Instrumental Variable Models for Discrete Outcomes

Department Seminar: UIUC Economics Department

Andrew Chesher

CeMMAP \& UCL

November 21st 2008

Single equation IV model for discrete data

- Discrete Y is determined by vector X and scalar unobserved continuously distributed U :

$$
Y=h(X, U)
$$

h weakly monotonic in U, non-decreasing.

Single equation IV model for discrete data

- Discrete Y is determined by vector X and scalar unobserved continuously distributed U :

$$
Y=h(X, U)
$$

h weakly monotonic in U, non-decreasing.

- Instruments Z are excluded from $h, U \Perp Z$.

Single equation IV model for discrete data

- Discrete Y is determined by vector X and scalar unobserved continuously distributed U :

$$
Y=h(X, U)
$$

h weakly monotonic in U, non-decreasing.

- Instruments Z are excluded from $h, U \Perp Z$.
- This incomplete model set identifies h.

Single equation IV model for discrete data

- Discrete Y is determined by vector X and scalar unobserved continuously distributed U :

$$
Y=h(X, U)
$$

h weakly monotonic in U, non-decreasing.

- Instruments Z are excluded from $h, U \Perp Z$.
- This incomplete model set identifies h.
- Sets depend on discreteness of Y, strength and support of instruments.

Single equation IV model for discrete data

- Discrete Y is determined by vector X and scalar unobserved continuously distributed U :

$$
Y=h(X, U)
$$

h weakly monotonic in U, non-decreasing.

- Instruments Z are excluded from $h, U \Perp Z$.
- This incomplete model set identifies h.
- Sets depend on discreteness of Y, strength and support of instruments.
- Parametric restrictions on h may not deliver point identification.

Single equation IV model for discrete data

- Discrete Y is determined by vector X and scalar unobserved continuously distributed U :

$$
Y=h(X, U)
$$

h weakly monotonic in U, non-decreasing.

- Instruments Z are excluded from $h, U \Perp Z$.
- This incomplete model set identifies h.
- Sets depend on discreteness of Y, strength and support of instruments.
- Parametric restrictions on h may not deliver point identification.
- To be considered.

Single equation IV model for discrete data

- Discrete Y is determined by vector X and scalar unobserved continuously distributed U :

$$
Y=h(X, U)
$$

h weakly monotonic in U, non-decreasing.

- Instruments Z are excluded from $h, U \Perp Z$.
- This incomplete model set identifies h.
- Sets depend on discreteness of Y, strength and support of instruments.
- Parametric restrictions on h may not deliver point identification.
- To be considered.
- Observational equivalence.

Single equation IV model for discrete data

- Discrete Y is determined by vector X and scalar unobserved continuously distributed U :

$$
Y=h(X, U)
$$

h weakly monotonic in U, non-decreasing.

- Instruments Z are excluded from $h, U \Perp Z$.
- This incomplete model set identifies h.
- Sets depend on discreteness of Y, strength and support of instruments.
- Parametric restrictions on h may not deliver point identification.
- To be considered.
- Observational equivalence.
- The identified set.

Single equation IV model for discrete data

- Discrete Y is determined by vector X and scalar unobserved continuously distributed U :

$$
Y=h(X, U)
$$

h weakly monotonic in U, non-decreasing.

- Instruments Z are excluded from $h, U \Perp Z$.
- This incomplete model set identifies h.
- Sets depend on discreteness of Y, strength and support of instruments.
- Parametric restrictions on h may not deliver point identification.
- To be considered.
- Observational equivalence.
- The identified set.
- Two examples:

Single equation IV model for discrete data

- Discrete Y is determined by vector X and scalar unobserved continuously distributed U :

$$
Y=h(X, U)
$$

h weakly monotonic in U, non-decreasing.

- Instruments Z are excluded from $h, U \Perp Z$.
- This incomplete model set identifies h.
- Sets depend on discreteness of Y, strength and support of instruments.
- Parametric restrictions on h may not deliver point identification.
- To be considered.
- Observational equivalence.
- The identified set.
- Two examples:
- binary Y, discrete X

Single equation IV model for discrete data

- Discrete Y is determined by vector X and scalar unobserved continuously distributed U :

$$
Y=h(X, U)
$$

h weakly monotonic in U, non-decreasing.

- Instruments Z are excluded from $h, U \Perp Z$.
- This incomplete model set identifies h.
- Sets depend on discreteness of Y, strength and support of instruments.
- Parametric restrictions on h may not deliver point identification.
- To be considered.
- Observational equivalence.
- The identified set.
- Two examples:
- binary Y, discrete X
- ordered probit Y continuous X.

Single equation IV model for discrete data

- Discrete Y is determined by vector X and scalar unobserved continuously distributed U :

$$
Y=h(X, U)
$$

h weakly monotonic in U, non-decreasing.

- Instruments Z are excluded from $h, U \Perp Z$.
- This incomplete model set identifies h.
- Sets depend on discreteness of Y, strength and support of instruments.
- Parametric restrictions on h may not deliver point identification.
- To be considered.
- Observational equivalence.
- The identified set.
- Two examples:
- binary Y, discrete X
- ordered probit Y continuous X.
- Extensions/applications.

Threshold crossing representation

- $Y \in\{0,1, \ldots, M\}$ determined by X and $U \sim \operatorname{Unif}(0,1)$:

$$
Y=h(X, U) \quad h \uparrow U \quad U \Perp Z
$$

Threshold crossing representation

- $Y \in\{0,1, \ldots, M\}$ determined by X and $U \sim \operatorname{Unif}(0,1)$:

$$
Y=h(X, U) \quad h \uparrow U \quad U \Perp Z
$$

- Threshold crossing representation. Consider some h_{0}.

$$
h_{0}(x, u)=\left\{\begin{array}{ccrl}
0 & , & 0< & u \leq p_{0}^{0}(x) \\
1 & , & p_{0}^{0}(x)< & u \leq p_{1}^{0}(x) \\
\vdots & \vdots & \vdots & \vdots \\
M & , & p_{M-1}^{0}(x)< & u \leq 1
\end{array}\right.
$$

Threshold crossing representation

- $Y \in\{0,1, \ldots, M\}$ determined by X and $U \sim \operatorname{Unif}(0,1)$:

$$
Y=h(X, U) \quad h \uparrow U \quad U \Perp Z
$$

- Threshold crossing representation. Consider some h_{0}.

$$
h_{0}(x, u)=\left\{\begin{array}{ccrl}
0 & , & 0< & u \leq p_{0}^{0}(x) \\
1 & , & p_{0}^{0}(x)< & u \leq p_{1}^{0}(x) \\
\vdots & \vdots & \vdots & \vdots \\
M & , & p_{M-1}^{0}(x)< & u \leq 1
\end{array}\right.
$$

- Consider a structure $S_{0} \equiv\left\{h_{0}, F_{U X \mid Z}^{0}\right\}$ with

$$
F_{U X \mid Z}^{0}(u, x \mid z) \equiv \operatorname{Pr}[U \leq u \cap X \leq x \mid Z=z]
$$

Threshold crossing representation

- $Y \in\{0,1, \ldots, M\}$ determined by X and $U \sim \operatorname{Unif}(0,1)$:

$$
Y=h(X, U) \quad h \uparrow U \quad U \Perp Z
$$

- Threshold crossing representation. Consider some h_{0}.

$$
h_{0}(x, u)=\left\{\begin{array}{rrrl}
0 & , & 0< & u \leq p_{0}^{0}(x) \\
1 & , & p_{0}^{0}(x)< & u \leq p_{1}^{0}(x) \\
\vdots & \vdots & \vdots & \vdots \\
M & , & p_{M-1}^{0}(x)< & u \leq 1
\end{array}\right.
$$

- Consider a structure $S_{0} \equiv\left\{h_{0}, F_{U X \mid Z}^{0}\right\}$ with

$$
F_{U X \mid Z}^{0}(u, x \mid z) \equiv \operatorname{Pr}[U \leq u \cap X \leq x \mid Z=z]
$$

- It determines a distribution function of Y and X given Z

$$
F_{Y X \mid Z}^{0}(m, x \mid z)=F_{U X \mid Z}^{0}\left(p_{m}^{0}(x), x \mid z\right)
$$

Observational equivalence

- Threshold crossing representation. Consider some h_{0}.

$$
h_{0}(x, u)=\left\{\begin{array}{ccrl}
0 & , & 0< & u \leq p_{0}^{0}(x) \\
1 & , & p_{0}^{0}(x)< & u \leq p_{1}^{0}(x) \\
\vdots & \vdots & \vdots & \vdots \\
M & , & p_{M-1}^{0}(x)< & u
\end{array}\right.
$$

Observational equivalence

- Threshold crossing representation. Consider some h_{0}.

$$
h_{0}(x, u)=\left\{\begin{array}{rrrrl}
0 & , & 0<u & \leq p_{0}^{0}(x) \\
1 & , & p_{0}^{0}(x)< & u & \leq p_{1}^{0}(x) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
M & , & p_{M-1}^{0}(x)< & u & \leq 1
\end{array}\right.
$$

- The model admits observationally equivalent $S_{*} \neq S_{0}$ with:

$$
F_{Y X \mid Z}^{0}(m, x \mid z)=F_{U X \mid Z}^{0}\left(p_{m}^{0}(x), x \mid z\right)=F_{U X \mid Z}^{*}\left(p_{m}^{*}(x), x \mid z\right)
$$

Observational equivalence

- Threshold crossing representation. Consider some h_{0}.

$$
h_{0}(x, u)=\left\{\begin{array}{rrrrl}
0 & , & 0<u & \leq p_{0}^{0}(x) \\
1 & , & p_{0}^{0}(x)< & u & \leq p_{1}^{0}(x) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
M & , & p_{M-1}^{0}(x)< & u & \leq 1
\end{array}\right.
$$

- The model admits observationally equivalent $S_{*} \neq S_{0}$ with:

$$
F_{Y X \mid Z}^{0}(m, x \mid z)=F_{U X \mid Z}^{0}\left(p_{m}^{0}(x), x \mid z\right)=F_{U X \mid Z}^{*}\left(p_{m}^{*}(x), x \mid z\right)
$$

- $U \Perp Z$ limits adjustment of the U and X arguments of admissible $F_{U X \mid Z}$ because for all τ, z

$$
F_{U X \mid Z}(\tau, \infty \mid z) \equiv F_{U \mid Z}(\tau \mid z)=F_{U}(\tau)=\tau
$$

Some related results:

- Continuous outcomes: Chernozhukov and Hansen (2005) and related papers.

$$
Y=h(X, U) \quad U \Perp Z \quad h \text { strictly increasing }
$$

Some related results:

- Continuous outcomes: Chernozhukov and Hansen (2005) and related papers.

$$
Y=h(X, U) \quad U \Perp Z \quad h \text { strictly increasing }
$$

- Triangular models: structural equation for (continuous) X :

$$
\begin{aligned}
& Y=h(X, U) \quad(U, V) \Perp Z \\
& X=g(X, V) \quad(U, Z
\end{aligned}
$$

Chesher (2003, 2005), Imbens \&Newey (2003).

Some related results:

- Continuous outcomes: Chernozhukov and Hansen (2005) and related papers.

$$
Y=h(X, U) \quad U \Perp Z \quad h \text { strictly increasing }
$$

- Triangular models: structural equation for (continuous) X :

$$
\begin{aligned}
& Y=h(X, U) \\
& X=g(X, V) \quad(U, V) \Perp Z
\end{aligned}
$$

Chesher (2003, 2005), Imbens \&Newey (2003).

- Simultaneous models: "single equation" analysis of Tamer's (2003) entry game.

$$
\begin{aligned}
& Y_{1}^{*}=\alpha_{1} Y_{2}+Z \beta_{1}+\varepsilon_{1} \quad Y_{2}^{*}=\alpha_{2} Y_{1}+Z \beta_{2}+\varepsilon_{2} \\
& Y_{1}=1\left[Y_{1}^{*} \geq 0\right] \quad Y_{2}=1\left[Y_{2}^{*} \geq 0\right] \quad\left(\varepsilon_{1}, \varepsilon_{2}\right) \Perp Z
\end{aligned}
$$

The single equation IV model: inequalities

- Y is determined by observable X and scalar unobservable U.

$$
Y=h(X, U) \quad h \uparrow U \quad U \sim \operatorname{Unif}(0,1) \quad U \Perp Z \in \Omega
$$

The single equation IV model: inequalities

- Y is determined by observable X and scalar unobservable U.

$$
Y=h(X, U) \quad h \uparrow U \quad U \sim \operatorname{Unif}(0,1) \quad U \Perp Z \in \Omega
$$

- An admissible structure

$$
S_{0} \equiv\left\{h_{0}, F_{U X \mid Z}^{0}\right\} \Rightarrow F_{Y X \mid Z}^{0} \text { for } z \in \Omega .
$$

The single equation IV model: inequalities

- Y is determined by observable X and scalar unobservable U.

$$
Y=h(X, U) \quad h \uparrow U \quad U \sim \operatorname{Unif}(0,1) \quad U \Perp Z \in \Omega
$$

- An admissible structure

$$
S_{0} \equiv\left\{h_{0}, F_{U X \mid Z}^{0}\right\} \Rightarrow F_{Y X \mid Z}^{0} \text { for } z \in \Omega .
$$

- P_{0} denotes probabilities developed from $F_{Y X \mid Z}^{0}$.

The single equation IV model: inequalities

- Y is determined by observable X and scalar unobservable U.

$$
Y=h(X, U) \quad h \uparrow U \quad U \sim \operatorname{Unif}(0,1) \quad U \Perp Z \in \Omega
$$

- An admissible structure

$$
S_{0} \equiv\left\{h_{0}, F_{U X \mid Z}^{0}\right\} \Rightarrow F_{Y X \mid Z}^{0} \text { for } z \in \Omega
$$

- P_{0} denotes probabilities developed from $F_{Y X \mid Z}^{0}$.
- There are inequalities: for all $\tau \in(0,1)$ and $z \in \Omega$:

$$
\begin{aligned}
& P_{0}\left[Y \leq h_{0}(X, \tau) \mid Z=z\right] \geq \tau \\
& P_{0}\left[Y<h_{0}(X, \tau) \mid Z=z\right]<\tau
\end{aligned}
$$

The single equation IV model: inequalities

- Y is determined by observable X and scalar unobservable U.

$$
Y=h(X, U) \quad h \uparrow U \quad U \sim \operatorname{Unif}(0,1) \quad U \Perp Z \in \Omega
$$

- An admissible structure

$$
S_{0} \equiv\left\{h_{0}, F_{U X \mid Z}^{0}\right\} \Rightarrow F_{Y X \mid Z}^{0} \text { for } z \in \Omega
$$

- P_{0} denotes probabilities developed from $F_{Y X \mid Z}^{0}$.
- There are inequalities: for all $\tau \in(0,1)$ and $z \in \Omega$:

$$
\begin{aligned}
& P_{0}\left[Y \leq h_{0}(X, \tau) \mid Z=z\right] \geq \tau \\
& P_{0}\left[Y<h_{0}(X, \tau) \mid Z=z\right]<\tau
\end{aligned}
$$

- These characterise the identified set.

For all $x, P[h(X, U) \leq h(X, 0.25) \mid x, z] \geq P[U \leq 0.25 \mid x, z]$

Averaging over $X: P[Y \leq h(X, 0.25) \mid z] \geq 0.25$

Results concerning the identified set

- \mathcal{H}_{0} is the set of structural functions, h, in admissible structures observationally equivalent to $S_{0} \equiv\left\{h_{0}, F_{U X \mid Z}^{0}\right\}$:
- P_{0} indicates probabilities taken under $F_{Y X \mid Z}^{0}$.

Results concerning the identified set

- \mathcal{H}_{0} is the set of structural functions, h, in admissible structures observationally equivalent to $S_{0} \equiv\left\{h_{0}, F_{U X \mid Z}^{0}\right\}$:
- P_{0} indicates probabilities taken under $F_{Y X \mid Z}^{0}$.
- (A): If $h_{*} \in \mathcal{H}_{0}$ then for all $\tau \in(0,1)$ and $z \in \Omega$:

$$
\begin{aligned}
& P_{0}\left[Y \leq h_{*}(X, \tau) \mid Z=z\right] \geq \tau \\
& P_{0}\left[Y<h_{*}(X, \tau) \mid Z=z\right]<\tau
\end{aligned}
$$

Results concerning the identified set

- \mathcal{H}_{0} is the set of structural functions, h, in admissible structures observationally equivalent to $S_{0} \equiv\left\{h_{0}, F_{U X \mid Z}^{0}\right\}$:
- P_{0} indicates probabilities taken under $F_{Y X \mid Z}^{0}$.
- (A): If $h_{*} \in \mathcal{H}_{0}$ then for all $\tau \in(0,1)$ and $z \in \Omega$:

$$
\begin{aligned}
& P_{0}\left[Y \leq h_{*}(X, \tau) \mid Z=z\right] \geq \tau \\
& P_{0}\left[Y<h_{*}(X, \tau) \mid Z=z\right]<\tau
\end{aligned}
$$

- Proof:

Results concerning the identified set

- \mathcal{H}_{0} is the set of structural functions, h, in admissible structures observationally equivalent to $S_{0} \equiv\left\{h_{0}, F_{U X \mid Z}^{0}\right\}$:
- P_{0} indicates probabilities taken under $F_{Y X \mid Z}^{0}$.
- (A): If $h_{*} \in \mathcal{H}_{0}$ then for all $\tau \in(0,1)$ and $z \in \Omega$:

$$
\begin{aligned}
& P_{0}\left[Y \leq h_{*}(X, \tau) \mid Z=z\right] \geq \tau \\
& P_{0}\left[Y<h_{*}(X, \tau) \mid Z=z\right]<\tau
\end{aligned}
$$

- Proof:
- If h_{*} is in an admissible structure delivering $F_{Y X \mid Z}^{*}$ then for all $\tau \in(0,1)$ and $z \in \Omega$

$$
\begin{aligned}
& P_{*}\left[Y \leq h_{*}(X, \tau) \mid Z=z\right] \geq \tau \\
& P_{*}\left[Y<h_{*}(X, \tau) \mid Z=z\right]<\tau
\end{aligned}
$$

Results concerning the identified set

- \mathcal{H}_{0} is the set of structural functions, h, in admissible structures observationally equivalent to $S_{0} \equiv\left\{h_{0}, F_{U X \mid Z}^{0}\right\}$:
- P_{0} indicates probabilities taken under $F_{Y X \mid Z}^{0}$.
- (A): If $h_{*} \in \mathcal{H}_{0}$ then for all $\tau \in(0,1)$ and $z \in \Omega$:

$$
\begin{aligned}
& P_{0}\left[Y \leq h_{*}(X, \tau) \mid Z=z\right] \geq \tau \\
& P_{0}\left[Y<h_{*}(X, \tau) \mid Z=z\right]<\tau
\end{aligned}
$$

- Proof:
- If h_{*} is in an admissible structure delivering $F_{Y X \mid Z}^{*}$ then for all $\tau \in(0,1)$ and $z \in \Omega$

$$
\begin{aligned}
& P_{*}\left[Y \leq h_{*}(X, \tau) \mid Z=z\right] \geq \tau \\
& P_{*}\left[Y<h_{*}(X, \tau) \mid Z=z\right]<\tau
\end{aligned}
$$

- If S_{*} and S_{0} are observationally equivalent $F_{Y X \mid Z}^{*}=F_{Y X \mid Z}^{0}$.

Results concerning the identified set

- \mathcal{H}_{0} is the set of structural functions, h, in admissible structures observationally equivalent to $S_{0} \equiv\left\{h_{0}, F_{U X \mid Z}^{0}\right\}$:
- P_{0} indicate probabilities taken under $F_{Y X \mid Z}^{0}$.

Results concerning the identified set

- \mathcal{H}_{0} is the set of structural functions, h, in admissible structures observationally equivalent to $S_{0} \equiv\left\{h_{0}, F_{U X \mid Z}^{0}\right\}$:
- P_{0} indicate probabilities taken under $F_{Y X \mid Z}^{0}$.
- (B): If for some $\tau \in(0,1)$ and some $z \in \Omega$ one of the inequalities

$$
\begin{aligned}
& P_{0}\left[Y \leq h_{*}(X, \tau) \mid Z=z\right] \geq \tau \\
& P_{0}\left[Y<h_{*}(X, \tau) \mid Z=z\right]<\tau
\end{aligned}
$$

fails to hold then $h_{*} \notin \mathcal{H}_{0}$.

Results concerning the identified set

- \mathcal{H}_{0} is the set of structural functions, h, in admissible structures observationally equivalent to $S_{0} \equiv\left\{h_{0}, F_{U X \mid Z}^{0}\right\}$:
- P_{0} indicate probabilities taken under $F_{Y X \mid Z}^{0}$.
- (B): If for some $\tau \in(0,1)$ and some $z \in \Omega$ one of the inequalities

$$
\begin{aligned}
& P_{0}\left[Y \leq h_{*}(X, \tau) \mid Z=z\right] \geq \tau \\
& P_{0}\left[Y<h_{*}(X, \tau) \mid Z=z\right]<\tau
\end{aligned}
$$

fails to hold then $h_{*} \notin \mathcal{H}_{0}$.

- Proof: by contradiction.

Results concerning the identified set

- \mathcal{H}_{0} is the set of structural functions, h, in admissible structures observationally equivalent to $S_{0} \equiv\left\{h_{0}, F_{U X \mid Z}^{0}\right\}$:
- Let P_{0} indicate probabilities taken under $F_{Y X \mid Z}^{0}$.

Results concerning the identified set

- \mathcal{H}_{0} is the set of structural functions, h, in admissible structures observationally equivalent to $S_{0} \equiv\left\{h_{0}, F_{U X \mid Z}^{0}\right\}$:
- Let P_{0} indicate probabilities taken under $F_{Y X \mid Z}^{0}$.
- (C). Sharpness. If for all $\tau \in(0,1)$ and $z \in \Omega$:

$$
\begin{aligned}
& P_{0}\left[Y \leq h_{*}(X, \tau) \mid Z=z\right] \geq \tau \\
& P_{0}\left[Y<h_{*}(X, \tau) \mid Z=z\right]<\tau
\end{aligned}
$$

then there exists a distribution function $F_{U X \mid Z}^{*}$ such that $S_{*} \equiv\left\{h_{*}, F_{U X \mid Z}^{*}\right\}$ is admissible and generates $F_{Y X \mid Z}^{*}=F_{Y X \mid Z}^{0}$ for all $z \in \Omega$.

Results concerning the identified set

- \mathcal{H}_{0} is the set of structural functions, h, in admissible structures observationally equivalent to $S_{0} \equiv\left\{h_{0}, F_{U X \mid Z}^{0}\right\}$:
- Let P_{0} indicate probabilities taken under $F_{Y X \mid Z}^{0}$.
- (C). Sharpness. If for all $\tau \in(0,1)$ and $z \in \Omega$:

$$
\begin{aligned}
& P_{0}\left[Y \leq h_{*}(X, \tau) \mid Z=z\right] \geq \tau \\
& P_{0}\left[Y<h_{*}(X, \tau) \mid Z=z\right]<\tau
\end{aligned}
$$

then there exists a distribution function $F_{U X \mid Z}^{*}$ such that $S_{*} \equiv\left\{h_{*}, F_{U X \mid Z}^{*}\right\}$ is admissible and generates $F_{Y X \mid Z}^{*}=F_{Y X \mid Z}^{0}$ for all $z \in \Omega$.

- Proof: constructive - see Annex of the paper.

Binary Y and discrete X

- Binary Y delivered by:

$$
Y=\left\{\begin{array}{rr}
0, & 0 \quad<U \leq p(X) \\
1, & p(X) \quad<U<1
\end{array} \quad U \Perp Z \quad X \in\left\{x_{1}, \ldots, x_{K}\right\}\right.
$$

Binary Y and discrete X

- Binary Y delivered by:

$$
Y=\left\{\begin{array}{rr}
0, & 0 \quad<U \leq p(X) \\
1, & p(X) \quad<U<1
\end{array} \quad U \Perp Z \quad X \in\left\{x_{1}, \ldots, x_{K}\right\}\right.
$$

- Notation:

$$
\theta_{1} \equiv p\left(x_{1}\right), \ldots, \theta_{K} \equiv p\left(x_{K}\right)
$$

Binary Y and discrete X

- Binary Y delivered by:

$$
Y=\left\{\begin{array}{rr}
0, & 0 \\
1, & <U \leq p(X)
\end{array} \quad U \Perp Z \quad X \in\left\{x_{1}, \ldots, x_{K}\right\}\right.
$$

- Notation:

$$
\theta_{1} \equiv p\left(x_{1}\right), \ldots, \theta_{K} \equiv p\left(x_{K}\right)
$$

- For $k \in\{1, \ldots, K\}$ data are informative about:

$$
\alpha_{k}(z) \equiv P\left[Y=0 \mid X=x_{k}, Z=z\right] \quad \beta_{k}(z) \equiv P\left[X=x_{k} \mid Z=z\right]
$$

Binary Y and discrete X

- Binary Y delivered by:

$$
Y=\left\{\begin{array}{rr}
0, & 0 \\
1, & <U \leq p(X) \\
1, & <U<1
\end{array} \quad U \Perp Z \quad X \in\left\{x_{1}, \ldots, x_{K}\right\}\right.
$$

- Notation:

$$
\theta_{1} \equiv p\left(x_{1}\right), \ldots, \theta_{K} \equiv p\left(x_{K}\right)
$$

- For $k \in\{1, \ldots, K\}$ data are informative about:

$$
\alpha_{k}(z) \equiv P\left[Y=0 \mid X=x_{k}, Z=z\right] \quad \beta_{k}(z) \equiv P\left[X=x_{k} \mid Z=z\right]
$$

- What is the set defined by

$$
\left\{h:\binom{P[Y \leq h(X, \tau) \mid Z=z] \geq \tau}{P[Y<h(X, \tau) \mid Z=z]<\tau} \quad \forall \tau \in(0,1), \quad z \in \Omega\right\}
$$

in this case?

The identified set

- The (proposed) order of $\theta_{1}, \ldots, \theta_{K}$ is important. There are K ! orderings. Suppose

$$
0 \equiv \theta_{0}<\theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{K}<\theta_{K+1} \equiv 1
$$

The identified set

- The (proposed) order of $\theta_{1}, \ldots, \theta_{K}$ is important. There are K ! orderings. Suppose

$$
0 \equiv \theta_{0}<\theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{K}<\theta_{K+1} \equiv 1
$$

- The event

$$
\{Y<h(X, \tau)\} \text { is equal to }\{(Y=0) \cap(p(X)<\tau)\}
$$

and so:

$$
P[Y<h(X, \tau) \mid Z=z]=P[(Y=0) \cap(p(X)<\tau) \mid Z=z]
$$

The identified set

- The (proposed) order of $\theta_{1}, \ldots, \theta_{K}$ is important. There are K ! orderings. Suppose

$$
0 \equiv \theta_{0}<\theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{K}<\theta_{K+1} \equiv 1
$$

- The event

$$
\{Y<h(X, \tau)\} \text { is equal to }\{(Y=0) \cap(p(X)<\tau)\}
$$

and so:

$$
P[Y<h(X, \tau) \mid Z=z]=P[(Y=0) \cap(p(X)<\tau) \mid Z=z]
$$

- For j such that $\theta_{j}<\tau \leq \theta_{j+1}$, the event $\{p(X)<\tau\}$ occurs iff $X \in\left\{x_{1}, \ldots, x_{j}\right\}$ so

$$
P[Y<h(X, \tau) \mid Z=z]=\sum_{k=1}^{j} \alpha_{k}(z) \beta_{k}(z)
$$

The identified set

- The (proposed) order of $\theta_{1}, \ldots, \theta_{K}$ is important. There are K ! orderings. Suppose

$$
0 \equiv \theta_{0}<\theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{K}<\theta_{K+1} \equiv 1
$$

- The event

$$
\{Y<h(X, \tau)\} \text { is equal to }\{(Y=0) \cap(p(X)<\tau)\}
$$

and so:

$$
P[Y<h(X, \tau) \mid Z=z]=P[(Y=0) \cap(p(X)<\tau) \mid Z=z]
$$

- For j such that $\theta_{j}<\tau \leq \theta_{j+1}$, the event $\{p(X)<\tau\}$ occurs iff $X \in\left\{x_{1}, \ldots, x_{j}\right\}$ so

$$
P[Y<h(X, \tau) \mid Z=z]=\sum_{k=1}^{j} \alpha_{k}(z) \beta_{k}(z)
$$

- This is less than τ for all $\tau \in\left(\theta_{j}, \theta_{j+1}\right]$ only if

$$
\sum_{k=1}^{j} \alpha_{k}(z) \beta_{k}(z) \leq \theta_{j}
$$

The identified set

- A similar argument for the event $\{Y \leq h(X, \tau)\}$ delivers

$$
P[Y \leq h(X, \tau) \mid Z=z]=\sum_{k=1}^{j} \beta_{k}(z)+\sum_{k=j+1}^{K} \alpha_{k}(z) \beta_{k}(z) \geq \tau
$$

for $\tau \in\left(\theta_{j}, \theta_{j+1}\right]$ and so

$$
\sum_{k=1}^{j} \beta_{k}(z)+\sum_{k=j+1}^{K} \alpha_{k}(z) \beta_{k}(z) \geq \theta_{j+1}
$$

The identified set

- A similar argument for the event $\{Y \leq h(X, \tau)\}$ delivers

$$
P[Y \leq h(X, \tau) \mid Z=z]=\sum_{k=1}^{j} \beta_{k}(z)+\sum_{k=j+1}^{K} \alpha_{k}(z) \beta_{k}(z) \geq \tau
$$

for $\tau \in\left(\theta_{j}, \theta_{j+1}\right]$ and so

$$
\sum_{k=1}^{j} \beta_{k}(z)+\sum_{k=j+1}^{K} \alpha_{k}(z) \beta_{k}(z) \geq \theta_{j+1}
$$

- Combining, for $j \in\{1, \ldots, K\}$

$$
\sum_{k=1}^{j} \alpha_{k}(z) \beta_{k}(z) \leq \theta_{j} \leq \sum_{k=1}^{j-1} \beta_{k}(z)+\sum_{k=j}^{K} \alpha_{k}(z) \beta_{k}(z)
$$

The identified set

- These must hold for all $z \in \Omega$, so for $j \in\{1, \ldots, K\}$

$$
\max _{z \in \Omega}\left(\sum_{k=1}^{j} \alpha_{k}(z) \beta_{k}(z)\right) \leq \theta_{j} \leq \min _{z \in \Omega}\left(\sum_{k=1}^{j-1} \beta_{k}(z)+\sum_{k=j}^{K} \alpha_{k}(z) \beta_{k}(z)\right)
$$

The identified set

- These must hold for all $z \in \Omega$, so for $j \in\{1, \ldots, K\}$

$$
\max _{z \in \Omega}\left(\sum_{k=1}^{j} \alpha_{k}(z) \beta_{k}(z)\right) \leq \theta_{j} \leq \min _{z \in \Omega}\left(\sum_{k=1}^{j-1} \beta_{k}(z)+\sum_{k=j}^{K} \alpha_{k}(z) \beta_{k}(z)\right)
$$

- Exchange of indices gives the result for other orderings.

The identified set

- These must hold for all $z \in \Omega$, so for $j \in\{1, \ldots, K\}$

$$
\max _{z \in \Omega}\left(\sum_{k=1}^{j} \alpha_{k}(z) \beta_{k}(z)\right) \leq \theta_{j} \leq \min _{z \in \Omega}\left(\sum_{k=1}^{j-1} \beta_{k}(z)+\sum_{k=j}^{K} \alpha_{k}(z) \beta_{k}(z)\right)
$$

- Exchange of indices gives the result for other orderings.
- The identified set is up to K ! boxes in the K dimensional unit cube.

The identified set

- These must hold for all $z \in \Omega$, so for $j \in\{1, \ldots, K\}$

$$
\max _{z \in \Omega}\left(\sum_{k=1}^{j} \alpha_{k}(z) \beta_{k}(z)\right) \leq \theta_{j} \leq \min _{z \in \Omega}\left(\sum_{k=1}^{j-1} \beta_{k}(z)+\sum_{k=j}^{K} \alpha_{k}(z) \beta_{k}(z)\right)
$$

- Exchange of indices gives the result for other orderings.
- The identified set is up to K ! boxes in the K dimensional unit cube.
- Monotonicity (smoothness) restriction on effect of X is very informative.

The identified set

- These must hold for all $z \in \Omega$, so for $j \in\{1, \ldots, K\}$

$$
\max _{z \in \Omega}\left(\sum_{k=1}^{j} \alpha_{k}(z) \beta_{k}(z)\right) \leq \theta_{j} \leq \min _{z \in \Omega}\left(\sum_{k=1}^{j-1} \beta_{k}(z)+\sum_{k=j}^{K} \alpha_{k}(z) \beta_{k}(z)\right)
$$

- Exchange of indices gives the result for other orderings.
- The identified set is up to K ! boxes in the K dimensional unit cube.
- Monotonicity (smoothness) restriction on effect of X is very informative.
- With $K=2$ for each $z \in \Omega$, (but drop z from notation)

$$
\begin{aligned}
\alpha_{1} \beta_{1} & \leq \theta_{1} \leq \alpha_{1} \beta_{1}+\alpha_{2} \beta_{2} \\
\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2} & \leq \theta_{2} \leq \beta_{1}+\alpha_{2} \beta_{2}
\end{aligned}
$$

The identified set

- These must hold for all $z \in \Omega$, so for $j \in\{1, \ldots, K\}$

$$
\max _{z \in \Omega}\left(\sum_{k=1}^{j} \alpha_{k}(z) \beta_{k}(z)\right) \leq \theta_{j} \leq \min _{z \in \Omega}\left(\sum_{k=1}^{j-1} \beta_{k}(z)+\sum_{k=j}^{K} \alpha_{k}(z) \beta_{k}(z)\right)
$$

- Exchange of indices gives the result for other orderings.
- The identified set is up to K ! boxes in the K dimensional unit cube.
- Monotonicity (smoothness) restriction on effect of X is very informative.
- With $K=2$ for each $z \in \Omega$, (but drop z from notation)

$$
\begin{aligned}
\alpha_{1} \beta_{1} & \leq \theta_{1} \leq \alpha_{1} \beta_{1}+\alpha_{2} \beta_{2} \\
\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2} & \leq \theta_{2} \leq \beta_{1}+\alpha_{2} \beta_{2}
\end{aligned}
$$

- Swapping indexes.

$$
\begin{aligned}
\alpha_{2} \beta_{2} & \leq \theta_{2} \leq \alpha_{2} \beta_{2}+\alpha_{1} \beta_{1} \\
\alpha_{2} \beta_{2}+\alpha_{1} \beta_{1} & \leq \theta_{1} \leq \beta_{2}+\alpha_{1} \beta_{1}
\end{aligned}
$$

Calculations for a binary Y binary X example

- Here is a process for $Y \in\{0,1\}$ and $X \in\{0,1\}$

$$
\begin{aligned}
Y^{*} & =\alpha_{0}+\alpha_{1} X+\varepsilon \\
X^{*} & =\beta_{0}+\beta_{1} Z+\eta
\end{aligned}
$$

$$
Y=1\left[Y^{*}>0\right] \quad X=1\left[X^{*}>0\right] \quad\left[\begin{array}{l}
\varepsilon \\
\eta
\end{array}\right] \left\lvert\, Z \sim N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]\right)\right.
$$

Calculations for a binary Y binary X example

- Here is a process for $Y \in\{0,1\}$ and $X \in\{0,1\}$

$$
\begin{aligned}
& Y^{*}=\alpha_{0}+\alpha_{1} X+\varepsilon \\
& X^{*}=\beta_{0}+\beta_{1} Z+\eta \\
& Y=1\left[Y^{*}>0\right] \quad X=1\left[X^{*}>0\right] \quad\left[\begin{array}{c}
\varepsilon \\
\eta
\end{array}\right] \left\lvert\, Z \sim N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]\right)\right.
\end{aligned}
$$

- Here is an IV model

$$
Y=\left\{\begin{array}{rrr}
0 & , & 0<U \leq p(X) \\
1 & , & p(X)<U \leq 1
\end{array} \quad Z \Perp U \sim \operatorname{Unif}(0,1)\right.
$$

Consider identification of $p(0)$, and $p(1)$.

Calculations for a binary Y binary X example

- Here is a process for $Y \in\{0,1\}$ and $X \in\{0,1\}$

$$
\begin{aligned}
& Y^{*}=\alpha_{0}+\alpha_{1} X+\varepsilon \\
& X^{*}=\beta_{0}+\beta_{1} Z+\eta \\
& Y=1\left[Y^{*}>0\right] \quad X=1\left[X^{*}>0\right] \quad\left[\begin{array}{c}
\varepsilon \\
\eta
\end{array}\right] \left\lvert\, Z \sim N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]\right)\right.
\end{aligned}
$$

- Here is an IV model

$$
Y=\left\{\begin{array}{rrr}
0 & , & 0<U \leq p(X) \\
1 & , \quad p(X)<U \leq 1
\end{array} \quad Z \Perp U \sim \operatorname{Unif}(0,1)\right.
$$

Consider identification of $p(0)$, and $p(1)$.

- The IV model is correctly specified:

$$
\begin{gathered}
Z \Perp U \equiv \Phi(\varepsilon) \sim \operatorname{Unif}(0,1) \\
Y=\left\{\begin{aligned}
0, & 0<U \leq \Phi\left(-\alpha_{0}-\alpha_{1} X\right) \\
1, & \Phi\left(-\alpha_{0}-\alpha_{1} X\right)
\end{aligned}\right) \quad U \leq 1
\end{gathered}
$$

A binary Y binary X example

- Here is a process for $Y \in\{0,1\}$ and $X \in\{0,1\}$

$$
\begin{aligned}
& Y^{*}=\alpha_{0}+\alpha_{1} X+\varepsilon \\
& X^{*}=\beta_{0}+\beta_{1} Z+\eta \\
& Y=1\left[Y^{*}>0\right] \quad X=1\left[X^{*}>0\right] \quad\left[\begin{array}{l}
\varepsilon \\
\eta
\end{array}\right] \left\lvert\, Z \sim N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]\right)\right.
\end{aligned}
$$

A binary Y binary X example

- Here is a process for $Y \in\{0,1\}$ and $X \in\{0,1\}$

$$
\begin{aligned}
& Y^{*}=\alpha_{0}+\alpha_{1} X+\varepsilon \\
& X^{*}=\beta_{0}+\beta_{1} Z+\eta \\
& Y=1\left[Y^{*}>0\right] \quad X=1\left[X^{*}>0\right] \quad\left[\begin{array}{l}
\varepsilon \\
\eta
\end{array}\right] \left\lvert\, Z \sim N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]\right)\right.
\end{aligned}
$$

- Consider the case with $\rho=-0.25$ and

$$
\begin{array}{cc}
\alpha_{0}=0 & \alpha_{1}=0.5 \\
\beta_{0}=0 & \beta_{1}=1
\end{array}
$$

for which

$$
\begin{aligned}
p(0) & =\Phi\left(-\alpha_{0}\right)=0.5 \\
p(1) & =\Phi\left(-\alpha_{0}-\alpha_{1}\right)=0.308
\end{aligned}
$$

A parametric example: an ordered probit IV model

- Known thresholds c_{1}, \ldots, c_{M-1} and independence: $Z \Perp U \sim \operatorname{Unif}(0,1)$

$$
Y=\left\{\begin{array}{rrrl}
1 & , & 0< & U \\
2 & , & \Phi\left(c_{1}-\alpha_{0}-\alpha_{1} X\right)<\Phi\left(c_{1}-\alpha_{0}-\alpha_{1} X\right) \\
\vdots & \vdots & \vdots \Phi\left(c_{2}-\alpha_{0}-\alpha_{1} X\right) \\
M & \Phi\left(c_{M-1}-\alpha_{0}-\alpha_{1} X\right)< & U & \leq 1
\end{array}\right.
$$

A parametric example: an ordered probit IV model

- Known thresholds c_{1}, \ldots, c_{M-1} and independence: $Z \Perp U \sim \operatorname{Unif}(0,1)$

$$
Y=\left\{\begin{array}{rrrl}
1 & , & 0< & U \\
2 & , & \Phi\left(c_{1}-\alpha_{0}-\alpha_{1} X\right)< & U \\
\vdots & \leq \Phi\left(c_{1}-\alpha_{0}-\alpha_{1} X\right) \\
\vdots & \vdots & \vdots & \vdots \\
M & \Phi\left(c_{M-1}-\alpha_{0}-\alpha_{1} X\right) \\
& \left.-\alpha_{1} X\right)< & U & \leq 1
\end{array}\right.
$$

- Consider the set of values of a_{0} and a_{1} identified by this model when:

$$
\begin{aligned}
& Y^{*}=a_{0}+a_{1} X+\varepsilon \quad X=b_{0}+b_{1} Z+\eta \\
& Y=m, \quad c_{m-1}<Y^{*} \leq c_{m} \quad\left[\begin{array}{l}
\varepsilon \\
\eta
\end{array}\right] \left\lvert\, Z \sim N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
1 & s_{\varepsilon \eta} \\
s_{\varepsilon \eta} & s_{\eta \eta}
\end{array}\right]\right)\right. \\
& \text { with: } \Omega=[-1,1], a_{0}=0, a_{1}=1, b_{0}=0, s_{\varepsilon \eta}=0.6, s_{\eta \eta}=1 .
\end{aligned}
$$

A parametric example: an ordered probit IV model

- Known thresholds c_{1}, \ldots, c_{M-1} and independence: $Z \Perp U \sim \operatorname{Unif}(0,1)$

$$
Y=\left\{\begin{array}{rrrl}
1 & , & 0< & U \\
2 & , & \Phi\left(c_{1}-\alpha_{0}-\alpha_{1} X\right)< & U \\
\vdots & \leq \Phi\left(c_{1}-\alpha_{2}-\alpha_{0}-\alpha_{1} X\right) \\
\vdots & \vdots & \vdots & \vdots \\
M & \Phi\left(c_{M-1}-\alpha_{0}-\alpha_{1} X\right)< & U & \leq 1
\end{array}\right.
$$

- Consider the set of values of a_{0} and a_{1} identified by this model when:

$$
\begin{gathered}
Y^{*}=a_{0}+a_{1} X+\varepsilon \quad X=b_{0}+b_{1} Z+\eta \\
Y=m, \quad c_{m-1}<Y^{*} \leq c_{m} \quad\left[\begin{array}{c}
\varepsilon \\
\eta
\end{array}\right] \left\lvert\, Z \sim N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
1 & s_{\varepsilon \eta} \\
s_{\varepsilon \eta} & s_{\eta \eta}
\end{array}\right]\right)\right.
\end{gathered}
$$

with: $\Omega=[-1,1], a_{0}=0, a_{1}=1, b_{0}=0, s_{\varepsilon \eta}=0.6, s_{\eta \eta}=1$.

- We:

$$
\text { vary discreteness: } M \in\{5,11,21\}
$$

vary strength/support of instrument: $b_{1} \in\{1,2\}$

Mclasses: $E[X \mid Z=z]=b_{1} z$

Mclasses: $E[X \mid Z=z]=b_{1} z$

Mclasses: $E[X \mid Z=z]=b_{1} z$

Mclasses : $E[X \mid Z=z]=b_{1} z$

Estimation

- Intersection bounds: for each distribution $F_{Y X \mid Z}^{0}$ the identified set of structural functions \mathcal{H}_{0} is all h such that

$$
\left.\begin{array}{l}
\min _{z \in \Omega} P_{0}[Y \leq h(X, \tau) \mid Z=z] \geq \tau \\
\max _{z \in \Omega} P_{0}[Y<h(X, \tau) \mid Z=z]<\tau
\end{array}\right\} \quad \text { for all } \tau \in[0,1]
$$

Estimation

- Intersection bounds: for each distribution $F_{Y X \mid Z}^{0}$ the identified set of structural functions \mathcal{H}_{0} is all h such that

$$
\min _{z \in \Omega} P_{0}[Y \leq h(X, \tau) \mid Z=z] \geq \tau, \quad \text { for all } \tau \in[0,1]
$$

- Enumerate the set defined using an estimate, $\hat{F}_{Y X \mid Z}^{0}$ - Chernozhukov, Lee \& Rosen (2008).

Estimation

- Intersection bounds: for each distribution $F_{Y X \mid Z}^{0}$ the identified set of structural functions \mathcal{H}_{0} is all h such that

$$
\min _{z \in \Omega} P_{0}[Y \leq h(X, \tau) \mid Z=z] \geq \tau \quad \text { for all } \tau \in[0,1]
$$

- Enumerate the set defined using an estimate, $\hat{F}_{Y X \mid Z}^{0}$ - Chernozhukov, Lee \& Rosen (2008).
- Moment inequalities: for any $w(z)>0$ and all $\tau \in(0,1)$

$$
\begin{gathered}
E_{Y X Z}[(1[Y \leq h(X, \tau)]-\tau) \times w(Z)] \geq 0 \\
E_{Y X Z}[(1[Y<h(X, \tau)]-\tau) \times w(Z)]<0
\end{gathered}
$$

Estimation

- Intersection bounds: for each distribution $F_{Y X \mid Z}^{0}$ the identified set of structural functions \mathcal{H}_{0} is all h such that

$$
\left.\begin{array}{l}
\min _{z \in \Omega} P_{0}[Y \leq h(X, \tau) \mid Z=z] \geq \tau \\
\max _{z \in \Omega} P_{0}[Y<h(X, \tau) \mid Z=z]<\tau
\end{array}\right\} \quad \text { for all } \tau \in[0,1]
$$

- Enumerate the set defined using an estimate, $\hat{F}_{Y X \mid Z}^{0}$ - Chernozhukov, Lee \& Rosen (2008).
- Moment inequalities: for any $w(z)>0$ and all $\tau \in(0,1)$

$$
\begin{gathered}
E_{Y X Z}[(1[Y \leq h(X, \tau)]-\tau) \times w(Z)] \geq 0 \\
E_{Y X Z}[(1[Y<h(X, \tau)]-\tau) \times w(Z)]<0
\end{gathered}
$$

- Andrews, Berry, Jia (2004), Rosen (2006), Pakes, Porter, Ho, Ishii (2006).

Multivariate discrete outcomes

- $Y=\left(Y_{1}, \ldots, Y_{T}\right)$ with

$$
Y_{t}=h_{t}\left(X, U_{t}\right)
$$

each h_{t} non-decreasing in $U_{t} \sim \operatorname{Unif}(0,1)$ and $U \equiv\left(U_{1}, \ldots, U_{T}\right) \Perp Z$.

Multivariate discrete outcomes

- $Y=\left(Y_{1}, \ldots, Y_{T}\right)$ with

$$
Y_{t}=h_{t}\left(X, U_{t}\right)
$$

each h_{t} non-decreasing in $U_{t} \sim \operatorname{Unif}(0,1)$ and $U \equiv\left(U_{1}, \ldots, U_{T}\right) \Perp Z$.

- Consider $S_{0} \equiv\left\{h_{1}^{0}, \ldots h_{T}^{*}, F_{U X \mid Z}^{0}\right\}$ with copula $F_{U \mid Z}^{0}=F_{U}^{0}$ delivering $F_{Y X \mid Z}^{0}$.

Multivariate discrete outcomes

- $Y=\left(Y_{1}, \ldots, Y_{T}\right)$ with

$$
Y_{t}=h_{t}\left(X, U_{t}\right)
$$

each h_{t} non-decreasing in $U_{t} \sim \operatorname{Unif}(0,1)$ and $U \equiv\left(U_{1}, \ldots, U_{T}\right) \Perp Z$.

- Consider $S_{0} \equiv\left\{h_{1}^{0}, \ldots h_{T}^{*}, F_{U X \mid Z}^{0}\right\}$ with copula $F_{U \mid Z}^{0}=F_{U}^{0}$ delivering $F_{Y X \mid Z}^{0}$.
- Identified set: consists of admissible

$$
\left\{h_{1}^{*}, \ldots, h_{T}^{*}, F_{U}^{*}\right\}
$$

such that for all $\tau \in(0,1)^{T}, z \in \Omega$

$$
P_{0}\left[\bigcap_{t=1}^{T}\left(Y_{t} \leq h_{(<)}^{*}\left(X, \tau_{t}\right)\right) \mid Z=z\right] \underset{(<)}{\geq} F_{U}^{*}(\tau)
$$

Binary Y , measurement error

- Impose monotone index restriction, $b(\cdot)$ is increasing

$$
\begin{gathered}
Y=h(\tilde{X}, U) \equiv\left\{\begin{array}{cc}
0, & 0 \leq U \leq b\left(\tilde{X}^{\prime} \beta\right) \quad X=\tilde{X}+W \\
1, & b\left(\tilde{X}^{\prime} \beta\right)<U \leq 1
\end{array}(U, W) \Perp z\right.
\end{gathered}
$$

Binary Y , measurement error

- Impose monotone index restriction, $b(\cdot)$ is increasing

$$
\begin{gathered}
Y=h(\tilde{X}, U) \equiv\left\{\begin{array}{cc}
0, & 0 \leq U \leq b\left(\tilde{X}^{\prime} \beta\right) \quad X=\tilde{X}+W \\
1, & b\left(\tilde{X}^{\prime} \beta\right)<U \leq 1 \\
(U, W) \Perp Z
\end{array}\right.
\end{gathered}
$$

- implies:

$$
Y=\left\{\begin{array}{lll}
0 & , & -\infty \leq b^{-1}(U)+W^{\prime} \beta \leq X^{\prime} \beta \\
1 & , & X^{\prime} \beta<b^{-1}(U)+W^{\prime} \beta \leq \infty
\end{array}\right.
$$

Binary Y , measurement error

- Impose monotone index restriction, $b(\cdot)$ is increasing

$$
\begin{gathered}
Y=h(\tilde{X}, U) \equiv\left\{\begin{array}{cc}
0, & 0 \leq U \leq b\left(\tilde{X}^{\prime} \beta\right) \quad X=\tilde{X}+W \\
1, \quad b\left(\tilde{X}^{\prime} \beta\right)<U \leq 1
\end{array}(U, W) \Perp z\right.
\end{gathered}
$$

- implies:

$$
Y=\left\{\begin{array}{lll}
0 & , & -\infty \leq b^{-1}(U)+W^{\prime} \beta \leq X^{\prime} \beta \\
1 & , & X^{\prime} \beta<b^{-1}(U)+W^{\prime} \beta \leq \infty
\end{array}\right.
$$

- Define

$$
V \equiv C\left(b^{-1}(U)+W^{\prime} \beta\right) \sim U \operatorname{Uif}(0,1) \Perp z
$$

then

$$
Y=\left\{\begin{aligned}
0, & 0 \leq V \leq C\left(X^{\prime} \beta\right) \\
1 & , \quad C\left(X^{\prime} \beta\right)<V \leq 0
\end{aligned} \quad Z \Perp V \sim \operatorname{Unif}(0,1)\right.
$$

Concluding remarks

- An IV model set identifies a structural function when the outcome is discrete.

Concluding remarks

- An IV model set identifies a structural function when the outcome is discrete.
- The extent of the identified set depends on strength and support of instruments and the discreteness of the outcome.

Concluding remarks

- An IV model set identifies a structural function when the outcome is discrete.
- The extent of the identified set depends on strength and support of instruments and the discreteness of the outcome.
- Extensions: multivariate outcomes, measurement error.

Concluding remarks

- An IV model set identifies a structural function when the outcome is discrete.
- The extent of the identified set depends on strength and support of instruments and the discreteness of the outcome.
- Extensions: multivariate outcomes, measurement error.
- What to do?

Concluding remarks

- An IV model set identifies a structural function when the outcome is discrete.
- The extent of the identified set depends on strength and support of instruments and the discreteness of the outcome.
- Extensions: multivariate outcomes, measurement error.
- What to do?
- Challenges include:

Concluding remarks

- An IV model set identifies a structural function when the outcome is discrete.
- The extent of the identified set depends on strength and support of instruments and the discreteness of the outcome.
- Extensions: multivariate outcomes, measurement error.
- What to do?
- Challenges include:
- results for other models admitting multiple sources of heterogeneity, e.g. MNL type models.

Concluding remarks

- An IV model set identifies a structural function when the outcome is discrete.
- The extent of the identified set depends on strength and support of instruments and the discreteness of the outcome.
- Extensions: multivariate outcomes, measurement error.
- What to do?
- Challenges include:
- results for other models admitting multiple sources of heterogeneity, e.g. MNL type models.
- identification catalogues: identified sets for $S=\left\{h, F_{U X \mid Z}\right\}$ and from this for functionals $\theta(S)$.

