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Single equation IV model for discrete data

@ Discrete Y is determined by vector X and scalar unobserved continuously
distributed U:
Y = h(X,U)

h weakly monotonic in U, non-decreasing.
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@ Instruments Z are excluded from h, UJLZ.
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distributed U:
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Single equation IV model for discrete data

@ Discrete Y is determined by vector X and scalar unobserved continuously
distributed U:

Y = h(X,U)
h weakly monotonic in U, non-decreasing.
@ Instruments Z are excluded from h, UJLZ.
@ This incomplete model set identifies h.

e Sets depend on discreteness of Y, strength and support of instruments.
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Single equation IV model for discrete data

@ Discrete Y is determined by vector X and scalar unobserved continuously
distributed U:
Y = h(X,U)
h weakly monotonic in U, non-decreasing.
@ Instruments Z are excluded from h, UJLZ.
@ This incomplete model set identifies h.

o Sets depend on discreteness of Y, strength and support of instruments.
o Parametric restrictions on h may not deliver point identification.

@ To be considered.

e Observational equivalence.
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Single equation IV model for discrete data

@ Discrete Y is determined by vector X and scalar unobserved continuously
distributed U:
Y = h(X,U)
h weakly monotonic in U, non-decreasing.
@ Instruments Z are excluded from h, UJLZ.
@ This incomplete model set identifies h.

o Sets depend on discreteness of Y, strength and support of instruments.
o Parametric restrictions on h may not deliver point identification.
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o Observational equivalence.
o The identified set.
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Single equation IV model for discrete data

@ Discrete Y is determined by vector X and scalar unobserved continuously
distributed U:
Y = h(X,U)

h weakly monotonic in U, non-decreasing.
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Single equation IV model for discrete data

@ Discrete Y is determined by vector X and scalar unobserved continuously
distributed U:
Y = h(X,U)
h weakly monotonic in U, non-decreasing.
@ Instruments Z are excluded from h, UJLZ.
@ This incomplete model set identifies h.
o Sets depend on discreteness of Y, strength and support of instruments.
o Parametric restrictions on h may not deliver point identification.
@ To be considered.

Observational equivalence.
The identified set.
o Two examples:

@ binary Y, discrete X
@ ordered probit Y continuous X.

Extensions/applications.
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Threshold crossing representation

e Y e€{01,...,M} determined by X and U ~ Unif (0, 1):
y=hx,U) hntu ulz
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Threshold crossing representation

e Y e€{01,...,M} determined by X and U ~ Unif (0, 1):
y=hx,U) hntu ulz
@ Threshold crossing representation. Consider some hg.

0o , 0< wu Spg(x)

(x)

—=o

ho(xu)=¢ 1 R < u sp

A
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Threshold crossing representation

e Y e€{01,...,M} determined by X and U ~ Unif (0, 1):
y=hx,U) hntu ulz
@ Threshold crossing representation. Consider some hg.

0o , 0< u < pg(x)
hO(Xr u) = 1 ) pO(X) < u §p(1)(x)
M o,opY ()< u <1
o Consider a structure Sy = {hp, F8X|Z} with

F8X|Z(u,x|z) =PrlU <unX < x|Z =]
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Threshold crossing representation

e Y e€{01,...,M} determined by X and U ~ Unif (0, 1):
y=hx,U) hntu ulz

@ Threshold crossing representation. Consider some hg.
o, 0< u <pix)
1 O(x) < u <pd(x)
ho(x, u) = ' 2] =P

M o,opY ()< u <1

Consider a structure Sg = {hg, F8X|Z} with
0 —
FUXlZ(u,x|z) =PrlU <unX < x|Z =]
@ It determines a distribution function of Y and X given Z

F?,X‘Z(m,x|z) = F8x|z(P9n(X)vX|Z)
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Observational equivalence

@ Threshold crossing representation. Consider some hg.

ho(x, u) = 1 p8(x)< “ SP:(LJ(X)
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Observational equivalence

@ Threshold crossing representation. Consider some hg.
0o , 0< u < pg (x)
hO(Xr u) = 1 I PS(X) < u S p?(X)
Mo, P, ()< u <1
@ The model admits observationally equivalent S, #£S; with:

F?,Xlz(m,x|z) = FBX‘Z(pg,(x),x|z) = F(*/x|z(P7;7(X)rX|Z)
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Observational equivalence
@ Threshold crossing representation. Consider some hg.
0o , 0< u < pg(x)
ho(x, u) = 1 po(x) < u < pl(x)
Mo, P, ()< u <1
@ The model admits observationally equivalent S, #£S; with:

F?,Xlz(m,x|z) = FBX‘Z(pg,(x),x|z) = F(*/x|z(P7;7(X)rX|Z)

o Ul Z limits adjustment of the U and X arguments of admissible Fy x|z
because for all T, z

Fux|z(t,o|z) = Fyz(t]z) = Fy(t) =T
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Some related results:

o Continuous outcomes: Chernozhukov and Hansen (2005) and related
papers.

Y = h(X,U) vl z h strictly increasing
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Some related results:

o Continuous outcomes: Chernozhukov and Hansen (2005) and related
papers.
Y=h(X,U) UILZ  hstrictly increasing

e Triangular models: structural equation for (continuous) X:

Y = h(X, U)

X — g(X. V) w,v) Lz

Chesher (2003, 2005), Imbens &Newey (2003).
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Some related results:

o Continuous outcomes: Chernozhukov and Hansen (2005) and related
papers.
Y=h(X,U) UILZ  hstrictly increasing

e Triangular models: structural equation for (continuous) X:

Y = h(X, U)

X — g(X. V) w,v)lz

Chesher (2003, 2005), Imbens &Newey (2003).

e Simultaneous models: “single equation” analysis of Tamer's (2003) entry
game.

Yl*:DC1Y2+ZIB1+81 YQ*:DCQY1+Z[32+£2
Yi=1[Yf >0 Yo=1[¥y >0 (e, e) 12
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The single equation IV model: inequalities

@ Y is determined by observable X and scalar unobservable U.

Y=hX,U) htU U~uUnif(0,1) Ullzea
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The single equation IV model: inequalities

@ Y is determined by observable X and scalar unobservable U.
Y=hX,U) htU U~uUnif(0,1) Ullzea
@ An admissible structure

So = {ho, Fix|z} = Fyxz for z € Q.
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The single equation IV model: inequalities

@ Y is determined by observable X and scalar unobservable U.
Y=hX,U) htU U~uUnif(0,1) Ullzea
@ An admissible structure
So = {ho, FBX‘Z} = ng‘z forz € Q.

@ Py denotes probabilities developed from F\O/X\Z'

@ There are inequalities: for all T € (0,1) and z € Q)

Po[y < ho(X,T)|Z = Z] >T

Po[Y < ho(X,T)|Z = Z] <T
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The single equation IV model: inequalities

@ Y is determined by observable X and scalar unobservable U.
Y=hX,U) htU U~uUnif(0,1) Ullzea

An admissible structure

So = {ho, Fix|z} = Fyxz for z € Q.

Py denotes probabilities developed from F\O/X\Z'

There are inequalities: for all T € (0, 1) and z € O

Po[y < ho(X,T)|Z = Z] >T

Po[Y < ho(X,T)|Z = Z] <T

@ These characterise the identified set.
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For all x, P[h(X, U) < h(X,0.25)|x,z] > P[U < 0.25|x, z]

© 4 -
o 4 ,
X=X
< 4 —
>
o - —
~ 4 e
U=0.25
o4
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
U
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Results concerning the identified set

@ 'Hj is the set of structural functions, h, in admissible structures
. . — 0 .
observationally equivalent to Sy = {ho, FUX\Z}'

@ Py indicates probabilities taken under F$X\Z'
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Results concerning the identified set

@ 'Hj is the set of structural functions, h, in admissible structures
. . — 0 .
observationally equivalent to Sy = {ho, FUX\Z}'

@ Py indicates probabilities taken under F$X\Z'
o (A): If hy € Hy then for all T € (0,1) and z € (X
PolY <h.(X,T)|]Z=2z]>7

PlY <h.(X,T)|]Z=2z]<T
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Results concerning the identified set

@ 'Hj is the set of structural functions, h, in admissible structures
. . — 0 .
observationally equivalent to Sy = {ho, FUX\Z}'

@ Py indicates probabilities taken under F$X\Z'
o (A): If hy € Hy then for all T € (0,1) and z € (X
PolY <h.(X,T)|]Z=2z]>7

PolY < h (X, T)|Z=2z] <1

@ Proof:

o If hy is in an admissible structure delivering F,, then for all T € (0,1) and
ze Q)

YXx|z
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Results concerning the identified set

@ 'Hj is the set of structural functions, h, in admissible structures
observationally equivalent to Sy = {ho, FBX\Z}:

@ Py indicates probabilities taken under F$X\Z'

o (A): If hy € Hy then for all T € (0,1) and z € (X

PolY <h.(X,T)|]Z=2z]>7

PlY <h.(X,T)|]Z=2z]<T
@ Proof:

o If hy is in an admissible structure delivering F\*/X|Z then for all T € (0,1) and
ze Q)
P.lY <h(X,T)|[Z=2z] >

P.JY < h.(X,D)|Z=2Zz]<T

H H * — 0
e If S, and Sy are observationally equivalent FYX\Z = FYX\Z‘
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Results concerning the identified set

@ 'Hj is the set of structural functions, h, in admissible structures
. . — 0 .
observationally equivalent to Sy = {ho, FUX\Z}'

@ Py indicate probabilities taken under F\O/X\Z'
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Results concerning the identified set

@ 'Hj is the set of structural functions, h, in admissible structures
. . — 0 .
observationally equivalent to Sy = {ho, FUX\Z}'

@ Py indicate probabilities taken under F\O/X\Z'
e (B): If for some T € (0,1) and some z € () one of the inequalities
PolY <h.(X,T)|]Z=2z]>7

PlY < h (X, T)|Z=2z] <
fails to hold then h, & H,.
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Results concerning the identified set

@ 'Hj is the set of structural functions, h, in admissible structures
observationally equivalent to Sy = {ho, FBX\Z}:
@ Py indicate probabilities taken under F\O/X\Z'
e (B): If for some T € (0,1) and some z € () one of the inequalities
PolY <h.(X,T)|]Z=2z]>7

PlY < h (X, T)|Z=2z] <
fails to hold then h, & H,.

@ Proof: by contradiction.

er (CeMMAP & UCL) IV Models for Discrete Outcomes 11/21/2008 8/ 38



Results concerning the identified set

@ 'Hj is the set of structural functions, h, in admissible structures
. . — 0 .
observationally equivalent to Sy = {ho, FUX\Z}'

@ Let Py indicate probabilities taken under F3X|Z'
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Results concerning the identified set

@ 'Hj is the set of structural functions, h, in admissible structures
. . — 0 .
observationally equivalent to Sy = {ho, FUX\Z}'

@ Let Py indicate probabilities taken under F3X|Z'
@ (C). Sharpness. If for all T € (0,1) and z € (:
PolY <h.(X,T)|]Z=2z]>7

PlY <h.(X,T)|]Z=2z]<T
then there exists a distribution function FL*/X\Z such that S, = {h., Fl*JX|Z}
is admissible and generates F\*’Xlz = F3X|Z for all z € Q).
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Results concerning the identified set

@ 'Hj is the set of structural functions, h, in admissible structures
. . — 0 .
observationally equivalent to Sy = {ho, FUX\Z}'

@ Let Py indicate probabilities taken under F3X|Z'
o (C). Sharpness. If for all T € (0,1) and z € QO:
PolY <h.(X,T)|]Z=2z]>7
PlY < h (X, T)|Z=2z] <
then there exists a distribution function FL*/X\Z such that S, = {h., Fl*JX|Z}

is admissible and generates FYXlZ = FYX|Z for all z € Q).

@ Proof: constructive - see Annex of the paper.

er (CeMMAP & UCL) IV Models for Discrete Outcomes 11/21/2008 9/ 38



Binary Y and discrete X

@ Binary Y delivered by:

fo, 0 <U< p(X)
Y_{l . p(X) <U< 1 vlz  xei{x....xx}
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Binary Y and discrete X

@ Binary Y delivered by:

{0, 0 <U< p(X)
Y‘{1 . p(X) <U< 1 vl z

@ Notation:

0r=p(x),....0k = p(xk)
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Binary Y and discrete X

@ Binary Y delivered by:

Y:{O . 0 <U< p(X) vl 7

1, p(X) <U< 1 X € {xt,....xx}

@ Notation:
01=p(x1),....0x = plxi)

e For ke {1,..., K} data are informative about:

ap(z) = PlY =0|X = x, Z = Z] Bi(z) = P[X = x|Z = 2]

er (CeMMAP & UCL)
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Binary Y and discrete X

@ Binary Y delivered by:

{0, 0 <U< p(X)
Y—{l LX) —U< 1 vlz  Xxe{x ... x}

@ Notation:
01=p(x1),....0x = plxi)

For k € {1 ..... K} data are informative about:

a(z) = PlY =0|X = x, Z = Z] Bi(z) = PIX = x¢|Z = 2]

What is the set defined by

PlY <h(X,T)|Z=2z]>T
h: vV te(0,1), zeQ
PIY <h(X,T)|Z=2] <

in this case?
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The identified set

@ The (proposed) order of 61, ...,0 is important. There are K! orderings.
Suppose

0=0p <01 <0< - <O <Ogy1 =1
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The identified set

@ The (proposed) order of 61, ...,0 is important. There are K! orderings.
Suppose
0=0p <01 <0< - <O <Ogy1 =1
@ The event
{Y < h(X, 1)} isequal to {(Y =0)N(p(X) < 1)}
and so:

PlY < h(X,7)|Z = 2] = P[(Y = 0) N (p(X) < 7)|Z = 2]
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The identified set

@ The (proposed) order of 61, ...,0 is important. There are K! orderings.
Suppose
0=0p <01 <0< - <O <Ogy1 =1
@ The event
{Y < h(X, 1)} isequal to {(Y =0)N(p(X) < 1)}
and so:
PlY < h(X,T)|Z=2z] =P[(Y =0)N(p(X) < 1)|Z = 2]

o For j such that §; < 7 < 6,1, the event {p(X) < T} occurs iff
X e {Xl,...,Xj} so

J
PlY < h(X,7)|Z = 2] = Z
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The identified set

@ The (proposed) order of 61, ...,0 is important. There are K! orderings.

Suppose

0=0p <01 <0< - <O <Ogy1 =1
@ The event
{Y < h(X, 1)} isequal to {(Y =0)N(p(X) < 1)}
and so:
PlY < h(X,T)|Z=2z] =P[(Y =0)N(p(X) < 1)|Z = 2]

o For j such that §; < 7 < 6,1, the event {p(X) < T} occurs iff

X e {Xl,...,Xj} so
PlY < h(X,7)|Z = 2] = Zak
e This is less than T for all T € (6;,6;1] only if

Y. ai(2)y () <.
k=1

Andrew Chesher (CeM > & UCL) IV Models for Discrete Outcomes 11/21/2008 11 / 38




The identified set

@ A similar argument for the event {Y < h(X, T)} delivers

PlY < h(X,7)|Z =2] = f_; + Y a(2)Be(z) > 7T

for T € (0;,0;41] and so
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The identified set

@ A similar argument for the event {Y < h(X, T)} delivers

PlY < h(X,7)|Z =2] = f_; + Y a(2)Be(z) > 7T

for T € (0;,0;41] and so

o Combining, for j € {1,..., K}

J
@0 <0< T pule +2ak 2y (2)
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The identified set

@ These must hold for all z € (), so for j € {1,..., K}

i K
max (JZ ak(z)ﬁk(z)> <6 < m|n <Z Bi(z) + kz'txk(z)ﬁk(z)>
=j
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The identified set

@ These must hold for all z € (), so for j € {1,..., K}

i K
max (’zak<z>ﬁk<z>> < 6; < min <Z Bil2) + kz,ak<z>ﬁk<z>>
=j

ze k=1

@ Exchange of indices gives the result for other orderings.
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The identified set

@ These must hold for all z € (), so for j € {1,..., K}
J K
max (kz mz)ﬁk(z)) <) < min <Z Bele) + kzmz)ﬁk(z))
—1 =

@ Exchange of indices gives the result for other orderings.
@ The identified set is up to K! boxes in the K dimensional unit cube.

MMAP & UCL) IV Models for Discrete Outcomes 11/21/2008 13/ 38



The identified set

@ These must hold for all z € (), so for j € {1,..., K}
J K
max (zak<z>ﬁk<z>> <) < min <z Bilz zmz)ﬁk(z))
k=1 k=j

@ Exchange of indices gives the result for other orderings.
@ The identified set is up to K! boxes in the K dimensional unit cube.
@ Monotonicity (smoothness) restriction on effect of X is very informative.
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The identified set

@ These must hold for all z € (), so for j € {1,..., K}
J K
max (kz mz)ﬁk(z)) <) < min <Z Bele) + kzmz)ﬁk(z))
—1 =

@ Exchange of indices gives the result for other orderings.

@ The identified set is up to K! boxes in the K dimensional unit cube.

@ Monotonicity (smoothness) restriction on effect of X is very informative.
e With K = 2 for each z € Q, (but drop z from notation)

1B <01 < wrfy+anp,

a1fy + a2y, <6< By t+azf,
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The identified set

@ These must hold for all z € (), so for j € {1,..., K}

J K
rznea(>)< (k; ock(z)ﬁk(z)) <6 < mln <Z Bi(z) + /;j“k(Z)ﬁk(Z)>
Exchange of indices gives the result for other orderings.

The identified set is up to K! boxes in the K dimensional unit cube.
Monotonicity (smoothness) restriction on effect of X is very informative.
With K = 2 for each z € ), (but drop z from notation)

1B <01 < wrfy+anp,

a1fy + a2y, <6< By t+azf,

@ Swapping indexes.

wpfy < < wofy +aify

wpfy +a1fy <61 < By +afy
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Calculations for a binary Y binary X example

@ Here is a process for Y € {0,1} and X € {0,1}

Y* = agt+a1X+e
X" = By+piZ+7

Y=1y*>0 X=1[X">0] H]IZN’V([H'“ Fl)D
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Calculations for a binary Y binary X example

@ Here is a process for Y € {0,1} and X € {0,1}

Y* = agt+a1X+e
X" = By+piZ+7

Y=1y*>0 X=1[X">0] H]IZN’VQH'“ Fl)D

@ Here is an IV model
Y — 0 , o< U
1, p(X)< U

Consider identification of p(0), and p(1).

'f(X> z 1L u ~ unif(0,1)

INIA

sher (CeMMAP & UCL)
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Calculations for a binary Y binary X example

@ Here is a process for Y € {0,1} and X € {0,1}

Y* = agt+a1X+e
X" = By+piZ+7

Y=1y*>0 X=1[X">0] H]IZN’VQH'“ Fl)D

@ Here is an IV model
Y — 0 , o< U
1, p(X)< U
Consider identification of p(0), and p(1).
@ The IV model is correctly specified:

INIA

'f(X> z 1L u ~ unif(0,1)

Z L u=ad(e) ~ Unif(0,1)

0 , 0< U <P(—ap—mX)
1, &(—ap—mX)< U <1
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Andrew Chesher (CeMMAP & L IV Models for Discrete Outcomes 11/21/2008 15/ 38



A binary Y binary X example

@ Here is a process for Y € {0,1} and X € {0,1}

Y* = apt+aX+e
X" = Byt pZ+7

— * _ * € -~ 0 1 p
Y =1[Y* > 0] X =1[X* > 0] [’7]|Z N({O}’[p 1])
o Consider the case with p = —0.25 and

ag =0 a1 = 0.5

Po=0 pp=1
for which
p(0) ®(—ap) =05
p(l) = &(—ag—a1)=0.308

sher (CeMMAP & UCL)

IV Models for Discrete Outcomes 11/21/2008 15 / 38
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A parametric example: an ordered probit IV model

@ Known thresholds ¢y, ..., cy_1 and independence: zllu~ Unif (0,1)

1, 0< U <P —ag—a1X)
2 <1>(c1—0c0—1x1X)< U Sq)(CQ—DC()—DQX)

Y =

M Pepy1—ap—X)< U <1
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A parametric example: an ordered probit IV model

@ Known thresholds ¢y, ..., cy_1 and independence: zllu~ Unif (0, 1)
1, 0< U <P —ag—a1X)
2, dD(cl—ao—txlX) < U Sq)(CQ—OC()—leX)
Y = ) .
M Dy —ap—mX) < U <1
o Consider the set of values of ag and a; identified by this model when:

Y'=a+aX+e X =by+b1Z+7

B . € O 1 SE??
Y = m, Cm—1 <Y <cm {77]|Z N<|:O:|Y[Sg;] 5;717:|>

with: O = [_]_’ 1}’ ag = 0, a; = 1, bO =0, 55,7 = 0.6, 577’7 = 1.
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A parametric example: an ordered probit IV model

@ Known thresholds ¢y, ..., cp—1 and independence: ZiL U ~ Unif (0, 1)
1, 0< U <P —ag—a1X)
2, @(cl—ao—txlX) < U Sq)(CQ—OC()—leX)
Y = . o
M Dy —ap—mX) < U <1

o Consider the set of values of ag and a; identified by this model when:

Y'=a +aX+e X=by+bZ+7

B . € 0 1 sy
Y =m, m-1 <Y < cm [;7]|Z N({O}’[Sm SIMD

Wlth Q — [_]_’ ]_], ag = 0' a; = ]_, bO = 0, 55'7 = 06, 517;7 =1.
o We:

vary discreteness: M € {5,11,21}
vary strength /support of instrument: by € {1,2}
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Mclasses : E[X|Z=2] =b;z
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Estimation

@ Intersection bounds: for each distribution F3X|Z the identified set of
structural functions Hj is all h such that

minyeq Po[Y < h(X,D)|Z=2z] > 71
for all T € [0, 1]
maxzeq PolY < h(X,T)|Z=2z] <7
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Estimation
@ Intersection bounds: for each distribution F3X|Z the identified set of
structural functions Hj is all h such that

minyeq Po[Y < h(X,D)|Z=2z] > 71
for all T € [0, 1]
maxzeq PolY < h(X,T)|Z=2z] <7

@ Enumerate the set defined using an estimate, "A:?/X\Z - Chernozhukov, Lee &
Rosen (2008).

e Moment inequalities: for any w(z) > 0 and all T € (0,1)

Evxz[(1Y < (X, 1) — 1) x w(Z)] > 0

Eyxz[(1[Y <h(X,T)] = 1) x w(Z)] <0

o Andrews, Berry, Jia (2004), Rosen (2006), Pakes, Porter, Ho, Ishii (2006).
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Multivariate discrete outcomes

o Y =(Y1,...,Yr) with
Ye = he(X, Up)

each hy non-decreasing in Uy ~ Unif(0,1) and U = (U4, ..., UT)lLZ.
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Multivariate discrete outcomes
o Y =(Yi,...,Yr) with
Y = he(X, Up)

each hy non-decreasing in Uy ~ Unif(0,1) and U = (U4, ..., UT)lLZ.
o Consider So = {hY, ... h7, F{jx,} with copula ), = Fy) delivering Fyy /.
o Identified set: consists of admissible

{hi, oo iy P}

such that for all T € (0,1)7, z€ Q

Po[ () (Ye < hi(X,1¢))|Z = 2] > Fj(7)
t=1
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Binary Y, measurement error

@ Impose monotone index restriction, b(-) is increasing

< _ /0, O

U
U
(uw)lz

VANRVAN

f(x/ﬁ) X=X+W

INIA
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Binary Y, measurement error

@ Impose monotone index restriction, b(-) is increasing

Y:h(X,U):{(l) b(X! [;))i g éf(xlﬁ) X=X+W
(v.w)llz
@ implies:
" y_ {0 . —eo< bHU)+WB <XB
_{1 . X'B< bLU)+WB <o
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Binary Y, measurement error

@ Impose monotone index restriction, b(-) is increasing

Y:h(X,U):{(l) b(X! ﬁ())i g éf(Xlﬁ) X=X+W
ww)lz

@ implies:
y_J0  —oe< b~ Y U)+W'B < X'B
_{1 . X'B< bLU)+WB <o

@ Define
V= C(b 1 (U)+ W'B) ~ Unif(0,1) Il Z

then
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Concluding remarks

@ An IV model set identifies a structural function when the outcome is discrete.
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Concluding remarks

An IV model set identifies a structural function when the outcome is discrete.

The extent of the identified set depends on strength and support of
instruments and the discreteness of the outcome.

Extensions: multivariate outcomes, measurement error.
What to do?

Challenges include:

o results for other models admitting multiple sources of heterogeneity, e.g. MNL
type models.

o identification catalogues: identified sets for S = {h, FUX\Z} and from this for
functionals 6(S).
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