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Abstract

This paper develops an adaptive elastic-net GMM estimator with many possibly invalid moment

conditions. We allow for the number of structural parameters (p0) as well as the number of mo-

ment conditions increasing with the sample size (n). The new estimator conducts simultaneous

model and moment selection. We estimate the structural parameters along with parameters

associated with the invalid moments. The basic idea is to conduct the standard GMM com-

bined with two penalty terms: the quadratic regularization and the adaptively weighted LASSO

shrinkage. The new estimator uses information only from the valid moment conditions to esti-

mate the structural parameters and achieve the semiparametric efficiency bound. The estimator

is thus very useful in practice since it conducts the consistent moment selection and efficient es-

timation of the structural parameters simultaneously. We also establish the order of magnitude

for the smallest local to zero coefficient to be selected as nonzero. We apply the new estimation

procedure to dynamic panel data models, where both time and cross section dimensions are

large. The new estimator is robust to possible serial correlations in the error terms of dynamic

panel models.
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1 Introduction

The structural parameter estimation in systems with endogenous regressors is a very common issue

in applied econometrics. To deal with the endogeneity, economists have to choose the valid moments

as well as the structural parameters in the model. The moment selection in systems with a fixed

number of moments is usually achieved by the J test. For the model selection, applied researchers

usually justify the model via some economic theory or intuition. However, mistakes in moment

selection can be carried over to model selection and lead to inconsistent estimates. Additionally,

ad hoc model selection may result in missing regressors which generate an endogeneity problem

in the estimation stage. These issues become more serious in high dimension models. With many

endogenous regressors and many moments, we have a higher chance of misspecification, so more

attentions must be paid to the moment validity and model selection.

This paper tries to bridge the gap between the model and moment selection. We propose an

adaptive elastic net GMM for linear models with many structural parameters and many possibly

invalid moment conditions. The new estimator conducts selection and estimation simultaneously.

We prove that our estimator can select the correct model and valid moments with probability

converging to one. In addition, we show that the estimates for the structural parameters reach

the semiparametric efficiency bound. This is due to the fact our method selects all valid moments

through penalization and use them to estimate the structural parameters. The invalid instru-

ments only serve to estimate the parameters associated with invalid moments and do not affect the

asymptotic variance of the estimates for the structural parameters. This is new in the literature

and valuable in practice. The method can be applied to dynamic panel models where the error

terms have potential serial correlation. Simulations confirm our theoretical results and show that

our estimator performs well in finite samples.

In addition, this paper shows that the LARS algorithm proposed by Efron et al. (2004) can be

extended into a linear GMM framework. This gives our estimator a great computational advantage

over downward or upward testing procedures, especially in a high dimensional setup. Andrews

(1999) develops information criteria for moment selection based on the J test, and Andrews and

Lu (2001) extend these criteria to allow for parameter selection in the structural equation. While

these methods are able to consistently select the correct model and valid moments, the computation

cost grows at a geometric rate as the number of parameters and moments diverges.

In the shrinkage estimation literature, a few papers focus on high dimension model or moment
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selection. In a seminal paper, Belloni, Chernozhukov, Chen, and Hansen (2012) introduce a het-

eroskedasticity consistent LASSO estimator and obtain the finite sample performance bound in a

large heteroskedastic data context. They deal with optimal instrument selection given that all in-

struments are valid. Gautier and Tsybakov (2011) provide the finite sample performance bound for

the Danzig selector when there are a large number of invalid instruments. Cheng and Liao (2012)

provide asymptotic results for the adaptive LASSO estimator when there are many invalid and

irrelevant instruments. Caner and Zhang (2013) propose an adaptive elastic net GMM estimator

for model selection assuming that all moments are valid. Our paper is different from the papers

above in the sense that we conduct model and moment selection simultaneously. By using the

adaptive elastic net, we are able to control the problem of multicollinearity in the high-dimensional

models. Compared to Caner and Zhang (2013), we also allow for many invalid instruments. This is

a nontrivial extension since many invalid moments can affect the analysis of the variance covariance

matrix and require a different proof technique.

Recently, Qian and Su (2013) use shrinkage estimators to determine the number of structural

changes in multiple linear regression models. Also, Lu and Su (2013) use adaptive LASSO to

determine the number of factors and select the proper regressors in linear dynamic panel data

models with interactive fixed effects. These will make important contributions to the literature

since structural change models and factor model structures are relevant empirically.

Section 2 provides the model and assumptions. Section 3 introduces our estimator and demon-

strates how it can be applied to dynamic panel data. Section 4 shows how to choose tuning

parameters and proves that Least Angle Regression (LARS) of Efron et al. (2004) is applicable to

our adaptive elastic net GMM estimator. Section 5 provides simulations. We conclude in section

6. Proofs are contained in the appendix. Let ||A|| = [tr(A′A)]1/2 for any matrix A.

2 Model

We consider a structural equation given by

Y = Xβ0 + u, (1)

where X is the n×p matrix of endogenous variables. β0 is the p×1 true structural parameter vector,

where some of the components are zero and some are non-zero. We assume an n × q instrument

matrix Z yielding q moment conditions. However, out of q moment restrictions, we assume that at
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most s of them could be invalid and that all the valid instruments are strongly correlated with the

endogenous regressors.

We allow that p, q, and s increase with the sample size n satisfying s/q → ϕ ∈ [0, 1) and s < n.

We further impose that p + s ≤ q for identification purposes. More precisely, we rewrite the q

moment conditions as, for each i = 1, 2 · · · , n

E[Ziui]− Fq,sτ0 = 0, (2)

where Fq,s is a q × s matrix given by

Fq,s =

 0q−s,s

Is

 ,

with 0q−s,s being a matrix of zeroes with dimension (q− s)× s, and τ0 ∈ Rs for some 0 ≤ s ≤ q−p.

The particular case of s = 0 shows that the researcher believes that all moment conditions are

valid. This results in a linear GMM estimation of structural parameters. Some elements of τ0 could

be zero, so out of q moment restrictions, we assume that at most s of them could be invalid. Set

Yz = Z ′Y is a q × 1 vector, XzF = [Z ′X, nFq,s] is a q × (p + s) matrix and θ0 = (β′0, τ
′
0)
′ is a

(p + s)× 1 vector.

In this setup, the adaptive elastic-net GMM estimator is given as

θ̂ =
(

1 +
λ2

n2

)
arg min

θ

(Yz −XzF θ)′Ŵ (Yz −XzF θ) + λ∗1

p+s∑
j=1

ŵj |θj |+ λ2

p+s∑
j=1

θ2
j

 , (3)

where Ŵ is some symmetric positive definite weight matrix, and λ∗1 and λ2 are some positive

tuning parameters. We have ŵj = |θ̂j,enet|−γ with γ > 1 as the data dependent weight, where

θ̂j,enet denotes the elastic-net estimator.1 In practice, we run elastic-net and obtain data dependent

weights ŵj in the first stage; and we run the adaptive elastic-net using ŵj in second stage. See

Zou and Zhang (2009) for further details in the context of the least squares adaptive elastic-net

estimator. An important point is that we use a finite sample correction of 1 + λ2/n2, rather than

the one 1 + λ2/n used in Zou and Zhang (2009) and Caner and Zhang (2013). This is discussed in

details in section 4 below.

We work with triangular arrays ξin, {i = 1, · · · , n}, {n = 1, 2, 3, · · · } defined on the probability

space (Ω,B, Pn) where P = Pn can change with n. At each ξin = (X ′
in, Z ′

in, uin)′, Xin is a p × 1

vector, Zin is a q × 1 vector. Each of these vectors are independent across i, but they are not
1Note that the elastic-net objective function is given as (3) with ŵj = 1 for all j.
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necessarily identically distributed. All parameters that characterize the distribution of ξin are

implicitly indexed by Pn, and hence by n.

Leeb and Potscher (2005) make a very important point in the analysis on the case of local to zero

parameters. They show that one cannot select the true model with probability approaching one

uniformly. Their research has deep implications for post selection estimators, which have bi-modal

empirical distribution functions due to the this uniformity problem. This is in the least squares

framework when the interest centers on one set of coefficients and the other set are local to zero.

We also allow local to zero parameters, and establish a lower bound for nonzero parameters to be

selected as nonzero.

The conditions for theorems are presented below. Define for each i = 1, 2 · · · , n, ei = Ziui −

Fq,sτ0, e = Z ′u− nFq,sτ0. The first assumption is useful to prove Theorem 1.

Assumption 1. (i) ‖Ŵ −W‖ p→ 0, where W is a q × q, symmetric, positive definite and finite

matrix. (ii) {Xi, Zi, ui}n
i=1 are independent across i. Also, we have ‖n−1

∑n
i=1 eie

′
i−V ‖ p→ 0, where

V is a q× q symmetric, positive definite and finite matrix. (iii) ‖Z ′X/n−Σxz‖
p→ 0, where Σxz is

a q × p matrix of full column rank p. (iv) Eigmax
(
n−1ŴXzF X ′

zF Ŵn−1
)
≤ B < ∞

Assumption 1(i) is used in many weak moments literature. Specifically, a more restrictive version

is used in Assumption 3(iii) in Newey and Windmeijer (2009). This type of assumption restricts

how q grows with sample size n. Assumption 1(ii) is used for the estimation of the variance matrix.

This is an infeasible estimator, but takes into account the effect of moment invalidity. Note that

Assumption 1(iii) implies that

‖XzF n−1 − ΣxzF ‖
p→ 0, (4)

where ΣxzF = [Σxz, Fq,s] is a q × (p + s) matrix of full column rank p + s. In addition, W is

nonsingular, symmetric and positive definite and ΣxzF is of full rank. So we can show that,

0 < Eigmin(Σ′
xzF WΣxzF ), Eigmax(Σ′

xzF WΣxzF ) < ∞. (5)

From Assumption 1 and results (4) and (5), we can show that there exists some positive absolute

constants b and B which do not depend on n such that

0 < b ≤ Eigmin
(
n−1X ′

zF ŴXzF n−1
)

,

Eigmax
(
n−1X ′

zF ŴXzF n−1
)
≤ B < ∞ (6)
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with probability approaching one (w.p.a.1, hereafter), by Lemma A0 of Newey and Windmeijer

(2009). Assumption 1(iv) is needed to control the second moment of the estimators when there are

many invalid instruments.

We impose further conditions. We let A = {j : θj0 6= 0, j = 1, 2, · · · p + s}, which collects

the indexes of nonzero coefficients in θ0. Set η = minj∈A |θj0|, so η represents the minimum of

nonzero (i.e. also allowing for local to zero coefficients) coefficients. Also set p + s = O(nν), where

0 ≤ ν ≤ α < 1. Note that λ1, λ
∗
1, and λ2 diverge to infinity when n →∞.

Assumption 2. (i) λ2(p + s)1/2/n3/2 → 0 and λ2
1/n3 → 0 as n → ∞. (ii) There exist absolute

constants α, γ and κ satisfying 0 ≤ α < 1 and 3 + α < κ < 2 + γ(1 − α) − ν. (iii) q grows with

sample size but q = O(nα) and (p + s) ≤ q. (iv) (λ∗1)2

n2
p+s
η2γ → 0 and λ∗21

nκ−γ(1−α) →∞ as n →∞.

Assumption 3. n−1 max1≤i≤n ‖Ziui − Fq,s0τA‖2 = op(1), where s0 is the true number of invalid

instruments with 0 ≤ s0 ≤ s, Fq,s0 = [0′q−s0,s0
, Is0 ]

′, and τA is an s0 × 1 nonzero vector that

represents invalid moment conditions.

Assumption 2 establishes the rates for tuning parameters as well as the number of orthogonality

restrictions, which are useful to prove Theorem 2. α controls the rate of the number of moment

conditions. Also, it is noteworthy that we need 3+α < κ < 2+γ(1−α)−ν, which is used in the proof

of Theorem 2. κ is mainly a parameter of technical nature and needed for selection consistency.

To see that Assumption 2(ii) is not restrictive, consider the following system with q = p + s.

The total number of moments is equal to the sum of the number of structural parameters and

the number of potential invalid moments. Hence, α = ν in our example. If α = ν = 1/2 with

γ = 5 we can have κ = 3.75. Obviously, Assumption 2(ii) is satisfied. This is an example that

the number of total moments grows with square root of the sample size as we all as all structural

and invalidity parameters. The model is just identified in this example. Also, by putting γ = 5 we

penalize the small coefficients a lot in the first stage of elastic net. This may be due to suspecting

a lot of zeros a priori in the problem. Assumption 2(iv) has an important implication that we are

able to come up with lower bounds on local to zero coefficients to be selected. In other words,

in theorems below with Assumption 2(iv), we show that anything above the lower bound can be

selected as nonzero. We also show that the lower bound depends on the number of parameters, the

number of invalid moments, and the number of valid moments. If either the number of moments

or parameters increases, then the lower bound becomes larger, meaning that only larger local to

zero coefficients can be selected. This is an extension of Leeb and Pőtscher’s (2005) result to
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many invalid moments/parameters case. To obtain this bound, we first set p + s = O(nν), where

0 < ν ≤ α, and assume η = O(n−1/m) with m > 0. Assumption 2(iv) implies a lower bound for m

which will be shown next. Assumption 2(iv) conditions are

(λ∗1)
2

nκ
nγ(1−α) →∞,

and
(λ∗1)

2

n2

p + s

η2γ
=

(λ∗1)
2

n2
nν+ 2γ

m → 0.

Hence, the only way so that both conditions hold is

nγ(1−α)−κ

nν+ 2γ
m
−2

→∞,

which is possible if γ(1− α)− κ + 2 > ν + 2γ/m or

m >
2γ

γ(1− α)− ν − κ + 2
= m∗. (7)

(7) shows a lower bound for m, which will become a lower bound for η to be selected as a

nonzero coefficient in Theorem 3. Clearly for a larger α or ν, m∗ becomes larger and the lower

bound for nonzero coefficients to be selected becomes larger as well. As a minor note, in order to

have m > 0, we need γ(1−α)− ν − κ + 2 > 0, but this means that (γ− ν − κ + 2)/γ > α, which is

already satisfied by Assumption 2(ii). Note that with the above example for Assumption 2(ii) with

κ = 3.75, α = ν = 1/2, γ = 5 we get m∗ = 40, so the coefficient is local to zero but much larger

than the
√

n rate.

Assumption 3 is useful to obtain the Lyapunov condition in Theorem 4, which is similar to the

assumption used in least squares case of Zou and Zhang (2009).

3 Adaptive Elastic-Net GMM Estimation

We first obtain one of the main results of the paper by deriving the upper bounds of the mean square

error of the estimates. We obtain the bound for the adaptive elastic net and the bound for the elastic

net estimator where ŵj = 1, ∀j = 1, 2 · · · , p. Given the data (yi, Xi, Zi), let ω̂ = (ω̂1, · · · , ω̂p+s) be

a vector whose components are all nonnegative and can depend on data. Set θ = (β′, τ ′)′. Then

define

θ̂W = argminθ{(Yz −XzF θ)′Ŵ (Yz −XzF θ) + λ2‖θ‖2 + λ1

p+s∑
j=1

ŵj |θj |}

where λ1 and λ2 are nonnegative tuning parameters.
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If we substitute ω̂j = 1, j = 1, · · · , p + s, in θ̂W above, then we obtain the elastic net estimator

and denote it as θ̂enet.

Theorem 1. Under the model (1), (2) and Assumption 1, we have w.p.a.1

(i) E‖θ̂W − θ0‖2 ≤ 4
λ2

2‖θ0‖2 + Bn3q + λ2
1E(

∑p+s
j=1 ŵ2

j )
(bn2 + λ2)2

and

(ii) E‖θ̂enet − θ0‖2 ≤ 4
λ2

2‖θ0‖2 + Bn3q + λ2
1(p + s)

(bn2 + λ2)2
,

B and b are some positive absolute constants given in (6).

This result clearly shows the upper bound on the mean square error of our estimators and is used

to obtain Theorems 2 and 3. 2

Next we obtain the selection consistency. This result is important since it shows that the

adaptive elastic-net procedure automatically selects the valid moment conditions as well as the

relevant regressors in the structural equation. We further define an estimator given by

θ̃A = arg min
θ

(Yz −XzFAθ)′Ŵ (Yz −XzFAθ) + λ∗1
∑
j∈A

ŵj |θj |+ λ2

∑
j∈A

θ2
j

 , (8)

where XzFA consists of the sub-columns of XzF that correspond to nonzero elements in θ0 =

(β′0, τ
′
0)
′. The following result is useful to derive the selection consistency.

Theorem 2. Under Assumptions 1-2, w.p.a.1, ((1 + (λ2/n2))θ̃A, 0) is the solution to the mini-

mization problem of adaptive elastic-net in (3).

The next theorem obtains the selection consistency of the adaptive elastic-net estimator. This

extends Zou and Zhang (2009) from finding the relevant regressors in least squares to linear GMM.

We also find the invalid moments compared to their case.

Theorem 3. Under Assumptions 1-2, the adaptive elastic-net estimator θ̂ in (3) satisfies the

selection consistency property: P ({j : θ̂j 6= 0} = A) → 1.

The main difference between Theorems 2 and 3 is that we can get local to zero coefficients as

nonzero above a certain threshold in Theorem 3. The minimum coefficient that can be selected

correctly should be of the order n−1/m, where m > m∗ in (7). This shows that in an environment

with many moments/parameters, it will be difficult to do perfect model selection if the coefficients
2Another distinction is that the bound results by Zou and Zhang (2009) are exact since they take the regressors

to be deterministic. In contrast, our result is obtained w.p.a.1 since we consider the stochastic regressors.
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are small. To give an example, take ν = 1/5, α = 2/5, γ = 3, κ = 3.5, then m∗ = 60 which means

the order of the smallest coefficient to be selected should be larger than n−1/60. This theorem

extends Leeb and Pőtscher’s (2005) criticism to the many parameters context. In the case with a

fixed number of parameters, they found that the order of the minimum coefficient to be selected

should be larger than n−1/2.

In addition, we provide the limit distribution of the adaptive elastic-net estimator of the nonzero

parameters θA = (β′A, τ ′A)′. Without losing any generality, we denote the true number of nonzero

structural parameters as p0 with 1 ≤ p0 ≤ p and the true number of invalid instruments as s0 with

1 ≤ s0 ≤ s, so that βA is p0 × 1 and τA is s0 × 1. We further define a (p0 + s0)× (p0 + s0) matrix

ΣA = Σ′
xzFAV −1ΣxzFA,

where ΣxzFA = [ΣxzA, Fq,s0 ] is a full column rank q × (p0 + s0) matrix and ΣxzA is a full column

rank q × p0 matrix. Fq,s0 = [0′q−s0,s0
, Is0 ]

′ is a q × s0 matrix that is defined similarly to Fq,s above.

Note that ΣxzA is defined from ‖Z ′XA/n−ΣxzA‖
p→ 0, which holds from Assumption 1-(iii), where

XA is an n× p0 matrix that consists of the (endogenous) regressors corresponding to the nonzero

structural parameters. Then using a similar argument as (4), we have

‖XzFAn−1 − ΣxzFA‖
p→ 0. (9)

Now we introduce one of the main theorems.

Theorem 4. We let θ̂A be the adaptive elastic-net GMM estimator in (3) that corresponds to θA.

Under Assumptions 1-3, the limit distribution of θ̂A is given by

ζ ′

(
Ip0+s0 + λ2Σ̂−1

A

)
1 + (λ2/n2)

Σ̂1/2
A n−1/2(θ̂A − θA) d→ N (0, 1) as n →∞,

where Σ̂A = X ′
zFAV̂ −1XzFA, V̂ is some consistent estimator of V , and ζ is an arbitrary (p0+s0)×1

vector with ‖ζ‖ = 1.

Remarks: 1. Note that from (9) and Assumption 1, it can be verified that the minimum eigen-

value of Σ̂A is Op(n2) and the maximum eigenvalue of Σ̂1/2
A is Op(n). By Assumption 2, we have

‖λ2Σ̂−1
A ‖ p→ 0. Therefore, we obtain∥∥∥∥∥Ip0+s0 + λ2Σ̂−1

A
1 + (λ2/n2)

− Ip0+s0

∥∥∥∥∥ = op(1)

8



as λ2/n2 → 0 with ‖ζ‖ = 1. ζ is a (p0 + s0) vector, which indicates the rate of convergence of

θ̂A equal to
√

n/(p0 + s0). The rate of convergence of the structural parameters and the invalid

moment parameters is slower than
√

n, which is affected by the number of invalid moments.

2. Caner and Zhang (2013) also obtain the asymptotics of adaptive elastic net estimators in a

GMM framework. However, their exercise is relatively limited in the sense that they only analyze

structural parameters and assume that all the moments are valid.

3. An interesting question is the analysis of many weak moments. In GMM case, we know from the

work of Newey and Windmeijer (2009) that this is an inconsistent estimator. Only GEL estimators

will be consistent. For LASSO type estimators, the same problem is pointed out by Caner (2009).

Caner (2009) shows that with a fixed number of instruments, only nearly-weak asymptotics can

give consistent estimates. We think that the case of many weak moments will be very interesting

but has to be handled in GEL or CUE framework, so its analysis is beyond the scope of this paper.

Another interesting question is whether we can achieve the semiparametric efficiency bound

from the adaptive elastic-net procedure. Note that it is generally the case if we use the entire set

of valid (and strong) instruments. The following result shows that the adaptive elastic-net GMM

estimator of the nonzero structural parameter β indeed achieves the semiparametric efficiency

bound. Therefore, even with many invalid moments, it is still possible to construct an estimator

that reaches the semiparametric efficiency bound. We let Z = (Z1, Z2), where Z1 represents

the n × (q − s0) valid instruments, and Z2 represents n × s0 invalid instruments. More precisely,

‖n−1
∑n

i=1 Z1iui‖
p→ 0 and ‖n−1

∑n
i=1 Z2iui−τA‖

p→ 0, where τA is an s0×1 vector whose elements

are all nonzero.

Theorem 5. Under Assumptions 1-3 the limit variance of the true nonzero structural parameter

estimator β̂A is

(Σ′
xz1AV −1

11 Σxz1A)−1,

where ‖Z ′
1XA/n− Σxz1A‖

p→ 0 and ‖n−1
∑n

i=1 Z1iZ
′
1iu

2
i − V11‖

p→ 0.

This result implies that even though we have some invalid instruments and there may be many of

them, we can still estimate β as if we were using only the valid instruments. It can be done by

one-step estimation (i.e., the adaptive elastic-net GMM) instead of using some two-step estimation

depending on pre-testing for the instruments validity. This is the oracle result.
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3.1 An Application to Dynamic Panel Data Estimation

As an application, we consider the following dynamic panel regression model given by

yi,t = ρyi,t−1 + x′i,tβ + µi + ui,t (10)

for i = 1, · · · , N and t = 1, · · · , T , where |ρ| < 1, yi,t is a scalar, xi,t is a K × 1 vector of exogenous

regressors and µi is the unobserved individual effects that can be correlated with yi,t−1 or xi,t.

Under the condition that

E[ui,t|µi, y
t−1
i , xT

i ] = 0, (11)

where yt−1
i = (yi,1, · · · , yi,t−1)′ and xT

i = (x′i,1, · · · , x′i,T )′, we have the moment conditions given by

E[∆xi,t∆ui,t] = E[∆xi,t(∆yi,t − ρ∆yi,t−1 −∆x′i,tβ)] = 0 (12)

E[yt−2
i ∆ui,t] = E[yt−2

i (∆yi,t − ρ∆yi,t−1 −∆x′i,tβ)] = 0 (13)

for t ≥ 2 as Arellano and Bond (1991). But note that the second set of (T − 2)(T − 1)/2 number of

moment conditions (13) heavily depend on the condition that E[ui,tui,t−s] = 0 for all s ≥ 1, which

is indeed implied by (11), whereas the first set of (T − 2)K number of moment conditions (12) is

robust to the possible serial correlation in ui,t. Therefore, if the error term ui,t in (10) has serial

correlation, then some moment conditions in (13) become invalid.3

In this case, we have q ≡ (T − 2)(T − 1)/2 + (T − 2)K number of total moment conditions,

whereas we have p ≡ K + 1 number of parameters of interest. Among the q number of moment

conditions (or instruments) we have s ≡ (T − 2)(T − 1)/2 number of moment conditions that are

potentially invalid under the possible serial correlation in ui,t, which indeed happens frequently in

practice. We allow for N,T, K →∞ and thus q, s, p →∞ in this case. For identification purposes,

we assume p + s ≤ q ⇐⇒ K + 1 ≤ (T − 2)K for all T and K, which is satisfied with T ≥ 4 and

K ≥ 1.

Note that one of the condition on q is q = O(nα) for some 0 ≤ α < 1, and thus q/n → 0

as the sample size grows. In this dynamic panel case, we have q/n = [(T − 2)(T−1
2 + K)]/NT =

3Under an additional condition of the mean stationarity (i.e., E[yi,t] = µ for all i and t), we further have

E[∆yi,t−1(yi,t − ρyi,t−1 − x′i,tβ)] = 0 for t ≥ 2 as Blundell and Bond (1998) and Bun and Kleibergen (2013). When

ρ is close to one, the moment condition (13) is prone to have weak identification (i.e., weak instrument problem)

whereas this new moment condition is robust to such a persistence. We could find more moment conditions (e.g.,

E[∆xi,s∆vi,t] = 0 for s = 2, · · · , T under strict exogeneity of xi,t or second moment restrictions with homoskedasticity

assumption), but we only consider the most conventional moment conditions given as (13).
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O(max{K, T}/N) and thus we need max{K, T}/N → 0 as N,T, K →∞. However, in general the

(system) GMM approach using first-differenced panel is normally used in large cross section case

(i.e., N � T ). Unless K is extremely large, this condition is usually satisfied in practice.

More precisely, we consider the vector form of the first-differenced equation of (10) as ∆yi,t =

ρ∆yi,t−1 + ∆x′i,tβ + ∆ui,t or in a matrix form

∆yi = Xiδ + ∆ui,

where ∆yi = (∆yi,3, · · · ,∆yi,T )′, Xi = [∆yi(−1),∆xi] with ∆yi(−1) = (∆yi,2, · · · ,∆yi,T−1)′ and

∆xi = (∆xi,3, · · · ,∆xi,T )′, δ = (ρ, β′)′ and ∆ui = (∆ui,3, · · · ,∆ui,T )′. We denote the ((t − 2) +

K)× 1 instrumental variable as

zi,t =

 yt−2
i

∆xi,t

 .

Note that with possible serial correlation in ui,t, we have the following set of moment conditions in

this case:

E

zi,t(∆yi,t − ρ∆yi,t−1 −∆x′i,tβ)−

 τt−2

0K

 = 0

for all i = 1, · · · , N and for each t = 3, · · · , T , where τt−2 is some (t − 2) × 1 vector. We have

Zi = [Z1i, Z2i], where

Z1i =


∆x′i,3 0 · · · 0

0 ∆x′i,4 0
. . .

...

0 0 · · · ∆x′i,T


(T−2)×(T−2)K

and

Z2i =


yi,1 0 0 · · · 0 · · · 0

0 yi,1 yi,2 0 0
...

. . .
...

0 0 0 · · · yi,1 · · · yi,T−2


(T−2)×(T−2)(T−1)/2

.

Then the adaptive elastic-net GMM estimator is given by

θ̂ =
(

1 +
λ2

(NT )2

)
arg min

θ=(δ,τ)

{
N∑

i=1

(Z ′
i(∆yi −Xiδ)− Fq,sτ)′Ŵ (Z ′

i(∆yi −Xiδ)− Fq,sτ)

+λ∗1

p+s∑
j=1

ŵj |θj |+ λ2

p+s∑
j=1

θ2
j

 (14)

11



from (3), where q = (T − 2)(T − 1)/2 + (T − 2)K, s = (T − 2)(T − 1)/2, p = K + 1 and

τ = (τ ′1, · · · , τ ′T−2)
′. Assuming that the data {yi, xi}N

i=1 are i.i.d. across i, the theoretical results

in the previous section extend to this example. Note that we choose ŵj such that ŵj = |θ̂j,enet|−γ

for some γ > 1, where θ̂j,enet is the elastic-net estimator that minimizes (14) with ŵj = 1 for all j.

The optimal weight matrix Ŵ can be obtained via the standard two-step GMM estimation.

4 Algorithm for Optimization and Tuning Parameter Selection

We first start this section by showing that the LARS algorithm of Efron et al. (2004) can be

applied in the linear adaptive elastic net estimator for least squares, and then we show that it can

be applied to adaptive elastic net for GMM. We extend Lemma 1 of Zou and Hastie (2005) from

the elastic net to adaptive elastic net by using Algorithm 1 in section 3.5 of Zou (2006). It shows

that the adaptive elastic net in linear models can be optimized as LASSO. Consider the linear

regression model:

y = xφ + ε

where y is n × 1, x = [x1, x2, ..., xr] is n × r and φ is r × 1. The naive elastic net estimator in a

linear regression is

φ̂nenet = argminφ{‖y −
r∑

j=1

x′jφj‖2 + λ1

r∑
j=1

ŵj |φj |+ λ2

r∑
j=1

φ2
j}. (15)

The naive elastic net is the adaptive elastic net without the extra scaling of (1 + λ2/n). Now, form

the following LASSO problem

φ̂∗ = argminφ{‖y∗ −
r∑

j=1

x∗
′

j φ∗j‖2 + λ∗1

r∑
j=1

|φ∗j |}, (16)

where for j = 1, · · · , r, φ∗j = ŵjφj , and

x∗j = ŵ−1
j

 xj

√
λ2ej

 .

Note that xj is an (n + r)× 1 vector, and ej = (0, · · · 1, · · · 0)′, where the jth element is 1, and all

other elements are 0. Also, we set the (n + r)−dimensional vector y∗ as

y∗ =

 y

0r×1

 .

12



Lemma 1. Given the above data (y, xj) and transformed data (y∗, x∗j ) for j = 1, · · · , r, the relation

between the naive elastic net estimator (φ̂nenet) and the LASSO estimator (φ̂∗) is

φ̂nenet,j = ŵ−1
j φ̂∗j .

Now, we return to the discussion on our adaptive elastic net estimator in the GMM framework.

The naive elastic net estimator θ̂nenet can be computed by substituting y = Ŵ 1/2Yz, x = Ŵ 1/2XzF

and ŵj = |θ̂j,enet|−γ into (15). Ŵ can be computed via the conventional efficient two-step GMM.

Given the adaptive weight ŵj , y and x are transformed into y∗ and x∗, and the transformed

coefficient θ̂∗j can be computed by the LARS algorithm as in (16). The naive elastic net estimator

is thus defined as θ̂nenet,j = ŵ−1
j θ̂∗j .

Then our adaptive elastic net estimator is computed as

θ̂ =
(

1 +
λ2

n2

)
θ̂nenet.

The naive elastic net estimator θ̂nenet is rescaled by 1+λ2/n2 instead of 1+λ2/n. To see the reason,

note that the maximum eigenvalue of x′x is Op(n) in Zou and Zhang’s (2009) linear models, whereas

the maximum eigenvalue of X ′
zF ŴXzF is Op(n2) by (6) in our GMM setup. If only L2 penalty

were used, then we would get the ridge estimate for θ:(
X ′

zF ŴXzF

n2
+

λ2

n2
Ip+s

)−1
X ′

zF ŴYz

n2
.

It is clear that the normalization involves n2 rather than n, so we suggest using 1 + λ2/n2 to the

scale the naive elastic net estimator in the GMM context.

Let θ̂ be partitioned as θ̂ ≡ [β̂′, τ̂ ′]′, where β̂ and τ̂ are the estimates for β0 and τ0, respectively.

Let p̂0 ≡ ‖β̂‖0 and ŝ0 ≡ ‖τ̂‖0, where ‖.‖0 denotes the number of nonzero elements of a vector. We

select the tuning parameters by minimizing the following criterion,

IC(λ∗1, λ2) = J(θ̂) + (p̂0 + ŝ0) ln(n) max{ln[ln(p + s)], 1}, (17)

where J(θ̂) = n−1(Yz −XzF θ̂)′Ŵ (Yz −XzF θ̂), and we use abbreviated notations, θ̂, p̂0 and ŝ0, to

denote θ̂(λ∗1, λ2), p̂0(λ∗1, λ2) and ŝ0(λ∗1, λ2). Wang et al. (2009) show that BIC can be applied to

select the tuning parameter that produces correct model selection w.p.a.1 for shrinkage estimation

of linear models. The criterion (17) is an analog of BIC proposed by Wang et al. (2009) under

our adaptive elastic net GMM setup. Recall that we set y = Ŵ 1/2Yz and x = Ŵ 1/2XzF to

transform (3) into a linear regression so that the LARS algorithm can be applied. Thus, J(θ̂) =
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n−1(y − xθ̂)′(y − xθ̂) corresponds to the mean of squared errors in BIC proposed by Wang et al.

(2009). J(θ̂) in (17) prevents under-fitting. Note that there will be endogeneity and J(θ̂) will

diverge if any nonzero element of β0 or τ0 is estimated as zero. The second term in (17) prevents

over-fitting. The term ln[ln(p + s)] follows the suggestion by Wang et al. (2009) for a diverging

number of parameters.

5 Monte Carlo Simulation

In this section, we study the finite sample performance of our estimator. Let ιj denote a j × 1

vector of ones. We consider the following data generating processes (DGPs) for i = 1, ..., n.

Yi = X ′
iβ0 + ui

Xi = Z ′
1iπ + vi

ui =
√

ρuvε1i +
√

1− ρuvε2i

vi =
√

ρuvε1i · ιp +
√

1− ρuvε3i

where Z1i is a (q − s0)× 1 vector of valid instruments, Z1i
i.i.d.∼ N(0,Ωz), Z2i is an s0 × 1 vector of

invalid instruments, Z2i = ε4i + τAui · ιs0 and
ε1i

ε2i

ε3i

ε4i


i.i.d.∼ N

0,


1 0 0 0

0 1 0 0

0 0 Ip 0

0 0 0 Is0



 .

Let Zi ≡ [Z ′
1i, Z

′
2i]

′. We set ρuv = 0.5, 2p = q − s0, β0 = b(ι′p0
, 01×(p−p0))′ and

π =
1√
2

 Ip

Ip

 .

The (i, j)th element of Ωz is set equal to ρ
|i−j|
z . We set ρz = 0.5 and 0.8 to vary the dependence

among the valid instruments. τA controls the severity of the invalid moment conditions. Note that

ΣxzF = [Σxz, Fq,s] has full column rank even if Z2i is generated to be uncorrelated with Xi. Cheng

and Liao (2012) and Liao (2013) generate invalid instruments using a similar DGP. We set τA equal

to 0.5 and 0.3. The parameter b is the value of nonzero structural parameters and set equal to 0.25,

0.5 and 1. The sample size n is set equal to 250 and 1000, and p = 20, p0 = 3, s = 10, s0 = 3 and

q = 43. The number of replications is 2000.
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We summarize the simulation results in Tables 1, 2, and 3. AENet is the estimator proposed

in (3) and is solved by the algorithm provided in Section 4. ALASSO-LARS is the same as AENet

except that λ2 is restricted to be zero, so ALASSO-LARS is the adaptive LASSO GMM estimator

solved by LARS. ALASSO-CL is the adaptive LASSO estimator proposed by Cheng and Liao

(2012). The main difference between ALASSO-CL and our estimator is that ALASSO-CL does not

select variables in the structural equation (1) but only selects moments in (2). Also, ALASSO-CL

is solved by the algorithm proposed by Schmidt (2010), and the tuning parameter is selected by

cross validation instead of (17). Let βAc and τAc denote the zero elements in β0 and τ0, respectively,

so that β0 = (β′A, β′Ac)′ and τ0 = (τ ′A, τ ′Ac)′.

Table 1 reports the root of mean squared errors (RMSE) of three estimators. RMSEs of es-

timators of τAc , τA, βAc , and βA, denoted by rmse1, rmse2, rmse3 and rmse4, respectively.

First, the RMSEs of τAc are similar when ρz = 0.5. When ρz = 0.8, however, both AENet

and ALASSO-LARS tend to estimate τAc more accurately than ALASSO-CL. For example, when

(ρz, τA, b) = (0.8, 0.5, 0.25) and n = 250, the RMSEs of τAc for AENet, ALASSO-LARS,

and ALASSO-CL are 0.006, 0.006, and 0.015, respectively. Second, for invalid moment con-

ditions τA, AENet and ALASSO-LARS have smaller RMSEs than ALASSO-CL. For instance,

when (ρz, τA, b) = (0.5, 0.5, 0.25) and n = 250, the RMSEs of τA for AENet, ALASSO-LARS,

and ALASSO-CL are 0.187, 0.181, and 0.388, respectively. Third, rmse3 shows that AENet and

ALASSO-LARS produce smaller RMSEs than ALASSO-CL. This is expected because ALASSO-

CL does not shrink estimates to zero for βAc . Lastly, for nonzero structural parameters βA, none

of these estimator outperforms others uniformly. AENet performs better than ALASSO-LARS

when instruments are highly correlated (ρz = 0.8). Hence, the introduction of ridge penalty can

reduce the severity of multicollinearity. The RMSE of ALASSO-CL is smaller than the other two

estimators when βA = 0.25 · ιp0×1.

Table 2 reports the accuracy of moment selection by different estimators. Pr1 is the percentage

of replications that yield zero estimates for τAc . Pr2 is the percentage of replications that yield

nonzero estimates for τA. First, for the unsure-but-valid moments, ALASSO-CL is slightly better

than AENet when n = 250 and ρz = 0.5. When n = 250 and ρz = 0.8, however, our estimators

outperform ALASSO-CL. For example, AENet estimates τAc as zero for 98.1% of replications,

whereas ALASSO-CL estimates τAc as zero for 92% of replications when (ρz, τA, b) = (0.8, 0.3, 0.25).

Second, for invalid moments, our estimators always outperform ALASSO-CL except for the cases

where ρz = 0.8, τA = 0.3, and n = 250. It is expected that detecting invalid moments is difficult
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when τA is small. When (ρz, τA, b) = (0.5, 0.3, 0.25) and n = 250, for example, ALASSO-CL

only detects 35% of the invalid moments, but AENet detects 86.1%. As n increases to 1000, our

estimators always capture all the invalid moments.

Table 3 reports the accuracy of structural parameter selection by different estimators. Pr3 is

the percentage of replications that yield zero estimates for βAc . Pr4 is the percentage of replications

that yield nonzero estimates for βA. Note that ALASSO-CL cannot select irrelevant variables in (1)

since it only focuses on selecting moments, i.e., all β’s will be estimated as nonzero by ALASSO-CL.

In addition, AENet is slightly better than ALASSO-LARS in terms of the percentage that yields

zero estimate for βAc . Moreover, for the selection of nonzero structural parameters, AENet tends

to outperform ALASSO-LARS, especially for n = 250. It is also expected from Theorem 3 that

selecting relevant regressors becomes more difficult when βA is small. This can be seen in the case

where AENet only detects around 70% of the relevant regressors with n = 250, ρz = 0.8, and

b = 0.25. When n = 1000, ρz = 0.8, and b = 0.25, however, our estimators can detect over 90% of

the relevant regressors with small coefficients.

6 Conclusion

This paper develops an adaptive elastic-net estimator with many possibly invalid moment con-

ditions. The number of structural parameters as well as the number of moment conditions are

allowed to increase with the sample size. The moment selection and model selection are conducted

simultaneously. The moment conditions are constructed in a way to take into account the possibly

invalid instruments. We use the penalized GMM to estimate both structural parameters along

with the parameters associated with the invalid moments. The penalty contains two terms: the

quadratic regularization and the adaptively weighted LASSO penalty. We show that our estimator

uses information only from the valid moment conditions to achieve the semiparametric efficiency

bound. The estimator is thus very useful in practice since it conducts the consistent moment se-

lection and efficient estimation of the structural parameters simultaneously. We also establish the

order of magnitude for the smallest local to zero coefficient to be selected as nonzero. An algorithm

is proposed based on LARS for the implementation of our estimator. Simulation results show that

our estimator has good finite-sample performance.
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Appendix: Mathematical Proofs

Proof of Theorem 1 We define a ridge type estimator

θ̂R = arg min
θ

(Yz −XzF θ)′Ŵ (Yz −XzF θ) + λ2

p+s∑
j=1

θ2
j

 . (A.1)

We will benefit from the following inequality:

E‖θ̂W − θ0‖2 ≤ 2E‖θ̂R − θ0‖2 + 2E‖θ̂W − θ̂R‖2. (A.2)

We try to bound the term E‖θ̂W − θ̂R‖2. For that reason note that

(Yz −XzF θ̂W )′Ŵ (Yz −XzF θ̂W ) + λ1

p+s∑
j=1

ŵj |θ̂j,W |+ λ2

p+s∑
j=1

θ̂2
j,W

≤ (Yz −XzF θ̂R)′Ŵ (Yz −XzF θ̂R) + λ1

p+s∑
j=1

ŵj |θ̂j,R|+ λ2

p+s∑
j=1

θ̂2
j,R, (A.3)

which is derived from the definition of θ̂W in the statement of Theorem 1. But we can rewrite (A.3)
as

λ1

p+s∑
j=1

ŵj |θ̂j,R| − λ1

p+s∑
j=1

ŵj |θ̂j,W | ≥ [(Yz −XzF θ̂W )′Ŵ (Yz −XzF θ̂W ) + λ2

p+s∑
j=1

θ̂2
j,W ]

−[(Yz −XzF θ̂R)′Ŵ (Yz −XzF θ̂R) + λ2

p+s∑
j=1

θ̂2
j,R], (A.4)

where it holds that

p+s∑
j=1

ŵj |θ̂j,R| −
p+s∑
j=1

ŵj |θ̂j,W | ≤
p+s∑
j=1

ŵj |θ̂j,R − θ̂j,W | ≤

p+s∑
j=1

ŵ2
j

1/2

‖θ̂R − θ̂W ‖. (A.5)

Now we try to get a lower bound for the right hand side of (A.4). So we find the ridge solution
from (A.1) as

θ̂R = [(X ′
zF ŴXzF ) + λ2Ip+s]−1[X ′

zF ŴYz] (A.6)

yielding

(YZ −X ′
zF θ̂R)′Ŵ (YZ −X ′

zF θ̂R) + λ2‖θ̂R‖2

= Y ′
zŴYz − 2θ̂′RX ′

zF ŴYz + θ̂′R[X ′
zF ŴXzF + λ2Ip+s]θ̂R

= Y ′
zŴYz − θ̂′R[X ′

zF ŴXzF + λ2Ip+s]θ̂R (A.7)

since from (A.6)

θ̂′R(X ′
zF ŴYz) = (Y ′

zŴXzF )[(X ′
zF ŴXzF ) + λ2Ip+s]−1(X ′

zF ŴYz)
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and
(Y ′

zŴXzF )[X ′
zF ŴXzF + λ2Ip+s]−1(X ′

zF ŴYz) = θ̂′R[(X ′
zF ŴXzF ) + λ2Ip+s]θ̂R.

Similarly, we also have

(Yz −XzF θ̂W )′Ŵ (Yz −XzF θ̂W ) + λ2‖θ̂W ‖2

= Y ′
zŴYz − 2θ̂′W X ′

zF ŴYz + θ̂′W (X ′
zF ŴXzF + λ2Ip+s)θ̂W

= Y ′
zŴYz − 2θ̂′W (X ′

zF ŴXzF + λ2Ip+s)θ̂R + θ̂′W (X ′
zF ŴXzF + λ2Ip+s)θ̂W (A.8)

since from (A.6)
θ̂′W X ′

zF ŴYz = θ̂′W [X ′
zF ŴXzF + λ2Ip+s]θ̂R.

Subtracting (A.7) from (A.8), we thus have{
(Yz −XzF θ̂W )′Ŵ (Yz −XzF θ̂W ) + λ2‖θ̂W ‖2

}
−
{

(YZ −XzF θ̂R)′Ŵ (YZ −XzF θ̂R) + λ2‖θ̂R‖2
}

= (θ̂W − θ̂R)′[X ′
zF ŴXzF + λ2Ip+s](θ̂W − θ̂R), (A.9)

where with some symmetric Ŵ

(θ̂W − θ̂R)′[X ′
zF ŴXzF + λ2Ip+s](θ̂W − θ̂R) ≥ [Eigmin(X ′

zF ŴXzF ) + λ2]‖θ̂W − θ̂R‖2 (A.10)

by exercise 7.25, p.167 of Abadir and Magnus (2005). Therefore, using (A.9), (A.10), (A.5) and
(A.4), we have

‖θ̂W − θ̂R‖ ≤
λ1

[∑p+s
j=1 ŵ2

j

]1/2

Eigmin(X ′
zF ŴXzF ) + λ2

. (A.11)

Second, for the bound of ||θ̂R − θ0||, we note that from (1)

Yz = Z ′Y = Z ′Xβ0 + Z ′u = Z ′Xβ0 + nFq,sτ0 + (Z ′u− nFq,sτ0) = XzF θ0 + e, (A.12)

where we let XzF = [Z ′X, nFq,s], θ0 = (β′0, τ
′
0)
′ and e = Z ′u− nFq,sτ0. Using (A.6), we have

θ̂R = [X ′
zF ŴXzF + λ2Ip+s]−1[X ′

zF ŴYz]

= [X ′
zF ŴXzF + λ2Ip+s]−1[X ′

zF ŴXzF θ0 + e + λ2θ0 − λ2θ0],

and

θ̂R − θ0 = [X ′
zF ŴXzF + λ2Ip+s]−1[X ′

zF Ŵe]− λ2[X ′
zF ŴXzF + λ2Ip+s]−1θ0. (A.13)

Then we can write that

‖θ̂R − θ0‖2 ≤ [Eigmin(X ′
zF ŴXzF ) + λ2]−2[λ2

2‖θ0‖2 + ‖X ′
zF Ŵe‖2].

But by Assumption 1 and (6), we can rewrite it as (w.p.a.1)

‖θ̂R − θ0‖2 ≤ [bn2 + λ2]−2[λ2
2‖θ0‖2 + ‖X ′

zF Ŵe‖2],
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where from Assumptions 1, (6),

‖X ′
zF Ŵe‖2 = |e′ŴXzF X ′

zF Ŵe|
≤ Eigmax(ŴXzF X ′

zF Ŵ )‖e‖2

≤ n2B‖e‖2 (A.14)

wpa1. Next, given L is a finite constant

E‖X ′
zF Ŵe‖2 ≤ n2BE‖e‖2 ≤ qn3BL. (A.15)

We want to prove (A.15). This means showing

E‖e‖2 ≤ nqL. (A.16)

Before proving (A.16) we introduce some notation. For i = 1, · · · , n, let ei = Ziui − Fq,sτ0,
∀j = 1, · · · q. See that ei is a q×1 vector, and we can see that each cell in ei is eij = Zijui−(Fq,sτ0)j .
For k = 1, · · · , n and i 6= k, let ek = Zkuk − Fq,sτ0. See that ek is a q × 1 vector, and we can see
that each cell in ek is ekj = Zkjuk − (Fq,sτ0)j . Note that (Fq,sτ0)j represents the j th element in
q × 1 vector of Fq,sτ0. Given the independence of Zi, ui across i, if the moments are nonzero for
EZijui = (Fq,sτ0)j , and EZkjuk = (Fq,sτ0)j , then it is easy to see that

Eeijekj = 0. (A.17)

This last equation will be also true if the moments EZiui EZkuk are zero or they have different
nonzero moments. To see (A.16)

E‖e‖2 = nE|(e′e)/n|.

Next

E[e′e/n] =
1
n

E[(
n∑

i=1

ei)′(
n∑

i=1

ei)]

= E

q∑
j=1

(
1

n1/2

n∑
i=1

eij)2

=
q∑

j=1

[
1
n

E(
n∑

i=1

n∑
k=1

eijekj)]

=
q∑

j=1

[
1
n

E(
n∑

i=1

e2
ij)] ≤ qL, (A.18)

where the last equality is obtained through (A.17) and the inequality through Assumption 3. So
(A.16) is proved.

Therefore, by (A.15) and seeing that we can write B = BL, it holds that

E‖θ̂R − θ0‖2 ≤ 2
[
λ2

2‖θ0‖2 + qn3B

(bn2 + λ2)2

]
. (A.19)
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Finally, by taking expectations in (A.11) with Assumption 1, and combining it with (A.19) into
(A.2), we have

E‖θ̂W − θ0‖2 ≤ 4
λ2

2‖θ0‖2 + Bn3q + λ2
1E(

∑p+s
j=1 ŵ2

j )
(bn2 + λ2)2

w.p.a.1. The bounds for E‖θ̂W − θ0‖2 can be obtained by letting ŵj = 1 for all j. See that b, B are
absolute positive constants, and they do not depend on n. Q.E.D.

Proof of Theorem 2 We have to show that ((1 + λ2/n)θ̃A, 0) satisfies the Karush-Kuhn-Tucker
conditions of the optimization of adaptive elastic-net equation (3) w.p.a.1. More precisely, we need
to show

Ψn ≡ P
{
| − 2X ′

zF,jŴ (Yz −XzFAθ̃A)| ≤ λ∗1ŵ
j for all j ∈ Ac

}
→ 1, (A.20)

where XzFA consists of columns of XzF that correspond to nonzero elements in θ0 and XzF,j is the
jth column of XzF . Then the next steps follow exactly as in equations (6.7) and (6.8) of Zou and
Zhang (2009). We let η = min j∈A|θj0| and η̂= minj∈A |θ̂enet,j |. Since Ψn is equivalent to

P
{
| − 2X ′

zF,jŴ (Yz −XzFAθ̃A)| > λ∗1ŵ
j , ∃j ∈ Ac

}
→ 0.

So (A.20) satisfies

Ψn ≤
∑
j∈Ac

P
{
| − 2X ′

zF,jŴ (Yz −XzFAθ̃A)| > λ∗1ŵ
j and η̂ > η/2

}
+ P (η̂ ≤ η/2).

But from Theorem 1, w.p.a.1,

P (η̂ ≤ η/2) ≤ P (‖θ̂enet − θ0‖ > η/2) ≤ E‖θ̂enet − θ0‖2/(η2/4)

≤ 16
λ2

2‖θ0‖22 + Bqn3 + λ2
1(p + s)

(bn2 + λ2)2η2
. (A.21)
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In addition, letting M =
(
λ∗21 /nκ

)1/2γ ,∑
j∈Ac

P
{
| − 2X ′

zF,jŴ (Yz −XzFAθ̃A)| > λ∗1ŵ
j and η̂ > η/2

}
≤

∑
j∈Ac

P
{
| − 2X ′

zF,jŴ (Yz −XzFAθ̃A)| > λ∗1ŵ
j , η̂ > η/2 and |θ̂enet,j | ≤ M

}
+
∑
j∈Ac

P
(
|θ̂enet,j | > M

)
≤

∑
j∈Ac

P
{
| − 2X ′

zF,jŴ (Yz −XzFAθ̃A)| > λ∗1M
−γ and η̂ > η/2

}
+
∑
j∈Ac

P
(
|θ̂enet,j | > M

)

≤ 4M2γ

λ∗21

E

∑
j∈Ac

|X ′
zF,jŴ (Yz −XzFAθ̃A)|21{η̂>η/2}

+
1

M2
E

∑
j∈Ac

|θ̂enet,j |2


≤ 4M2γ

λ∗21

E

∑
j∈Ac

|X ′
zF,jŴ (Yz −XzFAθ̃A)|21{η̂>η/2}

+
E‖θ̂enet − θ0‖2

M2

≤ 4M2γ

λ∗21

E

∑
j∈Ac

|X ′
zF,jŴ (Yz −XzFAθ̃A)|21{η̂>η/2}

 (A.22)

+4
λ2

2‖θ0‖22 + Bn3q + λ2
1(p + s)

(bn2 + λ2)2M2

w.p.a.1, where the last inequality follows from Theorem 1. Note that equations (A.21) and (A.22)
are linear GMM counterparts of (6.7) and (6.8) in Zou and Zhang (2009). However, M definition
in Zou and Zhang (2009) least squares proof does not extend here. So deriving (A.22) and finding
a new M for linear GMM that will make the new proof workable is not trivial.

The last inequality (A.22) can be further bounded as follows. Given the fact that θA represents
all the nonzero elements in the true model θ0 with (A.12), we can see that∑

j∈Ac

|X ′
zF,jŴ (Yz −XzFAθ̃A)|2 =

∑
j∈Ac

|X ′
zF,jŴ (XzFAθA −XzFAθ̃A) + X ′

zF,jŴe|2

≤ 2
∑
j∈Ac

|X ′
zF,jŴ (XzFAθA −XzFAθ̃A)|2 + 2

∑
j∈Ac

|X ′
zF,jŴe|2.

θA represent the true model parameters that corresponds to active set A. However, with Ŵ being
symmetric and positive definite, we have∑

j∈Ac

|X ′
zF,jŴ (XzFAθA −XzFAθ̃A)|2 ≤ Bn2‖Ŵ 1/2XzFA(θA − θ̃A)‖2

≤ Bn2 ×Bn2‖θA − θ̃A‖2, (A.23)

from Assumption 1 and (6) w.p.a.1. It thus follows that by (A.15)(A.23)

E

∑
j∈Ac

|X ′
zF,jŴ (Yz −XzFAθ̃A)|21{η̂>η/2}

 ≤ 2B2n4E(‖θA − θ̃A‖221{η̂>η/2}) + 2Bn3q. (A.24)
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Furthermore, by defining

θ̃AR = arg max
θ

(Yz −XzF θ)′Ŵ (Yz −XzF θ) + λ2

∑
j∈A

θ2
j

 ,

we have by the analysis in (A.11), since ŵj ≤ η̂−γ

‖θ̃A − θ̃AR‖ ≤
λ∗1η̂

−γ√p + s

bn2 + λ2
(A.25)

w.p.a.1 and thus

E(‖θA − θ̃A‖21{η̂>η/2}) ≤ 4
λ2

2‖θ0‖2 + Bn3q + λ∗21 (η/2)−2/γ(p + s)
(bn2 + λ2)2

(A.26)

by the last equation in the proof of Theorem 1 above. Therefore, by combining (A.21), (A.22),
(A.24) and (A.26), we have (w.p.a.1)

Ψn ≤ 4M2γ

λ∗21

{
2B2n4 × 4

λ2
2‖θ0‖2 + Bn3q + λ∗21 (η/2)−2/γ(p + s)

(bn2 + λ2)2
+ 2Bn3q

}
(A.27)

+4
λ2

2‖θ0‖2 + Bn3q + λ2
1(p + s)

(bn2 + λ2)2M2
(A.28)

+16
λ2

2‖θ0‖2 + Bqn3 + λ2
1(p + s)

(bn2 + λ2)2η2
. (A.29)

Now we prove that each of (A.27), (A.28) and (A.29) all converges to zero to complete the
proof. First, (A.27) is

Op

(
M2γ

λ∗21

λ2
2(p + s)

)
+ Op

(
M2γ

λ∗21

n3q

)
+ Op

(
M2γ

λ∗21

(λ∗1)
2(p + s)
η2γ

)
+ Op

(
M2γ

λ∗21

n3q

)
,

where the second and the last terms are op(1) since

M2γ

λ∗21

n3q =
λ∗21

nκ

1
λ∗21

n3q =
n3+α

nκ
→ 0

from q = O(nα) and Assumption 2-(ii). In addition, the first term is all dominated by the last or
second terms: for the first term, it is because λ2

2/n3 → 0 by Assumption 2(i). Next see that

M2γ

(λ∗1)2
(λ∗1)

2 (p + s)
η2γ

=
(λ∗1)

2

nκ

(p + s)
η2γ

→ 0, (A.30)

by Assumption 2(iv) and κ definition in Assumption 2(ii), and M = ((λ∗1)
2/nκ)1/2γ . Therefore,

(A.27) is op(1).
Second, (A.28) is

Op

(
λ2

2

n3

(p + s)
n

1
M2

)
+ Op

(
n3

n4

q

M2

)
+ Op

(
λ2

1

n4

(p + s)
M2

)
.
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But note that the second term dominates the other two terms since λ2
1/n3 → 0 and λ2

2/n3 → 0 by
Assumption 2-(i). Moreover, the second term is op(1) since

q

nM2
=

q

n
× 1

M2
≤ nα−1

M2
=

nα−1+κ/γ

(λ∗1)(2/γ)
→ 0

q = O(nα), Assumption 2-(iv) and the definition of M .
Finally, (A.29) is

Op

(
λ2

2(p + s)
n4η2

)
+ Op

(
qn3

n4η2

)
+ Op

(
λ2

1(p + s)
n4η2

)
= op(1) (A.31)

We prove (A.31). Since (p + s) ≤ q, λ2
2/n3 → 0, λ2

1/n3 → 0 by Assumption 2, the second term
dominates the others in (A.31). Then we consider the second term above

qn3

n4η2
==

q

n

1
η2

=
nα

nη2
=

nα−1

η2
→ 0, (A.32)

with η = O(n−1/m), this means that nα−1n2/m → 0, but this indicates a lower bound on m to be
true

m >
2

1− α
,

but this lower bound is implied by the lower bound that comes from Assumption 2(iv)(equation
(7)), since 2γ/[γ(1 − α) − ν − κ + 2] > 2/(1 − α) with 0 < ν ≤ α < 1 with γ > 1, κ > 3 + α by
Assumption 2(ii). So Assumption 2(iv) provides (A.32). Q.E.D.

Proof of Theorem 3 Using Theorem 2, in order to prove the selection consistency, we only
need to show that the minimal element of the estimator of nonzero coefficients is larger than zero
w.p.a.1: P

{
minj∈A |θ̃j | > 0

}
→ 1. Note that by (A.25)

min
j∈A

|θ̃j | > min
j∈A

|θ̃AR,j | −
λ∗1η̂

−γ√p + s

bn2 + λ2
, (A.33)

and also
min
j∈A

|θ̃AR,j | > min
j∈A

|θAj | − ‖θ̃AR − θA‖. (A.34)

But from (A.19), it holds that

E(‖θ̃AR − θA‖2) ≤ 2
[
λ2

2‖θ0‖22 + qn3B

(bn2 + λ2)2

]
= O

(
λ2

2(p + s)
n4

)
+ O

(
qn3

n4

)
= O

( q

n

)
(A.35)

w.p.a.1 since λ2
2/n3 → 0 and p + s ≤ q . Next,

λ∗1η̂
−γ√p + s

bn2 + λ2
= O

(
λ∗1
√

p + s

n2ηγ

(
η̂

η

)−γ
)

(A.36)
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where
λ∗1
n2

√
p + s

ηγ
=

1
n

(
λ∗1
n

√
p + s

ηγ

)
= o(

1
n

), (A.37)

by Assumption 2(iv). Next we consider

E

[(
η̂

η

)2
]

≤ 2 +
2
η2

E[(η̂ − η)2]

≤ 2 +
2
η2

E‖θ̂e − θ0‖2

≤ 2 +
2
η2

λ2
2‖θ0‖2 + Bn3q + λ2

1(p + s)
(bn2 + λ2)2

→ 2 (A.38)

by (A.31). Note that (
η̂

η

)−γ

=

[(
η̂

η

)2
]−γ/2

. (A.39)

Then by (A.38),

E

(
η̂

η

)2

= O(1),

so by Markov’s inequality (
η̂

η

)2

= Op(1).

Then by (A.39) and the last equation above we have(
η̂

η

)−γ

= Op(1), (A.40)

since if a generic random variable Γ = Op(1) we have Γ−γ/2 = Op(1). Plugging (A.35)-(A.38) in
(A.33) and (A.34)

minj∈A|θ̃j | > minj∈A|θAj | − (
√

q/n)O(1)− (1/n)op(1),

since
√

q/n converges to zero faster than η by (A.32) we have the desired result .

Proof of Theorem 4 We define

Φn = ζ ′
(Ip0+s0 + λ2Σ̂−1

A )
1 + λ2/n

Σ̂1/2
A n−1/2(θ̂A − θA).

Using θ̃A in (8), and noting its scaled difference from the definition of θ̂A we write

ζ ′(Ip0+s0 + λ2Σ̂−1
A )Σ̂1/2

A n−1/2

(
θ̃A −

θA
1 + λ2/n

)
= ζ ′(Ip0+s0 + λ2Σ̂−1

A )Σ̂1/2
A n−1/2

(
θ̃A − θ̃AR + θ̃AR −

θA
1 + λ2/n

)
= ζ ′(Ip0+s0 + λ2Σ̂−1

A )Σ̂1/2
A n−1/2(θ̃A − θ̃AR) (A.41)

+ζ ′(Ip0+s0 + λ2Σ̂−1
A )Σ̂1/2

A n−1/2(θ̃AR − θA)

+ζ ′(Ip0+s0 + λ2Σ̂−1
A )Σ̂1/2

A n−1/2

(
θA −

θA
1 + λ2/n

)
,
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where

θ̃AR = arg min
θ

(Yz −XzFAθ)′Ŵ (Yz −XzFAθ) + λ2

∑
j∈A

θ2
j

 .

Define eA = Z ′u − Fq,s0τA, and an s0 × 1 vector τA represents the nonzero s0 elements in τ . But
note that θ̃AR − θA = (Σ̂A + λ2Ip0+s0)

−1(X ′
zFAŴeA) − λ2(Σ̂A + λ2Ip0+s0)

−1θA from (A.13) and
thus the second term in (A.41) satisfies

(Ip0+s0 + λ2Σ̂−1
A )Σ̂1/2

A n−1/2(θ̃AR − θA)

= Σ̂−1/2
A (Σ̂1/2

A + λ2Σ̂
−1/2
A )Σ̂1/2

A n−1/2(θ̃AR − θA)

= Σ̂−1/2
A (Σ̂1/2

A + λ2Σ̂
−1/2
A )

×
{

(Σ̂1/2
A + λ2Σ̂

−1/2
A )−1n−1/2(X ′

zFAŴeA)− λ2(Σ̂
1/2
A + λ2Σ̂

−1/2
A )−1n−1/2θA

}
= Σ̂−1/2

A X ′
zFAŴn−1/2eA − λ2Σ̂

−1/2
A n−1/2θA,

Moreover, the third term in (A.41) can be simply written as

ζ ′(Ip0+s0 + λ2Σ̂−1)Σ̂1/2n−1/2

(
θA −

θA
1 + λ2/n

)
= ζ ′(Ip0+s0 + λ2Σ̂−1)Σ̂1/2n−1/2

(
λ2θA

λ2 + n

)
.

Therefore, using these expressions as well as Theorem 3, we can write

Φn = Φ1,n + Φ2,n + Φ3,n

w.p.a.1, where

Φ1,n = ζ ′(Ip0+s0 + λ2Σ̂−1
A )Σ̂1/2

A n−1/2 λ2θA
n + λ2

− ζ ′λ2Σ̂
−1/2
A n−1/2θA

Φ2,n = ζ ′(Ip0+s0 + λ2Σ̂−1
A )Σ̂1/2

A n−1/2(θ̃A − θ̃AR)

Φ3,n = ζ ′Σ̂−1/2
A X ′

zFAŴn−1/2eA.

We will look at each term to obtained the desired result. First note that w.p.a.1

Φ2
1,n ≤ 2

n

∥∥∥∥(Ip0+s0 + λ2Σ̂−1
A )Σ̂1/2

A
λ2θA

n2 + λ2

∥∥∥∥2

+
2
n
‖λ2Σ̂

−1/2
A θA‖2

≤ 2
n

λ2
2

(n2 + λ2)2
‖Σ̂1/2

A θA‖2
(

1 +
λ2

bn2

)2

+
2
n

λ2
2‖θA‖2

1
bn2

≤ 2λ2
2

n(n2 + λ2)2
Bn2

(
1 +

λ2

bn2

)2

‖θA‖2 +
2λ2

2‖θA‖2

bn3
→ 0
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from (6) and Assumption 2-(i), where λ2
2(p + s)/n3 → 0, ‖θA‖2 ≤ (p + s) and (p + s)/n → 0.

Second, in the same way, we have

Φ2
2,n ≤ 1

n

(
1 +

λ2

bn2

)2

‖Σ̂1/2
A (θ̃A − θ̃AR)‖2

≤ 1
n

(
1 +

λ2

bn2

)2

Bn2‖θ̃A − θ̃AR‖2 ≤
1
n

(
1 +

λ2

bn2

)2

Bn2

(
λ∗1η̂

−γ√p + s

bn2 + λ2

)2

= Bn

(
λ∗1η̂

−γ√p + s

bn2 + λ2

)2

+ o(1)

= B

(
λ∗1η̂

−γ√p + s
√

n

bn2 + λ2

)2

+ o(1)

= O

n

[
λ∗1
√

p + s

n2ηγ

(
η̂

η

)−γ
]2
 = O

 1
n

[
λ∗1
√

p + s

nηγ

(
η̂

η

)−γ
]2


= op(1)

where we use (1 + λ2/bn2) → 1, (A.25)(A.36)-(A.37) and (A.40). So we have Φ2
2,n = op(1).

Finally, we prove that Φ3,n
d→ N (0, 1). We denote the ith element of Φ3,n as

r̂i = ζ ′Σ̂−1/2
A X ′

zFAŴn−1/2ei,

where ei = Ziui − Fq,s0τA = Ziui − Fq,sτ0. We also let ri = ζ ′Σ−1/2
A Σ′

xzFAV −1n−1/2ei, where we
use W = V −1 as the optimal weight. Then by (9), Assumption 1-(i) and the definition of Σ̂A, we
have

‖Σ̂−1/2
A X ′

zFAŴ − Σ−1/2
A Σ′

xzFAV −1‖ = ‖Σ̂−1/2
A n(n−1XzFA)′Ŵ − Σ−1/2

A Σ′
xzFAV −1‖ p→ 0

and
∑n

i=1(r̂i − ri)
p→ 0. We now verify the Lyapunov condition to obtain the CLT. Since ΣA =

Σ′
xzFAV −1ΣxzFA and by Assumption 1 ‖n−1

∑n
i=1 eie

′
i − V ‖ p→ 0, we have

lim
n→∞

n∑
i=1

E[r2
i ] = ζ ′Σ−1/2

A Σ′
xzFAV −1ΣxzFAΣ−1/2

A ζ

= ζ ′(Σ′
xzFAV −1ΣxzFA)−1/2(Σ′

xzFAV −1ΣxzFA)(Σ′
xzFAV −1ΣxzFA)−1/2ζ = 1

using W = V −1 as the optimal weight, and ΣA definition. Next, for δ > 0 we need to show that

lim
n→∞

n∑
i=1

E|ri|2+δ = 0.

But since we show that limn→∞
∑n

i=1 E|ri|2 = 1 above,

lim
n→∞

n∑
i=1

E|ri|2+δ ≤ lim
n→∞

n∑
i=1

E|ri|2 max
1≤i≤n

|ri|δ ≤
(

max
1≤i≤n

|r2
i |
)δ/2

.

Note that
|r2

i | ≤ n−1‖ei‖2‖V −1ΣxzFAΣ−1/2
A ζ‖2 (A.42)
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by Cauchy-Schwartz inequality. For (A.42), we have

‖V −1ΣxzFAΣ−1/2
A ζ‖2 = ζ ′Σ−1/2

A Σ′
xzFAV −2ΣxzFAΣ−1/2

A ζ

≤ Eigmax(Σ−1/2
A Σ′

xzFAV −2ΣxzFAΣ−1/2
A )‖ζ‖2

= Eigmax(Σ−1/2
A Σ′

xzFAV −2ΣxzFAΣ−1/2
A ) < ∞, (A.43)

where ‖ζ‖2 = 1 and the first inequality is obtained by Σ−1/2
A Σ′

xzFAV −2ΣxzFAΣ−1/2
A being symmetric

and using the bounds of Rayleigh quotient (e.g., Exercise 7.53a of Abadir and Magnus, 2005). Since
Σ−1/2
A Σ′

xzFAV −2ΣxzFAΣ−1/2
A is positive definite, so is (Σ−1/2

A Σ′
xzFAV −2ΣxzFAΣ−1/2

A )−1, which gives
that the minimal eigenvalue of (Σ−1/2

A Σ′
xzFAV −2ΣxzFAΣ−1/2

A )−1 is greater than zero so the maximal
eigenvalue of Σ−1/2

A Σ′
xzFAV −2ΣxzFAΣ−1/2

A is finite. Therefore, given (A.42), (A.43) and using
Assumption 3, we have (maxi |r2

i |)δ/2 = op(1) so that limn→∞
∑n

i=1 E|ri|2+δ = 0, which proves the
conditions for CLT, and hence we have the desired result. Q.E.D.

Proof of Theorem 5 Without losing any generality, we divide the instruments into two sets
Zi = [Z1i, Z2i] satisfying

n∑
i=1

E[Z1iui] = 0q−s0 and
n∑

i=1

E[Z2iui] = τA,

where Z1i are (q− s0) number of valid instruments whereas τA is an s0 × 1 vector, whose elements
are all nonzero, so that Z2i consists of s0 number of invalid instruments. Accordingly we also
decompose the q × (p0 + s0) matrix ΣxzFA as

ΣxzFA = [ΣxzA, Fq,s0 ] =

 Σxz1A 0q−s0,s0

Σxz2A Is0

 ,

where ‖Z ′XA/n − ΣxzA‖
p→ 0, ‖Z ′

1XA/n − Σxz1A‖
p→ 0 and ‖Z ′

2XA/n − Σxz2A‖
p→ 0. Note that

Σxz1A is of dimension (q − s0)× p0 and Σxz2A is of dimension s0 × p0. Similarly, we let

V =

 V11 V12

V ′
12 V22


(q−s0) s0

(q−s0)

s0

,

and note that we show the number of rows and columns of partitioned matrices on the side. For
notational convenience, we also define

V −1 =

 V 11 V 12(
V 12

)′
V 22


(q−s0) s0

(q−s0)

s0

,

where explicit expressions of each term become clear at the end of this proof.
Given ΣxzFA and V −1 decompositions above, we can write

ΣA = Σ′
xzFAV −1ΣxzFA =

 ΣA11 ΣA12

Σ′
A12 ΣA22


p0 s0

p0

s0

,
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where

ΣA11 = Σ′
xz1AV 11Σxz1A + Σ′

xz1AV 12Σxz2A + Σ′
xz2A(V 12)′Σxz1A + Σ′

xz2AV 22Σxz2A (A.44)

ΣA12 = Σ′
xz1AV 12 + Σ′

xz2AV 22

ΣA22 = V 22.

We let Σ11
A be the north-west (upper left p0 × p0) block of Σ−1

A . Then using the formula for
partitioned inverses (e.g., Exercises 5.16a and 5.17 of Abadir and Magnus, 2005), we have

Σ11
A =

[
ΣA11 − ΣA12Σ−1

A22Σ
′
A12

]−1

= [Σ′
xz1AV 11Σxz1A − Σ′

xz1AV 12(V 22)−1(V 12)′Σxz1A]−1

= [Σ′
xz1A

{
V 11 − V 12(V 22)−1(V 12)′

}
Σxz1A]−1

= [Σ′
xz1AV −1

11 Σxz1A]−1, (A.45)

where the last equality is from the fact that (e.g., Exercise 5.16a of Abadir and Magnus, 2005)
V 11 = V −1

11 +V −1
11 V12V

22V ′
12V

−1
11 and V 12 = −V −1

11 V12V
22. The result follows since Σ11

A corresponds
to the asymptotic variance of β̂A from Theorem 4. Q.E.D.
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Table 1: RMSE of estimators of τAc , τA, βAc , and βA
n = 250, p = 20, p0 = 3, s = 10, s0 = 3 and q = 43

AENet ALASSO-LARS ALASSO-CL
ρz, τA, b rmse1 rmse2 rmse3 rmse4 rmse1 rmse2 rmse3 rmse4 rmse1 rmse2 rmse3 rmse4

.5, .5, .25 0.012 0.187 0.030 0.127 0.013 0.181 0.029 0.125 0.010 0.388 0.088 0.087

.5, .5, .5 0.011 0.194 0.026 0.090 0.011 0.193 0.025 0.088 0.010 0.388 0.088 0.087

.5, .5, 1 0.011 0.195 0.026 0.086 0.011 0.196 0.025 0.084 0.010 0.388 0.088 0.087

.5, .3, .25 0.014 0.167 0.033 0.127 0.014 0.165 0.032 0.122 0.011 0.272 0.087 0.086

.5, .3, .5 0.013 0.176 0.029 0.092 0.013 0.176 0.028 0.089 0.011 0.272 0.087 0.086

.5, .3, 1 0.012 0.178 0.028 0.088 0.012 0.178 0.028 0.086 0.011 0.272 0.087 0.086

.8, .5, .25 0.006 0.201 0.038 0.205 0.006 0.195 0.037 0.208 0.015 0.263 0.136 0.129

.8, .5, .5 0.004 0.208 0.030 0.166 0.005 0.205 0.030 0.174 0.014 0.265 0.136 0.129

.8, .5, 1 0.004 0.211 0.028 0.118 0.004 0.211 0.028 0.119 0.015 0.263 0.136 0.129

.8, .3, .25 0.006 0.198 0.040 0.206 0.007 0.195 0.040 0.208 0.016 0.206 0.138 0.131

.8, .3, .5 0.005 0.206 0.034 0.170 0.005 0.204 0.034 0.179 0.016 0.206 0.138 0.131

.8, .3, 1 0.005 0.213 0.029 0.125 0.005 0.214 0.029 0.127 0.016 0.206 0.138 0.131

n = 1000, p = 20, p0 = 3, s = 10, s0 = 3 and q = 43
AENet ALASSO-LARS ALASSO-CL

ρz, τA, b rmse1 rmse2 rmse3 rmse4 rmse1 rmse2 rmse3 rmse4 rmse1 rmse2 rmse3 rmse4

.5, .5, .25 0.003 0.060 0.006 0.045 0.003 0.057 0.006 0.045 0.004 0.151 0.040 0.039

.5, .5, .5 0.003 0.060 0.005 0.040 0.003 0.059 0.005 0.040 0.004 0.151 0.040 0.039

.5, .5, 1 0.002 0.061 0.005 0.040 0.002 0.061 0.005 0.040 0.005 0.152 0.040 0.040

.5, .3, .25 0.003 0.049 0.006 0.045 0.003 0.049 0.006 0.045 0.004 0.187 0.042 0.042

.5, .3, .5 0.003 0.050 0.006 0.040 0.003 0.050 0.005 0.040 0.004 0.187 0.042 0.042

.5, .3, 1 0.003 0.050 0.006 0.040 0.003 0.050 0.005 0.040 0.004 0.187 0.042 0.042

.8, .5, .25 0.001 0.062 0.008 0.108 0.001 0.058 0.008 0.112 0.005 0.128 0.068 0.063

.8, .5, .5 0.001 0.062 0.005 0.063 0.001 0.062 0.005 0.064 0.005 0.128 0.068 0.063

.8, .5, 1 0.001 0.063 0.005 0.058 0.001 0.063 0.005 0.058 0.005 0.128 0.068 0.063

.8, .3, .25 0.001 0.055 0.009 0.103 0.001 0.054 0.009 0.108 0.005 0.173 0.073 0.068

.8, .3, .5 0.001 0.056 0.007 0.062 0.001 0.056 0.007 0.063 0.005 0.173 0.073 0.068

.8, .3, 1 0.001 0.057 0.006 0.058 0.001 0.057 0.006 0.058 0.004 0.174 0.073 0.070

Note: AENet is the estimator defined in (3) and solved by the LARS algorithm. ALASSO-LARS is the same as
AENet except that λ2 is restricted to be zero. ALASSO-CL is the estimator proposed by Cheng and Liao (2012). ρz

controls the correlation among valid instruments. τA is the expectation of the invalid moment conditions. b is the
value of nonzero structural parameters. rmse1, rmse2, rmse3 and rmse4 denote the RMSE of τAc , τA, βAc , and βA,
respectively.

30



Table 2: Moment Selection Accuracy
n = 250, p = 20, p0 = 3, s = 10, s0 = 3 and q = 43

AENet ALASSO-LARS ALASSO-CL
ρz, τA, b Pr1 Pr2 Pr1 Pr2 Pr1 Pr2

.5, .5, .25 0.974 0.999 0.968 1.000 0.989 0.823

.5, .5, .5 0.980 0.999 0.979 0.999 0.989 0.823

.5, .5, 1 0.979 0.999 0.979 0.999 0.989 0.823

.5, .3, .25 0.966 0.861 0.958 0.881 0.983 0.350

.5, .3, .5 0.970 0.828 0.969 0.832 0.983 0.350

.5, .3, 1 0.970 0.819 0.969 0.819 0.983 0.350

.8, .5, .25 0.985 0.991 0.982 0.994 0.944 0.954

.8, .5, .5 0.991 0.989 0.990 0.991 0.949 0.954

.8, .5, 1 0.990 0.988 0.991 0.989 0.944 0.954

.8, .3, .25 0.981 0.711 0.977 0.735 0.920 0.716

.8, .3, .5 0.986 0.668 0.985 0.684 0.920 0.717

.8, .3, 1 0.988 0.626 0.988 0.622 0.920 0.717

n = 1000, p = 20, p0 = 3, s = 10, s0 = 3 and q = 43.
AENet ALASSO-LARS ALASSO-CL

ρz, τA, b Pr1 Pr2 Pr1 Pr2 Pr1 Pr2

.5, .5, .25 0.998 1.000 0.997 1.000 0.991 1.000

.5, .5, .5 0.998 1.000 0.998 1.000 0.991 1.000

.5, .5, 1 0.998 1.000 0.998 1.000 0.991 1.000

.5, .3, .25 0.997 1.000 0.996 1.000 0.991 0.982

.5, .3, .5 0.997 1.000 0.997 1.000 0.991 0.982

.5, .3, 1 0.997 1.000 0.997 1.000 0.991 0.982

.8, .5, .25 0.998 1.000 0.998 1.000 0.990 1.000

.8, .5, .5 0.999 1.000 0.999 1.000 0.990 1.000

.8, .5, 1 0.999 1.000 0.999 1.000 0.990 1.000

.8, .3, .25 0.998 1.000 0.997 1.000 0.990 0.984

.8, .3, .5 0.999 1.000 0.999 1.000 0.990 0.984

.8, .3, 1 0.999 1.000 0.999 1.000 0.991 0.982

Note: AENet is the estimator defined in (3) and solved by the LARS algorithm. ALASSO-LARS is the same as

AENet except that λ2 is restricted to be zero. ALASSO-CL is the estimator proposed by Cheng and Liao (2012). ρz

controls the correlation among valid instruments. τA is the expectation of the invalid moment conditions. b is the

value of nonzero structural parameters. Pr1 is the percentage of replications that yield zero estimates for τAc . Pr2

is the percentage of replications that yield nonzero estimates for τA.
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Table 3: Model Selection Accuracy
n = 250 n = 1000

AENet ALASSO-LARS AENet ALASSO-LARS
ρz, τA, b Pr3 Pr4 Pr3 Pr4 Pr3 Pr4 Pr3 Pr4

.5, .5, .25 0.934 0.908 0.930 0.904 0.993 1.000 0.994 1.000

.5, .5, .5 0.947 1.000 0.946 1.000 0.995 1.000 0.996 1.000

.5, .5, 1 0.947 1.000 0.947 1.000 0.995 1.000 0.995 1.000

.5, .3, .25 0.918 0.920 0.913 0.919 0.992 1.000 0.992 1.000

.5, .3, .5 0.930 1.000 0.928 1.000 0.993 1.000 0.994 1.000

.5, .3, 1 0.930 1.000 0.930 1.000 0.993 1.000 0.994 1.000

.8, .5, .25 0.921 0.680 0.919 0.669 0.988 0.922 0.987 0.917

.8, .5, .5 0.942 0.975 0.941 0.971 0.995 1.000 0.995 1.000

.8, .5, 1 0.947 1.000 0.947 1.000 0.996 1.000 0.996 1.000

.8, .3, .25 0.915 0.690 0.908 0.680 0.984 0.934 0.983 0.928

.8, .3, .5 0.933 0.975 0.929 0.971 0.990 1.000 0.990 1.000

.8, .3, 1 0.944 1.000 0.943 1.000 0.990 1.000 0.990 1.000

Note: AENet is the estimator defined in (3) and solved by the LARS algorithm. ALASSO-LARS is the same as AENet

except that λ2 is restricted to be zero. ρz controls the correlation among valid instruments. τA is the expectation of

the invalid moment conditions. b is the value of nonzero structural parameters. Pr3 is the percentage of replications

that yield zero estimates for βAc . Pr4 is the percentage of replications that yield nonzero estimates for βA.
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