] ≤ Λ (u∗)− Λ (u∗) , a.e.z ∈ RZ , (4.11)

for all [u∗, u
∗] ∈ Q from (4.8) above. Noting that GU (S) = Λ (u∗)− Λ (u∗) for any set S = [u∗, u

∗]

and following Corollary 3 we also have for all −∞ < u∗ ≤ u∗ <∞ and a.e. z ∈ RZ ,

Λ (u∗)− Λ (u∗) ≤ 1− Ch (Sc|z) (4.12)

= 1− P [Y1 − βY2l − Z1γ < u∗ ∨ Y1 − βY2u − Z1γ > u∗|z]

= P [u∗ + βY2l ≤ Y1 − Z1γ ≤ u∗ + βY2u|z] .

Define now

G (θ, u∗, u
∗) ≡ sup

z∈RZ
P [u∗ + βY2u ≤ Y1 − Z1γ ≤ u∗ + βY2l|z] ,

G (θ, u∗, u
∗) ≡ inf

z∈RZ
P [u∗ + βY2l ≤ Y1 − Z1γ ≤ u∗ + βY2u|z] ,

each of which are identified for any parameter vector θ = (β, γ′)′ from knowledge of FY |Z under

Restriction A2. Combining (4.11) and (4.12) as in Corollary 3, the identified set for parameters θ,

where Θ denotes values admitted by model M, is given by

Θ∗ =
{
θ ∈ Θ : ∀ [u∗, u

∗] ∈ Q, G (θ, u∗, u
∗) ≤ G (θ, u∗, u

∗)
}

.

32



The identified set for (θ,Λ (·)) is

M∗ =
{

(θ,Λ (·)) ∈M : ∀ [u∗, u
∗] ∈ Q, G (θ, u∗, u

∗) ≤ Λ (u∗)− Λ (u∗) ≤ G (θ, u∗, u
∗)
}

.

4.1.2 Mean Independence

Now suppose we continue to assume the linear index structure (4.5) but replace the restriction

U ‖ Z with the conditional mean restriction E [U |Z = z] = 0 a.e. z ∈ RZ , equivalently Restriction

MI from Section 3.4.

The random set U (Y, Z;h) in this model is given by the interval

U (Y, Z;h) = [Y1 − Z1γ − βY2u, Y1 − Z1γ − βY2l] ,

rendering application of Theorem 5 and Corollary 4 particularly simple. This is because there

exists a function u (·, ·) satisfying the conditions of Corollary 4, namely that (i) E [u (Y,Z) |z] = 0

a.e. z ∈ RZ , and (ii) P [u (Y, Z) ∈ U (Y, Z;h)] = 1 if and only if

E [Y1 − Z1γ − βY2u|z] ≤ 0 ≤ E [Y1 − Z1γ − βY2l|z] a.e. z ∈ RZ .

Thus, applying Corollary 4, the identified set for θ ≡ (β, γ′)′, where again Θ denotes values admitted

by model M, is

Θ∗ =
{
θ ∈ Θ : E (θ) ≤ 0 ≤ E (θ)

}
,

where

E (θ) ≡ sup
z∈RZ

E [Y1 − Z1γ − βY2u|z] , E (θ) ≡ inf
z∈RZ

E [Y1 − Z1γ − βY2l|z] .

4.1.3 Quantile Independence

Finally, we consider the linear index structure (4.5) coupled with Restriction QI. That is, we now

assert qU |Z (τ |z) = 0, a.e z ∈ RZ .

Again we have under (4.5) that

U (Y,Z;h) = [Y1 − Z1γ − βY2u, Y1 − Z1γ − βY2l] ,

and the identified set for h is isomorphic to that of θ ≡ (β, γ′)′. As in Section 4.1.2 we again denote

the parameter space and identified set for θ as Θ and Θ∗, respectively. Applying Theorem 6 the

identified set of structural functions h is

Θ∗ =

{
θ ∈ Θ : sup

z∈RZ
FY |Z [Y1 ≤ Z1γ + βY2l|z] ≤ τ ≤ inf

z∈RZ
FY |Z [Y1 ≤ Z1γ + βY2u|z]

}
,
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equivalently,

Θ∗ =

{
θ ∈ Θ : sup

z∈RZ
qVθ|Z (τ |z) ≤ z1γ ≤ inf

z∈RZ
qVθ|Z (τ |z)

}
,

where Vθ≡ Y1 − βY2u and Vθ ≡ Y1 − βY2l. The identified set of structures M∗ is then pairs of

structural functions h parameterized by θ ∈ Θ∗ coupled with collections of conditional distributions

GU |Z satisfying the required conditional quantile restriction, and such that GU |Z (·|z) is selectionable

with respect to U (Y, Z;h) conditional on Z = z, a.e. z ∈ RZ .

4.2 Numerical Illustrations

In this section we provide illustrations of identified sets obtained for the interval censored en-

dogenous variable model with the linear index restriction of (4.5). We consider the identified set

obtained under the restriction that U ∼ N (0, σ) and U ‖ Z, i.e. the Gaussian unobservable case

above with identified set given by (4.9).

To generate probability distributions FY |Z for observable variables (Y,Z) we employ a triangular

Gaussian structure as follows.

Y1 = γ0 + γ1Y
∗
2 + U ,

Y ∗2 = δ0 + δ1Z + V .

with (U, V ) ‖ Z, RZ = {−1, 1}, and[
U

V

]
∼ N

([
0

0

]
,

[
σ11 σ1v

σ1v σvv

])
.

In this model there are no exogenous covariates Z1, equivalently Z = Z2.

We specify a censoring process that in place of Y ∗2 reveals only to which of a collection of

mutually exclusive intervals Y ∗2 belongs. Such censoring processes are common in practice, for

instance when interval bands are used for income in surveys. Specifically, we assume a sequence of

J intervals, I1, I2, . . . , IJ with Ij ≡ (cj , cj+1] and cj < cj+1 for all j ∈ {1, . . . , J}. The censoring

process is such that

∀j ∈ {1, . . . , J}, (Y2l, Y2u) = (cj , cj+1)⇔ Y ∗2 ∈ Ij .

As above, the researcher observes a random sample of observations of (Y1, Y2l, Y2u, Z).

In our examples we consider two data generation processes denoted DGP1 and DGP2, each

with parameter values

γ0 = 0, γ1 = 1, δ0 = 0, δ0 = 1, σ11 = 0.5, σ1v = 0.25, σvv = 0.5,
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c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13
DGP1 −∞ −1.15 −0.67 −0.32 0.00 0.32 0.67 1.15 +∞ - - - -
DGP2 −∞ −1.38 −0.97 −0.67 −0.43 −0.21 0.00 0.21 0.43 0.67 0.97 1.38 +∞

Table 2: Endpoints of censoring process intervals in numerical illustrations.

and interval censoring endpoints c1, ..., cJ listed in Table 2. In DGP1, Y ∗2 was censored into 8

intervals Ij = (cj , cj+1] with endpoints given by the normal quantile function evaluated at 9 equally

spaced values in [0, 1], inclusive of 0 and 1. In DGP2, Y ∗2 was censored into 12 such intervals with

endpoints given by the normal quantile function evaluated at 13 equally spaced values.

Given these data generation processes, the distribution of Y ≡ (Y1, Y2l, Y2u) conditional on Z

is easily obtained as the product of the conditional distribution of (Y2l, Y2u) given Y1 and Z and

the distribution of Y1 given Z. Combining these probabilities and the inequalities of (4.9), the

conditional containment functional for random set U (Y,Z;h) applied to test set S = [u∗, u
∗] is

given by

Cθ ([u∗, u
∗] |z) =

∑
j

P [g1cj+1 + u∗ ≤ Y1 − g0 ≤ g1cj + u∗|z, [Y2l, Y2u) = Ij ] ∗ P [[Y2l, Y2u) = Ij |z] ,

(4.13)

where θ = (g0, g1, s) is used to denote generic parameter values for (γ0, γ1, σ1). Cθ replaces Ch for

the containment functional, since in this model the structural function h is a known function of

θ.18 The identified set of structures
(
h,GU |Z

)
is completely determined by the identified set for θ,

which, following (4.10), is given by

Θ∗ =

{
θ ∈ Θ : ∀ [t∗, t

∗] ⊆ [0, 1] ,

Cθ
([
sΦ−1 (t∗) , sΦ

−1 (t∗)
]
|z
)
≤ t∗ − t∗, a.e. z ∈ RZ

}
. (4.14)

The set Θ∗ comprises parameter values (g0, g1, s) such that the given conditional containment

functional inequality holds for almost every z and all intervals [t∗, t
∗] ⊆ [0, 1]. This collection of

test sets is uncountable. For the purpose of illustration we used various combinations of collections

QM of intervals from the full set of all possible [t∗, t
∗] ⊆ [0, 1]. Each collection of intervals QM

comprises the M(M + 1)/2− 1 super-diagonal elements of the following (M + 1)× (M + 1) array

18Computational details for the conditional containment probability Cθ ([u∗, u
∗] |z) are provided in Appendix C.
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of intervals, excluding the interval [0, 1], where m ≡ 1/M .

[0, 0] [0,m] [0, 2m] [0, 3m] · · · · · · · · · [0, 1]

− [m,m] [m, 2m] [m, 3m] · · · · · · · · · [m, 1]

− − [2m, 2m] [2m, 3m] · · · · · · · · · [2m, 1]

− − − [3m, 3m]
. . .

...
...

...
...

...
. . .

...

− − − − [(M − 1)m, (M − 1)m] [(M − 1)m, 1]

− − − − − [1, 1]


The inequalities of (4.14) applied to those intervals of any collections of test sets QM defines an

outer region for the identified set, with larger collections of test sets providing successively better

approximations of the identified set.

Figure 1 shows three dimensional (3D) plots of outer regions for (g0, g1, s). Outer regions using

M ∈ {5, 7, 9} are noticeably smaller than those using only M = 5.19 There was a noticeable

reduction in the size of the outer region in moving from M = 5 to M = {5, 7}, but hardly any

change on including also the inequalities obtained with M = 9. Thus, only the outer regions

obtained using M = 5 and M ∈ {5, 7, 9} are shown. Figure 2 shows two dimensional projections of

the outer region using M ∈ {5, 7, 9} for each pair of the three parameter components. The surfaces

of these sets were drawn as convex hulls of those points found to lie inside the outer regions and

projections considered.20 We have no proof of the convexity of the outer regions in general, but

careful investigation of points found to lie in the outer regions strongly suggested that in the cases

considered the sets are convex.

Figure 3 shows the 3D outer region for DGP2 employing 12 bins for the censoring of Y ∗2 and

M ∈ {5, 7, 9}. Compared to Figure 1, this outer region is smaller, as expected given the finer

granularity of intervals with 12 rather than 8 bins. Figure 4 shows two dimensional projections for

this outer region, again projecting onto each pair of parameter components. These projections help

to further illustrate the extent of the reduction in the size of the outer region for DGP2 relative to

DGP1.

5 Conclusion

In this paper we have studied a broad class of Generalized Instrumental Variable (GIV) models,

extending the use of instrumental variable restrictions to models with more flexible specifications

for unobserved heterogeneity than previously allowed. In particular, our analysis allows for the

19The notation M ∈ {m1,m2, ...,mR} corresponds to the use of test sets Qm1 ∪ Qm2 · · · ∪ · · · ∪ QmR .
20The 3D figures were produced using the TetGenConvexHull function available via the TetGenLink package in

Mathematica 9. 2D figures below were drawn using Mathematica’s ConvexHull function.
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Figure 1: Outer regions for parameters (g0, g1, s) for DGP1 with 8 bins using the 14 inequalities
generated with M = 5 (left pane) and the 85 inequalities generated with M ∈ {5, 7, 9} (right pane).
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application of instrumental variable restrictions to models in which the structural mapping from

unobserved heterogeneity to observed endogenous variables is not invertible. Thus, these models

permit general forms of multivariate, nonadditive unobserved heterogeneity, as often appears for

example in nonlinear models with discrete or mixed discrete/continuous outcomes, random coeffi-

cient models, and models with censoring. Without the existence of a unique value of unobserved

heterogeneity, or “generalized residual”, given values of observed variables, rank or more generally

completeness conditions do not guarantee point identification of structural functions. We provided

a comprehensive framework for characterizing identified sets for model structures in such contexts.

Using tools from random set theory, relying in particular on the concept of selectionability, we

formally extended the classical notion of observational equivalence to models whose structures need

not deliver a unique conditional distribution for endogenous variables given exogenous variables.

We showed that the closely related definition of a model’s identified set of structures may be equiv-

alently formulated in terms of selectionability criteria in the space of unobserved heterogeneity.

This formulation enables direct incorporation of restrictions on conditional distributions of unob-

served heterogeneity, of the sort typically employed in econometric models, as we demonstrated

by characterizing identified sets under stochastic independence, mean independence, and quantile

independence restrictions. We specialized these characterizations to a model with interval censored

endogenous explanatory variables, with a censoring and linear index structure following Manski and

Tamer (2002), but where we relaxed the requirement that censored variables be exogenous. We

provided numerical illustrations of identified sets in such models under a stochastic independence
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Figure 2: Outer region projections for DGP1 onto the (g0, g1), (g0, s), and (g1, s) planes, respec-
tively, with 8 bins using inequalities generated with M ∈ {5, 7, 9}. The red point marks the data
generating value.
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Figure 3: Outer region for DGP2 with 12 bins calculated using inequalities generated with M ∈
{5, 7, 9}. Dashed green lines intersect at the data generating value of the parameters.
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Figure 4: Outer region projections for DGP2 onto the (g0, g1), (g0, s), and (g1, s) planes, respec-
tively, with 12 bins using inequalities generated with M ∈ {5, 7, 9}. The red point marks the data
generating value.
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restriction between instrumental variables and unobserved heterogeneity.

Our characterizations of identified sets can all be written in the form of conditional (moment or

quantile) inequality restrictions. Estimation and inference based on such restrictions is a continu-

ing topic of research in the econometrics literature. In many models, for example those employing

conditional mean or conditional quantile restrictions on unobserved heterogeneity, existing methods

such as those of Andrews and Shi (2013) and Chernozhukov, Lee, and Rosen (2013) are directly

applicable. In other models, in particular those with stochastic independence restrictions where

the number of core determining sets can be extremely large, the number of conditional inequal-

ity restrictions characterizing the identified set may be vast relative to sample size. This raises

complications both in terms of computation and the quality of asymptotic approximations in finite

samples for inference methods based on inequality restrictions, thus motivating future research on

inference methods based on extremely large numbers of inequalities relative to sample size, or based

on altogether different characterizations of the required selectionability criteria for identified sets.
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A Proofs

Proof of Theorem 1. Fix z ∈ RZ and suppose that FY |Z (·|z) is selectionable with respect to the

conditional distribution of Y (U,Z;h) given Z = z. By Restriction A3, U is conditionally distributed

GU |Z (·|z) given Z = z, and thus selectionability implies that there exist random variables Ỹ and Ũ

such that

(i) Ỹ |Z = z ∼ FY |Z (·|z),

(ii) Ũ |Z = z ∼ GU |Z (·|z),

(iii) P
[
Ỹ ∈ Y

(
Ũ , Z;h

)
|Z = z

]
= 1.

By Restriction A3, Ỹ ∈ Y
(
Ũ , Z;h

)
if and only if h

(
Ỹ , Z, Ũ

)
= 0, equivalently Ũ ∈ U

(
Ỹ , Z;h

)
.

Condition (iii) is therefore equivalent to

P
[
Ũ ∈ U

(
Ỹ , Z;h

)
|Z = z

]
= 1. (A.1)

Thus there exist random variables Ỹ and Ũ satisfying (i) and (ii) such that (A.1) holds, equivalently

such that GU |Z (·|z) is selectionable with respect to the conditional distribution of U (Y,Z;h) given

Z = z. The choice of z was arbitrary, and the argument thus follows for all z ∈ RZ . �

Proof of Theorem 2. This follows directly from application of Theorem 1 to Definitions 2 and

3, respectively. �

Proof of Corollary 1. From the selectionability characterization of M∗ in U -space in Theorem

2, we have that

M∗ =
{

(h,GU ) ∈M : GU (·|z) 4 U (Y, z;h) when Y ∼ FY |Z (·|z) , a.e. z ∈ RZ
}

.

Fix z ∈ RZ and suppose Y ∼ FY |Z (·|z). From Artstein’s Inequality, see Artstein (1983), Norberg

(1992), or Molchanov (2005, Section 1.4.8.), GU (·|z) 4 U (Y, z;h) if and only if

∀K ∈ K (RU ) , GU (K|z) ≤ FY |Z [U (Y, z;h) ∩ K 6= ∅|z] ,

where K (RZ) denotes the collection of all compact sets on RU . By Corollary 1.4.44 of Molchanov

(2005) this is equivalent to

∀S ∈ G (RU ) , GU (S|z) ≤ FY |Z [U (Y, z;h) ∩ S 6= ∅|z] ,
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where G (RU ) denotes the collection of all open subsets of RU . Because GU (S|z) = 1−GU (Sc|z)
and

FY |Z [U (Y, z;h) ⊆ Sc|z] = 1− FY |Z [U (Y, z;h) ∩ S 6= ∅|z] ,

this is equivalent to

∀S ∈ G (RU ) , FY |Z [U (Y, z;h) ⊆ Sc|z] ≤ GU (Sc|z) .

The collection of Sc such that S ∈ G (RU ) is precisely the collection of closed sets on RU , F (RU ),

completing the proof. �

Proof of Lemma 1. US (h, z) is a union of sets contained in S, so that US (h, z) ⊆ S and

GU |Z (US (h, z) |z) ≤ GU |Z (S|z) . (A.2)

By supposition we have

Ch (US (h, z) |z) ≤ GU |Z (US (h, z) |z) . (A.3)

The result then holds because Ch (S|z) = Ch (US (h, z) |z), since

Ch (US (h, z) |z) ≡ P [U (Y, Z;h) ⊆ US (h, z) |Z = z]

=

∫
y∈RY

1 [U (y, z;h) ⊆ US (h, z)] dFY |Z (y|z)

=

∫
y∈RY

1 [U (y, z;h) ⊆ S] dFY |Z (y|z)

= Ch (S|z) ,

where the second line follows by the law of total probability, and the third by the definition of

US (h, z) in (3.3). Combining Ch (US (h, z) |z) = Ch (S|z) with (A.2) and (A.3) completes the

proof. �

Proof of Theorem 3. Fix (h, z). Suppose that

∀U ∈ Q (h, z) , Ch (U|z) ≤ GU |Z (U|z) . (A.4)

Let S ∈ U∗ (h, z) and S /∈ Q (h, z). Since S /∈ Q (h, z) there exist nonempty collections of sets

S1, S2 ∈ US (h, z) with S1 ∪ S2 = US (h, z) such that

S1 ≡
⋃
T ∈S1

T ∈ Q (h, z) , S2 ≡
⋃
T ∈S2

T ∈ Q (h, z) ,
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and

GU |Z (S1 ∩ S2|z) = 0. (A.5)

Since S1,S2 ∈ Q (h, z) we also have that

Ch (S1|z) ≤ GU |Z (S1|z) and Ch (S2|z) ≤ GU |Z (S2|z) . (A.6)

Because S1 ∪ S2 = US (h, z),

U (Y, z;h) ⊆ S ⇒ {U (Y, z;h) ⊆ S1 or U (Y, z;h) ⊆ S2} . (A.7)

Using (A.7), (A.6), and (A.5) in sequence we then have

Ch (S|z) ≤ Ch (S1|z) + Ch (S2|z) ≤ GU |Z (S1|z) +GU |Z (S2|z) = GU |Z (S|z) .

Combined with (A.4) this implies Ch (S|z) ≤ GU |Z (S|z) for all S ∈ U∗ (h, z) and hence all closed

S ⊆ RU by Lemma 1, completing the proof. �

Proof of Corollary 2. Consider any S ∈ QE (h, z). Note that

Ch (Sc|z) = P [U (Y,Z;h) ⊆ Sc|z] = P [U (Y, Z;h) ∩ S = ∅|z] .

S ∈ QE (h, z) implies that for all y ∈ Y, either U (y, z;h) ⊆ S or U (y, z;h) ∩ S = ∅. Thus

Ch (S|z) + Ch (Sc|z) = P [U (Y,Z;h) ⊆ S|z] + P [U (Y,Z;h) ∩ S = ∅|z] = 1. (A.8)

The inequalities of Theorem 3 imply that

GU |Z (S|z) ≥ Ch (S|z) and GU |Z (Sc|z) ≥ Ch (Sc|z) .

Then GU |Z (S|z)+GU |Z (Sc|z) = 1 and (A.8) imply that both inequalities hold with equality. �

Proof of Theorem 4. Under Restriction SI, GU |Z (·|z) = GU (·) a.e. z ∈ RZ . (3.6) and (3.7)

follow from (3.1) and Theorem 2, respectively, upon substituting GU (·) for GU |Z (·|z). (3.8) follows

from Corollary 2, again by replacing GU |Z (·|z) with GU (·). The equivalence of (3.7) and (3.9) with

GU |Z (·|z) = GU (·) holds by Artstein’s inequality, see e.g. Molchanov (2005, pp. 69-70, Corollary

4.44). �

Proof of Corollary 3. By Theorem 4, (h,GU ) ∈M∗ if and only if

Ch (SI |z) ≤ GU (SI) , Ch (SE |z) = GU (SE) ,
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for all SI ∈ QI (h, z) and SE ∈ QE (h, z) and a.e. z ∈ RZ . These inequalities imply that Ch (S|z) ≤
GU (S) for all S ⊆ RU and so in particular, for all SI ∈ QI (h, z),

Ch (ScI |z) ≤ GU (ScI ) , a.e. z ∈ RZ .

Also, by arguments in the proof of Corollary 2, for all SE ∈ QE (h, z),

Ch (ScE |z) = GU (ScE) , a.e. z ∈ RZ .

Hence, using GU (S) = 1−GU (Sc), we have that for all SI ∈ QI (h, z) and all SE ∈ QE (h, z),

Ch (SI |z) ≤ GU (SI) ≤ 1− Ch (ScI |z) , a.e. z ∈ RZ , (A.9)

Ch (SE |z) = GU (SE) = 1− Ch (ScE |z) , a.e. z ∈ RZ , (A.10)

which are precisely the conditions characterizing M∗ given in (3.11). The relations (A.9) and

(A.10) thus imply and are implied by (3.8) in the statement of Theorem 4 and hence provide an

equivalent characterization of M∗ as given in (3.11).

Furthermore, (A.9) and (A.10) yield the conditions that define H∗ in (3.10), namely that for

all SI ∈ QI (h, z) and all SE ∈ QE (h, z)

Ch (SI |z) ≤ 1− Ch (ScI |z) , a.e. z ∈ RZ , (A.11)

Ch (SE |z) = 1− Ch (ScE |z) , a.e. z ∈ RZ . (A.12)

By monotonicity of the containment functional it follows that under (A.11) and (A.12) there exists

some probability distribution GU such that (A.9) and (A.10) hold for all SI ∈ QI (h, z) and all

SE ∈ QE (h, z), so that (h,GU ) ∈M∗, completing the proof. �

Proof of Theorem 5. Restrictions A3 and A4 guarantee that U (Y,Z;h) is integrable and closed.

In particular integrability holds because by Restriction A3 first GU |Z (S|z) ≡ P [U ∈ S|z] so that

E [U |z] = 0 a.e. z ∈ RZ , and second P [h (Y,Z, U) = 0] = 1 so that

U ∈ U (Y, Z;h) ≡ {u ∈ RU : h (Y,Z, u) = 0} ,

implying that U (Y, Z;h) has an integrable selection, namely U . From Definition 6, 0 ∈ E [U (Y,Z;h) |z]
a.e. z ∈ RZ therefore holds if and only if there exists a random variable Ũ ∈Sel (U (Y ,Z ; h)) such

that E
[
Ũ |z
]

= 0 a.e. z ∈ RZ , and hence H∗ is the identified set for h. The representation of the

identified set of structures M∗ then follows directly from Theorem 2. �
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Proof of Corollary 4. Fix z ∈ RZ . The conditional Aumann expectation E [U (Y, Z;h) |z] is the

set of values for ∫
RY |z

∫
U(y,z;h)

udFU |Y Z (u|y, z) dFY |Z (y|z) ,

such that there exists for each y ∈ RY |z a conditional distribution FU |Y Z (u|y, z) with support on

U (y, z;h). Since each U (y, z;h) is convex, the inner integral∫
U(y,z;h)

udFU |Y Z (u|y, z)

can take any value in U (y, z;h), and hence E [U (Y, Z;h) |z] is the set of values of the form∫
RY |z

u (y, z) dFY |Z (y|z)

for some u (y, z) ∈ U (y, z;h), each y ∈ RY |z. Since the choice of z was arbitrary, this completes

the proof. �

Proof of Corollary 5. Restrictions A3 and A4 and the continuity requirement of Restriction

MI* guarantee that D (Y, Z;h) is integrable and closed. From Definition 6, 0 ∈ E [D (Y, Z;h) |z]
a.e. z ∈ RZ therefore holds if and only if there exists a random variable D . D (Y,Z;h) such that

E [D|z] = 0 a.e. z ∈ RZ . D . D (Y,Z;h) ensures that

P [D ∈ D (Y,Z;h) |z] = 1, a.e. z ∈ RZ .

Define

Ũ (D,Y, Z;h) ≡ {u ∈ U (Y,Z;h) : D = d (u, Z)} .

By the definition of D (Y,Z;h), D ∈ D (Y,Z;h) implies that Ũ (D,Y, Z;h) is nonempty. Hence

there exists a random variable Ũ such that with probability one Ũ ∈ Ũ (D,Y, Z;h) ⊆ U (Y,Z;h)

where D = d
(
Ũ , Z

)
. Thus Ũ is a selection of U (Y,Z;h) and E

[
d
(
Ũ , Z

)
|z
]

= 0 a.e. z ∈ RZ ,

and therefore H∗ is the identified set for h, and the given characterization of M∗ follows. �

Proof of Theorem 6. Using Corollary 1 and Definition 4 with ψ
(
h,GU |Z

)
= h, the identified set

of structural functions h is

H∗∗ =
{
h ∈ H : ∃GU |Z ∈ GU |Z s.t. ∀S ∈ F (RU ) , Ch (S|z) ≤ GU |Z (S|z) a.e. z ∈ RZ

}
. (A.13)
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Consider any h ∈ H∗∗. We wish to show first that h belongs to the set H∗ given in (3.16). Set

S = (−∞, 0], and fix z ∈ RZ . Then GU |Z ∈ GU |Z and Restriction QI imply that

Ch ((−∞, 0] |z) ≤ GU |Z ((−∞, 0] |z) = τ , (A.14)

and because of Restriction IS, U (Y, Z;h) = [u (Y,Z;h) , u (Y, Z;h)],

Ch ((−∞, 0] |z) = FY |Z [u (Y, Z;h) ≤ 0|z] . (A.15)

Now consider S = [0,∞). We have by monotonicity of the containment functional Ch (·|z) and

from Ch (S|z) ≤ GU |Z (S|z) in (A.13) that

Ch ((0,∞) |z) ≤ Ch ([0,∞) |z) ≤ GU |Z ([0,∞) |z) = 1− τ , (A.16)

where the equality holds by continuity of the distribution of U |Z = z in a neighborhood of zero.

Again using Restriction IS,

Ch ((0,∞) |z) = 1− FY |Z [u (Y,Z;h) ≤ 0|z] . (A.17)

Combining this with (A.16) and also using (A.14) and (A.15) above gives

FY |Z [u (Y,Z;h) ≤ 0|z] ≤ τ ≤ FY |Z [u (Y,Z;h) ≤ 0|z] . (A.18)

The choice of z was arbitrary and so we have that the above holds a.e. z ∈ RZ , implying that

h ∈ H∗.
Now consider any h ∈ H∗. We wish to show that h ∈ H∗∗. It suffices to show that for

any such h under consideration there exists a collection of conditional distributions GU |Z such

that for almost every z ∈ RZ (1) GU |Z (·|z) has τ -quantile equal to zero, and (2) ∀S ∈ F (RU ),

Ch (S|z) ≤ GU |Z (S|z).
To do so we fix an arbitrary z ∈ RZ and construct GU |Z (·|z) such that (1) and (2) hold. Namely

let GU |Z (·|z) be such that for each S ∈ F (RU ),

GU |Z (S|z) = λ (z)Ch (S|z) + (1− λ (z)) (1− Ch (Sc|z)) , (A.19)

where λ (z) is chosen to satisfy

λ (z)FY |Z [u (Y, Z;h) ≤ 0|z] + (1− λ (z))FY |Z [u (Y, Z;h) ≤ 0|z] = τ . (A.20)
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The left hand side of equation (A.20) is precisely (A.19) with S = (−∞, 0]. Because h ∈ H∗, (A.18)

holds, which guarantees that λ (z) ∈ [0, 1]. (A.20) and (A.19) deliver

GU |Z ((−∞, 0] |z) = τ ,

so that (1) holds. Moreover, it easy to verify that for any S,

Ch (S|z) ≤ 1− Ch (Sc|z) ,

since Ch (·|z) is the conditional containment functional of U (Y,Z;h) and 1 − Ch (Sc|z) is the

conditional capacity functional of U (Y, Z;h). Hence Ch (S|z) ≤GU |Z (S|z). Thus (2) holds, and

since the choice z was arbitrary, h ∈ H∗∗ as desired. This verifies claim (i) of the Theorem.

Claim (ii) of the Theorem holds because with u (Y,Z;h) and u (Y, Z;h) continuously distributed

given Z = z, a.e. z ∈ RZ , their conditional quantile functions are invertible at τ . Thus for any

z ∈ RZ ,

q (τ , z;h) ≤ 0 ≤ q (τ , z;h)⇔ FY |Z [u (Y,Z;h) ≤ 0|z] ≤ τ ≤ FY |Z [u (Y,Z;h) ≤ 0|z] .

Claim (iii) of the Theorem follows directly from Theorem 2. �

B Equivalence of Selectionability of Conditional and Joint Distri-

butions

In this section we prove that selectionability statements in the main text required for observational

equivalence and characterization of identified sets conditional on Z = z for almost every z ∈ RZ are

in fact equivalent to unconditional selectionability statements inclusive of Z. Intuitively this holds

because knowledge of a conditional distribution of a random set or random vector given Z = z, a.e.

z ∈ RZ , is logically equivalent to knowledge of the joint distribution of that given random vector

or random set and Z.

Proposition 1 (i) FY |Z (·|z) 4 Y (U,Z;h) |Z = z a.e. z ∈ RZ if and only if FY Z (·) 4 Y (U,Z;h)×
Z. (ii) GU |Z (·|z) 4 U (Y,Z;h) |Z = z a.e. z ∈ RZ if and only if GUZ (·) 4 U (Y, Z;h)× Z.
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Proof of Proposition 1. Note that since the choice of z in the above Theorem is arbitrary the

statement holds because

P
[(
Ỹ , Z

)
∈ Y (U,Z;h)× Z

]
=

∫
z∈RZ

P
[(
Ỹ , Z

)
∈ Y

(
Ũ , Z;h

)
× Z|Z = z

]
dFZ (z)

=

∫
z∈RZ

P
[
Ỹ ∈ Y

(
Ũ , Z;h

)
|Z = z

]
dFZ (z) ,

which is equal to one if and only if P
[
Ỹ ∈ Y

(
Ũ , Z;h

)
|Z = z

]
= 1 for almost every z ∈ RZ .

By identical reasoning, GU |Z (·|z) is selectionable with respect to the conditional distribution of

U (Y,Z;h) given Z = z for almost every z ∈ RZ if and only if GUZ (·) is selectionable with respect

to the distribution of U (Y, Z;h)× Z. �

C Computational Details for Numerical Illustrations of Section

4.2

In this Section we describe computation of the conditional containment functional Cθ ([u∗, u
∗] |z)

in (4.13). Computations were carried out in Mathematica 9.

Given the structure specified for DGP1 and DGP2 in Section 4.2, the conditional distribution

of Y ∗2 given Y1 = y1 and Z = z is for any (y1, z)

N

(
a (z) +

σ1v + γ1σvv
σ11 + 2γ1σ1v + γ21σvv

(y1 − (γ0 + γ1a (z))) , σvv −
(σ1v + γ1σvv)

2

σ11 + 2γ1σ1v + γ21σvv

)
,

where a (z) ≡ δ0 + δ1z. From this it follows that the conditional (discrete) distribution of (Y2l, Y2u)

given Y1 and Z is:

P [[Y2l, Y2u) = Ij |y1, z] = Φ

cj+1 −
(
a(z) + σ1v+γ1σvv

σ11+2γ1σ1v+γ21σvv
(y1 − (γ0 + γ1a(z)))

)
√
σvv − (σ1v+γ1σvv)

2

σ11+2γ1σ1v+γ21σvv



− Φ

cj −
(
a(z) + σ1v+γ1σvv

σ11+2γ1σ1v+γ21σvv
(y1 − (γ0 + γ1a(z)))

)
√
σvv − (σ1v+γ1σvv)

2

σ11+2γ1σ1v+γ21σvv

 .

The distribution of Y1 given Z = z is

Y1|Z = z ∼ N
(
γ0 + γ1a(z), σ11 + 2γ1σ1v + γ21σvv

)
. (C.1)
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The conditional containment functional can thus be written

Cθ ([u∗, u
∗] |z) =

∑
j

P[(g0 + g1cj+1 + u∗ ≤ Y1 ≤ g0 + g1cj + u∗) ∧ (Y2, Y3) = Ij |z]

=
∑
j

max

(
0,

∫ γ0+γ1cj+u
∗

γ0+γ1cj+1+u∗

fY1|Z (y1|z)× P [[Y2l, Y2u) = Ij |y1, z] dy1

)
.

where fY1|Z (·|z) is the normal pdf with mean and variance given in (C.1).

In the calculations performed in Mathematica we used the following equivalent formulation

employing a single numerical integration for computation of Cθ ([u∗, u
∗] |z).

Cθ ([u∗, u
∗] |z) ≡∫ ∞

−∞

∑
j

1[g0 + g1cj+1 + u∗ < y1 < g0 + g1cj + u∗]× fY1|Z (y1|z)× P [[Y2l, Y2u) = Ij |y1, z]

 dy1.
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