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Abstract: Detecting and modelling structural changes in time series models have attracted great
attention while relatively little effort has been paid to the test of structural changes in panel data models
despite their increasing importance in economics and finance. In this paper, we propose a new approach to
testing structural changes in panel data models with cross-sectional dependence. The idea is to compare
the fitted values of a time-varying parameter panel data model and a constant parameter panel data
model, where the time-varying parameters are estimated by a local linear dummy variable regression and
the constant parameters are estimated by a least squared dummy variable estimation. The test does not
require any prior information about the alternatives of structural changes. It has an asymptotic N(0,1)
distribution under the null hypothesis of parameter constancy and is consistent against a vast class of
smooth structural changes as well as abrupt structural breaks with possibly unknown break points. To
further gauge possible sources of structural changes, a diagnostic test is supplemented to check potential
time-varying interaction while allowing for a common trend. Simulation studies show that the tests

provide reliable inference in finite samples.
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1. INTRODUCTION

The last fifty years have seen the development of a large and still growing literature on the modelling
and testing of structural changes. In time series analysis, a classical econometric test for structural
changes is Chow’s (1960) test, which checks whether there exists a structural break at a known time
point. A great deal of effort has been made in this literature, allowing multiple breaks and/or unknown
time points (e.g., Andrews 1993; Andrews and Ploberger 1994; Bai 1996, 1999; Bai and Perron 1998,
Elliott and Miiller 2006, Perron 2006, Chen and Hong 2012, as well as references therein).

Relatively little effort has been paid to the testing of structural changes in panel data models despite
the fact that panel data models have become increasingly popular among both theoretical and applied
researchers (see, e.g., Baltagi 2001, Arellano 2003, Hsiao 2003, 2007). Modelling and testing structural
changes are particularly relevant for panel data over a long time horizon since the underlying economic
mechanism is likely to be disturbed by various factors such as preference changes, institutional changes
and technological progress. The world economy is an increasingly globalized economy and thus policy
changes and technological development are no longer within a country’s borders. Global environmental
issues have also gained enormous attention in recent years. On the other hand, model stability is crucial
for statistical inference, forecasts, and sensible policy implications drawn from the model. Detecting
structural changes in panel data models provides a way to better understand controversial issues such as
uneven cross-country growth and global climate changes.

Some tests have been proposed to detect structural changes in panel data models in the literature.
For example, De Wachter and Tzavalis (2012) propose a likelihood ratio test for a single structural break
at an unknown break point in linear dynamic panel data models. Horvith and Huskova (2012) propose
a CUSUM-based test for the means of panel data models. They focus on a single break although their
test could be extended for multiple breaks. Feng, Kao and Lazarovd (2009) study the estimation of a
single change point in panel models via a Wald-type statistic and Baltagi, Kao and Liu (2012) extend it
to allow for nonstationary regressors and innovations.

Almost all existing change-point tests for panel data models are constructed for abrupt changes. From
a practical point of view, slowly-changing breaks may be more realistic. Various economic events, such
as liberalization of emerging markets, integration of world equity markets, changes in exchange rate or
interest rate regimes, may lead to structural changes in panel data models. The changes induced by policy
switch, preference changes and technological progress usually exhibit evolutionary changes in the long
term. Despite the importance of smooth structural changes in panel data models, to our knowledge, there
is only one test designed explicitly for smooth structural changes in the literature. Gonzdlez, Terésvirta
and van Dijk (2005) develop a Lagrange Multiplier (LM) test against a time-varying panel smooth
transition regression model. While the test might have best power against the assumed alternative,
usually no prior information is available on the form of structural changes for practitioners. Therefore, it
is desirable to develop consistent tests that have good power against all-round alternatives of structural
changes.

Recently, a time-varying parameter panel data model has appeared as a novel tool to identify the trend



function and capture the evolutionary behavior of economic relationship. Robinson (2012) introduces
a nonparametric trending regression for panel data with cross-sectional dependence and considers a
simple nonparametric trend estimate. Chen, Gao and Li (2012) extend Robinson’s (2012) work to the
semiparametric partially linear panel data model where all individuals share a common trend. Atak,
Linton and Xiao (2011) develop a semiparametric panel model to explain the trend in UK regional
temperatures and other weather outcomes over the last century. The trend is allowed to evolve in a
continuous manner and a nonparametric profile likelihood estimation is developed. Li, Chen and Gao
(2011) generalize Cai’s (2007) time-varying coefficient model to the panel data framework. One advantage
of the evolutionary time-varying parameter panel data model is that little restriction is imposed on the
functional forms of coefficients, except for the regularity condition that they evolve over time smoothly.
Motivated by its flexibility, we will use this model as the alternative to test smooth structural changes
for a panel data model with fixed effects.

We develop a Wald-type test for smooth structural changes as well as sudden structural breaks. Such
a test will complement the existing tests for sudden changes in the literature and avoid the difficulty
associated with whether there are multiple breaks and/or whether the time points of changes are un-
known. We estimate the slowly-changing parameters by local linear dummy variable (LLDV) regression,
and compare them to least squares dummy variable (LSDV) estimators. As shown in Li et al. (2011),
the LLDV approach removes fixed effects by deducting a smoothed version of cross-time average from
each individual and hence is more efficient than the averaged LL estimation, which eliminates fixed ef-
fects by taking cross-sectional averages. Moreover, it ideally suits the present problem at hand. The
proposed Wald-type test can be viewed as a generalization of Hausman’s (1978) test from the parametric
framework to the nonparametric framework. Compared with the existing tests for structural breaks in
panel data models in the literature, the proposed approach has a number of appealing features.

First, the proposed test is consistent against a large class of smooth time-varying parameter alterna-
tives. It is also consistent against multiple sudden structural breaks in panel data models with known
or unknown break points. Second, no prior information on a structural change alternative is needed. In
particular, we do not need to know whether the structural changes are smooth or abrupt, and in the
cases of abrupt structural breaks, we do not need to know the dates or the number of breaks. Third,
unlike most tests for structural breaks in the literature, which often have nonstandard asymptotic distri-
butions, the proposed test has a null asymptotic N(0,1) distribution. The only inputs required are LLDV
and LSDV estimators. Any standard econometric software can carry out computational implementation
easily. Fourth, a diagnostic test is supplemented to check possible sources of structural changes. Specif-
ically, the diagnostic test can detect time-varying interactive effect between the dependent variable and
regressors while allowing for a common trend. Fifth, the LLDV estimator can capture the local behavior
of time-varying parameters. Because only local information is employed in estimating parameters at
each time point, the proposed test has symmetric power against structural breaks that occur either in
the first or second half of the sample period. This is different from the CUSUM-based tests that may
have asymmetric power against structural breaks that have same sizes but occur at different time points.

No trimming procedure is needed for the proposed test and hence the proposed test is expected to have



nontrivial powers for structural changes near the boundary regions of time, provided that the sample size
is large enough. Moreover, the LLDV estimator can provide some insight into the economic relationship.

In Section 2, we introduce the time-varying panel framework and hypotheses of interest. Section 3
develops a Wald-type test, derives its asymptotic null distribution and investigates its asymptotic power
property. In Section 4, a diagnostic test is proposed to check time-varying interactive effect while allowing
for a common trend. Section 5 conducts a simulation study to examine the finite sample performance of
the tests. Section 6 provides concluding remarks. All mathematical proofs are collected in the appendix.

Throughout the paper, C' denotes a generic bounded constant.

2. TIME-VARYING PANEL DATA MODEL AND HYPOTHESES OF INTEREST

Consider a nonparametric time-varying coefficient panel data model:
Kt:X;Bt+ai+At+5it, i=1,...N, t=1,..,7T, (1)

where Yj; is a scalar, X;; is a d x 1 vector of explanatory variables, 3, and \; are d x 1 and 1 x 1 possibly
time-varying parameter vector and scalar respectively, «; represents an unobserved individual-specific
effect and e;; is weakly serially dependent and cross-sectionally dependent. We allow «; to be correlated
with Xj;; through some unknown structure and hence both fixed effects and random effects are covered.

For the purpose of identification, we assume that

A keen interest in econometrics is whether the parameters of (1) 8, and \; are changing over time.
The null hypothesis is that
Hy : 8, = 8 and Ay = A for all £.

The alternative hypothesis H 4 is that Hy is false. Under the null, we have
Yie = XLB+ o + X+ ein, i=1,.,N, t=1,..,T,

where A can be viewed as a "mean intercept" (Hsiao, 2003). We estimate § and A via the LSDV

estimation:
) N T ) ) -1y 7T ) )
Bo= DD (X - X)X —X)T| DD (X — X)) (Yie — V),
i=1 t=1 i=1 t=1

A= Y -XT3

where X; =TS0 X Vi =TS0 Vi, X = (NT)' N, SE Xypand Y = (NT) SN ST v

The consistency and asymptotic normality of B and \ are established in Section 3.



Under the alternative H4, 8, and A; are time-varying. Examples include single break and multiple
break models considered in Feng et al. (2009) and Baltagi et al. (2012), Gonzélez et al.’s (2005) time-
varying panel smooth transition regression model. Tests for parametric structural change alternatives
such as Gonzélez et al.’s (2005) LM test have best power against the assumed alternative. Unfortunately,
usually no prior information about the structural change alternative is available in practice. To cover a

wide range of alternatives, we consider the following smooth time-varying parameter panel data model:
Yie = X1 B(/T) + a; + A(t/T) + €, i=1,.,N, t=1,..,T, (2)

where 3 : [0,1] — R? and A : [0,1] — R are unknown smooth functions except for a finite number of
points on [0, 1]. Discontinuities of 5(-) and A(+) at a finite number of points on [0, 1] allow sudden breaks.
This model is studied in Li et al. (2011) and Chen et al. (2012). It covers Robinson’s (2012) panel
trending regression as a special case. The specification that parameters §(-) and A(-) are some functions
of ratio ¢/T rather than time ¢ only is a common scaling scheme in the literature (see, e.g., Phillips
and Hansen 1990, Robinson 1991 and Cai 2007). The reason for this specification is that nonparametric
estimators for 5, and A; will not be consistent unless the amount of data on which they depend increases,
and merely increasing the sample size will not necessarily improve estimation of 3, and \; at some fixed
point ¢, even if some smoothness conditions are imposed.

We will assume that 5(-) and A(-) are continuous except for a finite number of points on [0, 1].
Therefore, single structural break or multiple breaks with known or unknown break points are special
cases of model (2). For example, suppose [ (u) = By and A(u) = Ao if u < ug, and B (u) = B, and

A(u) = A1 otherwise. Then we obtain a single break panel data model.
3. NONPARAMETRIC TESTING FOR STRUCTURAL CHANGES

We shall propose a consistent test for smooth structural changes in panel data models. Under the
alternative, we have a time-varying parameter panel data model and we follow Li et al. (2011) to estimate
B and A; via an LLDV regression. The idea of the LLDV regression is summarized below.

(i) Let 0(7) = [A(7) B7(7)]T. For each given 7 € (0, 1), we minimize

{Y =M (r)[07 (), (0 (1))"]" — Da}T K(r){Y =M (7) [07 (7),h (¢ (1))"]T — Da} (3)

with respect to [07 (1), h (¢ (7))"] and o, where ¢’ (1) = d6 (7) /dr, Y = (Y], ..., Y)T,Yi = (Yiy, ..., Yir)T,
a=(ag,...,an)T, MT (1) = [M] (1), ..., M}, (7)] with

Th Th
Miry=|: : ,

T T—1T T—1T T
1 XiT Th Th XiT

T 1—7T 1—7T T
1 Xil Xil

K(r) =IN®K (1), D = (=1ny_1 IN-1)T ® 17, K () = diag [k (55L) ...k (552)] lais a d x d

identity matrix and 14 is a d x 1 vector of ones. The kernel k(-) : [-1,1] — R is a prespecified symmetric
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probability density and h = h(NT) is a bandwidth. Examples of k(-) include the uniform, Epanechnikov
and quartic kernels.

The first order condition of (3) with respect to a yields:
&= [D'K(r)D]"'DTK (1) {Y = M () [07 (1), h (¢/ (7))"]"}. (4)
(i) Plugging (4) into (3), we get the concentrated weighted least squares:
Y =M@ [07 (7). h (0" ()] W@ {Y =M (7) [67(r),h (¢ (1))] "} (5)

where W (1) = WT (1)K (r) W (1) and W (1) = Iyr — D[DTK (1) D]"'DTK (7). Minimizing (5) with
respect to [T (7),h (6’ (1))"], we obtain the LLDV estimator of 6 (7) :

0(7) = [Las1 Ogia] [MT(m)W (1) M(m)] ' MT ()W (1) Y,

where 0g41 is a (d41) x (d+1) null matrix. Li et al. (2011) assume that (i) (X¢,¢e¢) is a sequence of inde-
pendent and identically distributed (i.i.d.) variables, where X; = (Xi,..., Xn¢)7 and e, = (€14, ..., ene)T;
(ii) the error process {€;:} is independent of {X;;}; (iii) neither {e;} nor {X;:} is allowed to have cross-
sectional dependence. We relax their assumptions and derive the asymptotic property of 6 (7) under the

following set of assumptions.

Assumption A.1: (i) (X¢, &) is an Nx(d + 1) S-mizing random matriz with mizing coefficients 5(j) =
SUPSE[SUPAeggij |P(A|G% ) — P(A)|], where G is the o-field generated by {(Xy,ex) : k=s,...,t} and
{B(5)} satisfies B(j) < Cgp’ for 0 < Cg < o0 and 0 < p < 1; (ii) For any t, we have E(X;) = pux (%),
where px(T) is continuously differentiable up to the second order on [0, 1].

Assumption A.2: (i) {e;} is a martingale difference sequence (m.d.s.) such that E (g¢|F;—1) = 0, where
Fi—1 is the o-field generated by { X, Xo—1,...,60-1,6t—2,...}; (ii) suptE]esit\‘l(H”) < oo for some n > 0;

(i1i) As N — oo,
)

= O(N?/?), for some 6 € (2,4].

N
g Eit

sup £
t ;
=1

Assumption A.3: (i) The d x d matriz x (%) = E{[Xi — py (%)][Xit — px (%)]T} is positive definite.
In addition, X x(7) is continuously differentiable with respect to T € [0,1]; (ii) sup; E(|| X3]|*M7) < oo
fiii) As N — o0, sup, Bl SV, [Xu — ux(D]IF = ON2); (iv) As N — oo, sup, Bl SN, {[Xi —
px ()Xt — px (£)]T = Sx (7)}H° = O(N*/?).

Assumption A.4: There exist a d x d positive definite matriz Sx-(%) and 0 < 0%(4) < oo such that



as N — oo,

N N ¢
¥ 2D 0uilid) o2 (7).

N &

3o { e ()] e (1)) o2 (),

=1

1=
N N
1
ZZE eireje) | Fa] 0 = O(1),

7,:1 j=

1
1 N N
wp 7 D D (E|IXKu X PO T = 0(1),
=1 j=1

where oc4(i,j) = E(eitej|Fi-1), 02(1) and Sxc(7) are continuously differentiable on [0, 1].
Assumption A.5: 5(7) and \(T) have continuous derivatives up to the second order.

Assumption A.6: k: [—1,1] — R" is a symmetric and Lipschitz continuous probability density func-
tion.

Assumption A.7: As N — oo and T — oo, (i) the bandwidth h satisfies that h — 0,Th —

!
s — o0; (i) log(NT)NTY?=2/% — o0 and Th? — oo; (iii) N2/T°% —

Sh
— 00 and & Toa(NT)

o0, 132(\?%)
0 and NThS — 0.

The (-mixing condition in Assumption A.1 imposes a restriction on the temporal dependence in
(Xt,et). A similar condition has been used in Chen and Hong (2012), Juhl and Xiao (2013) and Kristensen
(2012) in a time series context. Unlike Li et al. (2011), we allow for dependence between X;; and e
and we relax their assumptions on cross-sectional independence and stationarity. Therefore, we include
the important class of dynamic panel data models in our framework. Assumption A.2 allows panel data
models with potential conditional heteroscedasticity of unknown form. Assumption A.2 requires the linear
panel data model to be correctly specified under Hy and the violation of correct model specification may
lead to spurious rejection of model stability. Assumptions A.3 and A.4 impose moment conditions on
{Xi:} and {e;+}. Similar to Chen, et al. (2012), we allow for cross-sectional dependence in {e;} and
the degree of cross-sectional dependence is controlled by the moment conditions in Assumption A.4.
Assumption A.5 is to guarantee that the asymptotic bias and variance of the LLDV are well-defined.
Assumption A.6 implies f_ll k(u)du = 1, f_ll uk(u)du = 0 and f_ll u?k(u)du < oo. All examples noted
in Section 2 satisfy this assumption. Assumption A.7 imposes mild conditions on the bandwidth h and
sample sizes N and 7. Note that we allow N/T" — C for 0 < C' < 0o as (V,T) — oo and it covers the
optimal rate h oc (N T)fé of the nonparametric estimation for 6(r).!

We now state the asymptotic property of (7).

Proposition 1. Suppose Assumptions A.1, A.2(i)-(ii), A.3-A.7(i) hold. Then for any T € (0,1), as

N — 00 and T — o0,
NTR[O (1) — 0 (1) — B (1)] % N (g1, 2(r)),

LOur derivation can still go through with a fixed N. But as a tradeoff, we need to impose a stronger assumption on 7.



where 0441 is a (d + 1)-dimensional null vector,

h20" (1) fil u?k (u) du
2

B(r)= + 0p(h2),

o2(7) + pk (NEF (N Ex (NS (Nux (1) =k (1) S5 (T) Sxe (1) S5 (1)
—S3N (1) Exe (1) 2 (T)px (7) X (1) Exe (1) 2K (7)

Br(T) ooy Ba(T)]T, 6" (1) = d20 (1) [dr? and vo = [, k*(u)du

Proposition 1 extends Theorem 2.2 of Li et al. (2011) to allow for cross-sectional dependence and

(1) = o , 0(7) = [A(7),

nonstationarity. We only impose a mild condition on the relative rates of growth between 7" and N, thus
the proposed estimator and test below are applicable to panel data with various size combinations of T’
and N. Both 3(7) and \(7) achieve the same convergence rate.

Under the null hypothesis, 5 (-) and A () are constant and we estimate them via the LSDV estimation,
which is discussed in Section 2. Let # = [A AT]T and 6 = [\ BT]T. The asymptotic property of 8 is
established below.

Proposition 2. Suppose Assumptions A.1, A.2(i)-(ii), A.3(i)-(ii), A.4 hold. Then under Hy, as T — oo

and N — o0,

VNT(0 - 0) % N (0411, %),

where Y9 = ZEVZET, A = fo Yx(r dT—i—fO px (T /LX( )dT—fol,uX (T)deOI,u}( (1) dr,

=_ 1+f0 pl (T)dr A~ 1f0 wx (T fo ph (r)drAt fo ph (r)dr A1
—A~ 1f0 px (T)dr AL AL
fo o?(T)dr 01 o(r)uk (T)dr 07
andV = | [J o2 (T)ux(r)dr [y o (T)ux(r)uk (7)dr 0d
04 04 ) Sxe(r)dr

The LSDV estimator has been commonly used in practice, but its asymptotic property under non-
stationarity, both cross-sectional and serial dependence has not yet been developed to our knowledge.
Proposition 2 thus fills the gap in the literature. Under the null hypothesis Hy, the LSDV estimator 0
and the LLDV estimator ét converge to the same probability limit; under the alternative hypothesis H 4,
they depart from each other. Therefore, to check parameter constancy, we consider a Wald-type test

that compares these two estimators via a weighted quadratic form:

0= N\/_Z(Qt )Qt(et 9)

where the weighting matrix ; = N1 SN [1 XT]T[1 X7]. The statistic (NT+vh)~'Q converges to 0
under Hy, but to a strictly positive constant under H 4, giving our one-sided test asymptotic unit power.

Any significant departure from 0 is evidence of structural changes. Formally, our generalized Hausman



test is a standardized version of Q :

where

C = h*1/2u0 /1 [62(7) + tT&C@(ij;(l(T)EXE(T))} dr,

1 ° 1 1
§ = 4 /0 [64(7) + trace (S5 (1) Exe (S (1) Sxe ()] dr /0 [ / ku)k{u-+ vy
are centering and scaling factors, &3 (r)=N"! Zf\il Z;VZI Ger(i, ), 0er(1,5) = (Th)~! Z;le éité‘jtk(%),
Sx(7) = NUSY ME, Sxe(r) = NTUSSY S50 MP 6 (i,5) My = (Th) ™S [Xa— il (4)][X 10—
e (ENTR(EELD), i (1) = (Th) " o1, k(52L) Xy and vy is defined in Proposition 1.

We now state the asymptotic distribution of H under Hy.
1

Assumption A.8: (i) As N — oo, supt%Zfil Z;yzl{E[(sitsjt)‘l(H”)|.7-"t_1]}4(1+") = 0(1); (it) As

N — o0, sup, % Zf\il Zle{E[(ffz‘tffjt)zg(Hn)||Xz‘tht||8(1+n)]}8“£’") =0 (1); (ii) sup, £ HXz'tHg(Hn) <00

and sup, Ele; |81 < oo,

Assumption A.9: As N — oo, (i) E| Y10y S [eieji— E(eaue)]|® = O(N®/2); (ii) E|| o1 oI {eieju [ Xir—
px (PNXge = nx (PIT = E{eirejel Xt — nx (£)][Xe — ux (F)ITHH° = O(N/?).

Theorem 1: Suppose Assumptions A.1, A.2(i)(ii)-A.4, A.6, A.7(i)(i1)-A.9 and Hy hold. Then

H-% N(©,1)

as T — oo and N — oo.

The H test has a convenient null asymptotic N(0,1) distribution. This is quite appealing in light of the
facts that most existing tests for structural changes in panel data models have nonstandard distributions
which may depend on the DGPs. The proposed test does not require formulation of an alternative and
is applicable when one has no prior information of the alternative. Moreover, no trimming is needed. As
an important feature of the H test, the use of the LSDV estimator 6 in place of the true parameter 6
under Hy has no impact on the limit distribution of H. Intuitively, the parametric estimator 6 converges
to 0 at a v/ NT-rate, which is faster than the nonparametric estimator ét‘ Consequently, the asymptotic
distribution of H is solely determined by the nonparametric estimator 0, and is nuisance parameter free.

Next, we investigate the asymptotic power property of H under H A-
Assumption A.10: Ezcept for a finite number of points on [0,1], (i) B(T) has continuous derivatives
up to the second order; (ii) A(1) has continuous derivatives up to the second order.
Assumption A.11: (i) sup,c (o) [[lim, .+ B (7) —lim, - B(7)|| < C; (ii) sup ye(o,1) [imr .+ A(7) —
lim,_,- A(7)[ £ C.

Theorem 2: Suppose Assumptions A.1, A.2(i)(ii)-A.4, A.6-A.7(i)(ii), A.8-A.11 hold. Then for any
sequence of nonstochastic constants {Cr = o(NTvVh)}, P(H > Cr) — 1 under Hy as T — oo and

N — 0.



Assumption A.10 allows for both smooth structural changes and abrupt structural breaks with known
or unknown break points. We permit 6(:) to have a fixed number of discontinuities. Hence, single
structural break and multiple breaks with known or unknown break points, which are often considered
in this literature, are included as special cases. For abrupt structural breaks, the break size is bounded
by Assumption A.11. Theorem 2 suggests that the H test is consistent against all alternatives to Hy,
subject to a set of regularity conditions. Thus, the proposed test will be able to detect any structural
changes in panel data models as long as T' and N are sufficiently large. This is appealing in light of
the fact that no prior information about the alternative of structural changes is available in practice. It

avoids the blindness of searching for possible alternatives of structural changes in practice.
4. DIAGNOSTIC TESTING FOR TIME-VARYING INTERACTION

When structural changes are detected by the H test, it would be interesting to explore possible
sources of the rejection. That is, whether the rejection is from a time-varying intercept or slope, which
corresponds to a time trend or a time-varying interactive effect in economic applications. Such informa-
tion, if any, will be valuable in reconstructing the model and studying the relationship between economic
variables. For example, in a simple wage equation, it might be interesting to check whether structural
changes exist in the return to schooling while allowing for time variation in the intercept. On the other
hand, researchers may have some prior information (from e.g., economic theories or empirical evidences)
on the existence of a time trend. Therefore, the structural break tests could mainly focus on the slope
coefficients. For example, in the model of regional economic growth, it is important and challenging to
study the stability of the impact of various economic factors (e.g., capital stock, labor input, technology,
etc.) on growth rate, while a time trend is usually assumed.

In the past few years, panel data models with a common trend, which specifies the time-specific effect
with some unknown functions rather than dummy variables, have become popular. For example, Atak,
Linton and Xiao (2012) develop a semiparametric panel model to explain the trend in UK temperatures
over the last century using data observed at the twenty six Meteorological Office stations. Chen, et
al. (2012) study a semiparametric fixed effect model to capture the nonlinear trending phenomenon in
panel data analysis and develop a pooled semiparametric profile dummy variable estimation (PSPDV).
Zhang, Su and Phillips (2012) propose a nonparametric test for common trend in semiparametric panel
data models with fixed effects. Hence, we build on this rich literature and focus on testing whether the

interactive effect (/3;) is time-varying while allowing for a time trend in this section. Namely, the DGP is
Yie = X0, + i + M\ + €4, i=1,.,N, t=1,..,T,

the null hypothesis is
Hg : 8, = for all ¢

and the alternative hypothesis HY is the negation of Hf. We shall follow Chen et al. (2012) to estimate
B via a PSPDV estimation under the null hypothesis Hj. The idea of the PSPDV estimation is briefly

summarized below.



(i) For given a and 3, we estimate A (1) by

( {\?(T) > =argmin[Y — X8 —Da—Z(1)7]"K (7)Y — X8 — Da— Z(1)7], (6)

Ag (T) g

where X = (X7,... X)), X; = (Xi1, ... Xin)T, Z(7) = In @ 2(7), 2(7) = ( leT T}TT ) .
Th -+ Th

The first order condition of (6) yields

Ag (1) = (1,0)5(7) (Y = X — Da),
where S (1) = [ZT (1)K (1) Z (7)] 7' Z7 (1) K (7).
(ii) Let Aﬁ =1y ® [5\5 (1/17),..., S\B(T/T)]T. We estimate (aT,8T)T by

Jmin (Y — XB - Da— AB)T (Y ~ X8 - Da— Aﬂ> . (7)

By solving the optimization problem in (7), we obtain the solution:

A -~ ~N\N—1 . L

Bp = (XTDX) XTDY, (8)
where X = (Iny — S)X, Y = (Iny — S)Y, D = Iyy — D¥(D*TD*)"'D*T, D* = (Iyg — S)D and
S=1nv @ {[(1,0) S (1/T)]T,..., [(1,0) S (T/T)]T}T.

We now state the asymptotic property of B p in (8).

Proposition 3. Suppose Assumptions A.1, A.2, A.3(i)(ii)(iii), A.4, A.6, A.7(i)(iii), A.10(ii) and
A.11(ii) hold. Then under H, as T — oo and N — oo,

VNT(Bp — B) % N (04, 55),

where ¥g = [fol ZX(T)dT] - fol Yxe(T)dr Uol Zx(T)dT} 71.

Proposition 3 is an extension of Theorem 3.1 in Chen et al. (2012). We relax their stationarity
assumption so that lagged dependent variables can be included as regressors. The smoothness condition
of the trend function \(7) is also relaxed to allow for a finite number of jumps. When the null hypothesis
H holds, the PSPDV estimator B p and the LLDV estimator Bt will be close to each other while under HY,

B p and Bt will converge to different probability limits. Therefore, the test statistic for the time-varying

i = (- &) 1S

interaction can be constructed as

10



where
T
Q = N\/EZ (Bt —BP)TMt (Bt _BP) ;
;\[:1
M; = N7 ZXitXiTp
i=1

and

C1 = hY2 /1 trace(V x (1)Sx.(1))dr,
1 " 1,1
§ = 4 /0 trace(Wx () Sex (r) ¥ x (1) Sex (7)) dr /0 [ / k(K +o)duldo
are centering and scaling factors respectively, where Ux(r) = 2}1(7) + 2}1(7);1)((7'),11}((7)2;{1(7'),
fix(T) = (NTh)"' SN T k(5FL) Xy and v is defined in Proposition 1.
The asymptotic null distribution and the asymptotic power property of H; are stated below.

Theorem 3: Suppose Assumptions A.1-A.4, A.6-A.8, A.9(ii), A.10(ii), A.11(i1) and H§ hold. Then

i % N, 1)

as T — oo and N — oo.

Theorem 4: Suppose Assumptions A.1-A.4, A.6-A.8, A.9(ii), A.10 and A.11 hold. Then for any
sequence of nonstochastic constants {Cp = o(NTV/R)}, P(Hy > Cr) — 1 under HY, as T — oo and

N — oo.

Similar to the H test, the use of the PSPDV estimator B p in place of the true parameter 8 under
H{ has no impact on the limit distribution of Hj. That is due to the fact that B p could achieve a VNT
rate, which is faster than the convergence rate of the nonparametric estimator Bt. Theorem 4 allows 3(-)
to have a fixed number of discontinuities and thus includes single structural break and multiple breaks

with known or unknown break points as special cases.
5. FINITE SAMPLE PERFORMANCE

Next, we study the finite sample performance of our tests. Theorems 1 and 3 provide the null
asymptotic N(0,1) distribution of H and H;. Thus, one can implement our tests for Hy and H by
comparing H and H, with a N (0,1) critical value. However, like many other nonparametric tests in the
literature, the size of H and H; in finite samples may differ significantly from the prespecified asymptotic
significance level. Our analysis suggests that the asymptotic theory may not work well even for relatively
large sample sizes, because the asymptotically negligible higher order terms in H and H; are close in
order of magnitude to the dominant U-statistic that determines the limit distribution of H and H;. To

overcome this problem, we consider a residual-based bootstrap:
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Step (i): Use the sample {(Yi, X};),i = 1,..,N,t = 1,...,T} to estimate the model via LSDV
(PSPDV for the H, test) and LLDV regression respectively and compute the H and H statistics and the
nonparametric residual é;; = Y — e — &y — XiTtBt; Step (ii): Obtain a bootstrap residual &}, by random
sampling with replacement from the centered nonparametric residual g;; = &; — N *1T*12ij\ilEthléit
and construct a bootstrap sample {(Y;;, X},),i = 1,..., N,t = 1,..., T}, where Y} = XthB +d; + A+ gy
Y= X;B + &+ A+ gy, for the H, test); Step (iii): Compute the bootstrap statistics H* and ﬁf, in
the same way as H and H; respectively, with {(Y:,X},),i=1,..,N,t =1,...,T} replacing the original
sample {(Yi, X},),i = 1,...,N,t = 1,...,T}; Step (iv): Repeat steps (ii) and (iii) B times to obtain B
bootstrap test statistics {H;}2 | and {H}}2 |, where B is sufficiently large; Step (v): Compute the
bootstrap p-values p* = B_IElell(fIl* > H) and p} = B_IZlell(lEIfl > H), where 1(-) is the indicator
function.

To examine the size of our test H under Hy, we consider the following DGP:

DGP S.1 [No Structural Change]:
Yie = A+ BXi + a; + €i,

where A and 3 are the average of A (t/T) and 3 (t/T) respectively with t = 1,...,T :

A1) = PP4+7+41 (9)
B(r) = sin(r7),

1
Xit = §Xi,t71 + Vit,

and

a; = 0oX;+ui, i=1,--,N—1, 0y=1, u; ~i.i.d.N(0,1),

OtN:—EOdZ'.

To check the robustness of our test H , we generate v;; and €5 in two ways: one is from an ¢.i.d.N (0, 1)
distribution and the other has cross-sectional dependence following Chen et al. (2012). Let ¢ =
(e1¢,€2¢, - - - ,ENt)T, which is generated as a sequence of an N-dimensional vector of independent Gaussian

random variables with zero mean and covariance matrix (c;;), where
Cij = 0.8“72‘ .

We generate vj; similarly, but with covariance matrix (d;;) where d;; = 0.5, We generate 500 data
sets of a random sample {(Yi, X},),i = 1,...,N,t = 1,....,T} for N, T = 15,20, 25,30. To investigate the

power of our test H in detecting structural changes in panel data models, we consider three alternatives:
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DGP P.1 [Single Structural Break]:

| A BXu+ i e, if t < 0.5T,
" (A4 0.5) + (B +0.5) X + o + €4, otherwise.

DGP P.2 [Multiple Structural Breaks]:

v { (A+0.5) + (B+0.5)Xis + o + &5, if 0.3 <t <0.7T,
it —

A+ BXit + a; + €, otherwise.

DGP P.3 [Smooth Structural Changes]:
Yie=A+ ¢ [AE/T) = A +{B+¢[B(t/T) - B]} Xit + cvi + €t

where ¢ = 0.4.

The single break has been a structural change with classical importance. Under DGP P.1, an abrupt
break occurs in the panel data model at some unknown time ¢t. DGP P.2 admits nonmonotonic multiple
breaks. DGP P.3 is the time-varying coefficient panel model considered in Li et al. (2011).

For the proposed H test, we use the uniform kernel. In fact, our simulation experience (not reported
here) suggests that the choice of k(-) has little impact on the performance of the test. For simplicity, we
choose the bandwidth h = C(N T)_% with C = 0.5,1 and 1.5. We use the bootstrap procedure described
above with the number of bootstrap iterations B = 99.

Table 1 reports the rejection rates of H under DGP S.1 at the 10% and 5% significance levels, using
bootstrap critical values (BCVs). When ¢;; is i.i.d, the H test has good size with the rejection rates close
to the nominal levels. When & is cross-sectionally dependent, the size performance of H enjoys similar
pattern, which suggests that our H test is robust to potential cross-sectional dependence. We also note
that the size of our H test is robust to different choices of bandwidth.

Table 2 reports the rejection rates of H with BCVs under DGPs P.1-P.3 at the 10% and 5% levels.
The H test has reasonable all-around power against smooth and abrupt structural changes. The power
increases as either N or T increases. The rejection rate is about 52% at the 5% level even when (N, T')
is as small as (15, 15), and approaches unity when (NN, T") = (30, 30). The choice of bandwidth has some
effect on the power of our test when the sample size is small. However, with the increase of N and T,
the power becomes rather robust to choices of bandwidth.

Next, we turn to the finite sample performance of our diagnostic test H;. We use a similar DGP as
DGP S.1 for size while replacing A with the time varying function (9):

DGP S1.1 [No Structural Break in the Interactive Effect]:

Yie = M + BXi + i + €t

where \; = \(t/T) = (t/T)* + (t/T) + 1 and 3, Xy, a; and g5 are generated as before.

To check the power of Hi, we consider three types of structural changes in the interactive effect while

13



allowing for the common time trend ;.
DGP P1.1 [Single Structural Break in the Interactive Effect]:

At + BXit + o + €t if ¢ <0.57,
it = _
Z A+ (B+0.5) X5 + o + €4, otherwise.

DGP P1.2 [Multiple Structural Breaks in the Interactive Effect]:

v M+ (B+05) Xy + oy +ei, if0.37 <t <0.7T,
" M+ BXie + i + i, otherwise.

DGP P1.3 [Smooth Structural Changes in the Interactive Effect]:
Yie=X+{B8+¢[81/T) - B} Xit + i + e,

where ¢ = 0.4.

Tables 3 and 4 report the empirical size and power of Hjy under DGPs S1.1 and P1.1-1.3. Similar
to the H test, Hj has reasonable size performance and is robust to potential cross-sectional dependence
and the bandwidth selection. As expected, the Hj test has a bit lower rejection rate than the H test.
But the rejection rate increases with both N and 7" and approaches to unity when (N, T") = (30, 30).

To confirm that our tests have the right power when the distance between the null and alternative
hypotheses is increased, we plot in Figures 1 and 2 the empirical power of H and H; as functions of ¢
for DGPs P.3 and P1.3. When ¢ = 0, we are back to our null models DGPs S.1 and S1.1. Figures 1 and
2 show that the power functions increase monotonically with ¢. When the magnitude of ¢ is increased
to a larger extent, the power of our tests is reaching unity.

To sum up, we observe that both H and Hj tests have good sizes in finite samples when the residual-
based bootstrap is applied. They also have reasonable powers against both sudden structural breaks and

smooth structural changes.
6. CONCLUSION

The modelling of structural changes in panel data models has attracted increasing attention in econo-
metrics. We have complemented the literature by proposing a Wald-type test for smooth structural
changes as well as abrupt structural breaks in panel data models, which has not been attempted in
the previous literature. Our generalized Hausman’s (1978) test is intuitively appealing and straightfor-
ward to compute. It has a convenient null asymptotic N(0,1) distribution, does not require trimming
data, does not require prior information on the possible alternative, and is consistent against all smooth
structural changes as well as multiple abrupt structural breaks in panel data models. Moreover, only
a mild condition is imposed on the relative rates of growth between 7" and N, thus our approach can
be applied to panel data with various size combinations of 7" and N. Our omnibus test is supplemented
by a diagnostic test, which allows for a common trend and focuses on potential structural changes in

the interactive effect. Such information is useful for practitioners in reconstructing a misspecified model

14



and studying the relationship between economic variables. To overcome the adverse impact of the first
stage nonparametric estimation of the time-varying parameters, we use residual-based bootstrap, which

provides reasonable size and power for the proposed tests in finite samples.
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TABLE 1
Empirical Size of the H Test

N/T 15 20 25 30
10% 5% | 10% 5% | 10% 5% | 10% | 5%

with i.i.d innovations
15 0.100 | 0.050 | 0.104 | 0.046 | 0.096 | 0.052 | 0.116 | 0.044
20 0.106 | 0.040 | 0.106 | 0.044 | 0.086 | 0.048 | 0.082 | 0.034
25 0.110 | 0.054 | 0.102 | 0.042 | 0.110 | 0.056 | 0.066 | 0.036
30 0.076 | 0.030 | 0.092 | 0.052 | 0.090 | 0.048 | 0.112 | 0.058

with cross-sectionally dependent innovations
15 0.106 | 0.052 | 0.102 | 0.036 | 0.088 | 0.042 | 0.084 | 0.034
20 0.106 | 0.064 | 0.110 | 0.054 | 0.110 | 0.052 | 0.112 | 0.050
25 0.084 | 0.038 | 0.092 | 0.046 | 0.080 | 0.040 | 0.114 | 0.050
30 0.104 | 0.056 | 0.100 | 0.042 | 0.090 [ 0.050 | 0.078 | 0.038

Notes: (1) H denotes the test for the overall model stability:; (2) 500 iterations;
(3) Rejection rates are based on bootstrap critical values with B=99.

TABLE I1
Empirical Power of H under DGPs P.1-P.3
N/T 15 20 25 30

10% 5% 10% 5% 10% 5% 10% 5%

DGP P.1-Single Structural Break
15 0.832 | 0.708 | 0.928 | 0.876 | 0.980 [ 0.964 | 0.998 | 0.992
20 0.924 | 0.850 | 0.984 | 0.968 | 1.000 | 0.992 | 1.000 | 1.000
25 0.964 | 0.916 | 0.998 | 0.986 | 1.000 | 1.000 | 1.000 | 1.000
30 0.986 | 0.954 | 1.000 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000
DGP P.2- Multiple Structural Breaks
15 0.692 | 0.522 | 0.736 | 0.564 | 0.932 | 0.866 | 0.928 | 0.836
20 0.812 | 0.628 | 0.878 | 0.742 | 0.974 | 0.926 | 0.990 | 0.948
25 0.880 | 0.758 | 0.906 | 0.762 | 0.982 | 0.952 | 0.990 | 0.958
30 0.914 | 0.808 | 0.912 | 0.810 | 0.994 | 0.984 | 0.996 | 0.986
DGP P.3-Smooth Structural Changes
15 0.882 | 0.776 | 0.938 | 0.898 | 0.988 | 0.960 | 1.000 | 0.996
20 0.940 | 0.862 | 0.994 | 0.972 | 0.998 | 0.990 | 1.000 | 0.998
25 0.974 | 0.954 | 0.990 | 0.984 | 1.000 | 0.998 | 1.000 | 1.000
30 0.994 | 0.974 | 1.000 | 0.996 | 1.000 | 1.000 | 1.000 | 1.000

Notes: (1) H denotes the test for the overall model stability:; (2) 500 iterations;
(3) Rejection rates are based on bootstrap critical values with B=99.




TABLE 111

Empirical Size of the H, Test

N/T 15 20 25 30
10% 5% 10% 5% 10% 5% 10% 5%
with i.i.d innovations
15 0.110 | 0.064 | 0.130 | 0.078 | 0.116 | 0.056 | 0.098 | 0.046
20 0.096 | 0.046 | 0.124 | 0.072 | 0.094 | 0.054 | 0.092 | 0.044
25 0.104 | 0.068 | 0.124 | 0.070 | 0.118 | 0.060 | 0.086 | 0.034
30 0.092 | 0.044 | 0.100 | 0.050 | 0.096 | 0.056 | 0.094 | 0.052
with cross-sectionally dependent innovations
15 0.110 | 0.068 | 0.096 | 0.056 | 0.098 | 0.050 | 0.084 | 0.038
20 0.108 | 0.046 | 0.100 | 0.046 | 0.096 | 0.050 | 0.098 | 0.054
25 0.084 | 0.032 | 0.090 | 0.046 | 0.084 | 0.036 | 0.110 | 0.058
30 0.106 | 0.046 | 0.076 | 0.022 | 0.086 | 0.040 | 0.090 | 0.046

Notes: (1) H 1 denotes the diagnostic test for the potential time-varying interaction; (2) 500
iterations; (3) Rejection rates are based on bootstrap critical values with B=99.

TABLE IV
Empirical Power of H, under DGPs P1.1-P1.3
N/T 15 20 25 30
10% 5% 10% 5% 10% 5% 10% 5%
DGP P1.1-Single Structural Break

15 0.636 | 0.504 | 0.820 | 0.656 | 0.894 | 0.812 | 0.956 | 0.892
20 0.714 | 0.580 | 0.866 | 0.790 | 0.956 | 0.890 | 0.984 | 0.964
25 0.800 | 0.684 | 0.954 | 0.892 | 0.986 | 0.964 | 0.996 | 0.992
30 0.868 | 0.752 | 0.968 | 0.914 | 0.996 | 0.988 | 1.000 | 1.000

DGP P1.2- Multiple Structural Breaks
15 0.468 | 0.290 | 0.530 | 0.360 | 0.776 | 0.604 | 0.718 | 0.572
20 0.520 | 0.326 | 0.666 | 0.444 | 0.838 | 0.688 | 0.832 | 0.690
25 0.630 | 0.450 | 0.626 | 0.422 | 0.874 | 0.740 | 0.882 | 0.756
30 0.670 | 0.524 | 0.740 | 0.520 | 0.930 | 0.814 | 0.942 | 0.860

DGP P1.3-Smooth Structural Changes
15 0.292 | 0.198 | 0.420 | 0.288 | 0.532 | 0.390 | 0.612 | 0.472
20 0.358 | 0.254 | 0.542 | 0.394 | 0.620 | 0.500 | 0.752 | 0.584
25 0.466 | 0.324 | 0.622 | 0.476 | 0.746 | 0.620 | 0.798 | 0.696
30 0.550 | 0.372 | 0.748 | 0.592 | 0.808 | 0.658 | 0.896 | 0.798

Notes: (1) H 1 denotes the diagnostic test for the potential time-varying interaction; (2) 500
iterations; (3) Rejection rates are based on bootstrap critical values with B=99.
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MATHEMATICAL APPENDIX

Throughout the appendix, we assume p; = f_ll wk(u)du, v; = f_ll wk?(u)du and C € (1,00) a

generic bounded constant.

By definition, we have

Proof of Proposition 1:
T)M ()] T MT(T)W(7)(A + 1) — 6()

0(7) = 0(7) = [Las1 Oara][MT(T)WV(
+ a1 Og][MT(r)W(7)M ()] MT(1)W(7) Dax
+ [La1 Oq][MT(r)W(T)M ()] M (1)W(7)e
7X]1;7TBT)T‘

where A = 1y ® [A1,...,A7|T and ¢ = (X{, 8y, ..., X]pB7, X3, 51, -
By definition, I(2) = 0441, where 0411 is a (d + 1) x 1 vector of zeros. We shall prove the rest via

the following propositions.
Proposition A.1: Under the assumptions of Proposition 1,
1
N M TW(T)M(7) = &, @ 8x(7) + 0p(1)
1 T
uniformly for 7 € [0,1], where ®,, = diag(ug, it5) and ®x (1) = [ px (7) i
px () Ex(7) + px(T)pk (1)

Proposition A.2: Under the assumptions of Proposition 1,
L) = %,@9”(7)# +op(h?).
Proposition A.3: Under the assumptions of Proposition 1,
NTRI-(3) 5 N0 11, vo®3 (1)@ xe(1)@5H(7))

o2(r) o2(ruk () ] |

where ®x.(7) =
xe(7) o2(Tpx (1) Sxe(r) + o2(T)ux (T)pk (1)

Proof of Proposition A.1: By definition, we have
MT(T)YW(T)M (1) = MT(7)K(7)M(1) — MT(7)K(7)D[DTK(7)D] ' DTK(7)M(7) (A1)
and the first term in (A1) is
N
MT(T)K(r)M (1) =Y M (7) K (1) My(7)
i=1
B N T N T N T N T 7]
El t;k(t_TZT) El t;XiTtk(t_TZT) Z; El SRS Z; t; LR X Tk (SE)
N T N T N T N T
2 % Xuk(5r) T X XuXPROTED) X B Xefmrh (D) 2 B Xa XL RCTE)
- NI t—1T 1.0 t—7T Nz Tt—1T . t—7T NI t—=1T\21.(t=7T NIT t—=TT\2 3T t—1T
Elt; 7h k(TR Z,EltElXit 7h k(T Elt;(w) k() izlt;(w) Xitk(S7R-)
N T N T N T N T
> Y EEEXuk(GEE) X X Xa XL SRR 3 N ) Xak(SEE) X Y Xa XL (SR R(EED)
Li=1¢=1 i=1t=1 i=1t=1 i=1t=1 i
...,ont)T. By Assumptions A.1 and A.3, (v,&;) is a non-
viv),) = Ux(4). The fact

Let vy = X3 — MX(%) and v, = (v1g,
stationary [-mixing N x (d 4+ 1) random matrix with mean zero and E(

i MT(T)K(T)M (1) = @, ® ®x(7) + op(1) follows the arguments below:
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. By the definition of Riemann integral and Assumption A.1, it is clear to see that, for j = 0,1, 2, we

have 7 > 1oy (SFEVR(SFRE) = 1y + O(3)s 27 Simy i (3) CFE Y R(SFE) = pjpx (1) + O()
nd 7 S0y xRk (B FEV R(FL) = wnx (7)pk (7) + O(F5) uniformly for 7 € [0, 1]. Also,
by Assumption A.6, we have p; = 0.

N
We have NTh Z: Z:(t TT)Jk:(t TT)fuit = op(1), given lovg](\g#) — 00, where we have used

e (T (o () e

NTh
i=1 t=1
for j = 0,1,2. A stationary version of (A2) has been shown in Chen et al. (2012). It’s straightfor-

sup
0<r<1

ward to show that the result still holds under Assumption A.1.

. Finally, we have for j = 0,1, 2,

N T j
1 t—7T\’  [(t—7T

i=1 t=1

uniformly for 7 € [0, 1]. (A3) can be shown in a similar way as (A2) under Assumption A.3(iv).

Next, we shall prove that the second term of (A1) is op(NTh). Let Z; = ZtT k(& TT) The inverse

part of the second term in (A1) becomes

1 1 1 1 ]
Z.  NZ, NZ, NZ;
__1 1 1 __1
_ NZ 7 NZ NZ
[DTK(m)D] ' = . T T
__1 __1 U S |

NZ; NZ; Z: ~ NZ. |

Denote Z, (i) = Y1, k(53 )vy and Z.(i) = S (5L =LV k(3L Yvi. The second term becomes

0 0 0 O
T (DI DT (- = 0 A 0 C;
MI@RT)DIDTR(DIDIRMM () = | =
_() D, 0 BT_
where
N B ~ N ~ B
Ar = ZAT(k)[ZT(k)_ (DT, BT:ZBT(k)[ (k) — Z:(D]T,
k;Q ~ ~ k§2 ~ ~
CT = ZAT(k)[ZT<k) - T(l)]T ) DT = ZBT(k)[ZT(k) - ZT<1)]T7
k=2 k=2
and ) N .
ay =8 S0, B =EE - Zz

Note that sz\ig A (i) = —A-(1) and 27{\;2 B;(i) = —B-(1). As we have shown 7-Z; = g + o(1),

Proposition A.1 follows from the lemma below.

Lemma A.1: For each i > 1, we have #-Z,(i) = op(1) and #-Z,(i) = op(1) uniformly for 7 € [0, 1].
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Proof of Lemma A.1: We shall prove that sup,¢g 1 || = Zle(%)jk(t}zT)th = Op((logT/Th)'/?)
for j = 0,1. The proof is similar to that of (B.10) in Chen et al. (2012), with Q; n(v) = % SN v
replaced by Q;(v) = v;; and the stationarity condition relaxed. For truncation, we choose Q;(v) =
Q:(v)I{||Q¢(v)|| < TY31(T)}. By choosing the following parameters

T1—2/(5h
" IY(T)logT

1 T1-2/0p 202(q)  be C
= \/ = .7 1(T)\/log T/Th and —<
b exl2(T)\ logT ~’ €= (T)/log T/Th an p? + 2 ~ T2hp’

the desired result follows. mm

UT) — o0 — 00, b= CT?1+1/6hill(T)7 q="T/(2p),

Proof of Proposition A.2: It follows by a second-order Taylor expansion and Proposition A.1. =

Proof of Proposition A.3: We have
MT(T)W(1)e = MT(1)K(7)e — MT(7)K(7)D[DTK(7) D] *DTK(7)e. (A4)

Then the first term in (A4) becomes

1 NI t—71T
o 2 2 KO et
1 g: ET: k(ﬂ)X- e
1 NTh Th et
T
> 3 (kD e
L 5 (SR X
NTF Th Th /<vit=it

Let L;(55L) = (5L k(55E). Tt is clear to see for j = 0,1, we have
N T

1 t—1T 1
L. —1=
vVNTh ;; ]< Th ) Xt
by applying Theorem 2.2 in Peligrad and Utev (1997). Next, we show that the second term of (A4) is of
small order, which is MT(7)K(7)D[DTK(7)D]"*DTK(1)e = op(VNTh).

Let e,(i) = Zthl k(57 )ei. We have DTK(7)e = [e+(2) —&7(1),- -+ ,&-(N) — &-(1)]T and thus

d —
] it — N(0g41,v2;Pxc(7))

MT(1)K(1)D[DTK(7)D] " *DTK()e = (0,UT,0,VI)T,

where
N N
Ur = ZAT<k)[€T(k) —er(1)] = ZAT(k)ET<k) )
k=2 k=1
and N N
Ve = Br(k)er(k) —er(1)] = Y Br(k)er (k).
k=2 k=1

To show U; and V; are op(VNTh), we use Chebyshev’s inequality and shall verify that E(U;) =
o(VNThR), E(V;) = o(VNTh), E(U.UI) = o(NTh) and E(V;V]) = o(NTh). It’s easy to see the

22



condition for mean holds. To save space, we only derive for the second moment here. We have

A [i Ar(b)er 1) LZ: A )]}

k=1
- vz [é Z: (e () k: 21 ()2 0)] - 3 240 :1 (k) ijl 230, (1)
F [fj NETANES S0 W)+ |5 3 2.0) |5 3 200K [fj o] 1
k=1 =1 k'=1 =1 =1 k=1

We only show the first term of (A5) is o(1) and the rest can be derived in a similar way.

For simplicity, let k;, = k(2L TT) Given - Z. = Op(1), we shall show

1 A =
WE[Z Z(k)er (k) > I(k')&(k')]
k=1

T T T T

SS90 9) 9 SN 10 SPIET( S 0BT

t=1t'=1s=1s'=1 k'=1
To save space, we only prove for the case ¢ > t' > s > s’ here. Suppose t — t’ is the largest among
{t—=t',t' —s,s — &'}, then

T t—1t-1s-1 N
DI D) B) B (z e ) (35 o e ) ||
2 s'=1

t=4 t'=3 s= k=1
t—1t -1 s—1

T
_T3C}L3ZZZZkt7kt/ kSTks’ CH",BH"(t—t)
1

1
t4t’382s’
1

k -k lﬂlJrn -0 —
< z””z o(75)-
Thtls1 Th

where we have used Lemma 1 in Yoshihara (1976). We have Cps = max(C1,,C%,) < oo by Assumptions
A1, A2(ii), A3(ii) and A4, where C}, = sup E| & (X0, vieers)(Dn—y vhpews) |17 and C3}, =

! !
t,s,t!,s

sup [ [ ||%(Ziv:1 vktéks)(zgzl vl wers )| dF (vy)dF (vp, 5,65 ). The other cases are similar. m
t,s,t!,s’
The desired result of Proposition 1 thus follows Propositions A.1-A.3 and the block matrix inversion

formula. =
Proof of Proposition 2: By definition, we have

(£ 5]

i=1 t=1

zt__ 5zt 5)-

Mz
M’ﬂ

=1 t:l
T _
We can show that the inverse part converges to a constant at the rate NT and E S (X — Xi) (et — &)

i=11=1
is Op(VNT). Replacing X;; with vy + p X(%), where v;; is defined in the proof of Proposition 1, inside
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the inverse, we have

For the first term of (A6), we have <= Z Z Vi), = fo Yx(7)dr + op(1) by the LLN for the f-
i=1t=1

mixing process (Corollary 8.5.1, Lin and Lu, 1996). The second term of (A6) is of order O,(T~!) by
Chebyshev’s inequality and Lemma 1 in Yoshihara (1976). For the third to the sixth term, they are of
order O,((NT)~'/2) by applying the LLN for S-mixing process. By the definition of Riemann integral,

the last two terms become

Tzﬂx< ) X< ) T2 EZ“X( ) <;):/OIHX(T)N}((T)dT_/OlMX(T)dT/Ol,u}((T)dT—Fo(l).

t=1 s=1
Next, it is clear to see that
1 N
VN ZZ it — Xi)(eit — & ZTZZ[Uitﬁit+Mx< >5zt TZ,MX( >5zt

=1 t=1 t=1 i=1

S

T

1 T N
Y TWtX_;;ZUit&s’

=1 =1

=

where the first term converges by the CLT for the m.d.s. (Hall and Heyde, 1980), and the second term
is of small order O,(1/V/T) by Lemma 1 in Yoshihara (1976), Assumptions A.1 and A.4. Therefore, we
have
N T
VNT(B—8) = AHNT) 23 “ouei + py < ) Eit — ZMX )eit] +op(1),
i=1 t=1
where

1 1 1 1
A= [ sxryar+ /0 iy (7) il () dr — /0 i () dr /0 Wl () dr. (A7)

For the intercept, we have

VNT(A = \) = —XTV/NT(3 - B) + VNT=,
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where 2 = (NT)"' SN "1 ¢,;. Therefore,

)
B-p

VNT

X—A] (1 —XxT
B-5 0

ﬁ Yoy i it
\/— Zz 1 Zt 1 ix (p)eie | +op(l).
m Zi:l Zt:l Vit€it

1 o) 0f
A7 [ ux(r)dr AL AT

1 - fol pl(7)dr
0d4 Iq

By applying Theorem 2.2 in Peligrad and Utev (1997), we have

VNT

A=A _
. ] 4 N(0gp1, EVET),
B—p5

where = and V are defined in Proposition 2.
Proof of Proposition 3: We first assume the trend function is smooth, and show near the end of the

proof that the same result holds when A(-) has a finite number of bounded jumps. Define
s(1) = (1,0)S(r) = (1,0)[ZT(1)K(r) Z(r)] 2T (1)K(7),
A= (Inr—S)A and & = (Iyp — S)e.
We have
Bp— B = (XTDX)LXTDA+ (XTHX) LXTDD o + (XTDX) 1 X7 Dz
= Un7(1) + N7 (2) + TN (3).
It’s obvious that IIy7(2) = 04. Similar to Chen et al. (2012), we have (r XTDX)™! fo Sx(r)dr)~t
op(1) and VNTTIN7(1) = op(1). For TIy7(3), we know that
XTDé = XTé — XTD(D™D) 'DTe = Iy (1) + iy (2) .
For IT3(1), it is clear to see that

\/%H}“VT( \/_ ZZW% Fop(1) % N(D,, / 5. (7) dr)

=1 t=1
by the CLT for m.d.s. (Hall and Heyde, 1980).

Let Ap(k) = Zthl Xyt — Zthl X = Zthl Ukt — Z?:l vy and Br(k) = Zthl Ckt — Zthl eu- Also
note that Ar(1) =04 and Br(1) = 0.

By definition, we have

=

1 1 N N
Myr(2) = 7 ) Ar(k)B ——ZAT ZBT

1 N k=1
T 1 T N
Uktzf‘: —ﬁ Z’%tZZ%t
1 t=1 t=1  k=1t=1

B
Il
’ﬂ

’ﬂl'—‘
™=
B
M= 1

R‘

=1
- 1_[NT 271 +H*NT(2>2) .

As ﬁzgﬂ S v = Op(1) and ﬁZszl ST e = Op(1), we know IT51(2,2) = op(VNT).

H
Il
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We shall show II3,(2,1) = op(vVNT). Note that
LN LN
B (T 3w z) z z )+ A3 Bl
k=1t=1  t=1 k=1 t=2 k=1 t=1 st
\/N t—1 1 N
=2 > =2 Elvuck)
I =5 VYNiS
T
CvN -
< \T/_ SN Ci 8T (1) = O(VN) = o VNT),
t=1 I=1

where we have used Lemma 1 in Yoshihara (1976). We can show Cy; = max(C3,, C%,) is bounded given

Assumptions A.4, where

N N
1
Cl = supEH \/_ katfks |1 < sup[ ZZ [[vitv; Teisejs|)! ]
z:l 7=1
N N
[ ZZ Elviev]eisejsl Ww]
N N 1 _ 1
2(1+7) 2(1+7) 2
< {sup—zz[ (JlvsevT, ) 2<1+n>} ! [E(eisejs)“”"’] ! } < 0.
ctr=sw [ [ kateks 17 dF (0)dF (<)

= [SUPNZZ/ / ool 7 eise s |1+”dF<vt>dF<es>”"} 2

7,1]1

=

+

1+n
2

1tn

N
. 2
N |:Sf},lsp N ZZ: Z: EHUZthtHl—i_n 1+" (E‘EZSSJSP 77) 1+V1:| < 00.

N N
> E(aztej,vavjs,) = o(NT), there are four

M=

T T
To check for the variance, which is 4 > > >

i=1s=11'=15'=1i=1j=1
cases:
Casca: t=s=1t =5,
Case b: t =t' =5, s =5 =t and etc;
Case c: t =1, s =5, t = s and etc.;
Cased: t £t £s#£ 5.
T N N
For Case a, we have % tzjl 231 Zl E(eiejtvivjt) = O(%) By applying Lemma 1 in Yoshihara (1976),
=1:=1j=

we have O(%) for Case b. Case ¢ and Case d are both of order O(N). Finally, by Chebyshev’s inequality,
IT4(2,1) = 0p(vV/NT). The desired result thus follows.

We shall show the same result holds when A; has a finite number of bounded jumps. Without
loss of generality, we assume that A; has only one jump at ¢ = ¢ which is A\(¢/T) = A\ (¢/T) 1<ty +
Xo(t/T)1;>4, for some smooth functions A;(-) and Ao(+). By the definition of 3p, we only need to show
that VNT(XTDX) ' XTDX = op(1) still holds. For XTDA, we have

XTDA=X"A—XTD(DTD)"'DTA = p, + ps.
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It’s obvious that ps = 0. By definition, we have

1, ZZ GANEELES o SRR A ASRNEANY
NT b NT i=1 t=1 " NT i=1 t=1 T T T
N T
s ;;mx@ — BTN GE) — ()

= P11+ P12 + P13,

where v = (vi1,..., 017, ..., onT)T, px = 1IN ® (ux(F), ..., px(1)T and s(T)A = (1 0)S(T)A =
A ST MDA + o).

For each h, we construct a continuously differentiable function A, such that A\, (1) = A(7) for 7 €
[0,t0/T — h) U [to/T + h,1] and Ap(r) = A(to/T — h) + (1 — to/T + h)?2ULIRAG/TN g 7 ¢
[to/T — h,to/T + h). We rewrite p;; as

1 N T \ t 1 L i s—t \ S 1
P11 = m;; it (T)_T_h; (Th) (T)]+0P()
1 N T t 1 L s—t S
= W;;Uzt[/\h(?) - Th ;k( Th ) h(?)]
1 LZ o1 s —t
+szvzt[()\—)\h)(f) - ﬂZk( 77 ) = M) ()] +op(1)
i=1 t=1 s=
to+2[Th] LT .
==Y Y wl-ME g L IO MG+ er)
i=1 t=to—2|Th)| s=t—|Th|
N to+2[Th]

Z Z vit + op(1)

=1 t=tg—2|Th]
=0p(Vh),

as we Know sup, ¢y, /7—3h,to /7430 [AT) = An(7)| < C. Similarly, we have

1 to+3 (Tfﬂ N to+2 (Tfﬂ

SO N 3 Sowe S A =0n(R),

s=to—3|Th) i=1  t=tg—2|Th]

and also p;3 = Op(V NTh?) = op(1). Therefore, we complete the proof of Proposition 3. m
Proof of Theorem 1: We have that

T
Q = NVRY (6:—60+6—6)T0(0, —6+06—0)
t=1

T T T
= NVRY (0: = 0)TQu(0; — 0) = 2NVR Y (0, — 0)T0 (0 — 0) + NVRY (6 — 0)€2(0 — 0)
t=1 t=1 t=1
= J1 =22+ J;s.
We shall decompose the proof to three sub-theorems, which show that the asymptotic mean and variance
are determined by nonparametric estimation and the estimation uncertainty of parametric estimation is

asymptotically negligible.
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Theorem A.1: Under the assumptions of Theorem 1, (J; — C)/S <, N(0,1).
Theorem A.2: Under the assumptions of Theorem 1, Js 2.

Theorem A.3: Under the assumptions of Theorem 1, J3 2.

Proof of Theorem A.1: Let kg = k(5 ) Expand J;

Ji = N\/EZ{Ud—H Oar 1] [MT(r)W(T)M (7)) " MT (1) (7)e}T
1 L3 x1
X N N {ar1 Oara ] [MT()W(T)M (7)) MT(1)W(7)e }
%i;Xit %Z;XitXiTt
1 T T N N +
s1=1s2=11=1 j=

N[

t=1

T T
t _ t S
_5i51€j82 stltk52t,u}( <?> Exl <f> 125 (%) + €i81€j82M}( ( ) stltksztz){l
t=1
d t t d t s
_ — 2
~einEguatly D Kotk Ty <T> a (f) F inEinly ) Rt By (?) wx (%)
t=1 =1
4 t t 51\ — t
_ 1 _
_6i51€j82 stltksztp’}( <T> Z])(1 <T> UjSQ + 6i816j82#}( (?) Zk81tk5‘2tle <T) Uj82:| +0P(1)
t=1

t=1

N[

T N T
1= 1=

T N T N N
- T2h3/2 Z Z Z kgtglsajs T2h3/2 Z Z Z Z kgtglsvzsz < > €jsVjs
t=1 s=114=1 j=1 t=1 s=1 i=1 j=1
NT2h3/2 Z Z Z Z Z ksltk32t81318352 {1 + szIZ <%> ijQ] + OP<1)

t= 181 182758182 1= 1] 1
= Ju+Jiz + Jiz+op(1),

where we have used Lemma A.2 below for the second equality and Riemann integral for the third equality.

Lemma A.2: Under the assumptions of Theorem 1, we have

1

log(NT)
sup E ksythsot Ht Y Ukegf Op< —>, (AS)
s melo )| NTR? 0 t; o VNTh
L E log(NT)
Sup ks thsye H. vpvp, G ks, ks H2X< )G 0P< _)7
$1,52€[0,1] NTh? t=1 et t; Gl hZZ 1t sot St t \/ﬁh

where H; = H (%) is either some 1 x d vector or d X d matrix, Gy = G(4) is either some d x 1 vector or
d x d matrix and ¢g; = g(%) is either some 1 x d or 1 x 1 vector with each element (of the matrix or the
vector) a continuously differentiable function with respect to ¢. For instance, let H; = G = Z;(l(%) and
gt =1

Proof of Lemma A.2: They are similar to (B.10) in Chen et al. (2012). For simplicity, we only show
(A8) and concentrate on the difference between the current proof and that of (B.10). Let [(-) be any
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positive function that satisfies [(n) — oo as m — oo. Then, it suffices to show

T N
1 1 log(NT)
sup Py ks, tksyt Hi— Vetgt||= op (l(NT) —)
s1elo | Th? ; N ; ' VNTh

We can cover the interval [0,1]? by a finite number of squares {Bj, ;,} with center at (b, b;,) and
with width and length 7 = o(h3). In total, we have Uy7 squares, where Uy = 0(6]_\,2T) Define
Ei(s1,82) = #kjsltl‘cszt}[t and Q; = % 25:1 vgt. Obviously, H; and g; are bounded on [0,1]. Then we

have
T

sup Z ki(s1,52)Qigt

Sl,SQE[O,l] t=1

T

T
Fi(s1,52)Qugr — > Ku(byy, biy) Quge
=1

< Maxy <, 1,<\/Unr sup

(s1,82)€B1y 151151

O+ 06,.

Z kt blp blz tht

t=1

+ MaTy <y 1, <vUnr sup
(51,52)€B1 15

Take Sz = O(I(NT) 1‘5%’ h3), we have ©1 = Op(Sn7/h3E|Qr|) = op(I(NT) bj]g_if;?). We use

truncation technique by defining

Qi = QuI{|| Q|| < N7YV2TYOUNT)}

Qi =Qr— Q.
Then
T T
0 < o X | ; it (biy » by ) Qugell + g Z: (b, by ) Q591 |
=03+ 0y4.

It’s easy to see that ©4 = op(I(N T)\/bj](\r_—]\;?) by Chebyshev’s inequality and Assumption A.3(iii).

Observe H];t(bll’bh)étgtu < CN—1/2T—1+1/5h_2l(NT). We choose [(+) to satisfy
-3 ~
[4(NT)log(NT)h — 00, and [*(NT)log(NT)4/ TThQ — 00,

and such I(NT) exists by Assumption A.7(iii). So for some €, > 0, we apply Theorem 1.3(b) in Bosq

(1998) by assuming

1 T1-2/6

= = _ N2 141/87 —2

a=T/Cp) P= N\ ogavryny VTN T TR UNT)
_ log(NT) 202(q)  be C

=T (NT d b Q.

¢ = el UND) = pmm and =57 4 5 < Ny
Note that 0%(q) < Cwsrz. We have
63[2<NT)Q log(NT) 1
P<@3>€*Z(NT) w>§ C5N%Fexp[— C\/ T2h:|+05 < 4b>2qp[%}
VNTh NTTR

212 2 3
§C’5N%Fexp[ L(NT) ;ng(NT)Th \/ ]+C’5 ( 4b> qp[2_1:1].

Then, as [*(NT)log(NT)Th?y/ % — oo and the mixing coefficient decays with the exponential rate, the
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desired result follows. m
We will show Ji; and Ji2 determine asymptotic mean and Ji3 determines asymptotic variance in
Proposition A.4 and Proposition A.5 respectively.

Proposition A.4: Under the assumptions of Theorem 1, we have
T+ s = b2 / 11 K (u) du /0 1 [62(7) + trace(83 () Sxe(7))] dr +0p(D).
Proposition A.5: Under the ;Ssumptions of Theorem 1, we have
J13/S % N(0,1),

where S = 4] fo T)dT + fo trace(XH(T)Ex(T)EXH(T) Sxe (7)) dr] [(k * k)2 dv with [(k % k)2 dv =
fo f—1 E(u)k(u +v) du]de.

Proof of Proposition A.4:  The result follows by Chebyshev’s inequality, var(Ji1) = O(ﬁ) and
var(Ji2) = O(77). To save space, the detailed proof is omitted. m

Proof of Proposition A.5: Let

s1—1
Vs Th1/2 Z ZZEZSlE]S2 Th stltksﬁ + — Th stltkmvwlZ (T) 1)382] ,

S9= 1 i=1 j=1
which is a m.d.s., and U; = ZSI _9 Vs,. We have Ji3 = 2Up. We will apply the CLT for m.d.s. (Hall and
Heyde, 1980) to get % <, N(0,1), where s2 = E(U2) = Zsl _, E(V2). We need to show that

T
572 Z v:Lh (A9)
s1=2
and
T
sp* Y E(V)) —0. (A10)
s1=2

First, we compute the asymptotic variance of Up. To save space, we define kg = ﬁ > krskrt and

T
EVst = — €is€jt L ksrkir + kSTktTU E )U]t .
N Th 2~ h (7

=1 j=1

We have

T - T 2
1 - 1 ('t
52T = 727 Z Z 2251315332 sis2 T ZkSﬁkSztviTslzXl T ) Visz
T?h p Th £ T
1 T s1—1s1—1 1
eI {E5 ) SRR IERT) ST A €y
i=1 j=1
1 N
g {N szisﬁjs'

T
_ 1 _ t
b+ b, 55 (1) o] 1
=B+ B>. (All)

|

t=1
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For the first term in (A11), we have

T s1—1 N N N N
o= T2h Z Z{ <N2 ZZZ ZEZSlEZ ’s1€js2€5' S2k§132>

s1=2 s9= i=1 j=14¢=145'=1

N N N N
+E[ g D Y ety zm L X (e
=1 j=14=1 1

J’

N N N N
1 4,1
FE| gz 0D ety Z bt B (s Z Kotk 55 |
i=1 j=1+/=145'=1
= Bi1 + Bis + Bis. <A12)

For the first term in (A12), we have

T s1—1 LN LN
B11— Z Z <NZZ€i31€i/sl>E<NZZ €js2Ej1 52> 515
j=1j/=1

S1 =2 s2 i=1 i'=1

T s1—1 1 N N N N
T2h Z Z[ (N2 ZZEiSlEi,SI 225]325]”32)

51=2 82 i=14'=1 Jj=ly'=1
1 N N 1 N N
(5 2 Y emern )5 2 32 o [
i=1i'=1 J=1j'=1
= Bll,a + Bll,b . (A13)

By Lemma 1 in Yoshihara (1976), for the second term of (A13), we have
T s1—1

- 1
’Bllb| < T2h Z Z 401/ 1+n) Bn/ 1+77)( 32)k§182 = O<ﬁ> ,

s1=2s2=1
where Cp = max(Cl,, C3)), Ct, = E|2z SN S0 eigeig, SN S iy s, |7 < 00 and C3, =
M~ M M — N2 Lui=1 Lui/=1<181°9'81 Luj=1 Laj'=1<]s2%]'s2 M
Bl& SN S iy is, [T E!N Z] 1 Z 1 EjsaEjrsy |1 T < 00 by Assumptions A.4. For the first term
of (A13), we have By, = fo dr [(k+k)?dv + o(1). B2 and By can be decomposed in a similar

way. It’s easy to see that Bjs is of small order and the leading term of Bis is

T s1—1
B13 a — T2h Z Z {T2h2 Z Z k81tksztkslt’k32t’

$1=282=1 t=1t'=1
N N ,
1 (1 T
X trace E E Yy Ejs2E /59 VjsaV 3'52 N E E Eis1Eils1 B x T Virsy Vg,
j 14'=1 i=1 /=1

1
—/O trace(Sx (1) Exe (v )Z}l(T)Exg(T))dT/(k*k)devLo(l).
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T s1
Next, the second term in (A11) is Be % >y E (205, 58055 ). Suppose s —s' > s1 — s, we have
s1=3 s=2 s’'=1
9 T s1—1s—1
Bl = | X X Y B
s1=3 s=2 s'=1
9 T-2 T-1 s+(s—s') 1
. 1) on/(1+n) (¢ _ o
< T%Z > ¢ B/t (5 — o)
s/'=1s=s'+1 s1=s+1
o T2 T i) 1
L/Qm) gn/(40) () — o —
< = =

where C)y = maX(C}W, Cjz\/[) and
C]lw = sup ’E_vslsg_vslsl |1<H7 dF(‘SSl »Es5yEs!, Vgl USl ) US)
s,s',81
1 — 1
< sup E[(%&S)Q(Hn)]2E[(5vsls’)2(l+n)]2a

!
5,587,851

012\4: sup /ls_vslss_vslsf|1+" dF (eg,vs)dF (€5, Vs, sy, Vsy ) -

s,s’,81
By the definition of €v4, it’s easy to check C'}V[, CJQ\/[ = O(1) by Minkowski’s inequality and Assumptions
A.3(i), A4 and A.8(iii). The case where s — s’ < s1 — s is similar.
Now we study E(Zs1 L V2 ST)2 = E(Z:S1 _, V2)? — s}, where the first term can be written as

E(ZVS%>2=ZE< )+2) 0 ) BV

s1=2 s1=2 2<t/<t<T
T s1—1s1—1s1—1s1—1
T4h2 Z Z Z Z Z E(EUs, 5805, 5/E0s,rEVs, 1)
s1=2 s=1 §/=1 r=1 r'=1
t—1 t—1 t'—1¢—1

T t-1
+ T4Lh2 Z Z Z Z Z Z E(F0458045/ &0y, By )
=3

=3 t/=2s=1s'=1r=1r'=1

=C1+Cs.
Decompose C1,
T s1—1s1—1 T s1—1s1—1 s1—1
1 T4h2 z : z : 2 :E Usys€ 818 T4h2 z: z : z : z : 81881]517"51}317")
s1=2 s=1 s'=1 s1=2 S T rArts

T s1—1s;1—1s1—1 s1—1

T4h25 E 5 E E E (205, s€0, /T, 7€V, 1)

s1=2 s s’ T rl#r#s'#£s

T s1—1 T s1—1s1—1
T4h2 Z Z E €v 818 T4h2 Z Z Z E 81852}318)
s1=2 s=1 51=2 s s'#s

=C11+Ci2+Ci3+Ci4+Cis.
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We further decompose Cs,
T t—1t—1¢-1 g Lot
Cy = T4h2 g g g E Eevtsevt,/ Ta5,2 E E E E E (20458015 E0y sy 1)
t=2 t'=2 s=1 g'=1 t=2 ¢/=2 s=1 s'=1
T t—1t-1t¢-1 ¢-1
4 — =2
T4 2 E E E E E E(Z0,5€0;5E0},.)
t=2¢=2 s s r#s#s
T t—1t—1¢-1 t—1
8 -
+W E g g g E E (20458019 E0p €Uy )
t=2 t s s r#s#s
T t—1t-1t-1¢—-1 -1

T4h2 Z Z Z Z Z Z E gvtsgvtslgvtlrf'l)t/ /)

t=2t'=2 s s 1 rl#rts#ts

T t—1t—-1 T t—1¢—-1¢—-1
T4h2 E :E : E :E EUL,ETps) T4h2 g g E E E(FU2,80y 580141 )
t=3 t'=2 s=1 t=21'=2 s s'#s

T t—1t-1¢-1

T4h2 Z Z Z Z E EUtSEUtSH’SUt/ /)

t=21=2 s s'#s

= C91 + Cag + Cag + Cayg + Ca5 + Cap + Ca7 + Cag .

We also have

A e
o= gy 22 2 2 BUET P
t=21¢=2 s s'#s
9 T t—1t-1
+ 773 > E(#04)2E(#0y5)% + o(1)
t=3 /=2 s=1

= C31 + C32 +0(1).
For the rest of the proof, we will use the fact that for any s1 > s, supy, , E(2vs,5)* < C. This is because

sup E(8_0515)4

81,8

1 N N N N 1 T +
= sup E{W Z Z Z l:gislgi’slgjsgj’skgls + 25i315i’315j35j’sk313ﬁ Z ksytksivly, Xy (T) Vjs
i=14¢'=1j=1j'=1 t=1

1 & ¢ 1 & ¢ 2
-+ Eislgilslgjsgj/ST—h Z ksltkjstvle <T> ’UjST—h Z k‘sltk’stv,},le;(l <T) 'UjIS:| }
t=1
N N N N
= S“p{ DI Z{ 2 B (eisyens) 12 [Eejoes) Y

1=11¢=1j=1j'=1

- t
+2kS1SE[(5i515i’S1)2] /2 SUP[EHUzm X <T> ||4]1/4(E||vjsH4)1/4E[(5j55j’8) ] 1/4 ""k?ls[ (5i815i’81)2]1/2

2
¢ By Bl I sup (I, 55 () 194 supteled, =5 (7 ) 199
< sup ESlSO(l) = O(l) .

S18
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By Cauchy-Schwarz inequality, we have sup,, E(z0? 51}2 s) < C. Then Cy1 = O( follows. From

1
S18 W)

the above, we also have for any s1 > s, E(g0s,5)* < Cks,s. Similarly, we have Cia, Caa, Ca7, Cag = O(h),
C1a = O(52) and Cis, Cag, Css = O(7ky).

The derivations for Cy3 and Ca3 — Cas are similar, and we only show Cas = O( here to save space.

77e)
Without loss of generality, we assume that ' < r and s’ < s. Denote 1’ <r < s’ < s <t <t as case 1,

and assume the largest distance between two adjacent points as dj, then we have the following subcases:

Case la: r — 1’ = dy, Case 1b: s’ —r = dy, Case lc: s — s’ = dj,
Case 1d: t/ — s = d, Case le: t —t' = d;.
For Case la, we have
| T8 T4 T3 T- - e
1/(1+n (14n)
S v W i ol oE e
r'=1r=r'4+1s'=r+1s=s'+1t'=s+1 t=t/+1
o T3 T4
SR S D oI
r’'=1r=r'4+1

—

Q

= olzm).

where Cjy = max(C},, C3,) is bounded. This is because

01%4 = sup E( ’ﬁtsﬁtslﬁt’rﬁt’r’ ‘ 1+77)
t,t',s,s" rr!
1 1 —4(1 1 1
< sup E(Ew, )5 sup BEwy) )4 sup BT, ) sup BT )5
t,s t,s t'r t'r!

Therefore, it’s sufficient to show sup, ; F¥ (5Uts( +77)) = O(1), which is similar to that of sup; , F¥ (z04,) =

O(1). For C’sz, we can show it in a similar manner and apply the sub-multiplicative property of Frobenius

norm (L? norm). For Case 1b, we have
T-5 T-4 T—

T— T— T
Cosl - < T4hzz > Z Z Z Z Cyy M gnl (n) (o _ )
= =t'+

r'=1r= r+ls r+1
T-5 T-4 -3
1

< Y T (e 1) = O(zr5)-

r'=1r=r'+1s'=r+1

Following the same steps, for Case lc, 1d and le, we have |Cos| = O(m5z), O(727z) and O(z573)

respectively. By a similar argument, we have C13, Cog and (4 are at most O( ). Finally, we have

T2h2
T t—1t-1t-1

Ca1 — C31 = T4h2 Z Z Z Z Ezv;,z05, — Ee0;,Eevy,y) .

t=2 /=2 s=1 /=1
There are three cases s’ <t/ <s<t,s <s<t' <tands<s <t <t. When s’ <t < s <t, we have
by Lemma 1 in Yoshihara (1976),

|E%§S%§’S’ - Eﬁ%sE€Ut2151| S C]l‘d/(1+77)/677/(1+7]) (S — t/) .

Note that C)y is finite by a similar argument as in C5. Then

T t—1t-1t-1

Cn=Cal < Y55 Y~ ) 075z ).

t=2t'=2s=1g'=1
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The other two cases are similar, but we need to use Lemma 1 in Yoshihara (1976) multiple times. To
sum up, we have E(Y.7 _, V2 — s2)? = o(1), so (A9) holds. Since s2 = O(1) and C; = O(T~'h~2 4 h),

s1=2 "s1

(A10) holds. The desired result thus follows. mm
Proof of Theorem A.2: Similar to J;, we need the following uniform results.

Lemma A.3: Under the assumptions of Theorem 1, we have
T N
1 log(NT)
~r E kst Hy E vitgl IOP( —>,
NTh pt P VNTh
log(NT
_ 0p< og( )) ,

T N T
1 1 t

— kaH Y vl Gy — — kHZ_1<—>G

NThtZ; st t; Vit Ut Th; stdlt~x T t ;—NTh

where H; = H(%), Gy = G(%) and g = g(%) are defined in the same way as Lemma A.2. For instance,

sup
s€[0,1]

sup
s€[0,1]

we can have H; = G4 = Z)}l(%) and ¢g; = 1.
Proof of Lemma A.3: The proof is similar to that of Lemma A.2, hence it is omitted here. m

Then we can simplify Jo as
T N T .
[ BE S
WNTS | LN T
VAT |52 5 5 cuXuak(i)
where we have used Proposition 2, the CLT for m.d.s (Hall and Heyde, 1980), Assumptions A.1, A.2(i)(ii)

and A.6. m
Proof of Theorem A.3:

Js = NVh(6 - 6)T (Zm) —0) = ViVNT(6 - )T (Zm) T(0—0) =op(1),

where we have used the fact that vV NT() — ) = Op(1) and 2 T ST Q4 =0p(1). mm

Proof of Theorem 2: Under the alternative H 4, we have

— VAV NT(d — ) +op(1) = Op(Vh),

T
N 1 R NP A
(NT)"'h=12Q = ?Z(et_9t+9t_9)TQt(9t_9t+9t_9)

T T T
1 A A A 2
= 7 E (O — 0:)T0(0; — 0;) — T E (0, — 0)TQ(0 — 0,) + E (0 —0,)0(0 — 6,)
=1 =1 |

= J1—2J5+ Js.

Under the alternative hypothesis, we have
| N | NI
-1 1 o _+

I WL IE I FAFURIS ) SETRE UMD 918
i=1 t=1 i=1 t=1
;| NI

-1
+ A WZZ 5zt_6l)+0P(1)

i1 t=1
= Ny + No + N3 +op(1),

where we have usedﬁ i]il ZtT:l(Xit — X)) (X — X;)T = A+ op(1) from Proposition A.2, and A is
defined in (AT).
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For N1, we have
1 _ 1 1 I S o oy
NT ZZ it Ztﬁt T Z zsﬁ NT Z ZthX tﬁt NT ZZXiXitBt
1 t=1 1 t=1 i=1 t=1
1L 11 N - N T T ¢
T Z N ZX’tXTtBt NT2 ZZX“XTtﬁt NT2 Z ZZXZSX tﬁt
s#t

i=1 t=1 =1 t=1

1 1 1
- / Sx(r) + px (P (DIB() dr — / i () dr / WL (7)B(r) dr + op(1),
0 0 0

which is obtained by the LLN for the 5-mixing process (Lin and Lu, 1996) and Lemma 1 in Yoshihara
(1976). Similarly, for Ny, we have

1 N T - 1 T
WZZ(X’M _Xi)()\t - ?Z)\t) NTZZth)\t NTZX Z)\t

i=1 t=1 t=1 i=1 t=1
1 1 1
= / px (T)A(T) dT—/ px (T) dT/ A(T)dr +op(1).
0 0 0
We already know that vV NT' N3 = Op(1) from Proposition 2. Hence, we have

p—pB"=o0p(1),

where

1 1 1
g =AY /0 S () + i (P (7)]B(r) dr — /0 i () dr /0 WL (r)B(r) dr

+/01 px (T)A(T) dT—/Ol px (7) dT/Ol A7) dr}.

For the intercept, we have

. B o 1 T N : 1 T N i 1 T )
A:Y—XW:WZZXitﬁt—WZZXit6+T;At+e.

t=1 i=1 t=1 i=1

Similarly, we have A — \* = op(1), where

1 1 1
A*:/O M}((T)ﬁ(f)dT—/O u;(f)dww/o AF) dr + op(1) .

Then Jg becomes

1 « 2 — 1 &
— 0700 e TO
J6_TZ(9 Q0 — ?29 Qt9t+?29tmet

t=1 t=1 t=1
1
_ G*T [ 1 0 M}((T) dr ] 0* _2/1 GT(T) [ 1 :uX( ) dTe*
Jo px(r)dr  [5[Ex(T) + px (T)puk (7)] dr 0 px (1) Ex(7) + px(T)pk(7)
L 1 pk(7) ]
o7 (1 O(r)dr + o,(1),
+ ] o )Lxm Sx(r) + ux g (n)] oW
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where 0* = [\* 5*T]T. We also have,

1 I X 1 % > X7 T t oA t
J4 _ T Z |:T_h Z k?st 1 N 1 ]\;:l (95 9,5):| (D;(l(T)Qt(I))_(l(T)
t=1 s=1 ~ ;XZS N ;Xst;
N
1 I 1 % > X7
s=1 ~ ;Xzs N ;XZSXrLS
1 N T
T T 1 ~ 2 X
P 1 N = To-1 b
2 —~ Nk i=1 0, —0,)| (=)0
+ TZ[ThZ st N X (0 t)] x () (NTh
t=1 s=1 N Z Xzs N Z Xstw ==t
=1 =1
T N T N
1 1 1 T t o ¢ 1 1
IS (-3 s ) XU () 7 2Dk !

= Ju + Jag + Juz +op(1).
By Assumption A.3(ii), A.4 and Lemma 1 in Yoshihara (1976), we have sup, E[trace( ST k)22 =
O(1). Then, we know that

N
1 x> XL
Bl stt N (05— 0,)|| < sup |05 — 0| Eltrace(— Zk Q)42
= N Z Xis 7w > XisX], [s=t<Th
=1

which converges to 0 if ¢/T" belongs to continuity points and C' if ¢/T belongs to discontinuity points.
As the number of discontinuity points is finite, we have Jy; = op(1). Similarly, we have Jyo = op(1).
Following the proof of J; in Theorem A.1, we have Jy3 = op(1). Using a similar argument, we have
the cross term Js = op(1). Moreover, (NT)"'h~1/2C = o(1) and S = O(1). Therefore, we have
P(H > Cr) — 1 for any Cr = o(NTV]). m

Proof of Theorem 3: Similarly to Theorem 1, we have
T
Q1 = N\/EZ(BI‘, —B+B—PBp)TMi(B, — B+ B—Bp)
= Nvh Z B)TMy(B, — B) — 2NV Z BT M(Bp — B) + NVA(Bp = B)TMy(Bp — B)]

=11 —2Ly+ L3.
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We can also show that L1 = Op(1) and Lo, L3 = Op(v/h). We expand L; and apply Lemma A.2,

T
L = NVEY {04 Lillas1 Oapa][MT(1)W(r) M (7)] " MT(1)W(7)e}T
t=1
x My {[0a Ig)[Tg+1 Oara)[MT(r)WV(T) M (7))  MT(1)W(7)e}

T
1 T N T N
= NT2h3/2 Z [ Zs:l Zi:l ksieis 25:1 Zi:l kstfiinTs

n (P (R MY (Pux (1) —Hk (9)ZX (7
X

L —
X T71Xt
—Xy (T)M

Exl(%)] [ S s +op(1)

)M,
(&) px () S () ME () DDHRD DAY N, o

X
T N N "
- i 2 23S e Sttt + ko) (1)

t=1

T

_ _ t S1 _ _ _ t

+ stltkszt[/LszxlﬂX + (:U’;(EXIIUJX)2] <T> - :u}( (?) stltkszt(leﬂ)( + le,uX,uTXZXl:uX) <T>
t=1 t=1

T T
- - - t 52 51
= D Rtk Wk S+ kS ik Ex <T> i () + 4% (5) 2 kst
t=1 t=1

T
t S92 _ _ _ t
X(Sx + x5 uxnk sy (T) 5% <?> — vl Zk81tk82t(EX1l’LX + 35 x kS5 x) <T>

T
t S9 _ B B t
T Vi Z’fsn’%t(z + 3% k) <T> px (7) =D katksat (Y Sy + kS ik Ex <T>
t=1 t=1
S ) t
1
XVjsa + I (?) > stk (Sx' + S pxnk By) <?> ”j82}+0P(1)

t=1
T

T T N N
t
- NT2h3/2 Z Z 2261516352 Vis, stltksﬁ(z + ZX px iy Xy Y <T> Vjsy +op(1),

1i=1 j=1 t=1
which is very similar to J; in the proof of Theorem 1. As we have VNT(3p — ) = Op(1) by Proposition
3, the rest of the proof is similar to that of Theorem 1 and hence is omitted here. m

Proof of Theorem 4: Under the alternative I, we have

T T
(TN)'h™12Q) = %[Z(ﬂ — B)TN(B, — By) —22 — B)TM(Bp — B) +>_(Bp — B)TMi(Bp — By)]
t=1 t=1
= L4—2Ls+ Lg.

Similar to the proof of Proposition 3, we have BP — Bp = 0p(1), where

1 1
ﬁ;g:(/o zX(T)dT)—l/ Sy (1)8(r) dr .

0
Then, similar to the proof of Theorem 2, it’s clear to see that

1 1
L — / BT()[Ex (r) + px ()l (MIB() dr + B / Sx(7) + px (Nl (7)) dr B
0 0

1
=2 [ B OIEx() + nxkr)] dr B+ op(1).
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Since we have 3, — 8, = [04 14)(6; — 0;), we rewrite Ly as

N
T 1 Ly X7 _
1 1 N £+ “%is T ot |0 0% A
L4_TZ[T_thst N N (95—915)] ‘I’Xl(f) Id]
t=1 s=1 %; Xis %; X X, O¢ 1q
1 LS xT
0 0 t 1 & N 2 s
S 0 I T
04 14 s=1 + 3 Xis &> Xis XL
=1 =1
1 f: T
T T 1 ~ X!

2 1 N £« ="is T ot 0 07| »
+f2[ﬂzkst N N (93—0,5)} ‘I’Xl(f) _ Id] ¢
t=1 s=1 % Z Xis 1{7 Xst;:g Od d

=1 =1
o o] ¢ ( 1 L& 1 )
x| Oy (=) == kot €is
0 Iyl ~'T NTh;S_ZI
T N T - -
1 1 1 t 0 0%l . |0 O t
+ = —_— ks €l5> d(=) | d B d L=
T;(NTh;; t[XJ X(T) 0, Il o, 1 X<T)
, NI
N L S 18 1
. (NTh;;kt[ ol >+OP()

= L4 + Lgo + Lyz + op(1) .

We can expand Ls in a similar way. Then the rest of the proof follows closely to that of Theorem 2 and

hence is omitted. m
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