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1 Introduction

Consumption decisions and earnings dynamics are intricately linked. Together with the net

value of assets, the size and durability of any income shock dictates how much consumption

will need to adjust to ensure a reasonable standard of living in future periods of the life-cycle.

Understanding the persistence of earnings is therefore of great interest not only because it

affects the permanent or transitory nature of inequality, but also because it drives much

of the variation in consumption. Our aim in this study is to examine the interrelationship

between income and consumption dynamics in a flexible manner. To preempt our results, we

find the impact of earnings shocks varies substantially across households’ earnings histories,

and that this nonlinearity is a key driver of heterogeneous consumption responses.

With some notable exceptions (see the discussion in Meghir and Pistaferri, 2011), the

literature on earnings dynamics has focused on linear models. The random walk perma-

nent/transitory model is a popular example (Abowd and Card, 1989). Linear models have

the property that all shocks are associated with the same persistence, irrespective of the

household’s earnings history. Linearity is a convenient assumption, as it allows to study

identification and estimation using standard covariance techniques. However, by definition

linear models rule out nonlinear transmission of shocks and nonlinearities in income dynam-

ics are likely to have a first-order impact on consumption choices. Thus the twin objectives

of this paper. First, to develop a flexible earnings model that allows to capture interest-

ing nonlinearities. Second, to assess the impact of nonlinear earnings shocks on household

consumption.

The existing literature on earnings shocks and consumption follows two main approaches.

One approach is to take a stand on the precise mechanisms that households use to smooth

consumption, for example saving and borrowing or labor supply, and to calibrate a fully-

specified life-cycle model to the data; see Gourinchas and Parker (2002) for example. Except

in very special cases (as in Hall and Mishkin, 1982) the consumption function is generally a

complex nonlinear function of earnings components.1

Another approach is to estimate the degree of “partial insurance” from the data without

precisely specifying the insurance mechanisms; see Blundell, Pistaferri and Preston (2008) for

example. Linear approximations to the optimization problem deliver tractable estimating

equations. However, linear approximations may not be accurate (Kaplan and Violante,

1An interesting recent exception is Heathcote, Storesletten and Violante (2013).
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2008). Moreover, some aspects of consumption smoothing such as precautionary savings or

asset accumulation in the presence of borrowing constraints are nonlinear in nature, making

a linear framework possibly problematic.

In this paper we develop a flexible framework to study the nonlinear relationship between

shocks to household earnings and consumption over the life cycle. Log-earnings are the sum

of a general Markovian persistent component and a transitory innovation. This modelling

allows to capture the intuition that different shocks may be associated with different per-

sistence. For example, our framework allows for “unusual” shocks to wipe out the memory

of past shocks. This feature, which could empirically correspond to job losses, changes of

career, or health shocks, is at odds with linear models commonly used in the literature.

We model consumption as an age-dependent nonlinear function of assets and the two

earnings components. We motivate our specification using a standard life-cycle model of

consumption and saving with incomplete markets, see Huggett (1993), for example. The

consumption rule is nonlinear, thus allowing for interactions between asset holdings and

the persistent or transitory earnings components. This flexible modelling allows to capture

an array of response coefficients that provides a rich picture of the extent of consumption

insurance in the data.

As the consumption model is unrestricted, our framework nests standard life-cycle mod-

els. In particular, there is no need for approximation arguments as we directly estimate the

nonlinear consumption rule. In addition, we show how to extend our baseline model to allow

for household heterogeneity in preferences or discounting, advance information on earnings

shocks, and habits in consumption.

In contrast to linear models, our nonlinear model cannot be studied using standard tech-

niques. As a result, a large part of the paper is devoted to the econometric analysis. We

establish nonparametric identification, building on a recent literature on nonlinear mod-

els with latent variables. Identification of the earnings process builds on Wilhelm (2012).

Identification of the consumption rule relies on related but different arguments. In the identi-

fication analysis we emphasize the link to instrumental-variables techniques commonly used

in linear models.

We take the model to PSID data for 1999-2009. Unlike earlier waves of the PSID,

these data contain enhanced information on asset holdings and consumption expenditures in

addition to labor earnings, see Blundell, Pistaferri and Saporta-Eksten (2012), for example.
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This is the first household panel to include detailed information on consumption and assets

across the life-cycle for a representative sample of households. Without the panel information

on earnings, consumption and assets, our approach would not be feasible.

We estimate the earnings process and consumption rule using a nonlinear specification

(a sieve) that combines quantile modelling and linear expansions in bases of functions. This

flexible approach builds on Wei and Carroll (2009) and Arellano and Bonhomme (2013). The

sequential estimation algorithm consists in iterating between quantile regression estimation,

and draws from the posterior distribution of the latent persistent components of earnings.

We propose a parametric inference method, and build on Nielsen (2000a) to analyze its

large-sample properties.

The preliminary results that we report in this version of the paper suggest that the impact

of earnings shocks varies substantially across households, and that this nonlinearity drives

heterogeneous consumption responses. We also find that the insurability of earnings shocks

is higher late in the life-cycle, and that assets play an important role.

The outline of the paper is as follows: we present the models of earnings and consumption,

establish identification as well as several extensions of the baseline model, describe our

estimation strategy and the dataset, and discuss our preliminary results.

2 Model (I): Earnings process

We start by describing the model of earnings dynamics. In the next section we will present

the consumption model.

2.1 The model

We consider a cohort of households, i = 1, ..., N , and denote as t the age of the household

head. Let Yit be the pre-tax labor earnings of household i at age t, and let yit denote log-Yit,

net of a full set of age dummies. We decompose yit as follows:
2

yit = ηit + εit, i = 1, ..., N, t = 1, ..., T. (1)

The first component ηit is assumed to follow a general first-order Markov process. We

denote the τth conditional quantile of ηit given ηi,t−1 as Qt(ηi,t−1, τ), for each τ ∈ (0, 1). The

2Model (1) is additive in η and ε. Given our nonlinear approach, it is in principle possible to allow
for interactions between the two earnings components, for example in yit = Ht(ηit, εit) subject to suitable
normalization. Identification could then be established along the lines of Hu and Shum (2012).
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following representation is then without loss of generality given the Markov assumption3

ηit = Qt(ηi,t−1, uit), where (uit|ηi,t−1, ηi,t−2, ...) ∼ Uniform (0, 1). (2)

The second component εit is assumed to have zero mean, and to be independent over

time. We denote its marginal cumulative distribution function as Fεt . Even though more

general moving average representations are commonly used in the literature, the biennial

nature of our data makes this assumption more plausible. Nevertheless, allowing for serial

dependence in εit would be an important extension.

Both earnings components are mean independent of age t. However, the conditional

quantile functions Qt, and the marginal distributions Fεt , may all depend on t. For a given

cohort of households, age and calendar time are perfectly collinear, so this dependence may

capture age effects as well as aggregate shocks. The distribution of the initial condition ηi1,

which we denote as Fη1
, is left unrestricted.

A special case of model (1)-(2) is obtained when ηit = ηi,t−1+vit is a random walk. When

vit is independent of ηi,t−1 and follows a cdf Ft, (2) becomes: ηit = ηi,t−1 + F−1
t (uit). We

will refer to the random walk plus independent shock as the canonical model of earnings

dynamics.

Throughout the paper we will refer to ηit as the persistent component of earnings, and

to εit as the transitory one. The earnings shocks uit and eit = Fεt (εit) are expressed in

percentile terms. In our framework, the dependence of ηit is not restricted beyond the

Markov assumption. The identification assumptions will only require that ηit be dependent

over time, without specifying the degree of dependence.

2.2 Nonlinear dynamics

Model (1)-(2) allows for nonlinear dynamics of earnings. Here we focus on its ability to

capture nonlinear persistence, and general forms of conditional heteroskedasticity.

Nonlinear persistence. Let us consider the following quantities

ρt(ηi,t−1, τ) =
∂Qt(ηi,t−1, τ)

∂η
, and ρt(τ) = E

[
∂Qt(ηi,t−1, τ)

∂η

]
, (3)

3We assume that the probability distributions of η’s and ε’s are absolutely continuous. Note that, given
that our earnings data are recorded every other year, this specification is consistent with both first or
second-order Markov assumptions at the yearly frequency.
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where ∂Qt/∂η denotes the partial derivative of Qt with respect to its first component, and

where the expectation is taken with respect to the distribution of ηi,t−1.

The ρ’s in (3) are measures of nonlinear persistence of the η component. ρt(ηi,t−1, τ)

measures the persistence of ηi,t−1 when it is hit by a shock uit that has rank τ . This quantity

depends on the state ηi,t−1, and on the percentile of the shock τ . Average persistence across

η values is ρt(τ).

In the canonical model of earnings dynamics, ρt(ηi,t−1, τ) = 1 irrespective of ηi,t−1 and

τ . In contrast, in model (2) the persistence of ηi,t−1 may depend on the magnitude and

direction of the shock uit. The interaction between the shock uit and the lagged persistent

component ηi,t−1 is a key feature of our nonlinear approach.

It is useful to consider the following specification of the quantile function

Qt(ηi,t−1, τ) = αt(τ) + βt(τ)
′h(ηi,t−1), (4)

where h is a multi-valued function. Examples are h(η) = |η| or h(η) = (max(η, 0),min(η, 0)),

which correspond to the CAViaR quantile regression models of Engle and Manganelli (2004).

Our empirical specification will be based on (4), taking the components of h in a polynomial

basis of functions capable of approximating any continuous function arbitrarily well as the

number of polynomial terms tends to infinity. Persistence and average persistence in (4)

are ρt(ηi,t−1, τ) = βt(τ)
′ ∂h(ηi,t−1)

∂η
and ρt(τ) = βt(τ)

′
E

[
∂h(ηi,t−1)

∂η

]
, respectively, thus allowing

shocks to affect the persistence of ηi,t−1 in rather general ways.

Empirically, this nonlinear persistence may capture a number of labor market events

in a reduced-form fashion. For example, it can be that job losses, changes of career, or

health shocks within the household have a large effect that leads the current state to be less

persistent. Conversely, it could be that earnings shocks that hit households having stable

employment histories are associated with a high persistence. In Section 7 we will see that

empirical estimates of model (1)-(2) on PSID data are consistent with this interpretation.

Conditional heteroskedasticity. As (2) does not restrict the form of the conditional

distribution of ηit given ηi,t−1, it allows for general forms of heteroskedasticity. In particular,

a measure of period-t uncertainty generated by the presence of shocks to the persistent

earnings component is

σt(τ) = E
[
Qt(ηi,t−1, τ)−Qt(ηi,t−1, 1− τ)

]
.
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As a special case, in the canonical model with vit ∼ N (0, σ2
vt
), σt(τ) = 2σvtΦ

−1(τ). An

analogous measure of uncertainty generated by the transitory shocks is

σεt(τ) = F−1
εt

(τ)− F−1
εt

(1− τ).

In addition, the model allows for conditional skewness and kurtosis in ηit. Along the lines

of the measures proposed by Kim and White (2004), one can consider

skt(ηi,t−1, τ) =
Qt(ηi,t−1, τ) +Qt(ηi,t−1, 1− τ)− 2Qt(ηi,t−1, .5)

Qt(ηi,t−1, τ)−Qt(ηi,t−1, 1− τ)
,

and

kurt(ηi,t−1, τ , α) =
Qt(ηi,t−1, 1− α)−Qt(ηi,t−1, α)

Qt(ηi,t−1, τ)−Qt(ηi,t−1, 1− τ)
,

for example taking τ = .75 and α = .025. The empirical estimates below suggest that

conditional skewness is a feature of the earnings process.4

3 Model (II): Consumption rule

In order to motivate our empirical specification, we start by outlining a simple life-cycle

model of consumption and savings and derive the form of the policy rule for household

consumption. We then describe the empirical consumption model that we will take to the

data.

3.1 A simple life-cycle model

Households live for a finite number of periods T ∗. For simplicity we assume that they work

up to period T ∗. Accounting for a retirement period would not fundamentally affect the

analysis. Households maximize expected life-time utility given by

max
Ci1,Ci2,...,CiT∗

E1

[
T ∗∑

t=1

βt−1u(Cit)

]
, (5)

where Cit denote consumption levels, β is a discount factor, and the expectation is conditional

on the agent’s information set in period 1. We assume that u(·) is twice differentiable,

increasing and strictly concave.

4In a recent paper on US Social Security Data for 1978-2010, Guvenen, Ozcan and Song (2012) find that
the left-skewness of earnings shocks is counter-cyclical. It would be interesting to apply our framework to
study distributional dynamics over the business cycle.
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Households receive earnings Yit = exp(µt + yit), where yit are given by (1)-(2), and µt

are deterministic functions of age t. They have access to a single risk-free, one-period bond

whose constant return is 1 + r. The evolution of beginning-of-period assets Ait is given by

Ait = (1 + r)Ai,t−1 + Yi,t−1 − Ci,t−1, t ∈ {2, ..., T ∗}. (6)

Initial assets Ai1 are unrestricted. End-of-life assets are assumed to satisfy AiT ∗ ≥ 0.5

At each period t, households observe Ait, ηit, and εit, and all their past values since the

start of life, that is

At = {Ait, ηit, εit, ..., Ai1, ηi1, εi1}.

However, households do not have advance information about the future realizations of η (or

alternatively future shocks u) and ε. All distributions are known to households, and there

is no aggregate uncertainty.

The period-t value function is given by

Vt(Ait, ηit, εit) = max
Cit,Ci,t+1,...,CiT∗

E

[
T ∗∑

s=t

βs−tu(Cis)

∣∣∣∣At

]
,

and the Bellman equation is

Vt(Ait, ηit, εit) = max
Cit

u(Cit) + βE

[
Vt+1

(
(1 + r)Ait + Yit − Cit, ηi,t+1, εi,t+1

) ∣∣∣∣At

]

= max
Cit

{
u(Cit) + ...

β

∫ ∫
Vt+1 ((1 + r)Ait + Yit − Cit, η, ε) fηt+1|ηt(η|ηit)fεt+1

(ε)dηdε

}
,

where we have used the fact that ηit is first-order Markov, and εit are independent over time,

and where fηt+1|ηt and fεt+1
denote the conditional density of ηi,t+1 given ηit and the marginal

density of εi,t+1, respectively, both of which are allowed to depend on t.

The consumption rule is then of the form

Cit = Gt (Ait, ηit, εit) , (7)

for some age-dependent function Gt.

5There could be additional borrowing constraints in each period. In that case, the nonparametric con-
sumption rule below would no longer be differentiable.
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When one is interested in documenting dynamic patterns of consumption and earnings,

one strategy is to take a stand on the functional form of the utility function and the distri-

butions of the shocks, and to calibrate or estimate the model’s parameters by comparing the

model’s predictions with the data, as in Gourinchas and Parker (2002) for example. Another

strategy is to linearize the consumption rule (7), with the help of the budget constraint.

With a linear approximated problem at hand, standard covariance-based methods may be

used for estimation, as in Blundell, Pistaferri and Preston (2008).

Our approach differs from the previous literature as we directly estimate the nonlinear

consumption rule (7). Doing so, we avoid linearizing the model, and we estimate a flexible

rule that is consistent with the life-cycle consumption model outlined above. In addition,

this approach allows to document a rich set of derivative effects, thus shedding light on the

actual amount of consumption insurance in the data.6

3.2 An empirical consumption rule

Let us consider a cohort of households. Let cit denote log-consumption net of a full set of age

dummies. Similarly, let ait denote log-assets net of age dummies. Our empirical specification

is based on

cit = gt (ait, ηit, εit, νit) , t = 1, ..., T, (8)

where νit are independent across periods, and gt is monotone in ν.

An economic interpretation for ν is as a taste shifter that increases marginal utility.

Indeed, in the above single-asset life-cycle model monotonicity is implied by the Bellman

equation, provided ∂u(C,ν′)
∂C

> ∂u(C,ν)
∂C

for all C if ν ′ > ν. Without loss of generality, we

normalize the marginal distribution of νit to be standard uniform in each period.

Insurance coefficients. Average consumption, for given values of asset holdings and earn-

ings components, is

E [cit|ait = a, ηit = η, εit = ε] = E [gt (a, η, ε, νit)] .

6Estimating the consumption rule (7) could also be of interest in the perspective of the first, model-based
approach. Indeed, one could take advantage of our estimates of the consumption rule and the distributions
of the shocks in order to identify and estimate a fully-fledged life-cycle consumption model.
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Our framework allows to document how average consumption varies with its arguments. In

particular, the average derivative with respect to η is

φt(a, η, ε) = E

[
∂gt (a, η, ε, νit)

∂η

]
, (9)

while the average derivative with respect to ε is

ψt(a, η, ε) = E

[
∂gt (a, η, ε, νit)

∂ε

]
. (10)

The parameters φt(a, η, ε) and ψt(a, η, ε) reflect the degree of insurability of shocks to

the persistent and transitory earnings components, respectively. We will document how they

vary along the life-cycle, and how they depend on households’ asset holdings. Specifically,

we will report estimates of

φt(a) = E [φt(a, ηit, εit)] , and ψt(a) = E [ψt(a, ηit, εit)] . (11)

Earnings shocks and consumption. The marginal effect on consumption of an earnings

shock uit to the persistent earnings component is, by the chain rule and equation (9),

E

[
∂

∂u

∣∣∣
u=τ

gt (a,Qt(η, u), ε, νit)

]
= φt (a,Qt(η, τ), ε)

∂Qt(η, τ)

∂u
.

This marginal effect depends on η through the insurance coefficient φt, but also through

the quantity ∂Qt(η,τ)
∂u

as the earnings model allows for general forms of conditional het-

eroskedasticity. In the empirical analysis we will report finite-difference counterparts to

these derivative effects.

4 Identification

The earnings and consumption models take the form of nonlinear state-space models. A

series of recent papers (notably Hu and Schennach, 2008, and Hu and Shum, 2012) has

established conditions under which nonlinear models with latent variables are nonparamet-

rically identified under conditional independence restrictions. Here we rely on techniques

developed in this literature in order to establish identification of the models we consider.

4.1 Earnings process

Consider model (1)-(2), where ηit is a Markovian persistent component and εit are indepen-

dent over time. We assume that the data contain T consecutive periods, which we denote as
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t = 1, ..., T . So, for a given cohort of households, t = 1 corresponds to the age at which the

household head enters the sample, and t = T corresponds to the last period of observation.

For that cohort, our aim is to identify the joint distributions of (ηi1, ..., ηiT ) and (εi1, ..., εiT )

given a random sample from (yi1, ..., yiT ). In the following, all conditional and marginal

densities are assumed to be bounded.

Operator injectivity. The identification arguments below rely on the concept of operator

injectivity, which we now formally define. A linear operator L is a linear mapping from a

functional space H1 to another functional space H2. L is injective if the only solution h ∈ H1

to the equation Lh = 0 is h = 0.

One special case of operator injectivity (“deconvolution”) obtains when Y2 = Y1 + ǫ1,

with Y1 independent of ǫ1, and [Lh](y2) =
∫
h(y1)fǫ1(y2 − y1)dy1. L is then injective if

the characteristic function of ǫ1 has no zeros on the real line. The normal and many other

standard distributions satisfy this property.7 In particular, if the marginal distributions

fY2
and fǫ1 are known, injectivity implies that h = fY1

is the only solution to the functional

equation
∫
h(y1)fǫ1(y2−y1)dy1 = fY2

(y2). In other words, fY1
is identified from the knowledge

of fY2
and fǫ1 . Deconvolution arguments of this type are commonly used in the literature.

Another special case of operator injectivity (“completeness”) is obtained when L is the

conditional expectation operator associated with the distribution of (Y1|Y2), in which case

[Lh](y2) = E [h(Y1) |Y2 = y2]. L being injective is then equivalent to the distribution of

(Y1|Y2) being complete. Completeness is commonly assumed in nonparametric instrumental

variables problems, see Newey and Powell (2003). Recent work provides primitive conditions

for completeness in specific cases; see D’Haultfoeuille (2011) and Andrews (2011).

Wilhelm’s result. To establish nonparametric identification of the earnings process, we

rely on a result in Wilhelm (2012), which was originally derived in the context of a panel

data model with measurement error. Wilhelm provides conditions under which the marginal

distribution of εi2 is identified, given three periods of observations (yi1, yi2, yi3). We reproduce

his identification argument in the appendix.

Wilhelm’s result is derived under several high-level assumptions. In particular, it requires

that the distributions of (yi3|ηi2) and (ηi2|yi1) be both complete. This requires that ηi1 and

7In fact, injectivity also holds if the zeros of the characteristic function of ǫ1 are isolated. See Carrasco
and Florens (2011) and Evdokimov and White (2011).
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ηi2, and also ηi2 and ηi3, be statistically dependent, albeit without specifying the form of

that dependence. An intuition for this is that if η’s were independent over time there would

be no way to distinguish them from the transitory ε’s.

Identification of the earnings process. Returning to the earnings dynamics model (1)-

(2), let now T ≥ 3. Suppose that the conditions in Wilhelm (2012) are satisfied on each of

the three-year subpanels t ∈ {1, 2, 3} to t ∈ {T − 2, T − 1, T}. It follows from Wilhelm’s

result that the marginal distributions of εit are identified for all t ∈ {2, 3, ..., T −1}. By serial

independence of the ε’s, the joint distribution of (εi2, εi3, ..., εi,T−1) is thus also identified.

Hence, if the characteristic functions of εit do not vanish on the real line, then by a

deconvolution argument the joint distribution of (ηi2, ηi3, ..., ηi,T−1) is identified. As a result,

all Markov transitions fηt|ηt−1
are identified for t = 2, ..., T −1, and the marginal distribution

of ηi2 is identified as well. Moreover, it is easy to show that the conditional distributions of

ηi2|yi1 and yiT |ηi,T−1 are identified.8

Note that, in the case where εi1, ..., εiT have the same marginal distribution, then the

distributions of the initial and terminal components εi1, ηi1, and εiT , ηiT are also identified.

However, the first and last-period distributions are generally not identified in the absence of

stationarity assumptions.

4.2 Consumption rule

Let us now turn to the identification of the consumption rule (8). We make the following

assumptions. First, we assume that ηit is independent of ai1 given ηi,t−1, and that εit is

independent of ai1. These assumptions require earnings shocks, which are independent of

past components of earnings, to be independent of initial asset holdings as well. At the

same time, we let ηi1 and ai1 be arbitrarily dependent. This is important, because asset

accumulation upon entry in the sample may be correlated with past earnings shocks.

Next, we assume that current assets are only determined by previous period assets, earn-

ings, and consumption. Formally, we assume that ait are independent of (ηi,t−1, ai,t−2, ηi,t−2,

εi,t−2...) given (ai,t−1, ci,t−1, yi,t−1). This assumption is consistent with a standard life-cycle

model with one single risk-less asset, see equation (6). It is also consistent with a model

8Indeed we have fy2|y1
(y2|y1) =

∫
fε2(y2 − η

2
)fη

2
|y1

(η
2
|y1)dη2. Hence, as the characteristic function of

εi2 is non-vanishing, fη
2
|y1

(·|y1) is identified for almost all y1. A similar argument shows that fyT |η
T−1

(yT |·)
is identified for almost all yT .
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where the interest rate rt is time-varying and known to households. Note however that

this assumption may be empirically strong if assets are risky and households choose their

investment strategy in a similar way as they choose their consumption profile.

Lastly, we assume that all marginal and conditional distributions are bounded from

above and below. With some abuse of notation we use f(A|B) as a generic notation for the

conditional distribution fA|B(·|·). We omit the i index for simplicity.

First period. Let us start by analyzing period t = 1. Letting y = (y1, ..., yT ), we have

f(c1|a1, η1, y) = f(c1|a1, η1, y1) from the consumption rule. Hence

f(c1|a1, y) =
∫
f(c1|a1, η1, y1)f(η1|a1, y)dη1. (12)

Note that, if ηi1 and ai1 were independent given yi, an injectivity argument would iden-

tify the period-1 consumption rule.9 Upon entry in the sample, however, this conditional

independence restriction is unlikely to hold.

In order to identify the consumption rule in the case where ai1 and ηi1 are dependent,

we first note that, by Bayes’ rule,

f(η1|a1, y) =
f(y|η1, a1)f(η1|a1)

f(y|a1)
=
f(y|η1)f(η1|a1)

f(y|a1)
= f(η1|y)

f(y)f(η1|a1)
f(y|a1)f(η1)

,

where we have used that yi is independent of ai1 given ηi1. Hence, using (12),

f(c1|a1, y)
f(y|a1)
f(y)

=

∫
f(c1|a1, η1, y1)f(η1|a1)

f(η1)
f(η1|y)dη1, (13)

where f(η1|y) is identified from the earnings process alone.

Let us now define the operator

[L1h](c1, a1, y) =

∫
h(c1, a1, η1, y1)f(η1|y)dη1.

Let us assume that L1 is injective. Then there exists a unique function h that satisfies

[L1h](c1, a1, y) = f(c1|a1, y)
f(y|a1)
f(y)

.

This implies that f(c1|a1,η1,y1)f(η1|a1)
f(η1)

is identified. As f(η1) is identified from the earnings

process, it follows that f(c1|a1, η1, y1) and f(η1|a1) are both identified.10

9To see this, let us define [Lh](c1, a1, y) =
∫
h(c1, a1, η1, y1)f(η1|y)dη1. If L is injective, the solution

to [Lh](c1, a1, y) = f(c1|a1, y) is unique. Hence, as f(η
1
|y) is identified from the earnings process alone it

follows that the density of period-1 consumption f(c1|a1, η1, y1) is identified.
10This comes from f(c1|a1, η1, y1)f(η1|a1) being identified, so f(η

1
|a1) by integration with respect to c1,

and f(c1|a1, η1, y1) upon dividing by f(η
1
|a1), are identified as well.
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An intuitive explanation for the identification argument is that yi2, ..., yiT are used as

“instruments” for ηi1. In particular, T ≥ 2 is needed. Using leads of log-earnings for

identifying consumption responses is a common strategy in linear models, see for example

Hall and Mishkin (1982), and Blundell, Pistaferri and Preston (2008).

Injectivity of L1 only depends on the properties of the earnings process. Moreover, this

condition is intuitive given the Markovian property of ηit. As an example, consider the case

where T = 2, and (ηi1, yi1, yi2) follows a multivariate normal distribution with zero mean.

Then ηi1 = αyi1 + βyi2 + ζ i, where ζ i is normal (0, σ2), independent of (yi1, yi2). It can

easily be shown that β 6= 0 if Cov(ηi1, ηi2) 6= 0, in which case L1 is injective.11 As in the

identification of the earnings process, identification of the consumption rule thus relies on

η’s being dependent over time.

Subsequent periods. Let us then consider the period-t problem, where t ≥ 2. We denote

ct = (c1, ..., ct), and use similar notation for at and ηt.

We proceed by induction. Let t ∈ {2, ..., T}, and assume that f(cs|ηs, as, ys) is identified
for all 1 ≤ s ≤ t− 1. We have

f(ct, a2, ..., at|a1, y) =

∫ t∏

s=1

f(cs|as, ηs, ys)
t∏

s=2

f(as|as−1, ys−1, cs−1)f(η
t|a1, y)dηt

=
t∏

s=2

f(as|as−1, ys−1, cs−1)

∫ t∏

s=1

f(cs|as, ηs, ys)f(ηt|a1, y)dηt.

(14)

Note that f(as|as−1, ys−1, cs−1) is identified for all s. Moreover, consider the following

linear operator

[Lth](c
t, at, y) =

∫
h(ct, at, ηt, yt)κt

(
ηt, c

t−1, at−1, y
)
dηt,

where

κt
(
ηt, c

t−1, at−1, y
)

=

∫ t−1∏

s=1

f(cs|as, ηs, ys)f(ηt|a1, y)dηt−1.

11Formally, taking Fourier transforms (for a fixed y1 value) in

∫ ∞

−∞

g(η
1
, y1)

1

σ
φ

(
η
1
− αy1 − βy2

σ

)
dη

1
= 0

yields g(·, y1) = 0 for almost all y1, provided β 6= 0.
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By Bayes’ rule and the assumptions on initial assets and earnings, we have

f(ηt|a1, y) =
f(y|ηt)∏T

t=2 f(ηt|ηt−1)f(η1|a1)
f(y|a1)

= f(ηt|y)f(y)f(η1|a1)
f(y|a1)f(η1)

,

which is identified from the earnings process and the period-1 consumption problem. As a

result, given that the consumption rules up to period t − 1 are assumed identified in the

induction argument, the operator Lt is identified as well.

Let us assume that Lt is injective. Then there exists a unique function h that solves

[Lth](c
t, at, y) =

f(ct, a2, ..., at|a1, y)∏t

s=2 f(as|as−1, ys−1, cs−1)
.

So by (14) f(ct|ηt, at, yt) is identified. This shows that the consumption rules are all identified

for t = 1, ..., T .

Unlike the first-period case, the operator Lt depends on lags and leads of earnings (at

all periods) and lags of assets and consumption (up to period t − 1). Intuitively, lagged

consumption and assets, as well as lags and leads of earnings, are used as instruments for

ηit. Injectivity depends on the relevance of these instruments (in a nonparametric sense).

5 Extensions

In this section we introduce several extensions of the baseline model, and we briefly discuss

identification in each of them.

5.1 Advance information

If households have advance information about future earnings shocks, the consumption rule

(8) takes future earnings components as additional arguments. For example, let us consider a

model where households know the realization of the one-period-ahead persistent component,

in which case

cit = gt
(
ait, ηit, ηi,t+1, εit, νit

)
, t = 1, ..., T − 1. (15)

Identification can be established using similar arguments as in the baseline model. In

period 1 we have

f(c1|a1, y) =

∫ ∫
f(c1|a1, η1, η2, y1)f(η1, η2|a1, y)dη1dη2

=
f(y)

f(y|a1)

∫ ∫
f(c1|a1, η1, η2, y1)f(η1|a1)

f(η1)
f(η1, η2|y)dη1dη2,
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where we have used that ηi2 is independent of ai1 given ηi1, and that yi is independent of ai1

given (ηi1, ηi2).

Let us assume that the operator

[L1h](c1, a1, y) =

∫ ∫
h(c1, a1, η1, η2, y1)f(η1, η2|y)dη1dη2

is injective. Note in particular that we need T ≥ 3. Then f(c1|a1, η1, η2, y1) and f(η1|a1) are
identified. An argument similar to the one we used in the baseline model then identifies the

period-t conditional distribution f(ct|at, ηt, ηt+1, yt) for t = 1, ..., T − 1.

Lastly, similar arguments can be used to show identification in models where households

have advance information about future transitory shocks ε, as well as in models where the

consumption rule depends on lags of η or ε, for example in models where ηit follows a

second-order Markov process.

5.2 Habits

In the presence of habits, the consumption rule takes the form

cit = gt (ci,t−1, ait, ηit, εit, νit) , t = 2, ..., T. (16)

To see under which conditions the model is identified, let us take t = 2. Let us denote

ỹi = (yi2, ..., yiT ). We have

f(c2|c1, a2, ỹ) =

∫
f(c2|c1, a2, η2, y2)f(η2|c1, a2, ỹ)dη2.

Assuming that ỹi is independent of (ci1, ai2) given ηi2 we obtain

f(c2|c1, a2, ỹ) =
f(ỹ)

f(ỹ|c1, a2)

∫
f(c2|c1, a2, η2, y2)f(η2|c1, a2)

f(η2)
f(η2|ỹ)dη2.

Identification of f(c2|c1, a2, η2, y2) and f(η2|c1, a2) follows, provided that the operator

[L2h](c1, c2, a2, ỹ) =

∫
h(c1, c2, a2, η2, y2)f(η2|ỹ)dη2

be injective. Here also, T ≥ 3 is needed. Identification of f(ct|ct−1, at, ηt, yt) (t = 3, ..., T )

follows similarly.
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5.3 Household heterogeneity

In the baseline model, households differ ex-ante in their earnings due to heterogeneous initial

conditions ηi1 and level of assets ai1. In contrast, the consumption rule is fully homogeneous.

As accounting for unobserved heterogeneity in preferences or discounting may be empirically

important, we now develop an extension of the model that allows for a household-specific

effect ξi. The consumption rule is then

cit = gt (ait, ηit, εit, ξi, νit) , t = 1, ..., T. (17)

For simplicity we consider a scalar ξi. Depending on the number of available time periods,

a vector of unobserved heterogeneity could be allowed for.

We assume that ηit is independent of (ai1, ξi) given ηi,t−1 for all t ≥ 2, and that εit is

independent of (ai1, ξi) for t ≥ 1. At the same time, the distribution of (ξi, ηi1, ai1) is left

unrestricted. Simple calculations similar to the ones of Section 4 then yield

f(ct, a2, ..., at|a1, y) =
f(y)

f(y|a1)
t∏

s=2

f(as|as−1, ys−1, cs−1)× ...

∫
1

f(η1)

(∫ t∏

s=1

f(cs|as, ηs, ys, ξ)f(η1, ξ|a1)dξ
)
f(ηt|y)dηt.

(18)

Note that we have also assumed that ais is independent of ξi (as well as ηis) given ai,s−1,

yi,s−1, and ci,s−1.

Let us now evaluate (18) at t = 3. We assume that the operator

[L3h](c1, c2, c3, a1, a2, a3, y) =

∫
h(c1, c2, c3, a1, a2, a3, y1, y2, y3, η1, η2, η3)f(η1, η2, η3|y)dη3

is injective. In particular, this requires that T ≥ 6.12 It then follows from (18) that

∫ 3∏

t=1

f(ct|at, ηt, yt, ξ)f(η1, ξ|a1)dξ = f(η1|a1)
∫ 3∏

t=1

f(ct|at, ηt, yt, ξ)f(ξ|η1, a1)dξ

is identified, for almost all (c3, a3, y3, η3). It thus follows that f(η1|a1) and

k(c3; a3, η3, y3) ≡
∫ 3∏

t=1

f(ct|at, ηt, yt, ξ)f(ξ|η1, a1)dξ (19)

12It is not clear whether the requirement that T ≥ 6 is necessary for establishing identification, even
though we need it in the proof.
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are identified for almost all (c3, a3, y3, η3).

For fixed values of (a3, y3, η3), equation (19) has the structure of mixture model, where

ξi is the unobserved latent component. The main result of Hu and Schennach (2008) thus

applies to show that f(ξ|η1, a1) and f(ct|at, ηt, yt, ξ) for all t ∈ {1, 2, 3} are nonparametrically

identified under suitable assumptions. Hu and Schennach’s assumptions include injectivity

conditions analogous to the ones we have used in the baseline model, as well as a scaling

condition. In particular, the latter is satisfied if the mean (or any quantile) of ci1 given

(ai1, ηi1, yi1, ξi) is increasing in ξi, in which case identification is to be understood up to an

increasing transformation of ξi.

Given that f(ξ|η1, a1) is identified, it is then easy to see that f(ct|at, ηt, yt, ξ) is identified
for all t ≥ 1. To see this, let us suppose by induction that f(cs|as, ηs, ys, ξ) is identified for

1 ≤ s ≤ t− 1. Let us assume that the operator

[Lth](c
t, at, y) =

∫ ∫
h(ct, at, ηt, yt, ξ)κt(ηt, ξ, c

t−1, at−1, y)dηtdξ

is injective, where

κt(ηt, ξ, c
t−1, at−1, y) =

∫
1

f(η1)

t−1∏

s=1

f(cs|as, ηs, ys, ξ)f(η1, ξ|a1)f(ηt|y)dηt−1.

Then the solution h to

[Lth](c
t, at, y) =

f(y|a1)
f(y)

f(ct, a2, ..., at|a1, yt)∏t

s=2 f(as|as−1, ys−1, cs−1)

is unique, so by (18) f(ct|at, ηt, yt, ξ) is identified.
Lastly, it is possible to allow for unobserved heterogeneity in earnings as well, in addition

to heterogeneity in ηi1. Specifically, one can let ηit be a first-order Markov process conditional

on another latent component ξ̃i.
13 In that case, an extension of Wilhelm (2012)’s result

allows to show identification of the marginal distribution of εi3 given five periods of earnings

data (yi1, ..., yi5). This extension, and the corresponding identification argument for the

consumption rule, will be described in a future draft of the paper.

5.4 Measurement error

Survey data like the PSID are often contaminated by errors; see for example Bound et

al. (2001). In the absence of information about measurement error, it is not possible to

13In particular, this extension nests linear earnings models with slope heterogeneity, see Guvenen (2007)
and Guvenen and Smith (2010) for example.
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disentangle the transitory innovation from the measurement error when true earnings y∗it are

not observed, and

yit = y∗it + ζ it

= ηit + εit + ζ it,

is observed with classical measurement error ζ it, independent of ηit and εit. Thus, an in-

terpretation of our estimated distribution of εit is that it represents a mixture of transitory

shocks and measurement error.

If additional information is available and the marginal distribution of ζ it is known, then

one can recover the distribution of εit using a deconvolution argument. A modification of

the estimation algorithm described in the next section deals with this case.

Lastly, allowing for measurement error in asset holdings and consumption is not straight-

forward. Nevertheless note that, from an empirical perspective, the presence of the taste

shifters νit in the consumption rule (8) – which we will assume to be additive in νit when

taking the model to the PSID data – may partly capture measurement error in consumption

expenditures.

6 Data and estimation strategy

6.1 Data

Since 1999 the PSID contains detailed data on consumption expenditures and asset holdings,

in addition to household earnings and demographics. Data are available every other year.

We use data for the 1999-2009 period (six waves).

Earnings Yit are total pre-tax household labor earnings. We construct yit as residuals of

log household earnings on a set of demographics, which include cohort and calendar time

dummies (thus implicitly including age dummies as well), family size and composition (in-

cluding dummies for income recipients other than husband and wife, and for kids out of

home), education, race, and state and big city dummies, the last four being interacted with

time dummies. Controls for family size and composition are included so as to equivalize

household earnings. We will proceed similarly for consumption and asset holdings. Ed-

ucation, race and geographic dummies are included in an attempt to capture individual

heterogeneity beyond cohort effects and the initial persistent component of earnings ηi1.
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Table 1: Descriptive statistics (means)

1999 2001 2003 2005 2007 2009

Earnings 85,001.41 93,983.93 100,280.6 106,683.7 119,039.4 122,907.7
Consumption 30,182.19 35,846.02 39,843.4 47,635.89 52,174.8 50,582.89

Assets 266,957.8 315,865.7 376,484.9 399,901.4 501,590.3 460,262.2

Notes: Balanced subsample from PSID, N = 749, T = 6.

We use data on consumption Cit of nondurables and services. Since 1999, PSID data

contains information on health expenditures, utilities, car-related expenditures and trans-

portation, education, and child care. Recreation, alcohol, tobacco and clothing (the latter

available from 2005) are the main missing items. Rent information is available for renters,

but not for home owners. We follow Blundell, Pistaferri and Saporta-Eksten (2012, BPS

hereafter) and impute rent expenditures for home owners.14 In total, approximately 70% of

consumption expenditures are covered. We construct cit as residuals of log total consumption

on the same set of demographics as for earnings.

Asset holdings Ait are constructed as the sum of financial assets (including cash, stocks

and bonds), real estate value, pension funds, and car value, net of mortgages and other debt.

We construct residuals ait by regressing log-assets on the same set of demographics as for

earnings and consumption, and use them as arguments of the consumption rule (8).

To select the sample we follow BPS and focus on a sample of participating and married

male heads aged between 30 and 65. We drop all observations for which data on earnings,

consumption, or assets, either in levels or log-residuals, are missing. Finally, we also drop

observations with extreme “jumps” in household earnings between three consecutive waves

(0.25% of observations). Moreover, in this version of the paper we focus on a balanced

subsample of N = 749 households.

Table 1 shows mean total earnings, consumption and asset holdings, by year. Compared

to BPS, households in our balanced sample have higher assets, and to a less extent higher

earnings and consumption.

14Note that, as a result, consumption responds automatically to variations in house prices. An alternative
would be to exclude rents and imputed rents from consumption expenditures.
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6.2 Empirical specification

Earnings components. The earnings model depends on the Markovian transitions of the

persistent component Qt(·, ·), the marginal distributions of εit, and the marginal distribution

of the initial persistent component ηi1. We now explain how we empirically specify these

three components.

Let ϕk(·), for k = 0, 1, ..., denote a dictionary of functions defined on R
2, with ϕ0 = 1.

Letting ageit denote the age of the head of household i in period t, we specify

Qt(ηt−1, τ) = Q(ηt−1, aget, τ)

=
K∑

k=0

aQk (τ)ϕk(ηt−1, aget), (20)

where the number of terms K is chosen by the researcher.

We specify the quantile functions of εit (for t = 1, ..., T ) given ageit, and that of ηi1 given

age at the start of the period agei1, in a similar way. Specifically, we set

Qε(aget, τ) =
K∑

k=0

aεk(τ)ϕk(aget),

Qη1
(age1, τ) =

K∑

k=0

a
η1
k (τ)ϕk(age1),

with outcome-specific choices for K and the dictionary ϕk.

The sieve quantile model (20) provides a flexible specification of the conditional distri-

bution of ηit given ηi,t−1 and age. Similarly, our quantile specifications flexibly models how

εit and ηi1 depend on age, at every quantile. We include the age of the household head as

an additional control, while ruling out dependence on calendar time. This choice is moti-

vated by our desire to model life-cycle evolution, as well as by the relative stationarity of

the earnings distributions during the 1999-2009 period that we consider.

Note that the identification argument of Section 4.1 allows to nonparametrically recover,

for each cohort entering the sample at age j, the distributions of ε at ages j+2, j+4, j+6,

and j+8 (based on biennial data). Now, in our dataset 30 ≤ j ≤ 60. Pooling across cohorts,

we obtain that the distributions of ε are nonparametrically identified at all ages between 32

and 63 years. In turn, the joint distribution of η’s is nonparametrically identified as well

in this age range. Identification at ages 30, 31 and 64, 65 intuitively comes from parametric

extrapolation using the quantile models.
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Consumption rule. Turning to consumption, we now explain how we specify the condi-

tional distribution of consumption given current assets and earnings components, and the

distribution of initial assets conditional on the initial persistent component.

We specify

gt(at, ηt, εt, τ) = g(at, ηt, εt, aget, τ)

=
K∑

k=1

bgkϕ̃k(at, ηt, εt, aget) + bg0(τ), (21)

where ϕ̃k is a dictionary of functions defined on R
4.

In addition, we model the conditional quantile of ai1 given ηi1 and agei1 as

Q(a)(η1, age1, τ) =
K∑

k=0

bak(τ)ϕ̃k(η1, age1), (22)

for different choices of K and of the dictionary ϕ̃k.

Equation (21) is a nonlinear regression model. In contrast with (20) and (22), the con-

sumption model is additive in τ . It would be conceptually straightforward to let all coeffi-

cients bgk depend on τ , although this would lead to a less parsimonious specification.

Implementation. The functions aQk , a
ε
k and a

η1
k are indexed by a finite-dimensional pa-

rameter vector θ. Likewise, the functions bg0 and b
a
k are indexed by a parameter vector µ that

also contains bg1,...,b
g
K .

Following Wei and Carroll (2009), we model the functions aQk as piecewise-polynomial

interpolating splines on a grid [τ 1, τ 2], [τ 2, τ 3],... , [τL−1, τL], contained in the unit interval.

We extend the specification of the intercept coefficient aQ0 on (0, τ 1] and [τL, 1) using a

parametric model indexed by λQ. All aQk for k ≥ 1 are constant on [0, τ 1] and [τL, 1],

respectively. Hence, denoting aQkℓ = aQk (τ ℓ), the functions aQk depend on {aQ11, ..., aQKL, λ
Q}.

In practice, we take L = 11 and τ ℓ = ℓ/L+ 1. The functions aQk are taken as piecewise-

linear on [τ 1, τL]. An advantage of this specification is that the likelihood function is available

in closed form. In addition, we specify aQ0 as the quantile of an exponential distribution on

(0, τ 1] (with parameter λQ−) and [τL, 1) (with parameter λQ+). As a result, we have

aQk (τ) =
1

λQ−
log

(
τ

τ 1

)
1{0 < τ < τ 1}+

L−1∑

ℓ=1

(
aQkℓ +

aQk,ℓ+1 − aQkℓ
τ ℓ+1 − τ ℓ

(τ − τ ℓ)

)
1{τ ℓ ≤ τ < τ ℓ+1}

− 1

λQ+
log

(
1− τ

1− τL

)
1{τL ≤ τ < 1}.
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We proceed similarly to model aεk, a
η1
k , and bak. Moreover, as our data show little evi-

dence against consumption being log-normal, we set b0(τ) to α + σΦ−1(τ), where (α, σ) are

parameters to be estimated. Lastly, we use tensor products of Hermite polynomials for ϕk

and ϕ̃k. Each component of the product takes as argument a standardized variable.15

6.3 Estimation algorithm

The algorithm is an adaptation of techniques developed in Arellano and Bonhomme (2013)

in the context of quantile regression with time-invariant unobserved heterogeneity. The first

estimation step recovers estimates of the earnings parameters θ. The second step recovers

estimates of the consumption parameters µ, given a previous estimate of θ. Our choice of

a sequential estimation strategy, rather than joint estimation of (θ, µ), is motivated by the

fact that θ is identified from the earnings process alone.

Model’s restrictions. Let ρτ (u) = u(τ − 1{u ≤ 0}) denote the “check” function of

quantile regression (Koenker and Bassett, 1978). Let also θ denote the true value of θ, and

let

fi(η
T
i ; θ) = f(ηTi |yTi , ageTi ; θ)

denote the posterior density of (ηi1, ..., ηiT ) given the earnings data. As the earnings model

is fully specified, fi is a known function of θ.

We start by noting that, for all t ≥ 2 and ℓ ∈ {1, ..., L},
(
aQ0ℓ, ..., a

Q
Kℓ

)
= argmin

(aQ0ℓ,...,a
Q
Kℓ)

E

[∫
ρτℓ

(
ηit −

K∑

k=0

aQkℓϕk(ηi,t−1, ageit)

)
fi(η

T
i ; θ)dη

T
i

]
, (23)

where aQkℓ denotes the true value of aQkℓ = aQk (τ ℓ).

To see that (23) holds, note that the objective function is smooth (due to the presence

of the integrals) and convex (because of the “check” function). Moreover, the first-order

conditions are, for all k ∈ {0, ..., K},

E

[
E

[
ϕk(ηi,t−1, ageit)1

{
ηit ≤

K∑

k=0

aQkℓϕk(ηi,t−1, ageit)

}∣∣∣∣∣y
T
i , age

T
i

] ]

= E

[
ϕk(ηi,t−1, ageit)1

{
ηit ≤

K∑

k=0

aQkℓϕk(ηi,t−1, ageit)

}]
= τ ℓ,

15For example, (at − mean(a))/std(a), (ηt − mean(y))/std(y), (εt − mean(y))/std(y), and (aget −
mean(age))/std(age) are used as arguments of the consumption rule.

22



where we have used that, by (20),

E

[
1

{
ηit ≤

K∑

k=0

aQkℓϕk(ηi,t−1, ageit)

}∣∣∣∣∣η
t−1
i , ageTi

]
= τ ℓ.

Likewise, we have, for all t ≥ 1 and all ℓ,

(aε0ℓ, ..., a
ε
Kℓ) = argmin

(aε0ℓ,...,aεKℓ)
E

[∫
ρτℓ

(
yit − ηit −

K∑

k=0

aεkℓϕk(aget)

)
fi(η

T
i ; θ)dη

T
i

]
, (24)

and, for all ℓ,

(a
η1
0ℓ , ..., a

η1
Kℓ) = argmin

(aη10ℓ ,...,a
η1
Kℓ)

E

[∫
ρτℓ

(
ηi1 −

K∑

k=0

a
η1
kℓϕk(agei1)

)
fi(η

T
i ; θ)dη

T
i

]
. (25)

In addition to (23)-(24)-(25), the model implies other restrictions on the tail parameters

λ, which are given in appendix. All the restrictions depend on the posterior density fi.

Given the use of piecewise-linear splines, the joint likelihood function of (ηTi , y
T
i |ageTi ; θ) is

available in closed form, and we provide an explicit expression in the appendix. In practice,

this means that it is easy to simulate from fi. We take advantage of this feature in our

estimation algorithm below.

Turning to consumption we have, for all t ≥ 1,

(
α, b

g

1, ..., b
g

K

)
= argmin

(α,bg1,...,b
g
K)

E



∫ (

cit − α−
K∑

k=1

bgkϕ̃k(ait, ηit, yit − ηit, ageit)

)2

gi(η
T
i ; θ, µ)dη

T
i


 ,

where

gi(η
T
i ; θ, µ) = f(ηTi |cTi , aTi , yTi , ageTi ; θ, µ)

denotes the posterior density of (ηi1, ..., ηiT ) given the earnings, consumption, and asset data.

Moreover, the variance of taste shifters satisfies

σ2 = E



∫ (

cit − α−
K∑

k=1

bgkϕ̃k(ait, ηit, yit − ηit, ageit)

)2

gi(η
T
i ; θ, µ)dη

T
i


 .

Lastly we have, for all ℓ,

(
b
a

0ℓ, ..., b
a

Kℓ

)
= argmin

(ba0ℓ,...,baKℓ)
E

[∫
ρτℓ

(
ai1 −

K∑

k=0

bakℓϕ̃k(ηi1, agei1)

)
gi(η

T
i ; θ, µ)dη

T
i

]
,

with additional restrictions characterizing tail parameters given in the appendix.
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Overview of the algorithm. Here we describe the estimation of the earnings parameters

θ. Estimation of the consumption parameters µ is similar. The estimation algorithms are

described in detail in the appendix.

A compact notation for the restrictions implied by the earnings model is

θ = argmin
θ

E

[∫
R(yi, η; θ)fi(η; θ)dη

]
,

where R is a known function and θ denotes the true value of θ.

Our estimation algorithm is closely related to a “stochastic EM” algorithm of Celeux

and Diebolt (1993). Stochastic EM is a simulated version of the classical EM algorithm of

Dempster et al. (1977), where new draws from η are computed in every iteration of the algo-

rithm.16 One difference is that, unlike in EM, our problem is not likelihood-based. Instead,

we exploit the computational convenience of quantile regression and replace likelihood max-

imization by a sequence of quantile regressions in each M-step of the algorithm. We explain

below how this difference affects standard errors calculation.

Starting with a parameter vector θ̂
(0)
, we iterate the following two steps on s = 0, 1, 2, ...

until convergence of the θ̂
(s)

process:

1. Stochastic E-step: Draw η
(m)
i = (η

(m)
i1 , ..., η

(m)
iT ) for m = 1, ...,M from fi(·; θ̂

(s)
).

2. M-step: Compute

θ̂
(s+1)

= argmin
θ

N∑

i=1

M∑

m=1

R(yi, η
(m)
i ; θ).

Note that, as the likelihood function is available in closed form, the E-step is straightfor-

ward. In practice we use a random-walk Metropolis-Hastings sampler for this purpose. The

M-step consists of a number of ordinary regressions and quantile regressions. For example,

the parameters aQkℓ are updated as

min
(aQ0ℓ,...,a

Q
Kℓ)

N∑

i=1

T∑

t=2

M∑

m=1

ρτℓ

(
η
(m)
it −

K∑

k=0

aQkℓϕk(η
(m)
i,t−1, ageit)

)
, ℓ = 1, ..., L,

which is a set of standard quantile regressions, with convex objectives. We proceed in a

similar way to update all other parameters. See the appendix for details.

16Nielsen (2000b) compares the “stochastic EM” algorithm with the “simulated EM” algorithm of McFad-
den and Ruud (1994), where in contrast the same underlying uniform draws are re-used in every iteration.
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Properties. Nielsen (2000a) studies the statistical properties of the stochastic EM algo-

rithm in a likelihood case. He provides conditions under which the Markov Chain θ̂
(s)

is

ergodic, for a fixed sample size. In addition, he also characterizes the asymptotic distribu-

tion of θ̂
(s)

as N increases. Specifically, he shows that the Markov Chain
√
N
(
θ̂
(s) − θ

)

tends to an autoregressive Gaussian process as N tends to infinity, and provides analytical

expressions for its asymptotic variance.

In the appendix we rely on Nielsen’s work to characterize the asymptotic distribution of

θ̂
(s)

in our model, where the optimization step is not likelihood-based but based on different

estimating equations. If s corresponds to a draw from the ergodic distribution of the Markov

Chain, then
√
N
(
θ̂
(s) − θ

)
d→ N (0, Vθ),

where the expression of Vθ is given in the appendix.

In practice, we stop the chain after a large number of iterations and we report an average

across the last S̃ values θ̂ = 1

S−S̃

∑S

s=S̃+1 θ̂
(s)
. Then, given estimates of the earnings param-

eters θ̂, we use a similar algorithm to estimate the consumption-related parameters µ̂. The

form of the asymptotic variance of µ̂ accounts for the sequential nature of the estimation.

Finally, note that, in the above asymptotic analysis, we have let the sample sizeN increase

for fixed values of K and L. This amounts to assuming that the fixed-K,L parametric model

is well-specified. An alternative, nonparametric approach, would be to let K and L increase

with N at an appropriate rate so as to let the approximation bias tend to zero. Arellano and

Bonhomme (2013) show consistency in a case where K is fixed and L = LN tends to infinity

with N . Belloni, Chernozhukov and Fernandez-Val (2012) consider a quantile regression

model for fixed τ and K = KN tends to infinity, and derive inference results. Studying

inference in our problem as (N,K,L) jointly tend to infinity is an interesting avenue for

future work.

7 Preliminary empirical results

Earnings. We start by commenting on the empirical estimates of the earnings process.

Figure 1 (a) shows estimates of the average derivative of the conditional quantile function of

yit given yi,t−1 with respect to yi,t−1 in the PSID sample. To compute these numbers, we use

a modelling analogous to (20), except that the dependent variable is yit and the conditioning

set only includes yi,t−1. The specification is based on a third-order Hermite polynomial.
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Figure 1: Nonlinear persistence

(a) Earnings, PSID data (b) Earnings, nonlinear model
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(c) Earnings, canonical model (d) Persistent component ηit, nonlinear model
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Note: Graphs (a), (b), and (c) show estimates of the average derivative of the conditional quantile

function of yit given yi,t−1 with respect to yi,t−1, evaluated at percentile τ shock and at a value of

yi,t−1 that corresponds to the τ init percentile of the distribution of yi,t−1. Graph (a) is based on

the PSID data, graph (b) is based on data simulated according to our nonlinear earnings model

with parameters set to their estimated values, and graph (c) is based on data simulated according

to the canonical random walk earnings model. Graph (d) shows estimates of the average derivative

of the conditional quantile function of ηit on ηi,t−1 with respect to ηi,t−1, based on estimates from

the nonlinear earnings model.
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Figure 2: Densities of persistent and transitory earnings components

(a) Persistent component ηit (b) Transitory component εit
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Note: Nonparametric estimates of densities based on simulated data according to the nonlinear

model, using a Gaussian kernel.

Figure 1 (a) shows clear evidence of nonlinear persistence. Persistence is highest when

high earnings households (that is, high τ init) are hit by a good shock (high τ shock), and

when low earnings households (that is, low τ init) are hit by a bad shock (low τ shock). In

both cases, estimated persistence is close to .9 – 1. In contrast, bad shocks hitting high-

earnings households, and good shocks hitting low-earnings ones, are associated with much

lower persistence, as low as .3 – .4.

Figure 1 (b), which is based on simulated data, shows that our nonlinear model repro-

duces these patterns well. In contrast, standard models have difficulty fitting this empirical

evidence. For example, we estimated a simple version of the canonical earnings dynamics

model with a random walk component and independent transitory shocks.17 Figure 1 (c)

shows that the average derivative of the quantile function is approximately constant (up to

simulation error) with respect to τ shock and τ init. This stands in sharp contrast with the data,

and suggests that interaction effects between earnings shocks and past earnings components

are key.18

Figure 1 (d) then shows the estimated persistence of the earnings component ηit in model

(1)-(2). Specifically, the graph shows ρt(ηi,t−1, τ) from equation (3), evaluated at percentiles

17Estimation is based on equally-weighted minimum distance using the covariance structure predicted by
the canonical model.

18Models with variance dynamics such as Meghir and Pistaferri (2004) do not seem able to reproduce the
nonlinear asymmetric effects apparent in Figure 1 (a) either.
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τ init and τ shock and at the mean age in the sample (47.5 years). Persistence in ηit is higher

than persistence in yit, consistently with the fact that Figure 1 (d) is net of transitory shocks.

Persistence is close to 1 for high earnings households hit by good shocks, and for low earnings

households hit by bad shocks. At the same time, persistence is lower, down to .6 – .8, when

bad shocks hit high-earnings households or good shocks hit low-earnings ones.

Figure 2 shows estimates of the marginal distributions of the persistent and transitory

earnings components. While the persistent component ηit shows small departures from

Gaussianity, the density of εit is clearly non-normal and presents high kurtosis and fat tails.

These results are qualitatively consistent with empirical estimates of non-Gaussian linear

models in Horowitz and Markatou (1996) and Bonhomme and Robin (2010).

Consumption. We next turn to consumption-related parameters. Figure 3 (a) shows es-

timates of the average derivative of the conditional mean of cit given yit, ait and ageit with

respect to yit. The function is evaluated at percentiles τassets and τage, and averaged over

yit. We use tensor products of Hermite polynomials with degrees (2, 2, 1). The consumption

coefficient is about .3 on average. Moreover, the results suggest that the consumption of

older households, and of households with higher assets, responds less to variations in earn-

ings. Figure 3 (b) shows the same response surface based on simulated data from our full

nonlinear model of earnings and consumption. The fit of the model, though not perfect,

seems reasonable.

Note that our model fits poorly the dynamics of consumption (not shown). While the

covariances between earnings and consumption levels are well reproduced, the model under-

estimates the first and higher-order autocorrelations in consumption. Allowing for household

unobserved heterogeneity in consumption, as outlined in Section 5, should help improve the

fit.

Figure 3 (c) shows estimates of the average consumption response φt(a) to variations

in the persistent component of earnings, see equation (11). This parameter measures the

degree of consumption insurance to persistent earnings shocks, as a function of age and

assets. On average this parameter is about .4, suggesting that more than half of earnings

fluctuations is effectively insured. Moreover, variation in assets and age suggests the presence

of an interaction effect. In particular, older households with high assets seem virtually fully

insured against earnings fluctuations.
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Figure 3: Consumption responses to earnings shocks, by assets and age

(a) Consumption response to earnings (b) Consumption response to earnings
PSID data Nonlinear model
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(c) Consumption response to ηit (d) Consumption response to εit
Nonlinear model Nonlinear model
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Note: Graphs (a) and (b) show estimates of the average derivative of the conditional mean of cit
given yit, ait and ageit with respect to yit, evaluated at values of ait and ageit that corresponds to

their τassets and τage percentiles, and averaged over the values of yit. Graph (a) is based on the PSID

data, and graph (b) is based on data simulated according to our nonlinear model with parameters set

to their estimated values. Graphs (c) and (d) show estimates of the average consumption responses

φt(a) and ψt(a) to variations in ηit and εit, respectively, evaluated at τassets and τage; see equation

(11).
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In Figure 3 (d) we report estimates of ψt(a) to variations in the transitory component of

earnings. The coefficient is negative, and shows little variation with age and assets. While

consistent with some of the results obtained by Blundell, Pistaferri and Saporta-Eksten

(2012), a negative response coefficient seems puzzling.

Model’s simulation. Next, we simulate life-cycle earnings and consumption according to

our nonlinear model, and document the evolution of earnings and consumption following a

persistent earnings shock. In Figure 4 we report the difference between the earnings paths of

two types of households: households that are hit at age 37 by either a large negative shock to

the persistent earnings component (τ shock = .10), or by a large positive shock (τ shock = .90),

and households that are hit by a median shock τ = .50 to the persistent component. We

report age-specific averages across 100,000 simulations of the model. At the start of the

simulation (age 35) all households have the same persistent component indicated by the

percentile τ init.

In order to simulate consumption paths, we need to specify the evolution of assets. We

estimate the following rule from the PSID data

ait = da0 + da1ai,t−1 + da2yi,t−1 + da3ci,t−1 + υit, t = 2, ..., T, (26)

and simulate assets according to (26) while assuming that υit is iid and normally distributed.

It will be important to assess the sensitivity of our results to the assets accumulation rule.

Earnings responses are consistent with the presence of strong interaction effects between

the rank in the distribution of earnings component (τ init) and the magnitude of the shock to

the persistent component (τ shock). While a large negative shock (τ shock = .10) is associated

with a 7% drop in earnings for low and medium earnings households (τ init = .10 or .5),

it is associated with a 17% drop for high-earnings households (τ init = .90). We also find

strong interaction effects in the response to large positive shocks (τ shock = .90). Moreover,

the persistence of these shocks over the life cycle also depends on the initial condition. For

example, Figure 4 (e) shows a very slow recovery from a negative earnings shock when

starting from a high-earnings position, while graph (a) shows a quicker recovery. Lastly, in

graphs (g) and (h) we report results based on the canonical model, where interaction effects

are absent by assumption. The implications of the nonlinear earnings model thus differ

markedly from those of standard linear models.
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Figure 4: Impulse responses, earnings

Nonlinear model
τ init = .1

(a) τ shock = .1 (b) τ shock = .9
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(e) τ shock = .1 (f) τ shock = .9
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(g) τ shock = .1 (h) τ shock = .9
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Note: Persistent component at percentile τ init at age 35. The graphs show the difference between a

household hit by a shock τ shock at age 37, and a household hit by a .5 shock at the same age. Age-

specific means across 100,000 simulations. Graphs (a) to (f) correspond to the nonlinear model.

Graphs (g) and (h) correspond to the canonical model of earnings dynamics.
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Figure 5: Impulse responses, consumption

Nonlinear model
τ init = .1

(a) τ shock = .1 (b) τ shock = .9
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(c) τ shock = .1 (d) τ shock = .9
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(e) τ shock = .1 (f) τ shock = .9
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Canonical model
(g) τ shock = .1 (h) τ shock = .9
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Note: Persistent component at percentile τ init at age 35. The graphs show the difference between

a household hit by a shock τ shock at age 37, and a household hit by a .5 shock at the same age.

Age-specific means across 100,000 simulations. Graphs (a) to (f) correspond to the nonlinear

model. Graphs (g) and (h) correspond to the canonical model of earnings dynamics and a linear

consumption rule.
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Figure 6: Impulse responses, by age and initial assets

Earnings
τ init = .9, τ shock = .1 τ init = .1, τ shock = .9
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Note: See notes to Figures 4 and 5. Initial assets at age 35 (for “young” households) or 53 (for

“old” households) are at percentile .10 (blue curves) and .90 (green curves).
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In Figure 5 we report the results of a similar exercise to Figure 4, but we now focus on

consumption responses. We see that the nonlinearities observed in the earnings response

matter for consumption too. For example, while a large negative shock (τ shock = .10)

is associated with a 3% drop in consumption for low or medium earnings households, it

is associated with a 9% drop for high-earnings households. We also observe differences in

persistence across the different scenarios. In addition, on graphs (g) and (h) we report results

based on the canonical model with a linear consumption rule.19 Here also, interaction effects

are absent by construction.

Lastly, in Figure 6 we perform similar exercises, while varying the timing of shocks and

the asset holdings that individuals possess. Graphs (a) to (d) suggest that a negative shock

(τ shock = .10) for high-earnings households has a higher impact on earnings at later ages:

the earnings drop is 23% when the shock hits at age 55, compared to 17% when is hits at

age 37. The impact of positive shocks for low earnings individuals does not seem to vary

with age.

Graphs (e) to (h) show the consumption responses. The results suggest that the con-

sumption of older households responds less than the one of younger households. Moreover,

while the presence of asset holdings does not seem to affect the insurability of earnings shocks

for younger households, it does seem to attenuate the consumption response for households

who are hit later in the life-cycle. These results are consistent with the estimates of φt(a)

reported in Figure 3.

8 Conclusion

Our nonlinear model sheds new light on the nonlinear transmission of earnings shocks and

the nature of consumption insurance. It also provides a framework to assess the suitability

of existing life-cycle models of consumption and savings, and potentially help guide the

development of new models. The next step on our agenda is to assess the consumption

responses to our nonlinear earnings process in the context of a standard life-cycle model,

and to document to which extent the model’s predictions are consistent with the empirical

facts that we have uncovered.

19Specifically, cit is modelled as a linear function of ηit, εit, and an independent additive error term i.i.d.
over time. The model is estimated by equally-weighted minimum distance.
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APPENDIX

A Sketch of the argument in Wilhelm (2012)

We consider model (1)-(2) with T = 3. Let L2(f) denote the set of squared-integrable func-
tions with respect to a weight function f . We define Ly2|y1 as the linear operator such that
Ly2|y1h(a) = E [h(y2)|y1 = a] ∈ L2(fy1) for every function h ∈ L2(fy2). Similarly, let Lη2|y1

be
such that Lη2|y1

h(a) = E [h(η2)|y1 = a] ∈ L2(fy1) for every function h ∈ L2(fη2). We denote as
R
(
Ly2|y1

)
the range of Ly2|y1 , that is

R
(
Ly2|y1

)
= {k ∈ L2(fy1), s.t. k = Ly2|y1h for some h ∈ L2(fy2)}.

Assumption 1

(i) Ly2|y1 and Lη2|y1
are injective.

(ii) There exists a function h ∈ L2(fy3) such that

E [h(y3)|y1 = a] ∈ R
(
Ly2|y1

)
, and (A1)

E [y2h(y3)|y1 = a] ∈ R
(
Ly2|y1

)
. (A2)

Thus, there exist s1 and s2 in L2(fy2) such that

E [h(y3)|y1 = ·] = Ly2|y1s1, and E [y2h(y3)|y1 = ·] = Ly2|y1s2.

(iii) Let s̃1(y) = ys1(y). The Fourier transforms F(s1), F(s̃1), and F(s2) (where F(h)(u) =∫
h(x)eiuxdx) are ordinary functions. Moreover, F(s1)(u) 6= 0 for all u ∈ R.

Part (i) is an injectivity/completeness condition. Part (ii) is not standard. It is related to
the existence problem in nonparametric instrumental variables. Horowitz (2009) proposes a test
for (A1) in the case where Ly2|y1 is a compact operator. Part (iii) is a high-level assumption; see
Wilhelm (2012) for more primitive conditions.

By Assumption 1-(ii) we have, almost surely in y1,

E [h(y3)|y1] = E [s1(y2)|y1] ,
E [y2h(y3)|y1] = E [s2(y2)|y1] .

Moreover, s1 and s2 are the unique solutions to these equations by Assumption 1-(i).
Hence, given the model’s assumptions

E [E (h(y3)|η2) |y1] = E [E (s1(y2)|η2) |y1] a.s.

It thus follows from the injectivity of Lη2|y1
in Assumption 1-(i) that, almost surely in η2,

E [h(y3)|η2] = E [s1(y2)|η2] . (A3)

Likewise, E [y2h(y3)|η2] = E [s2(y2)|η2]. Hence

η2E [h(y3)|η2] = E [s2(y2)|η2] a.s. (A4)

Combining (A3) and (A4), we obtain

η2E [s1(y2)|η2] = E [s2(y2)|η2] a.s.
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That is, almost surely in η2,

η2

∫
s1(y)fε2(y − η2)dy =

∫
s2(y)fε2(y − η2)dy. (A5)

The functional equation (A5) depends on s1 and s2, which are both uniquely determined given
the data generating process, and on the unknown fε2 . By Assumption 1-(iii) we can take Fourier
transforms and obtain

iF(s1)(u)
dψε2

(−u)
du

+ F(s̃1)(u)ψε2
(−u) = F(s2)(u)ψε2

(−u), (A6)

where ψε2
(u) = F(fε2)(u) is the characteristic function of ε2.

Noting that ψε2
(0) = 1, (A6) can be solved in closed form for ψε2

(·), because F(s1)(u) 6= 0
for all u by Assumption 1-(iii). This shows that the characteristic function of εi2, and hence its
distribution function, are identified.

B Inference for Stochastic EM

We rewrite the moment restrictions implied by the earnings problem in a compact notation

E[Ψ(y, η; θ)] = 0,

where y is observed, η is latent, and θ (with true value θ) is a finite-dimensional parameter vector
of same dimension as Ψ. The consumption problem may be written in a similar way.

Equivalently, we have

E

[∫
Ψ(y, η; θ)f(η|y; θ)dη

]
= 0.

The stochastic EM algorithm for this problem works as follows, based on an i.i.d. sample

(y1, ..., yN ). Iteratively, one draws θ̂
(s+1)

given θ̂
(s)

in two steps:20

1. Draw (η
(s)
1 , ..., η

(s)
N ) from the posterior distribution of (η|y; θ̂(s)).

2. Solve for θ̂
(s+1)

in

1

N

N∑

i=1

Ψ(yi, η
(s)
i ; θ̂

(s+1)
) = 0.

This results in a Markov Chain (θ̂
(0)
, θ̂

(1)
, ...), which is ergodic under suitable conditions. More-

over, under conditions given in Nielsen (2000a), asymptotically as N tends to infinity the process√
N(θ̂

(s) − θ) converges to a Gaussian autoregressive process. In the rest of this section we charac-
terize its asymptotic mean and variance.21

Note that, using a conditional quantile representation,

η
(s)
i = Qη|y(v

(s)
i |yi; θ̂

(s)
),

where v
(s)
i are standard uniform draws, independent of yi.

20For simplicity we focus on the version of the algorithm with M = 1 draw per individual observation.
21Note that in our earnings and consumption model, some of the moment restrictions involve derivatives

of “check” functions, which are not smooth. This is however not central to the discussion that follows, as it
does not affect the form of the asymptotic variance.
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We thus have

1

N

N∑

i=1

Ψ
(
yi, Qη|y(v

(s)
i |yi; θ̂

(s)
); θ̂

(s+1)
)
= 0.

Expanding around θ, we obtain

A
(
θ̂
(s+1) − θ

)
+B

(
θ̂
(s) − θ

)
+ Z(s) = op

(
N− 1

2

)
,

where

A ≡ E

[
∂

∂θ′

∣∣∣∣∣
θ

Ψ
(
y,Qη|y(v|y; θ); θ

)
]

= E

[
∂Ψ
(
y, η; θ

)

∂θ′

]
,

B ≡ E

[
∂

∂θ′

∣∣∣∣∣
θ

Ψ
(
y,Qη|y(v|y; θ); θ

)
]

=
∂

∂θ′

∣∣∣∣∣
θ

E

[∫
Ψ(y, η; θ)f(η|y; θ)dη

]

= E

[
Ψ(y, η; θ)

∂ ln f(η|y; θ)
∂θ′

]
, and

Z(s) ≡ 1

N

N∑

i=1

Ψ
(
yi, Qη|y(v

(s)
i |yi; θ); θ

)
.

Note that,

A+B =
∂

∂θ′

∣∣∣∣∣
θ

E

[∫
Ψ(y, η; θ)f(η|y; θ)dη

]
= E

[
∂

∂θ′

∣∣∣∣∣
θ

∫
Ψ(y, η; θ)f(η|y; θ)dη

]
.

The GMM identification condition thus requires A + B < 0, so (−A)−1B < I. This implies that

the autoregressive process
√
N
(
θ̂
(s) − θ

)
is asymptotically stable.

We thus have
√
N
(
θ̂
(s) − θ

)
=

∞∑

k=0

(
−A−1B

)k (−A−1
)√

NZ(s−k).

Note that
√
NZ(s) are iid normal (0,W ), where

W = E

[
Ψ
(
y, η; θ

)
Ψ
(
y, η; θ

)′]
.

Hence √
N
(
θ̂
(s) − θ

)
d→ N (0, Vθ) ,

where Vθ =
∑∞

k=0

(
−A−1B

)k (−A−1
)
W
(
−A−1

)′ ((−A−1B
)k)′

.

Finally, Vθ can be recovered from the following matrix equation

A−1BVθB
′(A−1)′ = Vθ −A−1W (A−1)′,

which can easily been solved in vector form.
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C Estimation algorithm

Additional model restrictions. The tail parameters λ satisfy simple moment restrictions.
For example, we have

λ
Q

− = −
E

[∫
1
{
ηit ≤

∑K
k=0 a

Q
k1ϕk(ηi,t−1, ageit)

}
fi(η

T
i ; θ)dη

T
i

]

E

[∫ (
ηit −

∑K
k=0 a

Q
k1ϕk(ηi,t−1, ageit)

)
1
{
ηit ≤

∑K
k=0 a

Q
k1ϕk(ηi,t−1, ageit)

}
fi(ηTi ; θ)dη

T
i

] ,

(C7)
and

λ
Q

+ =
E

[∫
1
{
ηit ≥

∑K
k=0 a

Q
kLϕk(ηi,t−1, ageit)

}
fi(η

T
i ; θ)dη

T
i

]

E

[∫ (
ηit −

∑K
k=0 a

Q
kLϕk(ηi,t−1, ageit)

)
1
{
ηit ≥

∑K
k=0 a

Q
kLϕk(ηi,t−1, ageit)

}
fi(ηTi ; θ)dη

T
i

] ,

(C8)
with similar equations for the other tail parameters.

Likelihood function. The likelihood function is (omitting the conditioning on age for concise-
ness)

f(yTi , c
T
i , a

T
i , η

T
i ; θ, µ) =

T∏

t=1

f(yit|ηit; θ)
T∏

t=1

f(cit|ait, ηit, yit;µ)
T∏

t=2

f(ait|ai,t−1, yi,t−1, ci,t−1)

×
T∏

t=2

f(ηit|ηi,t−1; θ)f(ai1|ηi1;µ)f(ηi1; θ). (C9)

Up to the term
∏T

t=2 f(ait|ai,t−1, yi,t−1, ci,t−1), which does not depend on η, the likelihood
function is fully specified and available in closed form. For example, we have

f(yit|ηit; θ) = 1 {yit − ηit < Aε
it(1)} τ1λε− exp

[
λε− (yit − ηit −Aε

it(1))
]

+
L−1∑

ℓ=1

1 {Aε
it(ℓ) ≤ yit − ηit < Aε

it(ℓ+ 1)} τ ℓ+1 − τ ℓ
Aε

it(ℓ+ 1)−Aε
it(ℓ)

+1 {Aε
it(L) ≤ yit − ηit} (1− τL)λ

ε
+ exp

[
−λε+ (yit − ηit −Aε

it(L))
]
,

where Aε
it(ℓ) ≡

∑K
k=0 a

ε
k,ℓϕk(ageit) for all (i, t, ℓ). Note that the likelihood function is non-negative

by construction. In particular, drawing from the posterior density of η automatically produces
rearrangement of the various quantile curves (Chernozhukov, Galichon and Fernandez-Val, 2010).

Earnings algorithm. Start with θ̂
(0)

. Iterate on s = 0, 1, 2, ... the two following steps.

Stochastic E-step: Draw M values η
(m)
i = (η

(m)
i1 , ..., η

(m)
iT ) from

f(ηTi |yTi ; θ̂
(s)

) ∝
T∏

t=1

f(yit|ηit; θ̂
(s)

)
T∏

t=2

f(ηit|ηi,t−1; θ̂
(s)

)f(ηi1; θ̂
(s)

),

where a ∝ b means that a and b are equal up to a proportionality factor independent of η.
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M-step: Compute, for ℓ = 1, ..., L,

(
â
Q,(s+1)
0ℓ , ..., â

Q,(s+1)
Kℓ

)
= argmin

(aQ0ℓ,...,a
Q
Kℓ)

N∑

i=1

T∑

t=2

M∑

m=1

ρτℓ

(
η
(m)
it −

K∑

k=0

aQkℓϕk(η
(m)
i,t−1, ageit)

)
,

(
â
ε,(s+1)
0ℓ , ..., â

ε,(s+1)
Kℓ

)
= argmin

(aε0ℓ,...,a
ε
Kℓ)

N∑

i=1

T∑

t=1

M∑

m=1

ρτℓ

(
yit − η

(m)
it −

K∑

k=0

aεkℓϕk(ageit)

)
,

(
â
η1,(s+1)
0ℓ , ..., â

η1,(s+1)
Kℓ

)
= argmin

(aη10ℓ ,...,a
η1
Kℓ)

N∑

i=1

M∑

m=1

ρτℓ

(
η
(m)
i1 −

K∑

k=0

a
η1
kℓϕk(agei1)

)
,

and compute

λ̂
Q,(s+1)

− = −
∑N

i=1

∑T
t=2

∑M
m=1 1

{
η
(m)
it ≤ Â

Q,(s+1)
itm

}

∑N
i=1

∑T
t=2

∑M
m=1

(
η
(m)
it − Â

Q,(s+1)
itm

)
1
{
η
(m)
it ≤ Â

Q,(s+1)
itm

} ,

where

Â
Q,(s+1)
itm ≡

K∑

k=0

â
Q,(s+1)
k1 ϕk(η

(m)
i,t−1, ageit),

with similar updating rules for λ̂
Q,(s+1)

+ , λ̂
ε,(s+1)

− , λ̂
ε,(s+1)

+ , λ̂
η1,(s+1)

− , and λ̂
η1,(s+1)

+ .

In practice, we start the algorithm with different choices for θ̂
(0)

, and we select the parameter
values that correspond to the highest average complete-data likelihood.

Consumption algorithm. Similar to the earnings algorithm. One difference is that in the

stochastic E-step we draw η
(m)
i from

f(ηTi |yTi , cTi , aTi ; θ̂, µ̂(s)) ∝
T∏

t=1

f(yit|ηit; θ̂)
T∏

t=1

f(cit|ait, ηit, yit; µ̂(s))

×
T∏

t=2

f(ηit|ηi,t−1; θ̂)f(ai1|ηi1; µ̂(s))f(ηi1; θ̂).
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