
L-ESTIMATION FOR LINEAR HETEROSCEDASTIC MODELSbyROGER KOENKERandQUANSHUI ZHAOUniversity of Illinois at Urbana-ChampaignABSTRACTL-estimators based on a weighted regression quantile process areconsidered for a class of linearly heteroscedastic regression models.It is shown that the resulting estimators are \e�cient" in the senseintroduced by Gutenbrunner(1992).1. INTRODUCTIONL-statistics, or linear combinations of order statistics, o�er a rich source ofestimators for the (univariate) one-sample problem. Bickel and Lehmann (1975) intheir survey of descriptive statistics for nonparametric models conclude:Of the three classes considered [M, L, and R estimators], it is foundthat trimmed expectations (and certain other weighted quantiles)are the only ones which are both robust and whose estimators haveguaranteed high e�ciency ...There have been several suggestions for extending the L-estimator approach to thelinear model. Bickel's (1973) one-step approach was pioneering, but su�ered from alack of equivariance. This was later remedied in the important work of Welsh (1987)who constructed one-step L-estimators for the linear model which satis�ed naturalequivariance requirements as well as exhibiting asymptotic behavior analogous tothat of one-sample L-statistics. 1



Two other approaches to L-estimators for linear models have been suggestedby work on quantile regression. Koenker and Bassett (1978) considered discretelinear combinations of \regression quantiles" which they de�ned as�̂(� ) = argminb2RpX �� (yi � x0ib)where �� (u) = u(� � I(u < 0)): Since these p-dimensional analogues of the samplequantiles have asymptotic behavior like that of their one-sample counterparts it wasstraightforward to establish that estimators of the formmXi=1 wi�̂n(�i)had analogous asymptotic behavior to the \systematic statistics" investigated byMosteller (1946), Bennett (1952) and many others. This approach was later ex-tended to general weight functions~��n = Z 10 �̂n(� )d�(� )in Koenker and Portnoy (1987), Koenker and Portnoy (1989), and Gutenbrunnerand Jure�ckov�a(1992). An excellent recent treatment of similar models from thestandpoint of M-estimation is contained in Carroll and Ruppert(1988).1.1 L-estimators for linear models with iid errorsConsider the classical linear modelyi = x0i� + uiwith iid fuig from distribution function F , and x1i = 1 for i = 1; : : : ; n: Let �be a �nite signed measure concentrated on a compact subinterval of (0; 1), thenunder mild further conditions on F and the design sequence we have, setting e1 =(1; 0; : : : ; 0)0; pn( ~��n � �(�; F )) �!D N (0; �2(�; F )Q�10 )2



where �(�; F ) = �(0; 1)� + �(�; F )e1�(�; F ) = Z F�1(t)d�(t)�2(�; F ) = Z Z t ^ s � stf(F�1(s))f(F�1(t))d�(t)d�(s);and Q0 = limn!1n�1(X 0X) :This result directly parallels the theory for one-sample L-statistics. Note that forprobability measures �; or more generally for any � such that �(0; 1) = 1, ~��n islocation equivariant; while if � has total mass zero, ~��n is location invariant. Inthe latter case natural estimators of scale may be constructed by requiring that�(0; u] � 0 for all u 2 (0; 1): To illustrate, the asymptotically optimal L-estimatorfor � when F is Cauchy would employ �(A) = RA J(u)du whereJ(u) = 2 cos(2�u)(cos(2�u) � 1)and the asymptotically optimal L-estimator for scale when F is Cauchy would useJ(u) = 8 cos3(�(u� 1=2)) sin(�(u� 1=2)):Note that the optimal Cauchy score function for location is negative in the tailsso extreme order statistics receive negative weight. In applications it would beadvisable to trim the Cauchy J functions to remove the e�fect of the extreme orderstatistics on the estimator. A more conventional example might be the optimalB-robust L-estimators at the normal model. See, e.g., Hampel et al (1986, p. 124).For location in this case we have the familiar trimmed mean,J(u) = (1� 2�)�1I(� < u < 1� �)3



while for scale we have for 0 < �0 < �1 < 12 ;J(u) = ��1(u)I(�0 < u < �1 or 1� �1 < u < 1� �0)=(2�1 � 2�0):See Welsh (1990) for a detailed treatment of the latter estimator as well as anexcellent general discussion of L-estimation of scale.Gutenbrunner and Jure�ckov�a(1992) introduce a second approach to L-statisticsfor the linear model based on the regression rankscore process,ân(� ) = argmaxfy0aja 2 [0; 1]n; X 0a = (1� � )X 01gwhich is formally dual to the regression quantile problem in the sense of linearprogramming. For � generated as �(A) = RA J(t)dt with R 10 J(t)dt = 1; they setĴ = diag(Ĵni); Ĵni = Z 10 âni(t)dJ(t)and for J(t) > 0 let ���n = (X 0ĴX)�1X 0Ĵywhile for general J = J+�J� they de�ne ���n = ���+n � ����n : The simplest (and there-fore perhaps most compelling) form of this is the so-called trimmed least squaresestimator for which J�(t) = (1 � 2�)�1I(� < u < 1� �)which generates weights, Ĵni = âni(�)� âni(1� �):Noting that âni(� ) = 1 if yi > x0i�̂n(� ), equals zero if yi < x0i�̂n(� ) and takessome intermediate value otherwise, we see that for J�(t) the weights Ĵni are one if4



x0i�̂n(�) < yi < x0i�̂n(�); Ĵni = 0 if yi lies strictly outside this interval, and take anintermediate value otherwise, that is if yi = x0i�̂(� ) for � 2 f�; 1 � �g. A simplerversion of this, which used only 0 � 1 weights was considered earlier by Ruppertand Carroll (1980). Gutenbrunner and Jure�ckov�a(1992) establish the asymptoticequivalence of ~��n and ���n under iid error conditions as well as under contiguousalternatives. They also consider more general linear regression-scale models forwhich the asymptotic behavior of the two estimators diverge.1.2 L-estimators for linearly heteroscedastic modelsA more general, natural setting for quantile regression and L-estimators inparticular is the linear heteroscedastic modelyi = x0i� + x0iuiwhere again the fuig are iid from F . In this model ~��n based on the unweightedregression quantiles can be shown (Gutenbrunner and Jure�ckov�a(1992)) to satisfy,pn( ~��n � �n(�; F )) �!D N (0; �2(�; F )Q�11 Q0Q�11 )where e1 is replaced by  in the de�nition of �(�; F ); Qr = limn�1X 0��rX; r =0; 1; 2; and � = diag(x0i): To contrast the behavior of ~��n and ���n under this linearheteroscedastic model it is convenient to contrast their linear representations. Thus,~��n = K1~y(�; F ) + op(n� 12 )where, as above, we will write, following Gutenbrunner and Jure�ckov�a(1992),Kr = (X 0��rX)�1X 0��r ; r = 0; 1~yi(�; F ) = x0i� + x0i( �;F (ui)� �(�; F ))5



and  �;F (u) = Z (t� I(F (u) � t))(f(F�1(t)))�1d�(t):We may interpret this representation as establishing an asymptotic equivalence (toorder n� 12 ) for ~��n and the pseudo-estimator de�ned by the weighted least squaresregression of X on the pseudo-observations ~y(�; F ) using weights ��1.In contrast, from Gutenbrunner and Jure�ckov�a(1992, Theorem 3),���n = K0�y(�; F ) +K1(~y(�; F ) � �y(�; F )) + op(n� 12 )where �yi(�; F ) = x0i� + x0i � J;F (ui)� J;F (u) = � J(F (u))[u� �(�; F )] if J > 0� J+;F (u) � � J� ;F (u) otherwise:�It follows that ~��n and ���n have di�erent asymptotic behavior when  6= e1.Gutenbrunner (1992) has proposed a modi�cation of ���n which \corrects" for thee�ect of the linear heteroscedasticity. For any estimator n satisfyinĝn =  +Op(n� 12 )he constructs B̂�n = Z (�̂n1(u) � ~��n1)(âni(u)� 1� u)dJ(u)�n = diag(X̂n)and shows that the estimator���n = (X 0Ĵ�̂�2X)�1X 0(Ĵ �̂�2y � �̂�1B̂�n)has the linear representation,���n = �(�; F ) + (X 0��2X)�1X 0��2	�;F + op(n� 12 )6



where 	�;F = ( �;F (ui)) and  �;F is the inuence function of the L-statistic F !R F�1d�; de�ned above. It follows immediately thatpn( ���n � �(�; F )) �!D N (0; �2(�; F )Q�12 ):The �rst term of this \e�cient" L-estimator, ���n represents a natural reweightingof the original form of ���n to accomodate the heterogeneity in scale of the model.However, the second term is more surprising. Gutenbrunner (1992) refers to it as a\ `smooth Winsorizing' of residuals because we did not use the `right' RQ's, namelythe optimally weighted RQ's." He also notes that this term is closely related tothe Winsorization employed in Welsh (1987) to construct one-step L-estimators forthe linear model. In e�ect the �rst coordinate of the centered regression quantileprocess is used to estimate F�1(u)��(�; F ) and then to adjust the dual L-statistic.The foregoing discussion raises a natural question: can one, by simply estimat-ing an appropriately weighted regression quantile process, construct primal (anddual) L-estimators which achieve the same \e�cient" asymptotic behavior as ���n?An a�rmative answer to this question is provided in the next section. Proofs arecollected in the last section. 2. RESULTSConsider the linearly heteroscedastic modelyi = x0i� + (x0i)ui i = 1; : : : ; n (2:1)where the random variables fuig are iid with distribution function F . We willemploy the following conditionsC1. �i � x0i > 0; i = 1; : : : ; n. 7



C2. n�1P��rxix0i = Qr + Rrn where Qr : r = 0; 1; 2; are positive de�nite,and the maximum eigenvalues �max(Qrn) �! 0; for r = 0; 1 and �max(R2n) =O(n�1=4).C3. Pn1 k xi=�i k3= O(n).C4. maxi k xi=�i k= O(n1=4).C5. F has a density f and there exists � > 0, such that s(u) � f(F�1(u)) > 0and s0(u) is uniformly bounded for u 2 [�; 1� �].Conditions C3 - C5 are adopted directly from Koenker and Portnoy (1987)with xi=�i in place of xi used there. C1 and C2 are somewhat modi�ed versionsof Gutenbrunner's (1992) conditions, and are necessary for the pn-consistency ofthe preliminary estimator of : Obviously, we can, if we so desire, restrict theform of (2.1) so that di�erent vectors of covariates appear in the location and scalecomponents of the regression function, at the cost of some increased notationalcomplexity.Under these conditions the results of Gutenbrunner and Jure�ckov�a(1992) andGutenbrunner (1992) assure a pn consistent estimator ̂n in the following sense:we will say that ̂n is pn-consistent up to scale if for some F dependent constant�, ̂n = ��1 + n�1=2��1�̂nwith �̂n = Op(1): Given such an estimator we may compute the weighted regressionquantile process, �̂n(�; ̂) = argminb2RpX �̂�1i �� (yi � xib) (2:2)where �̂i = x0în. It is obvious that consistency up to scale is su�cient for thereweighting in (2.2) since only relative scale matters. Our main result is the follow-ing Bahadur representation of this weighted regression quantile process.8



THEOREM 2.1 Let ̂n be pn-consistent up to scale, and �(� ) = � + F�1(� ).Then under C1-C5,pn(�̂(�; ̂) � �(� )) = Q�12f(F�1(� ))n�1=2 nXi=1 ��1i xi � (ui � F�1(� )) +Op(n�1=4 logn)uniformly for � 2 [�; 1� �], where  � (u) = � � I(u < 0).The proof of this theorem is rather complicated and is given in next section. Itshould be noted that when  = e1 the model (1.3) simpli�es to a linear homoscedas-tic model, therefore Theorem 2.1 here implies Theorem 2.1 in Koenker and Portnoy(1987). However, we have removed condition X4 in Koenker and Portnoy (1987),which is very restrictive. Given this representation the following result is immediate.THEOREM 2.2 Under the conditions of Theorem 2.1, let � be a �nite signedmeasure on [0; 1], vanishing o� the interval [�; 1� �] for � 2 (0; 1=2). Then~��n(̂) = Z 10 �̂n(�; ̂)d�(� )satis�es pn( ~��n(̂n) � �(�; F )) �!D N (0; �2(�; F )Q�12 )where �(�; F ) = R 10 �(t)d�(t) and �2(�; F ) is as de�ned above.Finally, by replacing the original unweighted regression rankscore process bythe weighted dual process corresponding to (2.2)ân(�; ̂n) = argmaxfy0�̂�1aja 2 [0; 1]n; X 0�̂�1a = (1� � )X 0�̂�11gand computing Ĵni = Z 10 âni(t; ̂n)dJ(t)9



and ���n(̂n) = (X 0Ĵ �̂�2X)�1X 0Ĵ�̂�2y;Theorem 2.1 and the results of Gutenbrunner and Jure�ckov�a(1992) imply the fol-lowing result.THEOREM 2.3 Under the conditions of Theorem 2.1, let �(A) = RA J(u)dufor J of bounded variation, with J(u) = 0 on [0; �] \ [1 � �; 1] for � 2 (0; 1=2) and�(0; 1) = 1. Thenpn( ���n(̂n) � �(�; F )) �!D N (0; �2(�; F )Q�12 )REMARKS. Theorems 2.2 and 2.3 establish that the primal and dual L-esti-mators, ~��n(̂n) and ���n(̂n) respectively, are e�cient L-statistics corresponding to �in the sense of Gutenbrunner (1992). For the primal L-estimators of Theorem 2.2,if � is chosen to satisfy �(0; 1) = 1 and R 10 F�1(t)d�(t) = 0, then either will be anestimator for �; while ~��n can be an scale L-estimator of  if � is chosen to satisfy�(0; 1) = 0 and R 10 F�1(t)d�(t) = 1. Whether the dual L-estimators can be usedto estimate  is, to us, unclear. It may be noted that the restriction imposed onR 10 F�1(t)d�(t), is trivially satis�ed if we choose � to be symmetric about 1=2, forlocation and antisymmetric about 1=2 for scale, when F is a symmetric distribution.Note, �nally, that the dependence of estimators on ̂ will be suppressed in thesubsequent development. 3. PROOFSThe proof of Theorem 2.1 is decomposed into a series of lemmas. The �rstlemma follows from Theorem 2.1 and Lemma A.2 of Koenker and Portnoy(1987).10



LEMMA 3.1 LetV (�; � ) = n�1=2 nX1 ��1i xi � (ui � F�1(� )� n�1=2��1i x0i�) (3:1)where � 2 Rk; � 2 (0; 1) and for K > 0 de�ne,Dn� = f(�; � ) : � 2 [�; 1� �]; k � k� Kplogng: (3:2)Then under C1-C5,supDn� k V (�; � )� V (0; � ) + f(F�1(� ))Q2� k= Op(n�1=4 logn): (3:3)LEMMA 3.2 Under C1, C2 and C4,sup�2[�;1��] k V (0; � ) k= Op(plogn):PROOF.Without loss of generality, assume �i � 1, and provisionally that xi 2 R1.Then V (0; � ) = n�1=2 nX1 xi(� � I(F (ui) < � )):As is well known, ui iid F implies Ui = F (ui) is iid uniform on [0; 1]. ThusE[xi(� � I(Ui < � ))] = 0; V ar(xi(� � I(Ui < � ))) = x2i � (1� � )and jxi(� � I(Ui < � ))j � maxi�n jxij = O(n1=4). By Bernstein's Theorem (seeSering 1980, p. 95)P (j nX1 xi(� � I(Ui < � ))j � nt) � 2 exp(� n2t22� (1� � )Pn1 x2i +O(n5=4)t ):Choose t =p� logn=n; and � > 0 soP (jV (0; � )j �p� logn) � 2 exp(� � logn�max(Q2)=2 + o(1) ):11



As in the proof of Lemma A.2 in Koenker and Portnoy (1987), by using the chainingargument we have sup�2[�;1��] jV (0; � )j = Op(plogn):When the dimension of xi is greater than one, the result follows from the factthat sup�2[�;1��] k V (0; � ) k� ( kX1 ( sup�2[�;1��] jVj(0; � )j)2)1=2 = Op(plogn)where Vj(0; � ) is the j-th component of V (0; � ). utThe next lemmas are used to approximate V (�; � ) byV̂ (�; � ) = n�1=2 nX1 1��̂i xi � (ui � F�1(� )� n�1=2��1i x0i�) (3:4)where ��̂i = �i+n�1=2x0i�̂n: If the approximation is su�ciently accurate, the resultin Lemma 3.1 is true even if V (�; � ) is replaced by V̂ (�; � ).LEMMA 3.3 Under C1-C5,supDn� k V̂ (�; � )� V (�; � ) k= Op(n�1=4plogn):Further, supDn� k V̂ (�; � )� V (0; � ) + f(F�1(� ))Q2� k= Op(n�1=4 logn) (3:5)PROOF Since ̂n is pn-consistent up to scale, ��̂i = �i(1 +n�1=2��1i x0i �̂n), so byC4 we have k n�1=2��1i x0i�̂n k= Op(n�1=4): By Taylor's expansion,(1 + n�1=2x0i��1i �̂n)�1 = 1� n�1=2��1i x0i�̂n + n�1 k xi=�i k2 Op(1)thus 1��̂i � 1�i = 1�i (�n�1=2��1i x0i�̂n + n�1 k xi=�i k2 Op(1)): (3:6)12



It follows thatsupDn� k V̂ (�; � )� V (�; � ) k� supDn� k n�1=2 nX1 1�2i xix0i � (ui � F�1(� )� n�1=2��1i x0i�) k Op(n�1=2)+ n�1 nX1 k xi=�i k3 Op(n�1=2) : (3:7)By C3, the second term in the right hand side of the inequality is Op(n�1=2). Asfor the �rst term, letT (�; � ) = n�1=2 nX1 1�2i xix0i � (ui � F�1(� )� n�1=2��1i x0i�):Then by Lemma 3.4 below, we havesupDn� k T (�; � )� T (0; � )�ET (�; � ) k= Op(log n):If we note that for (�; � ) 2 Dn�,k ET (�; � ) k� n�1 nX1 k xi=�i k3 O(plogn)+ n�3=2 nX1 k xi=�i k4 O(log n) = O(plogn)and by Lemma 3.5 below,sup�2[�;1��] k T (0; � ) k= Op(n1=4plogn):Then supDn� k T (�; � ) k� Op(n1=4plogn):The �rst part of the lemma follows from (3.7) and (3.5) is obtained by using Lemma3.1. utLEMMA 3.4 Under C1-C5, supDn� k T (�; � )� T (0; � )�ET (�; � ) k= Op(log n):13



PROOF We can use the procedures in the proofs of the proposition and LemmaA.2 in Koenker and Portnoy (1987). The proof consists of two parts. The �rstpart is to get a probability inequality and the second part is to apply the chainingargument. Since the second part is similar to KP's argument without major change,we will omit the details. The only thing that needs to be proved is that for � 2 Dn�,P (jTj(�; � )� Tj(0; � )�ETj(�; � ) k� � logn) � 2 exp(�� logn (1 + o(1))) (3:8)where Tj is the jth component of T . Denote vij as the jth component of xix0i=�2i ,and ~Tj = n1=2(Tj(�; � )� Tj(0; � )�ETj(�; � ))so Tj (�; � ) = n�1=2 nX1 vij � (ui � F�1(� ) � n�1=2��1i x0i�):Adopting KP's notation, Markov's inequality yieldsP (j ~Tj j � �n) � e�t�n(Mj (t) +Mj (�t))for t > 0; �n > 0, where logMj(t) =Pn1 logMij(t) andlogMij (t) � cjn�1=2��1i x0i�j(vijt)2 exp(jvijtj)for some constant c. Since by condition C4, we havejvij j �k xix0i=�2i k�k xi=�i k2= O(n1=2)thus, using C3,logMj (t) � c k � k nX1 k xi=�i k3 t2 exp(Bn1=2t) � c0nplognt2 exp(Bn1=2t)14



where c0 and B are constants. Finally, if we take t = n�1=2 and �n = �n1=2 logn,so P (j ~Tj j � �n1=2 logn) � 2 exp(�� logn+ c0plogn eB)= 2 exp(�� logn(1 + o(1)))and (3.8) follows. utLEMMA 3.5 Under C1-C5, sup�2[�;1��] k T (0; � ) k= Op(n1=4plogn):PROOF The proof is similar to that of Lemma 3.2. Again using Bernstein'sTheoremP (n1=2jTj(0; � )j > nt) � 2 exp(� n2t22� (1� � )Pn1 k xi=�i k4 +t O(n3=2) ):Set t = �n�1=4plogn, so2� (1� � ) nX1 k xi=�i k4 +t O(n3=2) � O(n5=4) +O(n5=4plogn) = O(n5=4plogn:)For n large, there exists B > 0, such thatP (jTj(0; � )j > �n1=4plogn) � 2 exp(�B�2n1=4plogn:)The proof is completed using this inequality and the chaining argument. utThe next two lemmas use the procedure from Jure�ckov�a(1977, Lemma 5.2).LEMMA 3.6 Let D0n� = f(�; � ) : � 2 [�; 1 � �]; k � k= Kplogng: Then underC1-C5, there exists K > 0 such that P (infD0n�[��0V̂ (�; � )] < n�1=4(log n)2) �! 0:PROOF Let �n = n�1=4(log n)2, thenP ( infD0n�[��0V̂ (�; � )] < �n)�P ( infD0n�[��0V̂ (�; � )] < �n; infD0n�[��0(V (0; � )� f(F�1(� ))Q2�)] � 2�n)+ P ( infD0n�[��0(V (0; � )� f(F�1(� ))Q2�)] < 2�n) � I + II15



For the �rst part I, if we note the factf infD0n�[��0V̂ (�; � )] < �n; infD0n�[��0(V (0; � )� f(F�1(� ))Q2�)] � 2�ng�fsupD0n�(�0(V̂ (�; � )� V (0; � ) + f(F�1(� ))Q2�)) � �ng�fsupDn� k V̂ (�; � )� V (0; � ) + f(F�1(� ))Q2� k� �n=Kplogngand �n=Kplogn = K�1n�1=4(log n)3=2, which has higher order than n�1=4 logn, itfollows from (3.5) that I ! 0 as n! 0.For II, since for (�; � ) 2 D0n�,��0(V (0; � )� f(F�1(� ))Q2�) = ��0V (0; � ) + f(F�1(� ))�0Q2��� k � k k V (0; � ) k + min�2[�;1��] f(F�1(� ))�min(Q2) k � k2=�Kplogn k V (0; � ) k +�0�0K2 logn :By assumption, �0 = min�2[�;1��] f(F�1(� )) > 0; �0 = �min(Q2) > 0, hence itfollows from Lemma 3.2 that for large K,II � P (�Kplogn supD0n� k V (0; � ) k +�0�0K2 logn < 2�n)= P ( sup�2[�;1��] k V (0; � ) k� K�0�0plogn� o(1)) �! 0: utLEMMA 3.7 Under C1-C5, for K as chosen in Lemma 3.6, letD+n� = f(�; � ) : � 2 [�; 1� �]; k � k� KplogngThen P ( infD+n� k V̂ (�; � ) k< K�1n�1=4(log n)3=2) �! 0: (3:9)PROOF Since nX1 �i��̂i �� (ui � F�1(� )� n�1=2��1i x0i��); � � 116



is a convex function in �, the gradient of the function in �, ��0V̂ (��; � ), is non-decreasing in �. Hence for all � and � � 1,��0V̂ (��; � ) � ��0V̂ (�; � ); (3:10)For k � k� Kplogn, let �1 = (�= k � k) � Kplogn, thus k �1 k= Kplognand � can be represented by �1 as � = ��1 for � � 1. Hence by the Schwarzinequality ��01V̂ (�; � ) �k �1 k � k V̂ (�; � ) kand then by (3.10)k V̂ (�; � ) k� ��01V̂ (�; � )= k �1 k� ��01V̂ (�1; � )= k �1 kThus, infk�k�Kplogn k V̂ (�; � ) k � infD0n�(��01V̂ (�1; � )= k �1 k)= infD0n�(��0V̂ (�; � ))=Kplogn:Further, by Lemma 3.6,P ( infD+n� k V̂ (�; � ) k < K�1n�1=4(log n)3=2)� P ( infD0n�(��0V̂ (�; � )) < n�1=4(log n)2) �! 0: utLEMMA 3.8 Under C1-C5, sup�2[�;1��] k �̂n(�; ̂)� �(� ) k= Op(plogn=n):PROOF Let �̂(� ) =pn(�̂n(�; ̂)��(� )), using Lemma A.2 in Carroll and Ruppert(1980), we have k V̂ (�̂(� ); � ) k� (k + 1)n�1=2maxi�n k xi=��̂i kuniformly in � . Using (3.6), we havek xi=��̂i k �k xi=�i k + k xi=�i k2 Op(n�1=2)+ k xi=�i k3 Op(n�1)= O(n1=4) +Op(1) +Op(n�1=4) = Op(n1=4)17
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