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Single equation IV model for discrete data

Discrete Y is determined by vector X and scalar unobserved continuously
distributed U:

Y = h(X ,U)

h weakly monotonic in U, non-decreasing.

Instruments Z are excluded from h, U k Z .
This incomplete model set identi�es h.

Sets depend on discreteness of Y , strength and support of instruments.
Parametric restrictions on h may not deliver point identi�cation.

To be considered.

Observational equivalence.
The identi�ed set.
Two examples:

binary Y , discrete X
ordered probit Y continuous X .

Extensions/applications.
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Threshold crossing representation

Y 2 f0, 1, . . . ,Mg determined by X and U � Unif (0, 1):

Y = h(X ,U) h " U U k Z

Threshold crossing representation. Consider some h0.

h0(x , u) =

8>>>>><>>>>>:

0 , 0 < u � p00 (x)

1 , p00 (x) < u � p01 (x)
...

...
...
...
...

M , p0M�1(x) < u � 1

Consider a structure S0 � fh0,F 0UX jZ g with

F 0UX jZ (u, x jz) � Pr[U � u \ X � x jZ = z ]

It determines a distribution function of Y and X given Z

F 0YX jZ (m, x jz) = F
0
UX jZ (p

0
m(x), x jz)
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Observational equivalence

Threshold crossing representation. Consider some h0.

h0(x , u) =

8>>>>><>>>>>:

0 , 0 < u � p00 (x)

1 , p00 (x) < u � p01 (x)
...

...
...
...
...

M , p0M�1(x) < u � 1

The model admits observationally equivalent S� 6=S0 with:

F 0YX jZ (m, x jz) = F
0
UX jZ (p

0
m(x), x jz) = F �UX jZ (p

�
m(x), x jz)

U k Z limits adjustment of the U and X arguments of admissible FUX jZ
because for all τ, z

FUX jZ (τ,∞jz) � FU jZ (τjz) = FU (τ) = τ
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Some related results:

Continuous outcomes: Chernozhukov and Hansen (2005) and related
papers.

Y = h(X ,U) U k Z h strictly increasing

Triangular models: structural equation for (continuous) X :

Y = h(X ,U)
X = g(X ,V )

(U,V ) k Z

Chesher (2003, 2005), Imbens &Newey (2003).

Simultaneous models: �single equation�analysis of Tamer�s (2003) entry
game.

Y �1 = α1Y2 + Zβ1 + ε1 Y �2 = α2Y1 + Zβ2 + ε2

Y1 = 1[Y
�
1 � 0] Y2 = 1[Y

�
2 � 0] (ε1, ε2) k Z
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The single equation IV model: inequalities

Y is determined by observable X and scalar unobservable U.

Y = h(X ,U) h " U U � Unif (0, 1) U k Z 2 Ω

An admissible structure

S0 � fh0,F 0UX jZ g ) F 0YX jZ for z 2 Ω.

P0 denotes probabilities developed from F 0YX jZ .

There are inequalities: for all τ 2 (0, 1) and z 2 Ω:

P0 [Y � h0(X , τ)jZ = z ] � τ

P0 [Y < h0(X , τ)jZ = z ] < τ

These characterise the identi�ed set.
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For all x , P [h(X ,U) � h(X , 0.25)jx , z ] � P [U � 0.25jx , z ]

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
6

U

Y

U = 0.25

X = x1

Averaging over X : P [Y � h(X , 0.25)jz ] � 0.25

Andrew Chesher (CeMMAP & UCL) Endogeneity and Discrete Outcomes 3/3/2008 10 / 31



Results concerning the identi�ed set

H0 is the set of structural functions, h, in admissible structures
observationally equivalent to S0 � fh0,F 0UX jZ g:

P0 indicates probabilities taken under F 0YX jZ .

(A): If h� 2 H0 then for all τ 2 (0, 1) and z 2 Ω:

P0 [Y � h�(X , τ)jZ = z ] � τ

P0 [Y < h�(X , τ)jZ = z ] < τ

Proof:

If h� is in an admissible structure delivering F �YX jZ then for all τ 2 (0, 1) and
z 2 Ω

P�[Y � h�(X , τ)jZ = z ] � τ

P�[Y < h�(X , τ)jZ = z ] < τ

If S� and S0 are observationally equivalent F �YX jZ = F
0
YX jZ .
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Results concerning the identi�ed set

H0 is the set of structural functions, h, in admissible structures
observationally equivalent to S0 � fh0,F 0UX jZ g:

P0 indicate probabilities taken under F 0YX jZ .

(B): If for some τ 2 (0, 1) and some z 2 Ω one of the inequalities

P0 [Y � h�(X , τ)jZ = z ] � τ

P0 [Y < h�(X , τ)jZ = z ] < τ

fails to hold then h� /2 H0.
Proof: by contradiction.
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Results concerning the identi�ed set

H0 is the set of structural functions, h, in admissible structures
observationally equivalent to S0 � fh0,F 0UX jZ g:

Let P0 indicate probabilities taken under F 0YX jZ .

(C). Sharpness. If for all τ 2 (0, 1) and z 2 Ω:

P0 [Y � h�(X , τ)jZ = z ] � τ

P0 [Y < h�(X , τ)jZ = z ] < τ

then there exists a distribution function F �UX jZ such that S� � fh�,F
�
UX jZ g

is admissible and generates F �YX jZ = F
0
YX jZ for all z 2 Ω.

Proof: constructive - see Annex of the paper.

Andrew Chesher (CeMMAP & UCL) IV Models for Discrete Outcomes 11/21/2008 9 / 38
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Binary Y and discrete X

Binary Y delivered by:

Y =
�
0 , 0 < U � p(X )
1 , p(X ) < U < 1

U k Z X 2 fx1, . . . , xK g

Notation:
θ1 � p (x1) , . . . , θK � p(xK )

For k 2 f1, . . . ,Kg data are informative about:

αk (z) � P [Y = 0jX = xk ,Z = z ] βk (z) � P [X = xk jZ = z ]

What is the set de�ned by8<:h :

0@ P [Y � h(X , τ)jZ = z ] � τ

P [Y < h(X , τ)jZ = z ] < τ

1A 8 τ 2 (0, 1), z 2 Ω

9=;
in this case?
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The identi�ed set

The (proposed) order of θ1, . . . , θK is important. There are K ! orderings.
Suppose

0 � θ0 < θ1 � θ2 � � � � � θK < θK+1 � 1

The event

fY < h(X , τ)g is equal to f(Y = 0) \ (p(X ) < τ)g
and so:

P [Y < h(X , τ)jZ = z ] = P [(Y = 0) \ (p(X ) < τ)jZ = z ]
For j such that θj < τ � θj+1, the event fp(X ) < τg occurs i¤
X 2 fx1, . . . , xjg so

P [Y < h(X , τ)jZ = z ] =
j

∑
k=1

αk (z)βk (z)

This is less than τ for all τ 2 (θj , θj+1 ] only if
j

∑
k=1

αk (z)βk (z) � θj .
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The identi�ed set

A similar argument for the event fY � h(X , τ)g delivers

P [Y � h(X , τ)jZ = z ] =
j

∑
k=1

βk (z) +
K

∑
k=j+1

αk (z)βk (z) � τ

for τ 2 (θj , θj+1 ] and so

j

∑
k=1

βk (z) +
K

∑
k=j+1

αk (z)βk (z) � θj+1

Combining, for j 2 f1, . . . ,Kg

j

∑
k=1

αk (z)βk (z) � θj �
j�1
∑
k=1

βk (z) +
K

∑
k=j

αk (z)βk (z)
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The identi�ed set

These must hold for all z 2 Ω, so for j 2 f1, . . . ,Kg

max
z2Ω

 
j

∑
k=1

αk (z)βk (z)

!
� θj � min

z2Ω

 
j�1
∑
k=1

βk (z) +
K

∑
k=j

αk (z)βk (z)

!

Exchange of indices gives the result for other orderings.
The identi�ed set is up to K ! boxes in the K dimensional unit cube.
Monotonicity (smoothness) restriction on e¤ect of X is very informative.
With K = 2 for each z 2 Ω, (but drop z from notation)

α1β1 � θ1 � α1β1 + α2β2

α1β1 + α2β2 � θ2 � β1 + α2β2

Swapping indexes.

α2β2 � θ2 � α2β2 + α1β1

α2β2 + α1β1 � θ1 � β2 + α1β1
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Calculations for a binary Y binary X example

Here is a process for Y 2 f0, 1g and X 2 f0, 1g

Y � = α0 + α1X + ε

X � = β0 + β1Z + η

Y = 1[Y � > 0] X = 1[X � > 0]
�

ε
η

�
jZ � N

��
0
0

�
,

�
1 ρ
ρ 1

��

Here is an IV model

Y =
�
0 , 0 < U � p(X )
1 , p(X ) < U � 1 Z k U � Unif (0, 1)

Consider identi�cation of p(0), and p(1).
The IV model is correctly speci�ed:

Z k U � Φ(ε) � Unif (0, 1)

Y =
�
0 , 0 < U � Φ(�α0 � α1X )
1 , Φ(�α0 � α1X ) < U � 1
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A binary Y binary X example

Here is a process for Y 2 f0, 1g and X 2 f0, 1g

Y � = α0 + α1X + ε

X � = β0 + β1Z + η

Y = 1[Y � > 0] X = 1[X � > 0]
�

ε
η

�
jZ � N

��
0
0

�
,

�
1 ρ
ρ 1

��

Consider the case with ρ = �0.25 and

α0 = 0 α1 = 0.5

β0 = 0 β1 = 1

for which

p(0) = Φ(�α0) = 0.5

p(1) = Φ(�α0 � α1) = 0.308
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A parametric example: an ordered probit IV model

Known thresholds c1, . . . , cM�1 and independence: Z k U � Unif (0, 1)

Y =

8>>><>>>:
1 , 0 < U � Φ(c1 � α0 � α1X )
2 , Φ(c1 � α0 � α1X ) < U � Φ(c2 � α0 � α1X )
...

...
...

...
M Φ(cM�1 � α0 � α1X ) < U � 1

Consider the set of values of a0 and a1 identi�ed by this model when:

Y � = a0 + a1X + ε X = b0 + b1Z + η

Y = m, cm�1 < Y
� � cm

�
ε
η

�
jZ � N

��
0
0

�
,

�
1 sεη

sεη sηη

��
with: Ω = [�1, 1], a0 = 0, a1 = 1, b0 = 0, sεη = 0.6, sηη = 1.
We:

vary discreteness: M 2 f5, 11, 21g
vary strength/support of instrument: b1 2 f1, 2g
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Estimation

Intersection bounds: for each distribution F 0YX jZ the identi�ed set of
structural functions H0 is all h such that

minz2Ω P0 [Y � h(X , τ)jZ = z ] � τ

maxz2Ω P0 [Y < h(X , τ)jZ = z ] < τ

9=; for all τ 2 [0, 1]

Enumerate the set de�ned using an estimate, F̂ 0YX jZ - Chernozhukov, Lee &
Rosen (2008).

Moment inequalities: for any w(z) > 0 and all τ 2 (0, 1)

EYXZ [(1[Y � h(X , τ)]� τ)� w(Z )] � 0

EYXZ [(1[Y < h(X , τ)]� τ)� w(Z )] < 0

Andrews, Berry, Jia (2004), Rosen (2006), Pakes, Porter, Ho, Ishii (2006).
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Multivariate discrete outcomes

Y = (Y1, . . . ,YT ) with
Yt = ht (X ,Ut )

each ht non-decreasing in Ut � Unif (0, 1) and U � (U1, . . . ,UT ) k Z .

Consider S0 � fh01 , . . . h�T ,F
0
UX jZ g with copula F

0
U jZ = F

0
U delivering F

0
YX jZ .

Identi�ed set: consists of admissible

fh�1, . . . , h�T ,F
�
U g

such that for all τ 2 (0, 1)T , z 2 Ω

P0 [
T\
t=1

(Yt �
(<)

h�t (X , τt ))jZ = z ] �
(<)

F �U (τ)
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Binary Y, measurement error

Impose monotone index restriction, b(�) is increasing

Y = h(X̃ ,U) �
�
0 , 0 � U � b(X̃ 0β)
1 , b(X̃ 0β) < U � 1 X = X̃ +W

(U,W ) k Z

implies:

Y =
�
0 , �∞ � b�1(U) +W 0β � X 0β
1 , X 0β < b�1(U) +W 0β � ∞

De�ne
V � C (b�1(U) +W 0β) � Unif (0, 1) k Z

then

Y =
�
0 , 0 � V � C (X 0β)
1 , C (X 0β) < V � 0 Z k V � Unif (0, 1)
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Concluding remarks

An IV model set identi�es a structural function when the outcome is discrete.

The extent of the identi�ed set depends on strength and support of
instruments and the discreteness of the outcome.

Extensions: multivariate outcomes, measurement error.

What to do?

Challenges include:

results for other models admitting multiple sources of heterogeneity, e.g. MNL
type models.
identi�cation catalogues: identi�ed sets for S = fh,FUX jZ g and from this for
functionals θ(S).
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