
Estimation of Conditional Moment Restrictions

without Assuming Parameter Identifiability

Shih-Hsun Hsu and Chung-Ming Kuan

Institute of Economics

Academia Sinica

This version: March 29, 2008

† Author for correspondence: Chung-Ming Kuan, Institute of Economics, Academia Sinica, Taipei 115,

Taiwan; ckuan@econ.sinica.edu.tw.

†† This paper was originally entitled: “Consistent Parameter Estimation for Conditional Moment Restric-

tions.” We are indebted to Zongwu Cai, John Chao, Jin-Chuan Duan, Yongmiao Hong, Ying-Ying Lee,

Joon Park, Yoon-Jae Whang, and Halbert White for their useful comments on early drafts of this paper.

We also thank the seminar participants at UCSD, Toronto, Rice, U. of Hong Kong, the SETA 2007 meeting

in Hong Kong, and the First Sino-Korean Econometrics Workshop in Xiamen, China. The research support

from the National Science Council of the Republic of China (NSC95-2415-H-001-034) for C.-M. Kuan is

gratefully acknowledged.



Abstract

A well known difficulty in estimating conditional moment restrictions is that the pa-

rameters of interest need not be globally identified by the implied unconditional moments.

In this paper, we propose an approach to constructing a continuum of unconditional mo-

ments that can ensure parameter identifiability. These unconditional moments depend on

the “instruments” generated from a “generically comprehensively revealing” function and

are projected along the exponential Fourier series. The objective function is based on the

resulting Fourier coefficients, from which a consistent estimator can be easily obtained. A

novel feature of our method is that the full continuum of unconditional moments is incorpo-

rated into each Fourier coefficient. We show that, when the number of Fourier coefficients

in the objective function grows at a proper rate, the proposed estimator is consistent and

asymptotically normally distributed. An efficient estimator is also readily obtained via a

conventional GMM method. Our simulations confirm that the proposed consistent estima-

tor compares favorably with that of Domı́nguez and Lobato (2004, Econometrica) in terms

of bias, standard error and mean squared error.

JEL classification: C12, C22

Keywords: conditional moment restrictions, Fourier coefficients, generically comprehen-

sive revealing function, global identifiability, GMM



1 Introduction

Many economic and econometric models can be characterized in terms of conditional mo-

ment restrictions. Consistent and efficient estimation of the parameters in such restrictions

is thus a crucial step in empirical studies. It is typical to find a finite set of unconditional

moment restrictions implied by the original, conditional restrictions and apply a suitable

estimation method, such as the generalized method of moment (GMM) of Hansen (1982)

and Hansen and Singleton (1982), or the empirical likelihood method of Qin and Law-

less (1994) and Kitamura (1997). This approach will be referred to as the unconditional

moment approach; a leading example is the instrumental-variable estimation method for

regression models. On the other hand, there are nonparametric methods that deal with

the conditional moments directly, e.g., Ai and Chen (2003) and Kitamura, Tripathi, and

Ahn (2004).

A critical assumption for the unconditional moment approach is that the parameters

in the conditional restrictions can be globally identified by the implied, unconditional re-

strictions. With this assumption, estimator consistency is not really an issue and can be

easily established under suitable regularity conditions. Therefore, much research interest

focuses on estimator efficiency, e.g., Chamberlain (1987), Newey (1990, 1993), Carrasco and

Florens (2000), and Donald, Imbens, and Newey (2003). Domı́nguez and Lobato (2004)

challenge the assumption of global identifiability and show that the unconditional moments,

when chosen arbitrarily, need not be equivalent to the original conditional restrictions. They

also demonstrate that the identification problem may arise even when the unconditional

moments are based on the so-called optimal instruments.

Without assuming the global identifiability of parameters, Domı́nguez and Lobato (2004)

construct a continuum of unconditional moment restrictions that are equivalent to the orig-

inal, conditional restrictions and obtain consistent estimate from these restrictions. In par-

ticular, their unconditional moments are determined by the “instruments” generated from

an indicator function. There are some disadvantages of their method, however. First, the

indicator function takes only the values one and zero and hence may not well present the

information in the conditioning variables. Second, their estimation method does not utilize

the full continuum of moment restrictions. This may result in further efficiency loss (Car-
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rasco and Florens, 2000). Third, it is not easy to obtain an efficient estimate from their

consistent estimate.

In this paper, we propose a different approach to constructing a continuum of uncon-

ditional moments that can ensure parameter identifiability. These unconditional moments

depend on the “instruments” generated from the class of “generically comprehensively re-

vealing” (GCR) functions (Stinchcombe and White, 1998) and are projected along the

exponential Fourier series. The objective function is then based on the resulting Fourier

coefficients, form which a consistent estimator is easily obtained. A novel feature of our

method is that it in effect utilizes all possible information in the conditioning variables

because all unconditional moments have been incorporated into each Fourier coefficient.

Moreover, it is easy to obtain an efficient estimate from the proposed consistent estimate

using the conventional GMM method. This efficient GMM estimator is computationally

simpler than that of Carrasco and Florens (2000).

We first show that the proposed estimator is consistent and asymptotically normally

distributed when the number of Fourier coefficients in the objective function grows at a

proper rate. We also specialize on the “instruments” generated from the exponential func-

tion, a special case in the class of GCR functions. For such instruments, the unconditional

moments and Fourier coefficients have analytic forms, which greatly facilitate estimation

in practice. Our simulations confirm that, under various settings, the proposed consistent

estimator compares favorably with that of Domı́nguez and Lobato (2004) in terms of bias,

standard error and mean squared error. Even for models with exogenous regressors, the

proposed consistent estimator may deliver smaller bias and mean squared error than does

the nonlinear least squares estimator when there are multiple local minima. It is also found

that the efficiency gain of the proposed efficient estimator is quite remarkable.

This paper is organized as follows. We introduce the new class of consistent estimators

in Section 2 and establish its consistency and asymptotic normality in Section 3. Efficient

estimation based on the proposed consistent estimator is discussed is Section 4. The sim-

ulation results are reported in Section 5. Section 6 concludes this paper. All proofs are

deferred to Appendix.
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2 Consistent Estimation

We are interested in estimating θo, the q×1 vector of unknown parameters, in the following

conditional moment restriction:

IE[h(Y ,θo)|X] = 0, with probability one (w.p.1), (1)

where h is a p × 1 vector of functions, Y is a r × 1 vector of data variables, and X is an

m×1 vector of conditioning variables. Without loss of generality, we shall work on the case

that X is bounded with probability one; see e.g., Bierens (1994, Theorem 3.2.1).

It is well known that (1) is equivalent to the unconditional moment restriction:

IE[h(Y ,θo)f(X)] = 0, (2)

for all measurable functions f , where each f(X) may be interpreted as an “instrument” that

helps to identify θo. In practice, it is infeasible to consider all possible functions. Thus, one

typically forms an estimating function by subjectively choosing certain instruments, such

as the square and cross product of the elements in X. This would not be a problem in a

linear model if the resulting unconditional moments can exactly identify θo. Yet, when h

is nonlinear in θo, Domı́nguez and Lobato (2004) showed that θo is not necessarily iden-

tified when unconditional moments are determined arbitrarily, and its identifiability may

depend on the marginal distributions of the conditioning variables X. This concern is prac-

tically relevant because models with nonlinear restrictions are quite common in econometric

applications; see e.g., Hansen and Singleton (1982) and Hansen and West (2002).1

One way to ensure parameter identifiability is to employ a class of instruments that span

a space of functions of X (Bierens, 1982, 1990; Stinchcombe and White, 1998). Domı́nguez

and Lobato (2004) set the instruments as 1(X ≤ τ ) =
∏m
j=1 1(Xj ≤ τj), where 1(B) is

the indicator function of the event B. This leads to a continuum of unconditional moments

indexed by τ that are equivalent to (1):

IE[h(Y ,θo)1(X ≤ τ )] = 0, τ ∈ Rm. (3)

1Hansen and West (2002) studied the papers published in 7 top economics journals in 1990 and 2000

and found that, among 35 articles that employed the GMM technique, 14 of them deal with models with

nonlinear restrictions.
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Then, θo can be globally identified by an L2-norm of these moments, i.e.,

θo = argmin
θ ∈ Θ

∫
Rm

∣∣IE[h(Y ,θ)1(X ≤ τ )
]∣∣2 dP (τ ), (4)

with P (τ ) a distribution function of τ and | · | denotes the Euclidean norm. Here, a natural

choice of P (τ ) is PX(τ ), the distribution function of X. The L2-norm in (4) is thus an

expectation with respect to PX(τ ) and can be well approximated by the sample average.

Domı́nguez and Lobato (2004) thus propose the following estimator:

θ̂DL(T ) = argmin
θ ∈ Θ

1
T

T∑
k=1

∣∣∣∣∣ 1
T

T∑
t=1

h(yt,θ)1(xt ≤ τ k)

∣∣∣∣∣
2

, (5)

where yt and xt are the sample observations of Y and X, respectively, and τ k = xk,

k = 1, . . . , T . This is precisely a GMM estimator based on T unconditional moments

induced by the indicator function. By the analogy between the L2-norm in (4) and the

objective function in (5), θ̂DL(T ) is consistent for θo under regularity conditions.

2.1 A Class of Consistent Estimators

The indicator function is not the only choice for the desired instruments; Stinchcombe and

White (1998) showed that any GCR function will also do. In particular, for a real analytic

function G that is not a polynomial,2 G(A(X, τ )) can serve as an instrument in (2), where

A is the affine transformation such that A(X, τ ) = τ0 +
∑m

j=1Xjτj . For example, G may

be the exponential function (Bierens, 1982, 1990) or the logistic function (White, 1989).

A striking property of the instruments resulted from a GCR function is that (2) holds for

the instruments with the index τ in an arbitrarily chosen index set in Rm+1; see Stinchcombe

and White (1998, p. 304). As such, the unconditional moment restrictions induced by a

GCR function are

IE
[
h(Y ,θo)G

(
A(X, τ )

)]
= 0, for almost all τ ∈ T ⊂ Rm+1, (6)

where T may be a small subset with a nonempty interior. Note that the indicator function

is not GCR; hence (3) must hold for all τ in Rm. Similar to (4), θo now can be globally

identified by the L2-norm of (6):

θo = argmin
θ ∈ Θ

∫
T

∣∣IE[h(Y ,θ)G
(
A(X, τ )

)]∣∣2 dP (τ ). (7)

2A function G is said to be analytic if it locally equals its Taylor expansion at every point of its domain.
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In contrast with Domı́nguez and Lobato (2004), there is no natural choice of P (τ ). It is

therefore not easy to find a proper sample counterpart of the L2-norm in (7). Although an

objective function for estimating θo can be constructed using randomized τ , the resulting

estimate is arbitrary and may not be preferred.

In this paper, we take a different approach to deriving a class of consistent estimators for

θo without assuming parameter identifiability. This approach finds a condition equivalent

to the L2-norm in (7). To this end, we project the unconditional moments in (6) along the

exponential Fourier series and obtain

IE
[
h(Y ,θ)G

(
A(X, τ )

)]
=

1
(2π)m+1

∑
k∈S

CG,k(θ) exp (ik′τ ),

where S := {k = [k0, k1, . . . , km]′ ∈ Zm+1} with ki = 0,±1,±2, · · · ,±∞, and CG,k(θ) is a

Fourier coefficient:

CG,k(θ) =
∫
T

IE
[
h(Y ,θ)G

(
A(X, τ )

)]
exp (−ik′τ ) dτ

= IE
[
h(Y ,θ)

∫
T
G
(
A(X, τ )

)
exp (−ik′τ ) dτ

]
, k ∈ S.

It can be seen that each CG,k(θ) incorporates the continuum of the original instruments

G(A(X, τ )) into a new instrument:

ϕG,k(X) =
∫
T
G
(
A(X, τ )

)
exp (−ik′τ ) dτ , (8)

in which the index parameter τ has been integrated out.

We shall use the following notations. Given a complex number f , let f̄ denote its

complex conjugate and Re(f) and Im(f) denote its real and imaginary parts, respectively.

For a vector of complex numbers f , its complex conjugate, real part and imaginary part are

defined elementwise. Then, |f |2 = f ′f̄
′. Apart from a scaling factor, Parseval’s Theorem

implies that the L2-norm in (7) is equivalent to∑
k∈S

∣∣CG,k(θ)
∣∣2 =

∑
k∈S

∣∣IE [h(Y ,θ)ϕG,k(X)
]∣∣2 .

It follows that θo can be identified as

θo = argmin
θ ∈ Θ

∑
k∈S

∣∣IE[h(Y ,θ)ϕG,k(X)
]∣∣2 , (9)
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where the right-hand side no longer involves τ , cf. (7).

By replacing IE[h(Y ,θ)ϕG,k(X)
]

in (9) with its sample counterpart, an objective func-

tion for estimating θo is readily obtained. It is well known that CG,k(θ) → 0 as |k| tends

to infinity by Bessel’s inequality. This suggests that the new instruments ϕG,k(X), and

hence IE[h(Y ,θ)ϕG,k(X)], contain little information for identifying θo when |k| is large.

As such, we may omit “remote” Fourier coefficients and compute an estimator of θo as

θ̂(G,KT) = argmin
θ ∈ Θ

∑
k∈S(KT)

∣∣∣∣∣ 1
T

T∑
t=1

h(yt,θ)ϕG,k(xt)

∣∣∣∣∣
2

, (10)

where KT grows with T but at a slower rate and S(KT) is a subset of S with ki =

0,±1, . . . ,±KT . The proposed estimator (10) depends on the function G, and it is also

a GMM estimator based on (2KT + 1)m+1 unconditional moments with the identity weight-

ing matrix. Hence, θ̂(G,KT) is not an efficient estimator.

Note that the Domı́nguez-Lobato estimator (5) relies only on a finite number of un-

conditional moments determined by the sample observations. By contrast, the proposed

estimator (10) utilizes all possible information in estimation because each ϕG,k has included

the full continuum of the instruments required for identifying θo. Our estimator is also com-

putationally simpler than that of Carrasco and Florens (2000), which requires preliminary

estimation of a covariance operator and its eigenvalues and eigen-functions. Moreover, a

regularization parameter must be determined in practice so as to ensure the invertibility of

the estimated covariance operator.

2.2 A Specific Estimator

To compute the proposed estimator, we may follow Bierens (1982, 1990) and set G as the

exponential function. This choice has some advantages relative to the indicator function.

First, the indicator function takes only the values one and zero, whereas the exponential

function is more flexible and hence may better presents the information in the conditioning

variables. That is, the exponential function may generate better instruments for identifying

θo. Second, the exponential function is smooth and hence is convenient in an optimization

program. Further, exp(A(X, τ )) with τ ∈ Rm+1 and exp(X ′τ ) with τ ∈ Rm only differ

by a constant and hence play the same role in function approximation (Stinchcombe and
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White, 1998). By employing exp(X ′τ ) as a desired instrument, we are able to reduce the

dimension of integration in (7) by one, i.e., T ⊂ Rm, and the summation in (9) is over

S = {k = [k1, . . . , km]′ ∈ Zm}.

More importantly, choosing exp(X ′τ ) results in an analytic form for the instrument

ϕexp,k which facilitates estimation in practice. In particular, setting T = [−π, π]m, the new

instruments that integrate out τ are

ϕexp,k(X) =
∫
T

exp(X ′τ ) exp (−ik′τ ) dτ

= ϕexp,k1(X1) · · ·ϕexp,km
(Xm), k ∈ S,

where

ϕexp,kj
(Xj) =

∫ π

−π
exp(Xjτj) exp(−ikjτj) dτj

=
(−1)kj · 2 sinh (πXj)

(Xj − ikj)
, j = 1, . . . ,m,

and sinh(w) = (exp (w)− exp (−w))/2. Based on ϕexp,k(X), θo can be identified as in (9).

The proposed estimator thus reads

θ̂(exp,KT) = argmin
θ ∈ Θ

∑
k∈S(KT)

∣∣∣∣∣ 1
T

T∑
t=1

h(yt,θ)ϕexp,k(xt)

∣∣∣∣∣
2

, (11)

where k is m× 1.

3 Asymptotic Properties

We now establish the asymptotic properties of the proposed estimator θ̂(G,KT). To ease

our illustration and proof, we begin our analysis with the case that m = 1; the univariate

X is denoted as X (no boldface). The asymptotic properties for the case with multivariate

X are given in Section 3.3.

3.1 Consistency

We impose the following conditions.

[A1] The observed data (y′t, xt)′, t = 1, . . . , T, are independent realizations of (Y ′, X)′.
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[A2] For each θ ∈ Θ, h(·,θ) is measurable, and for each y ∈ Rr, h(y, ·) is continuous

on Θ, where Θ is a compact subset in Rq. Also, θo in Θ is the unique solution to

IE[h(Y ,θ)|X] = 0.

[A3] IE[supθ∈Θ |h(Y ,θ)|2] <∞.

[A4] G is real analytic but not a polynomial such that, w.p.1, supτ∈T |G(A(X, τ ))| < ∞,

supτ∈T |Gi(A(X, τ ))| < ∞, and supτ∈T |Gij(A(X, τ ))| < ∞, where Gi(A(X, τ )) =

∂G(A(X, τ ))/∂τi and Gij(A(X, τ )) = ∂2G(A(X, τ ))/(∂τi∂τj), for i, j = {0, 1}.

These conditions are convenient and quite standard in the GMM literature. They may be

relaxed at the expense of more technicality. For example, it is possible to extend [A1] to

allow for weakly dependent and heterogeneously distributed data; see, e.g., Gallant and

White (1988) and Chen and White (1996). Note that in [A2], θo is assumed to be the

unique solution to the original conditional restrictions; we do not require θo to be the

unique solution to some implied, unconditional moment restrictions. As in Stinchcombe

and White (1998), [A4] requires G to be real analytic but not a polynomial. [A4] also

imposes additional restrictions on G and its derivatives, yet it still permits quite general G

functions.

Setting T = [−π, π]2, the instruments resulted from G are

ϕG,k(X) =
∫

[−π,π]2
G
(
A(X, τ )

)
exp (−ik′τ ) dτ . (12)

Here, k = (k0, k1)′. Define c(ki) = |ki| for ki 6= 0 and c(ki) = 1 for ki = 0, i = 0, 1. The

result below provides a bound on ϕG,k(X).

Lemma 3.1 Given [A4], |ϕG,k(X)| ≤ ∆/[c(k0)c(k1)] w.p.1, where ∆ is a real number.

Define the sample counterpart of CG,k(θ) as

mG,k,T (θ) =
1
T

T∑
t=1

h(yt,θ)ϕG,k(xt).

With Lemma 3.1, we are able to characterize the approximating capability of mG,k,T (θ).
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Lemma 3.2 Given [A1]–[A4], if KT →∞ and KT = o(T 1/2), then

sup
Θ

KT∑
k0,k1=−KT

|mG,k,T (θ)− CG,k(θ)|2 IP−→ 0,

where IP−→ stands for convergence in probability.

Lemma 3.2 implies

KT∑
k0,k1=−KT

∣∣mG,k,T (θ)
∣∣2 IP−→

∞∑
k0,k1=−∞

∣∣CG,k(θ)
∣∣2 , (13)

uniformly for all θ in Θ. As θo is the unique minimizer of the right-hand side of (13), the

consistency result below follows from Theorem 2.1 of Newey and McFadden (1994).

Theorem 3.3 Given [A1]–[A4], if KT → ∞ and KT = o(T 1/2), then θ̂(G,KT) IP−→ θo as

T →∞.

For the estimator θ̂(exp,KT) in (11), note that exp(Xτ) satisfies [A4] with τ a scalar.

It is easy to deduce that Lemma 3.1 holds with |ϕexp,k(X)| ≤ ∆/k. In analogy with

Lemma 3.2, we also have

KT∑
k=−KT

|mexp,k,T (θ)− Cexp,k(θ)|2 IP−→ 0, (14)

when KT = o(T ). The result below then follows from (14) and is analogous to Theorem 3.3.

Corollary 3.4 Given [A1]–[A3], if KT → ∞ and KT = o(T ), then θ̂(exp,KT) IP−→ θo as

T →∞.

3.2 Asymptotic Normality

Recall that the Fourier coefficient CG,k(θ) can be expressed as

IE
[
h(Y ,θ)ϕG,k(X)

]
=
∫

[−π,π]2
IE
[
h(Y ,θ)G

(
A(X, τ )

)]
exp(−ik′τ ) dτ ,

which is the integral of the product of two functions in τ , i.e., IE[h(Y ,θ)G(A(X, ·))] and

exp(−ik′·). To establish asymptotic normality, we work on IE[h(Y ,θ)G(A(X, ·))] and its
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sample counterpart directly. This requires some results in the function space, as given

below.

Consider functions in the Hilbert space L2[−π, π]. The inner product of two p × 1

vectors of functions f and g is 〈f , g〉 =
∫ π
−π f(τ)′ḡ(τ) dτ , and the norm induced by the

inner product is 〈f ,f〉1/2. A random element U has mean IE(U) if IE[〈U , g〉] = 〈IE(U), g〉

for any g in L2[−π, π]. The covariance operator K associated with U is, for any g in

L2[−π, π],

Kg = IE
[
〈U − IE(U), g〉

(
U − IE(U)

)]
,

such that

(Kg)(τ) = IE
[
〈U − IE(U), g〉

(
U(τ)− IE(U(τ))

)]
=

(
p∑
i=1

∫ π

−π
κji(τ, s)gi(s) ds

)
j=1,...,p

,

with the kernel κji(τ, s) = IE[(Uj(τ)−EUj(τ))(Ui(s)−EUi(s))]. U is Gaussian if for any g in

L2[−π, π], 〈U , g〉 has a normal distribution on R with mean 〈IE(U), g〉 and variance 〈Kg, g〉.

Analogous results also hold in L2([−π, π]m). For more discussions on random elements in

Hilbert space; see, e.g., Chen and White (1998) and Carrasco and Florens (2000).

In view of (10), θ̂(G,KT) must satisfy the first order condition:

0 =
KT∑

k0,k1=−KT

∇θmG,k,T (θ)′mG,k,T (θ) +∇θmG,k,T (θ)′mG,k,T (θ)

=
KT∑

k0,k1=−KT

2 Re
(
∇θmG,k,T (θ)′mG,k,T (θ)

)
,

where ∇θmG,k,T (θ) is a p × q matrix with ∇θi
mG,k,T (θ) its i-th column. A mean-value

expansion of mG,k,T

(
θ̂(G,KT)

)
about θo gives

mG,k,T

(
θ̂(G,KT)

)
= mG,k,T (θo) +∇θmG,k,T

(
θ†T
)(
θ̂(G,KT)− θo

)
,

where θ†T is between θ̂(G,KT) and θo, and its value may be different for each row in the

10



matrix ∇θmG,k,T

(
θ†T
)
. Thus,

KT∑
k0,k1=−KT

Re
(
∇θmG,k,T

(
θ̂(G,KT)

)′
[
mG,k,T (θo) +∇θmG,k,T

(
θ†T
)(
θ̂(G,KT)− θo

)])
= 0. (15)

To derive the limiting distribution of normalized θ̂(G,KT), we impose the following

conditions.

[A5] θo is in the interior of Θ.

[A6] For each y, h(y, ·) is continuously differentiable in a neighborhood N of θo such that

IE
[
supθ∈N ‖∇θh(Y ,θ)‖2

]
<∞, where ‖ · ‖ is a matrix norm.

[A7] The q × q matrix Mq, with the (i, j)-th element〈
IE
[
∇θi

h(Y ,θo)G(A(X, ·))
]
, IE

[
∇θj

h(Y ,θo)G(A(X, ·))
]〉
,

is symmetric and positive definite.

[A8] T−1/2
∑T

t=1 h(yt,θo)G(A(xt, ·))
D−→ Z, where D−→ denotes convergence in distribu-

tion, and Z is a p-dimensional Gaussian random element that has mean zero and the

covariance operator K with

(Kg)(τ) = IE
[
〈h(Y ,θo)G(A(X, ·)), g〉

(
h(Y ,θo)G(A(X, τ))

)]
,

for any p-dimensional function g.

Here, [A5] is needed for mean-value expansion; [A6] is a standard “smoothness” condition in

nonlinear models. By [A7],Mq is invertible so that the normalized estimator has a unique

representation, as given in (16) below. We directly assume functional convergence in [A8]

for convenience; this condition is the same as Assumption 11 in Carrasco and Florens (2000).

One may, of course, impose more primitive conditions on h, G and the data, so as to ensure

such convergence; see e.g., Chen and White (1998).

To study the behavior of the normalized estimator via (15), we give two limiting results

for the terms on the right-hand side of (15).
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Lemma 3.5 Given [A1]–[A6], if KT →∞ and KT = o(T 1/4), then

KT∑
k0,k1=−KT

Re
(
∇θmG,k,T

(
θ̂(G,KT)

)′∇θmG,k,T (θ†T )
)

IP−→
∞∑

k0,k1=−∞
∇θCG,k(θo)

′∇θCG,k(θo).

The limit in Lemma 3.5 is precisely the matrix Mq defined in [A7], because its (i, j)-th

element is
∞∑

k0,k1=−∞
∇θi

CG,k(θo)
′∇θj

CG,k(θo)

=
〈

IE
[
∇θi

h(Y ,θo)G
(
A(X, ·)

)]
, IE
[
∇θj

h(Y ,θo)G
(
A(X, ·)

)]〉
,

by the Multiplication theorem (see, e.g., Stuart, 1961).

Lemma 3.6 Given [A1]–[A6], if KT →∞ and KT = o(T 1/4), then

KT∑
k0,k1=−KT

Re
(
∇θmG,k,T

(
θ̂(G,KT)

)′√
TmG,k,T (θo)

)
=

∞∑
k0,k1=−∞

∇θCG,k(θo)
′√TmG,k,T (θo) + oIP(1).

With Lemma 3.5 and Lemma 3.6, we can express (15) as
√
T
(
θ̂(G,KT)− θo

)
= −M−1

q

 ∞∑
k0,k1=−∞

∇θCG,k(θo)
′√TmG,k,T (θo)

+ oIP(1). (16)

The functional convergence condition [A8] then ensures that the term in the square bracket

on the right-hand side of (16) has a limiting normal distribution, which in turn leads to the

asymptotic normality of θ̂(G,KT).

Theorem 3.7 Given [A1]–[A8], if KT →∞ and KT = o(T 1/4), then
√
T
(
θ̂(G,KT)− θo

) D−→ N (0,V),

where V =M−1
q ΩqM−1

q and Ωq is a q × q matrix with the (i, j)-th element:〈
IE
[
∇θi

h(Y ,θo)G(A(X, ·))
]
, K IE

[
∇θj

h(Y ,θo)G(A(X, ·))
]〉
.
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For the estimator θ̂(exp,KT) with G(A(X, τ )) = exp(Xτ), it can be verified that the

results analogous to Lemma 3.5 and Lemma 3.6 hold when KT is o(T 1/2). In particular,

KT∑
k=−KT

Re
(
∇θmexp,k,T

(
θ̂(exp,KT)

)′∇θmexp,k,T (θ†T )
)

IP−→
∞∑

k=−∞
∇θCexp,k(θo)

′∇θCexp,k(θo), (17)

which is the matrix Mq with the (i, j)-th element:〈
IE
[
∇θi

h(Y ,θo) exp(X·)
]
, IE
[
∇θj

h(Y ,θo) exp(X·)
]〉
,

and

KT∑
k=−KT

Re
(
∇θmexp,k,T

(
θ̂(exp,KT)

)′√
Tmexp,k,T (θo)

)
=

∞∑
k=−∞

∇θCexp,k(θo)
′√Tmexp,k,T (θo) + oIP(1). (18)

In this case, (16) becomes

√
T
(
θ̂(exp,KT)− θo

)
= −M−1

q

[ ∞∑
k=−∞

∇θCexp,k(θo)
′√Tmexp,k,T (θo)

]
+ oIP(1), (19)

which also has a limiting normal distribution. The result below is analogous to Theorem 3.7.

Corollary 3.8 Given [A1]–[A3] and [A5]–[A8], if KT →∞ and KT = o(T 1/2), then

√
T
(
θ̂(exp,KT)− θo

) D−→ N (0,V),

where V =M−1
q ΩqM−1

q and Ωq is a q × q matrix with the (i, j)-th element:〈
IE
[
∇θi

h(Y ,θo) exp(X·)
]
, K IE

[
∇θj

h(Y ,θo) exp(X·)
]〉
.

For estimation of V in Theorem 3.8, note from (17) that Mq can be consistently esti-

mated by

KT∑
k=−KT

∇θmexp,k,T

(
θ̂(exp,KT)

)′∇θmexp,k,T (θ̂
(
exp,KT)

)
.
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From [A8] and (18), Ωq can be consistently estimated by the real part of

KT∑
k=−KT

KT∑
`=−KT

[
∇θmexp,`,T

(
θ̂(exp,KT)

)′]×
[

1
T

T∑
t=1

h
(
yt, θ̂(exp,KT)

)
ϕexp,`(xt)ϕexp,k(xt)h

(
yt, θ̂(exp,KT)

)′]×[
∇θmexp,k,T

(
θ̂(exp,KT)

)]
.

A consistent estimator of V is readily computed from these two estimators.

3.3 The Results for Multivariate X

We now extend the asymptotic properties above to the case with multivariate X. Recall

that X is an m× 1 vector of conditioning variables Setting T = [−π, π]m+1, the proposed

instruments based on G are

ϕG,k(X) =
∫

[−π,π]m+1

G
(
A(X, τ )

)
exp (−ik′τ ) dτ ,

where k = (k0, k1, . . . , km)′. The required conditions for asymptotics are unchanged, except

[A4] is changed to [A4’].

[A4’] G is real analytic but not a polynomial such that, w.p.1,

sup
τ∈T

∣∣∣∣∂jG(A(X, τ ))∏m
i=0(∂τi)li

∣∣∣∣ <∞,
where i = 0, 1, . . . ,m, j = 1, . . . ,m, and li = 0, 1, . . . , j such that

∑m
i=1 li = j.

Again, let c(ki) = |ki| for ki 6= 0 and c(ki) = 1 for ki = 0, i = 0, 1, . . . ,m. Similar to

Lemma 3.1, we obtain the following bound on ϕG,k(X) when X is multivariate.

Lemma 3.9 Given [A4’], |ϕG,k(X)| ≤ ∆/[
∏m
i=0 c(ki)] w.p.1, where ∆ is a real number.

With Lemma 3.9, the results below include Theorem 3.3 and Theorem 3.7 as special

cases. Note that the growth rates of KT depend on m, the dimension of X.3 The results

for the specific estimator θ̂(G,KT) can be obtained similarly.
3The dimension m affects the growth rates of KT only through the implication rule and the generalized

Chebyshev inequality in the proofs.
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Theorem 3.10 Given [A1]–[A3] and [A4’], if KT → ∞ and KT = o(T 1/(m+1)), then

θ̂(G,KT) IP−→ θo as T →∞.

Theorem 3.11 Given [A1]–[A3], [A4’] and [A5]–[A8], if KT →∞ and KT = o(T 1/(2m+2)),

then

√
T
(
θ̂(G,KT)− θo

) D−→ N (0,V),

where V =M−1
q ΩqM−1

q and Ωq is a q × q matrix with the (i, j)-th element:〈
IE
[
∇θi

h(Y ,θo)G(A(X, ·))
]
, K IE

[
∇θj

h(Y ,θo)G(A(X, ·))
]〉
.

4 Efficient Estimation

Following Newey (1990, 1993) and Domı́nguez and Lobato (2004), one may compute an

efficient estimate from the proposed consistent estimate via an additional Newton-Raphson

step. That is, an efficient estimator can be computed as:

θ̂
e

T = θ̂(G,KT)−
[
∇θθ′QT

(
θ̂(G,KT),KT

)]−1
∇θQT

(
θ̂(G,KT),KT

)
,

where QT (θ,KT) is the objective function for the efficient estimator that can locally iden-

tify θo, and ∇θQT (θ,KT) and ∇θθ′QT (θ,KT) are its gradient vector and Hessian matrix,

both evaluated at the consistent estimate θ̂(G,KT). In practice, identifying such objective

function and estimating its gradient and Hessian matrix may not be easy (e.g., Newey,

1990, 1993).

Carrasco and Florens (2000) consider efficient estimation based on the the objective

function that takes into account the covariance structure:

θo = argmin
θ ∈ Θ

∫
T

K−1/2
∣∣IE[h(Y ,θ) exp(τX)

]∣∣2 dP (τ), (20)

where K is the covariance operator introduced in section 3.2, and the corresponding esti-

mation method is based on projection along preliminary estimates of the eigenfunctions of

K. There are some drawbacks of this approach. First, this estimator depends on various

user-chosen parameters and hence is arbitrary to some extent. Second, the generalized
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inverse of the covariance operator exists only for a subset of Hilbert space, namely, the re-

producing kernel Hilbert space. Moreover, it is difficult to generalize their results to allow

for multivariate X.

The proposed estimation method is readily extended to compute an efficient estimate.

Let ϕrG,k(X) and ϕiG,k(X) denote the real part and imaginary part of ϕG,k(X), respectively.

Then, a new set of unconditional moment restrictions are: IE
[
h(Y ,θo)ϕrG,k(X)

]
= 0 and

IE
[
h(Y ,θo)ϕiG,k(X)

]
= 0, with k ∈ S. Equivalent to (9), θo can be identified as:

θo = argmin
θ ∈ Θ

∑
k∈S

∣∣IE[h(Y ,θ)ϕrG,k(X)
]∣∣2 +

∣∣IE[h(Y ,θ)ϕiG,k(X)
]∣∣2 .

An efficient GMM estimator now can be computed by taking the inverse of the asymptotic

covariance matrix of these moment functions as the weighting matrix in GMM estimation.4

For example, when X is univariate and G is the exponential function,

ϕrexp,k(X) = (−1)k
2X

X2 + k2
sinh(πX),

ϕiexp,k(X) = (−1)k
2k

X2 + k2
sinh(πX),

are the real and imaginary parts of ϕexp,k(X).

Let ZG,KT
(xt) be the (4KT + 1)m+1-dimensional vector that contains ϕrG,k(xt) and

ϕiG,k(xt). Define

qt(θ, G,KT) = h(yt,θ)⊗ZG,KT
(xt)

V T (θ, G,KT) =
1
T

T∑
t=1

qt(θ, G,KT)qt(θ, G,KT)′.

An efficient estimator of θo based on the consistent estimate θ̂(G,KT) is:

θ̂
e
(G,KT) = argmin

θ ∈ Θ

(
1
T

T∑
t=1

qt(θ, G,KT)

)′
V −1
T (θ̂(G,KT), G,KT)(

1
T

T∑
t=1

qt(θ, G,KT)

)
,

where V T is evaluated at the consistent estimate θ̂(G,KT). By treating ZG,KT
(xt) as

a class of approximating functions, we may follow Donald et al. (2003) to establish its
4An efficient GMM estimator can not be computed directly from ϕG,k(X) because ϕG,k(X) is complex.
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asymptotic properties.5 It should be emphasized that, with the proposed unconditional

moments, the two-step GMM estimation is not the only way to obtain an efficient estimator.

Other methods, such as the empirical likelihood method (e.g., Qin and Lawless, 1994) and

continuously updated estimation method (e.g., Hansen, Heaton, and Yaron, 1996), may

also be employed.

5 Simulations

In this section, we evaluate the finite-sample performance of the proposed consistent es-

timator θ̂(exp,KT) and compare its performance with the nonlinear least squares (NLS)

estimator:

θ̂NLS = argmin
θ ∈ Θ

1
T

T∑
t=1

|h(yt,θ)|2,

and the DL estimator of Domı́nguez and Lobato (2004), θ̂DL in (5). When a random variable

is unbounded, its data xt are transformed using a logistic mapping: exp(xt)/[1 + exp(xt)],

which yields values between 0 and 1. Our comparison is based on the bias, standard error

(SE), and mean squared error (MSE) of these estimators. The parameter estimates are

computed using the GAUSS optimization procedure, OPTMUM, with the BFGS algorithm.

In each replication, we randomly draw 3 initial values and use the same initial values for all

estimators. For each estimator, the estimate that leads to the smallest value of the objective

function is chosen. For the proposed estimator, we set KT = 5; the effect of different KT

on the proposed estimator will be examined in Section 5.4. In all experiments, the samples

are T = 50, 100, 200; the number of replications is 5000.

5.1 The Experiments in Domı́nguez and Lobato (2004)

Following Domı́nguez and Lobato (2004), we postulate a simple nonlinear model:

Y = θ2
oX + θoX

2 + ε, ε ∼ N (0, 1),

5Some stronger conditions are needed. For example, when G is the exponential function and X is

univariate, Theorem 5.3 and Theorem 5.4 in Donald et al. (2003) require the growth rate of KT to be

o(T 1/2). This is more restrictive than the rate for the consistent estimator θ̂(exp,KT), cf. Theorem 3.4.
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where θo = 5/4 is the unique solution to the conditional moment restriction: IE(ε|X) = 0.

We consider two cases: X ∼ N (0, 1) and X ∼ N (1, 1). In the former case, θo = 5/4 is

the only real solution to the unconditional moment restriction resulted from the “feasible”

optimal instrument (2θX + X2); the other two solutions are complex: −0.625 ± 1.0533i.

When X ∼ N (1, 1), θ = −5/4 and θ = −3 also satisfy the unconditional moment restriction

with the feasible optimal instrument. Yet, it can be shown that 5/4 is the global minimum

of the MSE objective function, whereas the other two solutions are only local minima.6

For comparison, our simulations here also includes the optimal instrument variable (OPIV)

estimator:

θ̂OPIV = argmin
θ ∈ Θ

(
1
T

T∑
t=1

(yt − θ2xt − θx2
t )(2θxt + x2

t )

)2

,

which is different from the NLS estimator, cf. Domı́nguez and Lobato (2004, p. 1608).

The simulation results are summarized in Table 1. In both cases, the NLS estimator

outperforms the other estimators in terms of bias, SE and MSE, while θ̂OPIV has severe

bias and large SE and is dominated by the other estimators. It can also be seen that the

proposed consistent estimator, θ̂(exp,KT), outperforms the DL estimator, θ̂DL, in terms

of bias, SE and MSE for all samples when X ∼ N (1, 1). For the case X ∼ N (0, 1), the

proposed consistent estimator performs better than θ̂DL for smaller samples (T = 50 and

100). Thus, the proposed estimator compares favorably with the DL estimator when there

are multiple local minima. Note, however, that the NLS estimator need not always be the

best estimator, as shown in Section 5.3.

5.2 Model with an Endogenous Regressor

We extend the previous experiment to the case that there is an endogenous regressor. The

model specification is:

Y = θ2
oZ + θoZ

2 + ε,

6Domı́nguez and Lobato (2004, p. 1602) claimed that θo can not be globally identified by IE[(Y − θ2X −

θX2)(2θX + X2)] = 0, which is the first order condition of MSE minimization. This is not true because

θo = 5/4 is the global minimum, whereas the other solutions only lead to local minima.
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and Z = X + ν, with ε

ν

 ∼ N
 0,

 1 ρ

ρ 1

  ,

where θo = 5/4, ρ = 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, and X ∼ N (0, 1) is independent of ε and ν.

Given this specification, IE(ε|X) = 0. The simulation results are collected in Table 2.

It is clear that all estimators have larger biases when ρ increases. In particular, the

NLS estimator has very large biases, and such biases do not diminish when the sample size

increases. This should not be surprising because the NLS estimator is inconsistent (due to

the endogenous regressor). On the other hand, the proposed consistent estimator performs

remarkably well. It has much smaller bias than the NLS estimator, and it is significantly

better than θ̂DL in terms of bias, SE, and MSE for any ρ and any sample size. Although the

NLS estimator typically has a smaller SE, the proposed estimator may yield smaller MSE

as long as the correlation between ε and ν is not too small (e.g., ρ ≥ 0.3).

5.3 Noisy Disturbances

We now examine the effect of the disturbance variance on the performance of various

estimators. The model is again

Y = θ2
oX + θoX

2 + ε, ε ∼ N (0, σ2),

where θo = 5/4, X is the uniform random variable on (−1, 1) and independent of ε, and

σ2 = 0.01, 1, 4 and 9. It can be verified that there are 3 solutions to the unconditional

moment restriction resulted from the “feasible” optimal instrument (2θX + X2): θ = 5/4

and (−25±
√

145)/40, where 5/4 is the global minimum.

The results are summarized in Table 3; here we also consider the efficient estimator

θ̂e(exp,KT) which is based on the consistent estimator θ̂(exp,KT), as discussed in section 4.

In contrast with the results in Table 1, the NLS estimator is no longer the best estimator

even when there is a unique global minimum and the regressor is exogenous. The proposed

consistent estimator has smaller biases than the NLS, OPIV and DL estimators in all cases,

where the OPIV and DL estimators have very large biases. In terms of MSE, the proposed

consistent estimator dominates the NLS, OPIV and DL estimators for T = 200; when T
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is smaller, the relative performance of the proposed consistent estimator depends on σ2.

For example, when T = 100, the proposed estimator performs better than these three

estimators for σ = 0.01 and 1, and it only outperforms the OPIV and DL estimators for

σ2 = 4.

It can also be seen that the proposed efficient estimator has smaller SE and MSE than

θ̂(exp,KT) in all cases, as it ought to be. Although it has larger bias than θ̂(exp,KT) in

most case (except for σ2 is small), its biases are smaller than other estimators in all cases.

Moreover, it has the smallest MSE in almost all cases, except when σ2 = 9 and T = 50. As

far as MSE is concerned, the proposed efficient estimator ought to be preferred to the NLS

and OPIV estimators.

5.4 The Proposed Estimator with Various KT

We now examine the effect of KT on the performance of the proposed estimator. The

model specification is the same as that in Section 5.2, where the regressor is endogenous.

We consider the cases that ρ equals 0.1, 0.5 and 0.9, and the sample T = 50, 100 and 200.

We simulate the DL estimator and θ̂(exp,KT) with KT = 1, 2, . . . , 10, 15, 20. We do not

consider the NLS estimator because it performs poorly when regressor is endogenous. To

save space, we report only the results for ρ = 0.5 and ρ = 0.9, each with T = 100, 200

in Tables 4 and 5. In addition to the bias, SE and MSE, we also report their percentage

changes when KT increases. For instance, for ρ = 0.9 and T = 100, the bias decreases

0.96%, SE decreases 1.78%, and MSE decreases 3.5% when KT increases from 1 to 2.

These tables show that, when KT increases, the proposed estimator becomes more ef-

ficient (with a smaller SE), while its bias typically decreases.7 The percentage changes of

bias and SE are typically small. In most cases, such changes are less than 0.1% when KT

is greater than 5 or 6. These results suggest that the first few Fourier coefficients indeed

contain the most information for identifying θo. Further increase of KT can only result

in marginal improvements on the bias and SE. Note that the proposed estimator again

dominates the DL estimator in terms of bias, SE and MSE in all cases.
7In the case that ρ = 0.5 and T = 100, the bias of the proposed consistent estimator increases but with

a decreasing rate. This ill behavior may be due to the initial values generated in the simulations.
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6 Concluding Remarks

This paper is concerned with consistent and efficient estimation of conditional moment re-

strictions when the parameters of interests are not assumed to be identified. To ensure

proper identification of these parameters, we propose to construct a continuum of uncondi-

tional moments based on a generically comprehensively revealing function. Then, consistent

and efficient GMM estimators can be easily computed from these moment conditions using

the GMM method. Our simulations confirm that the proposed estimators perform very

well in finite samples and compare favorably with existing estimators.

It is worth mentioning that we do not have to confine ourselves with GMM estimation.

Based on the proposed moment conditions, other estimation methods, such as the empirical

likelihood method, can also be employed to obtain consistent and/or efficient estimators.

These are some open questions about the proposed estimator. First, one would like to

determine an optimal number of the Fourier coefficients, KT, in the objective function.

Second, it is of great interest to know if a better estimator can be obtained when the

unconditional moments are generated from a different generically comprehensively revealing

function. These topics are left to future researches.
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Appendix

Proof of Lemma 3.1: Let ∆ be a generic constant whose value varies in different cases.

Recall that A(X, τ) = τ0 + τ1X and X is univariate. We have

ϕG,k(X) =
∫ π

−π

∫ π

−π
G(τ0 + τ1X) exp(−ik0τ0) exp(−ik1τ1)dτ0 dτ1

=
∫ π

−π

[∫ π

−π
G(τ0 + τ1X) exp(−ik0τ0)dτ0

]
exp(−ik1τ1) dτ1.

By integration by parts, for k0, k1 6= 0, the term in the square brackets above can be

expressed as∫ π

−π
G(τ0 + τ1X) exp(−ik0τ0) dτ0

=
i

k0

{
(−1)k0

[
G(π + τ1X)−G(−π + τ1X)

]︸ ︷︷ ︸
Q1(τ )

−
∫ π

−π
G0(τ0 + τ1X) exp(−ik0τ0) dτ0︸ ︷︷ ︸

Q2(τ )

}
.

Then,

ϕG,k(X) =
i

k0

∫ π

−π

[
Q1(τ )−Q2(τ )

]
exp(−ik1τ1) dτ1,

so that∣∣ϕG,k(X)
∣∣ ≤ 1
|k0|

{∣∣∣∣∫ π

−π
Q1(τ ) exp(−ik1τ1) dτ1

∣∣∣∣+
∣∣∣∣∫ π

−π
Q2(τ ) exp(−ik1τ1) dτ1

∣∣∣∣} .
Again by integration by parts,∫ π

−π
Q1(τ ) exp(−ik1τ1) dτ1

=
(−1)k0i
k1

{
(−1)k1

[
G(π + πX)−G(−π + πX)−G(π − πX) +G(−π − πX)

]
−
∫ π

−π

[
G1(π + τ1X)−G1(−π + τ1X)

]
exp(−ik1τ1) dτ1

}
,

and ∫ π

−π
Q2(τ ) exp(−ik1τ1) dτ1

=
i

k1

{
(−1)k1

∫ π

−π

[
G0(τ0 + πX)−G0(τ0 − πX)

]
exp(−ik0τ0) dτ0

−
∫ π

−π

(∫ π

π
G01(τ0 + τ1X) exp(−ik0τ0) dτ0

)
exp(−ik1τ1) dτ1

}
.
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Given [A4], we have∣∣∣∣∫ π

−π
Q1(τ ) exp(−ik1τ1) dτ1

∣∣∣∣
≤ 1
|k1|

[
4 sup
τ∈T

∣∣G(τ0 + τ1X)
∣∣+ 2

∫ π

−π
sup
τ∈T

∣∣G1(τ0 + τ1X)
∣∣∣∣ exp(−ik1τ1)

∣∣ dτ1

]
≤ ∆
|k1|

,

and ∣∣∣∣∫ π

−π
Q2(τ ) exp(−ik1τ1) dτ1

∣∣∣∣
≤ 1
|k1|

[
2
∫ π

−π
sup
τ∈T

∣∣G0(τ0 + τ1X)
∣∣∣∣ exp(−ik0τ0)

∣∣ dτ0

+
∫ π

−π

(∫ π

π
sup
τ∈T

∣∣G01(τ0 + τ1X)
∣∣∣∣ exp(−ik0τ0)

∣∣ dτ0

) ∣∣ exp(−ik1τ1)
∣∣ dτ1

}]
≤ ∆
|k1|

.

It follows that |ϕG,k(X)| ≤ ∆/(|k0||k1|) for k0, k1 6= 0. Similarly, we can show that

|ϕG,k(X)| ≤ ∆/|k1| for k0 = 0 and k1 6= 0 and that |ϕG,k(X)| ≤ ∆/|k0| for k0 6= 0

and k1 = 0. Also, it is clear that |ϕG,0(X)| ≤ ∆. The proof is thus complete. 2

Proof of Lemma 3.2: Let ∆ again denote a generic constant whose value varies in different

cases. Define

ηG,k,t = h(yt,θ)ϕG,k(xt)− IE
[
h(Y ,θ)ϕG,k(X)

]
,

for t = 1, . . . , T and k = (k0, k1)′. By Lemma 3.1, |ϕG,k(X)| ≤ ∆/[c(k0)c(k1)]. With [A3],

we have

IE
[
|ηG,k,t|2

]
≤ IE

[
|h(Y ,θ)|2 |ϕG,k(X)|2

]
≤ ∆
c(k0)2c(k1)2

.
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Under [A1], these bounds lead to

KT∑
k0,k1=−KT

IE

∣∣∣∣∣ 1
T

T∑
t=1

ηG,k,t

∣∣∣∣∣
2


=
1
T 2

KT∑
k0,k1=−KT

T∑
t=1

IE
[∣∣ηG,k,t∣∣2]

≤ 4∆
T

KT∑
k0=1

1
k2

0

KT∑
k1=1

1
k2

1

+
2∆
T

KT∑
k0=1

1
k2

0

+
2∆
T

KT∑
k1=1

1
k2

1

+
∆
T

≤ ∆
T
,

by the fact that
∑n

k=1 k
−2 ≤ 2 − 1/n ≤ 2. It follows from the implication rule and the

generalized Chebyshev inequality that

IP

 KT∑
k0,k1=−KT

∣∣∣∣∣ 1
T

T∑
t=1

ηG,k,t

∣∣∣∣∣
2

≥ ε


≤

KT∑
k0,k1=−KT

IP

∣∣∣∣∣ 1
T

T∑
t=1

ηG,k,t

∣∣∣∣∣
2

≥ ε

(2KT + 1)2


≤ (2KT + 1)2

ε

KT∑
k0,k1=−KT

IE

∣∣∣∣∣ 1
T

T∑
t=1

ηG,k,t

∣∣∣∣∣
2


≤ (2KT + 1)2

ε

∆
T
,

which holds uniformly in θ because ∆ does not depend on θ. It is then clear that this this

bound can be made arbitrarily small when KT = o(T 1/2). 2

Proof of Theorem 3.3: The proposed estimator, θ̂(G,KT), is the solution to the left-hand

side of (13). Hence, it must converge to the unique minimizer, θo, of the right-hand side

of (13) by Theorem 2.1 of Newey and McFadden (1994). 2

Proof of Corollary 3.4: Given G(A(X, τ )) = exp(Xτ), we have from the text that (14)

holds when KT = o(T ). Analogous to (13), we obtain

KT∑
k=−KT

∣∣mexp,k,T (θ)
∣∣2 IP−→

∞∑
k=−∞

∣∣Cexp,k(θ)
∣∣2 ,
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uniformly in θ. The assertion again follows from Theorem 2.1 of Newey and McFad-

den (1994). 2

Proof of Lemma 3.5: Given [A1]–[A4] and KT = o(T 1/4), θ̂(G,KT) IP−→ θo. Hence,

θ†T → θo. With [A6], we can apply a standard argument to get

∇θmG,k,T

(
θ̂(G,KT)

)
−∇θmG,k,T (θo)

IP−→ 0,

∇θmG,k,T (θ†T )−∇θmG,k,T (θo)
IP−→ 0.

Also note that ∇θCG,k(θo)′∇θCG,k(θo) is real and

KT∑
k0,k1=−KT

∇θCG,k(θo)
′∇θCG,k(θo)→

∞∑
k0,k1=−∞

∇θCG,k(θo)
′∇θCG,k(θo).

Therefore, it suffices to show

KT∑
k0,k1=−KT

(
∇θmG,k,T (θo)

′∇θmG,k,T (θo)−∇θCG,k(θo)
′∇θCG,k(θo)

) IP−→ 0.

We shall show this convergence holds elementwise. For notation simplicity, we drop the

subscript G and the argument θo and write ηi,k = ∇θi
mk,T − IE[∇θi

mk,T ]. The (i, j)-th

element of the matrix above can be expressed as η′i,k∇θj
mk,T + ∇θi

C ′k η̄j,k. We need to

show

KT∑
k0,k1=−KT

(
η′i,k∇θj

mk,T +∇θi
C ′k η̄j,k

)
IP−→ 0.

Again by the implication rule and the generalized Chebyshev inequality, we have

IP


KT∑

k0,k1=−KT

∣∣∣η′i,k∇θj
mk,T +∇θi

C ′k η̄j,k

∣∣∣ ≥ ε


≤
KT∑

k0,k1=−KT

IP
{∣∣∣η′i,k∇θj

mk,T +∇θi
C ′k η̄j,k

∣∣∣ ≥ ε

(2KT + 1)2

}

≤ (2KT + 1)2

ε

KT∑
k0,k1=−KT

IE
[∣∣∣η′i,k∇θj

mk,T +∇θi
C ′k η̄j,k

∣∣∣]

≤ (2KT + 1)2

ε

KT∑
k0,k1=−KT

[IE |ηi,k|2]1/2[IE |∇θj
mk,T |2]1/2 + [IE |∇θi

Ck|2]1/2[IE |η̄j,k|2]1/2.
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By [A1], [A6] and Lemma 3.1,

IE |∇θj
mk,T |2 =

1
T

IE |∇θj
h(Y ,θ)ϕk(X)|2 ≤ ∆

Tc(k0)2c(k1)2
.

Similarly, |∇θi
Ck|2 ≤ ∆/[c(k0)2c(k1)2], and

IE |ηi,k|2 = IE |∇θi
mk,T |2 − IE |∇θi

Ck|2 ≤ IE |∇θi
mk,T |2 ≤

∆
Tc(k0)2c(k1)2

.

Putting these results together we have, similar to the proof of Lemma 3.2,

IP


KT∑

k0,k1=−KT

∣∣∣η′i,k∇θj
mk,T +∇θi

C ′k η̄j,k

∣∣∣ ≥ ε


≤ (2KT + 1)2

ε

KT∑
k0,k1=−KT

(
∆

Tc(k0)2c(k1)2
+

∆√
Tc(k0)2c(k1)2

)

≤ (2KT + 1)2

ε

∆√
T
,

which can be made arbitrarily small when KT = o(T 1/4). 2

Proof of Lemma 3.6: Similar to the proof of Lemma 3.5, given [A1]–[A6] and KT =

o(T 1/4), θ̂(G,KT) IP−→ θo, it is thus sufficient to show

KT∑
k0,k1=−KT

[
∇θmG,k,T (θo)−∇θCG,k(θo)

]′ √
TmG,k,T (θo)

IP−→ 0,

since

∇θmG,k,T

(
θ̂(G,KT)

)
−∇θmG,k,T (θo)

IP−→ 0

and

KT∑
k0,k1=−KT

∇θCG,k(θo)
′√TmG,k,T (θo)→

∞∑
k0,k1=−∞

∇θCG,k(θo)
′√TmG,k,T (θo),

where, by invoking the multiplication theorem,

∞∑
k0,k1=−∞

∇θCG,k(θo)
′√TmG,k,T (θo)

=

〈
IE
[
∇θh(Y ,θo)G

(
A(X, ·)

)]
,

1√
T

T∑
t=1

h(yt,θo)G
(
A(xt, ·)

)〉
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is real. Again let ηi,k = ∇θi
mG,k,T (θo) − IE[∇θi

mG,k,T (θo)] and by the implication rule

and the generalized Chebyshev inequality, we have

IP


KT∑

k0,k1=−KT

∣∣∣η′i,k√TmG,k,T (θo)
∣∣∣ ≥ ε


≤

KT∑
k0,k1=−KT

IP
{∣∣∣η′i,k√TmG,k,T (θo)

∣∣∣ ≥ ε

(2KT + 1)2

}

≤ (2KT + 1)2

ε

KT∑
k0,k1=−KT

IE
[∣∣∣η′i,k√TmG,k,T (θo)

∣∣∣]

≤ (2KT + 1)2

ε

KT∑
k0,k1=−KT

[IE |ηi,k|2]1/2
[
IE
∣∣∣√TmG,k,T (θo)

∣∣∣2]1/2

≤ (2KT + 1)2

ε

KT∑
k0,k1=−KT

[IE |ηi,k|2]1/2
[
IE |h(Y ,θo)ϕG,k(X)|2

]1/2
,

where the last inequality, given [A1], comes form the fact that

IE
∣∣∣√TmG,k,T (θo)

∣∣∣2 = IE

∣∣∣∣∣ 1√
T

T∑
t=1

h(yt,θo)ϕG,k(xt)

∣∣∣∣∣
2

= IE
∣∣h(Y ,θo)ϕG,k(X)

∣∣2 .
Since we already have, form the proof of Lemma 3.5, that

IE |ηi,k|2 ≤
∆

Tc(k0)2c(k1)2
,

and

IE |h(Y ,θo)ϕG,k(X)|2 ≤ ∆
Tc(k0)2c(k1)2

,

it follows that

IP


KT∑

k0,k1=−KT

∣∣∣η′i,k√TmG,k,T (θo)
∣∣∣ ≥ ε

 ≤ (2KT + 1)2

ε

∆√
T
,

which completes the proof when this bound can be arbitrarily small given KT = o(T 1/4)

and T →∞. 2

Proof of Theorem 3.7: From [A8], we know T−1/2
∑T

t=1 h(yt,θo)G(A(xt, ·))
D−→ Z,

where Z is a Gaussian random element in L2([−π, π]2) with the covariance operator K. By

27



invoking the multiplication theorem, we have

KT∑
k0,k1=−KT

∇θCG,k,T (θo)
′√TmG,k,T (θo)

=
∞∑

k0,k1=−∞
∇θCG,k,T (θo)

′√TmG,k,T (θo) + oIP(1)

=

(〈
∇θi

IE
[
h(Y ,θo)G

(
A(X, ·)

)]
,

1√
T

T∑
t=1

h(yt,θo)G(A(xt, ·))

〉)
i=1,...,p

+ oIP(1)

=
(〈
∇θi

IE
[
h(Y ,θo)G

(
A(X, ·)

)]
, Z
〉)

j=1,...,p

+ oIP(1)

D−→ N (0,Ωq).

The conclusion now follows from (16). 2

Proof of Corollary 3.8: In this case, [A8] ensures T−1/2
∑T

t=1 h(yt,θo) exp(xt, ·)
D−→

Z, where Z is a Gaussian random element in L2[−π, π] with the covariance operator K.

Analogous to the proof for Theorem 3.7, the conclusion follows from (19). 2
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Table 1: Models in Domı́nguez and Lobato (2004) with exogenous regressors.

Sample X ∼ N (0, 1) X ∼ N (1, 1)

T Estimator Bias SE MSE Bias SE MSE

50 θ̂NLS −0.0006 0.0501 0.0025 −0.0083 0.1881 0.0354

θ̂DL −0.0390 0.2282 0.0536 −0.0336 0.3667 0.1355

θ̂(exp,KT) −0.0061 0.1600 0.0256 −0.0249 0.3308 0.1100

θ̂OPIV −0.2222 0.6288 0.4447 −1.6922 1.2783 4.4972

100 θ̂NLS −0.0004 0.0342 0.0012 −0.0071 0.1713 0.0294

θ̂DL −0.0152 0.1541 0.0240 −0.0316 0.3595 0.1302

θ̂(exp,KT) −0.0059 0.1511 0.0228 −0.0217 0.3094 0.0962

θ̂OPIV −0.1480 0.5096 0.2815 −1.7217 1.2619 4.5564

200 θ̂NLS −0.0004 0.0239 0.0006 −0.0025 0.1035 0.0107

θ̂DL −0.0017 0.0864 0.0075 −0.0191 0.2796 0.0785

θ̂(exp,KT) −0.0045 0.1390 0.0193 −0.0116 0.2278 0.0520

θ̂OPIV −0.0931 0.3994 0.1681 −1.6649 1.2859 4.4250
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Table 2: Models with an endogenous regressor.

T = 50 T = 100 T = 200

ρ Estimator Bias SE MSE Bias SE MSE Bias SE MSE

0.01 θ̂NLS 0.0009 0.0317 0.0010 0.0005 0.0212 0.0004 0.0011 0.0146 0.0002

θ̂DL −0.0103 0.1165 0.0137 −0.0062 0.0809 0.0066 −0.0027 0.0561 0.0032

θ̂(exp,KT) −0.0003 0.0561 0.0031 −0.0009 0.0365 0.0013 0.0001 0.0245 0.0006

0.1 θ̂NLS 0.0097 0.0313 0.0011 0.0102 0.0210 0.0005 0.0103 0.0146 0.0003

θ̂DL −0.0116 0.1153 0.0134 −0.0069 0.0816 0.0067 −0.0036 0.0570 0.0033

θ̂(exp,KT) −0.0021 0.0550 0.0030 −0.0010 0.0358 0.0013 −0.0006 0.0242 0.0006

0.3 θ̂NLS 0.0315 0.0310 0.0020 0.0311 0.0209 0.0014 0.0315 0.0144 0.0012

θ̂DL −0.0125 0.1214 0.0149 −0.0061 0.0819 0.0067 −0.0032 0.0585 0.0034

θ̂(exp,KT) − 0.0039 0.0565 0.0032 −0.0016 0.0358 0.0013 −0.0002 0.0244 0.0006

0.5 θ̂NLS 0.0539 0.0311 0.0039 0.0527 0.0207 0.0032 0.0520 0.0143 0.0029

θ̂DL −0.0125 0.1231 0.0153 −0.0045 0.0817 0.0067 −0.0017 0.0570 0.0033

θ̂(exp,KT) −0.0056 0.0596 0.0036 −0.0021 0.0366 0.0013 −0.0010 0.0247 0.0006

0.7 θ̂NLS 0.0746 0.0298 0.0064 0.0739 0.0196 0.0058 0.0731 0.0140 0.0055

θ̂DL −0.0153 0.1242 0.0156 −0.0083 0.0840 0.0071 −0.0053 0.0588 0.0035

θ̂(exp,KT) −0.0097 0.0574 0.0034 −0.0038 0.0366 0.0014 −0.0020 0.0247 0.0006

0.9 θ̂NLS 0.0972 0.0285 0.0103 0.0953 0.0190 0.0094 0.0942 0.0134 0.0091

θ̂DL −0.0166 0.1288 0.0169 −0.0086 0.0845 0.0072 −0.0042 0.0598 0.0036

θ̂(exp,KT) −0.0117 0.0947 0.0091 −0.0053 0.0370 0.0014 −0.0019 0.0250 0.0006
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Table 3: Models with different disturbance variances.

T = 50 T = 100 T = 200

σ2 Estimator Bias SE MSE Bias SE MSE Bias SE MSE

0.01 θ̂NLS −0.2444 0.7313 0.5944 −0.2586 0.7501 0.6294 −0.2508 0.7403 0.6109

θ̂OPIV −1.2322 0.9224 2.3691 −1.2165 0.9248 2.3350 −1.2227 0.9262 2.3526

θ̂DL −0.3508 0.7744 0.7226 −0.3586 0.7797 0.7365 −0.3626 0.7818 0.7426

θ̂(exp,KT) −0.0476 0.3827 0.1487 −0.0376 0.3583 0.1298 −0.0245 0.3029 0.0923

θ̂e(exp,KT) −0.0242 0.2482 0.0622 −0.0171 0.2114 0.0450 −0.0109 0.1674 0.0281

1 θ̂NLS −0.5676 1.0459 1.4159 −0.4087 0.9203 1.0137 −0.3193 0.8268 0.7854

θ̂OPIV −1.2019 0.9040 2.2616 −1.2224 0.8991 2.3025 −1.2223 0.8996 2.3031

θ̂DL −0.9488 1.0842 2.0755 −0.7983 1.0322 1.7024 −0.6703 0.9789 1.4073

θ̂(exp,KT) −0.3339 1.0954 1.3111 −0.1851 0.8273 0.7186 −0.0793 0.5452 0.3034

θ̂e(exp,KT) −0.4158 0.9607 1.0957 −0.2139 0.7121 0.5528 −0.0628 0.4014 0.1650

4 θ̂NLS −0.8863 1.2237 2.2827 −0.7190 1.1459 1.8297 −0.5664 1.0431 1.4086

θ̂OPIV −1.1859 0.8850 2.1894 −1.2282 0.8984 2.3153 −1.2220 0.9074 2.3165

θ̂DL −1.2428 1.1954 2.9733 −1.1100 1.1269 2.5017 −0.9797 1.0706 2.1059

θ̂(exp,KT) −0.5266 1.5397 2.6474 −0.3804 1.3315 1.9173 −0.2688 1.0546 1.1843

θ̂e(exp,KT) −0.7456 1.2439 2.1028 −0.5746 1.0954 1.5298 −0.3697 0.8994 0.9455

9 θ̂NLS −0.9728 1.3131 2.6702 −0.8805 1.2359 2.3024 −0.7385 1.1544 1.8777

θ̂OPIV −1.2035 0.9011 2.2603 −1.1938 0.8914 2.2197 −1.2032 0.9074 2.2707

θ̂DL −1.3371 1.3073 3.4965 −1.2758 1.1994 3.0660 −1.1406 1.1231 2.5621

θ̂(exp,KT) −0.5726 1.7723 3.4684 −0.4856 1.5588 2.6653 −0.3461 1.3183 1.8573

θ̂e(exp,KT) −0.8329 1.3766 2.5884 −0.7551 1.2360 2.0975 −0.5603 1.0763 1.4721
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Table 4: The performance of θ̂(exp,KT) with various KT: ρ = 0.5.

T = 100

KT Bias Bias(+%) SE SE(+%) MSE MSE(+%)

1 −0.00191 . 0.03708 . 0.00138 .

2 −0.00191 0.11425 0.03658 −1.34396 0.00134 −2.66222

3 −0.00191 0.05820 0.03638 −0.54672 0.00133 −1.08718

4 −0.00191 0.03550 0.03628 −0.29128 0.00132 −0.57993

5 −0.00191 0.02381 0.03621 −0.17973 0.00131 −0.35801

6 −0.00191 0.01703 0.03617 −0.12158 0.00131 −0.24224

7 −0.00191 0.01276 0.03614 −0.08758 0.00131 −0.17453

8 −0.00191 0.00991 0.03611 −0.06603 0.00131 −0.13160

9 −0.00191 0.00791 0.03609 −0.05154 0.00131 −0.10272

10 −0.00191 0.00646 0.03608 −0.04133 0.00131 −0.08238

15 −0.00191 0.02011 0.03603 −0.12436 0.00130 −0.24776

20 −0.00191 0.01047 0.03601 −0.06237 0.00130 −0.12428

θ̂DL −0.00552 0.08383 0.00706

T = 200

KT Bias Bias(+%) SE SE(+%) MSE MSE(+%)

1 −0.00161 . 0.02545 . 0.00065 .

2 −0.00159 −1.35402 0.02509 −1.39866 0.00063 −2.77740

3 −0.00158 −0.57188 0.02495 −0.57062 0.00062 −1.13800

4 −0.00158 −0.30861 0.02487 −0.30440 0.00062 −0.60790

5 −0.00157 −0.19151 0.02483 −0.18794 0.00062 −0.37555

6 −0.00157 −0.12995 0.02480 −0.12719 0.00062 −0.25423

7 −0.00157 −0.09378 0.02477 −0.09164 0.00062 −0.18322

8 −0.00157 −0.07078 0.02476 −0.06911 0.00062 −0.13819

9 −0.00157 −0.05529 0.02474 −0.05395 0.00061 −0.10788

10 −0.00157 −0.04436 0.02473 −0.04327 0.00061 −0.08653

15 −0.00157 −0.13356 0.02470 −0.13021 0.00061 −0.26027

20 −0.00156 −0.06702 0.02468 −0.06531 0.00061 −0.13059

θ̂DL −0.00514 0.05945 0.00356
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Table 5: The performance of θ̂(exp,KT) with various KT: ρ = 0.9.

T = 100

KT Bias Bias(+%) SE SE(+%) MSE MSE(+%)

1 −0.00627 . 0.08508 . 0.00728 .

2 −0.00621 −0.95742 0.08356 −1.78127 0.00702 −3.52203

3 −0.00618 −0.37986 0.08299 −0.68917 0.00692 −1.37021

4 −0.00617 −0.19960 0.08269 −0.35995 0.00687 −0.71685

5 −0.00616 −0.12208 0.08251 −0.21985 0.00684 −0.43814

6 −0.00616 −0.08209 0.08238 −0.14783 0.00682 −0.29472

7 −0.00616 −0.05888 0.08230 −0.10608 0.00681 −0.21152

8 −0.00615 −0.04425 0.08223 −0.07977 0.00680 −0.15907

9 −0.00615 −0.03445 0.08218 −0.06213 0.00679 −0.12392

10 −0.00615 −0.02757 0.08214 −0.04975 0.00678 −0.09923

15 −0.00614 −0.08263 0.08202 −0.14930 0.00676 −0.29764

20 −0.00614 −0.04125 0.08196 −0.07468 0.00675 −0.14893

θ̂DL −0.01039 . 0.08930 . 0.00808 .

T = 200

KT Bias Bias(+%) SE SE(+%) MSE MSE(+%)

1 −0.00257 . 0.02498 . 0.00063 .

2 −0.00255 −0.48005 0.02464 −1.36135 0.00061 −2.68593

3 −0.00255 −0.18776 0.02451 −0.55611 0.00061 −1.10132

4 −0.00255 −0.09742 0.02443 −0.29676 0.00060 −0.58838

5 −0.00255 −0.05904 0.02439 −0.18324 0.00060 −0.36348

6 −0.00254 −0.03942 0.02436 −0.12401 0.00060 −0.24604

7 −0.00254 −0.02812 0.02434 −0.08935 0.00060 −0.17730

8 −0.00254 −0.02105 0.02432 −0.06738 0.00060 −0.13371

9 −0.00254 −0.01633 0.02431 −0.05259 0.00060 −0.10438

10 −0.00254 −0.01303 0.02430 −0.04218 0.00060 −0.08371

15 −0.00254 −0.03887 0.02427 −0.12692 0.00060 −0.25177

20 −0.00254 −0.01928 0.02425 −0.06365 0.00059 −0.12630

θ̂DL −0.00480 0.05960 0.00357
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