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ABSTRACT

L-estimators based on a weighted regression quantile process are
considered for a class of linearly heteroscedastic regression models.
It is shown that the resulting estimators are “efficient” in the sense
introduced by Gutenbrunner(1992).

1. INTRODUCTION

L-statistics, or linear combinations of order statistics, offer a rich source of
estimators for the (univariate) one-sample problem. Bickel and Lehmann (1975) in
their survey of descriptive statistics for nonparametric models conclude:

Of the three classes considered [M, L, and R estimators], it is found
that trimmed expectations (and certain other weighted quantiles)

are the only ones which are both robust and whose estimators have
guaranteed high efficiency ...

There have been several suggestions for extending the L-estimator approach to the
linear model. Bickel’s (1973) one-step approach was pioneering, but suffered from a
lack of equivariance. This was later remedied in the important work of Welsh (1987)
who constructed one-step L-estimators for the linear model which satisfied natural
equivariance requirements as well as exhibiting asymptotic behavior analogous to

that of one-sample L-statistics.



Two other approaches to L-estimators for linear models have been suggested
by work on quantile regression. Koenker and Bassett (1978) considered discrete

linear combinations of “regression quantiles” which they defined as

~

p(7T) = argmingcg, Z pr(yi — x%b)
where pr(u) = u(t — I(u < 0)). Since these p-dimensional analogues of the sample

quantiles have asymptotic behavior like that of their one-sample counterparts it was

straightforward to establish that estimators of the form

Zwign(n)
=1

had analogous asymptotic behavior to the “systematic statistics” investigated by
Mosteller (1946), Bennett (1952) and many others. This approach was later ex-

tended to general weight functions

Bi= [ dutrvivte)

in Koenker and Portnoy (1987), Koenker and Portnoy (1989), and Gutenbrunner
and Jureckova(1992). An excellent recent treatment of similar models from the
standpoint of M-estimation is contained in Carroll and Ruppert(1988).

1.1 L-estimators for linear models with iid errors

Consider the classical linear model
yi = T + u;

with iid {u;} from distribution function F, and zy; = 1 for ¢« = 1,...,n. Let v
be a finite signed measure concentrated on a compact subinterval of (0,1), then

under mild further conditions on F' and the design sequence we have, setting e; =

V(B = (v, F)) —P N(0,0° (. F)Qq ")
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where

B(v, F) = (0,1)8 + (v, Fey

Py = [ P vt

9 B tNs— st 5 (s
“w P = [ [ sy gy O,

and

Qo = lim n H(X'X).

n—oo

This result directly parallels the theory for one-sample L-statistics. Note that for
probability measures v, or more generally for any v such that v(0,1) = 1, B,’; 18
location equivariant; while if v has total mass zero, 57’; is location invariant. In
the latter case natural estimators of scale may be constructed by requiring that
v(0,u] <0 for all u € (0,1). To illustrate, the asymptotically optimal L-estimator
for # when F is Cauchy would employ v(A) = [, J(u)du where

J(u) = 2cos(2mu)(cos(2mu) — 1)
and the asymptotically optimal L-estimator for scale when F' is Cauchy would use
J(u) = 8cos®(m(u — 1/2))sin(7(u — 1/2)).

Note that the optimal Cauchy score function for location is negative in the tails
so extreme order statistics receive negative weight. In applications it would be
advisable to trim the Cauchy J functions to remove the efffect of the extreme order
statistics on the estimator. A more conventional example might be the optimal
B-robust L-estimators at the normal model. See, e.g., Hampel et al (1986, p. 124).

For location in this case we have the familiar trimmed mean,

J(u) = (1—2@)_1I(0z <u<l—a)
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while for scale we have for 0 < ay < a1 < %,
Jw)=® (w)(ag<u<a; or 1—a; <u<l—ag)/(2a; —2a0).

See Welsh (1990) for a detailed treatment of the latter estimator as well as an
excellent general discussion of L-estimation of scale.
Gutenbrunner and Jureckova(1992) introduce a second approach to L-statistics

for the linear model based on the regression rankscore process,
an(7) = argmax{y'ala € [0,1]", X'a = (1 —7)X'1}

which is formally dual to the regression quantile problem in the sense of linear
programming. For v generated as v(A) = [, J(t)dt with fol J(t)dt = 1, they set
J = diag(jm),

~

1
Jni = / ani(t)dJ(t)
0
and for J(t) > 0 let
BY = (X'JX)' X' Ty

while for general J = J* —.J~ they define B,’; = BZ"' —57’;_. The simplest (and there-
fore perhaps most compelling) form of this is the so-called trimmed least squares

estimator for which
Jot) = (1 —-2a) ' T(a <u<1—a)
which generates weights,
Tni = ani(@) — ani(1 — ).

Noting that dn;(7) = 1 if y; > J};Bn(T), equals zero if y; < J};Bn(T) and takes

~

some intermediate value otherwise, we see that for J,(t) the weights J,; are one if
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x;Bn(a) <y < x;Bn(a), Jni = 0 if y; lies strictly outside this interval, and take an
intermediate value otherwise, that is if y; = :1;25(7’) for 7 € {a,1 — a}. A simpler
version of this, which used only 0 — 1 weights was considered earlier by Ruppert
and Carroll (1980). Gutenbrunner and Jureckova(1992) establish the asymptotic
equivalence of 57’; and BZ under 1id error conditions as well as under contiguous
alternatives. They also consider more general linear regression-scale models for
which the asymptotic behavior of the two estimators diverge.
1.2 L-estimators for linearly heteroscedastic models

A more general, natural setting for quantile regression and L-estimators in

particular is the linear heteroscedastic model
i = 248 + 2l

where again the {u;} are iid from F. In this model 57’; based on the unweighted

regression quantiles can be shown (Gutenbrunner and Jureckovi(1992)) to satisfy,

V(Y = Bu(v, F)) —P N(0,0*(v, F)Q7 ' QoQ7 )

where ¢ is replaced by v in the definition of (v, F), Q, = limn ! X'T~"X, r =
0,1,2, and I' = diag(x}v). To contrast the behavior of B,’; and B,’; under this linear

heteroscedastic model it is convenient to contrast their linear representations. Thus,

Bn=Kig(v, F) + op(n”

o=

)

where, as above, we will write, following Gutenbrunner and Jureckova(1992),
K, =(XT7"X)"'X'T™", r=20,1

Ji(v, F) = i + @iy (Yo p(ui) — p(v, F))
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and
burw) = (¢~ T () < O)FE @) dot),

We may interpret this representation as establishing an asymptotic equivalence (to
order n_%) for B,’; and the pseudo-estimator defined by the weighted least squares
regression of X on the pseudo-observations ¢(v, F) using weights T'~!.

In contrast, from Gutenbrunner and Jureckova(1992, Theorem 3),
B = Eoj(v. F) + K (§(v. F) = (. F)) + 0p(n” %)

where
Ji(v, F) = @3B + 2y p(wi)

P p(u) = { J(F(u)u —p(v,F)] i J>0 }

Y+ p(u) —y- p(u) otherwise.
It follows that B,’; and B,’; have different asymptotic behavior when ~ # ;.
Gutenbrunner (1992) has proposed a modification of BZ which “corrects” for the

effect of the linear heteroscedasticity. For any estimator +,, satisfying

o=

An =7+ Op(n~

)

he constructs
By = [Ghustw) = B ini(w) — 1= w)d (u)
'y = diag(XAy)

and shows that the estimator
pr = (X'JI2 X)) X' (JT 7%y —T7'BY)
has the linear representation,

3% = Bv, F) + (X'T2X) T X' T8, p + 0,(n" %)

7
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where U, p = (¢, p(u;)) and 1, p is the influence function of the L-statistic F' —

[ F~'dv, defined above. It follows immediately that

Vi(Be — Bv, F)) —P N(0,0%(v, F)Q ).

The first term of this “efficient” L-estimator, BZ represents a natural reweighting
of the original form of 3% to accomodate the heterogeneity in scale of the model.
However, the second term is more surprising. Gutenbrunner (1992) refers to it as a
“ ‘smooth Winsorizing’ of residuals because we did not use the ‘right’ RQ’s, namely
the optimally weighted RQ’s.” He also notes that this term is closely related to
the Winsorization employed in Welsh (1987) to construct one-step L-estimators for
the linear model. In effect the first coordinate of the centered regression quantile
process is used to estimate F~!(u)— u(v, F) and then to adjust the dual L-statistic.

The foregoing discussion raises a natural question: can one, by simply estimat-
ing an appropriately weighted regression quantile process, construct primal (and
dual) L-estimators which achieve the same “efficient” asymptotic behavior as 57’;7
An affirmative answer to this question is provided in the next section. Proofs are

collected in the last section.

2. RESULTS

Consider the linearly heteroscedastic model

where the random variables {u;} are iid with distribution function F. We will
employ the following conditions

Cl.oj=aly>0, i=1,...,n.



C2. n7'>Y o7 "x2t = Qp + Ry where Q, @ v = 0,1,2, are positive definite,
and the maximum eigenvalues Ayq2(@Qrn) — 0, for v = 0,1 and Apau(Ran) =
O(n='/*%).

C3. 7 || 24/o [P= O(n).

C4. max; || x;/0i ||= O(n1/4).

C5. F has a density f and there exists € > 0, such that s(u) = f(F~1(u)) > 0
and s'(u) is uniformly bounded for u € [e,1 — €.

Conditions C3 - Ch are adopted directly from Koenker and Portnoy (1987)
with z;/0; in place of z; used there. C1 and C2 are somewhat modified versions
of Gutenbrunner’s (1992) conditions, and are necessary for the \/n-consistency of
the preliminary estimator of 4. Obviously, we can, if we so desire, restrict the
form of (2.1) so that different vectors of covariates appear in the location and scale
components of the regression function, at the cost of some increased notational
complexity.

Under these conditions the results of Gutenbrunner and Jureckova(1992) and
Gutenbrunner (1992) assure a /n consistent estimator %, in the following sense:
we will say that 4, is y/n-consistent up to scale if for some F' dependent constant
KJ?

n = /43_17 + n_l/zli_lgn
with &, = O,(1). Given such an estimator we may compute the weighted regression

quantile process,

Bn(T,4) = arg Min Ry Z 6 pr(yi — 2;b) (2.2)

where 6; = x!9,. It is obvious that consistency up to scale is sufficient for the
reweighting in (2.2) since only relative scale matters. Our main result is the follow-

ing Bahadur representation of this weighted regression quantile process.
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THEOREM 2.1 Let 4,, be y/n-consistent up to scale, and (1) = 3+ ~F~ (7).
Then under C1-C5,

ValB(r.A) — B(r)) = Q2 —1/220 et (i — V(7)) + Op(n™ Y log )

uniformly for 7 € [e,1 — €], where ¢ (u) =7 — I(u < 0).

The proof of this theorem is rather complicated and is given in next section. It
should be noted that when v = e; the model (1.3) simplifies to a linear homoscedas-
tic model, therefore Theorem 2.1 here implies Theorem 2.1 in Koenker and Portnoy
(1987). However, we have removed condition X4 in Koenker and Portnoy (1987),

which is very restrictive. Given this representation the following result is immediate.

THEOREM 2.2 Under the conditions of Theorem 2.1, let v be a finite signed

measure on [0, 1], vanishing off the interval [e,1 — €] for € € (0,1/2). Then
~ 1 ~
B3 = [ Balrirant)
0

satisfies
V(B (3n) = B(v, F)) —P N(0,0% (v, F)Qy ")

where (v, F) fo ) and o?(v, F) is as defined above.

Finally, by replacing the original unweighted regression rankscore process by

the weighted dual process corresponding to (2.2)
in(7,4n) = argmax{y'T  ala € [0,1]", X' T 'a=(1—-7)X'T"'1}

and computing



and

BU(An) = (X' JT2X) T X' JT 2y,

7

Theorem 2.1 and the results of Gutenbrunner and Jurec¢kova(1992) imply the fol-

lowing result.

THEOREM 2.3 Under the conditions of Theorem 2.1, let v(A) = [, J(u)du
for J of bounded variation, with J(u) = 0 on [0,¢] N[l —¢,1] for e € (0,1/2) and
v(0,1) = 1. Then

V(B (n) = B, F)) —P N(0,0% (v, F)Q3 )

REMARKS. Theorems 2.2 and 2.3 establish that the primal and dual L-esti-
mators, BZ(’%) and (% (4,) respectively, are efficient L-statistics corresponding to v
in the sense of Gutenbrunner (1992). For the primal L-estimators of Theorem 2.2,
if v is chosen to satisfy v(0,1) = 1 and fol F~Y(t)dv(t) = 0, then either will be an
estimator for #; while B,’; can be an scale L-estimator of ~ if v is chosen to satisfy
v(0,1) = 0 and fol F~Y(t)dv(t) = 1. Whether the dual L-estimators can be used
to estimate ~ is, to us, unclear. It may be noted that the restriction imposed on
fol F=Y(t)dv(t), is trivially satisfied if we choose v to be symmetric about 1/2, for
location and antisymmetric about 1/2 for scale, when F is a symmetric distribution.

Note, finally, that the dependence of estimators on 4 will be suppressed in the

subsequent development.

3. PROOFS
The proof of Theorem 2.1 is decomposed into a series of lemmas. The first

lemma follows from Theorem 2.1 and Lemma A.2 of Koenker and Portnoy(1987).
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LEMMA 3.1 Let

V(A,7)=n —1/2 ZO’ zitpe(u; — F7Y(7) — n_l/zaflx;A) (3.1)

7

where A € R¥, 7 €(0,1) and for K > 0 define,

Dpe={(A,7):7€[e,1—¢], || A< Ky/logn}. (3.2)

Then under C1-C5,

sup || V(A,7) = V(0.7) + f(F7(1))Q2A ||= Op(n~ " logn). (3.3)

ne

LEMMA 3.2 Under C1, C2 and C4,
up 1V(0,7) lI= Opty/1og n).
TE[e,1—¢€
PROOF. Without loss of generality, assume o; = 1, and provisionally that z; € R!.
Then

7

V(0,7) =n""2> ai(r = I(F(u;) < 7).

1

As is well known, u; iid F' implies U; = F(u;) is iid uniform on [0, 1]. Thus
Ele,(r = I(U; < 1)) =0, Var(z;(r — [(U; < 1)) = :1:127'(1 —7)

and |z;(7 — I(U; < 7))| < maxi<p |2;| = O(n1/4). By Bernstein’s Theorem (see
Serfling 1980, p. 95)

2t2

|Z IV <)l 2 0t) £ 20— ?x2+0(n5/4)t).

Choose t =y/Alogn/n, and A > 0 so

P(V(0,7)] =/ Mogn) < 2exp(— 8"

Amax(Q2)/2 + o(1)

).
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As in the proof of Lemma A.2 in Koenker and Portnoy (1987), by using the chaining

argument we have

sup |V(0,7) = O,(/logn).

T€[e,1—¢]

When the dimension of z; is greater than one, the result follows from the fact

that
k
VO, (30 sup V00,71 = 0 /loam)
T€[e,1—¢] 1 TE[e,1—¢]
where V;(0, 7) is the j-th component of V(0, 7). 0

The next lemmas are used to approximate V(A, 1) by

7

V(A,T) —n1/? Z 1A zitpe(u; — F7Y(7) — n_l/zai_lx;A) (3.4)

KO

where k6; = 0; + n_l/zxggn. If the approximation is sufficiently accurate, the result
in Lemma 3.1 is true even if V(A, 1) is replaced by V(A, ).

LEMMA 3.3 Under C1-C5,

sup || V(A,T) - V(A7) ||= Op(n_1/4\/log n).

ne

Further,

sup || V(A7) = V(0,7) + f(F~(7))Q2A ||= Op(n~"/* logn) (3.5)

ne

PROOF Since 4, is \/n-consistent up to scale, k6; = o;(1 + n_l/zai_lxﬁn), so by

!
7

C4 we have || n_l/zai_lxggn |= O,(n~'/*). By Taylor’s expansion,

(14 n_l/zx;ai_lgn)_l =1- n_l/zaflxggn +n! | @i/0i H2 0O,(1)

7

thus

— — = (o el £ T | wifoi |7 0,(1)). (3.6)

7
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It follows that

sup H V(Av T) - V(Av T) H

ne

"1
< TN el (i — FNr) = 0T ol AY || Op(n T
< sup | n 1 U;HZ@ZJ (u () =n= o A) | Op(n™7%) (37

Tty aifoi P Op(n™!?)
1

By C3, the second term in the right hand side of the inequality is Op(n_l/z). As

for the first term, let
=1
T(A — —1/2 _il‘r i_F_l o —1/2 -1 IA
(A,7)=n 213012:1;:1;1;/) (u (t)—n o xiA)
Then by Lemma 3.4 below, we have

sup || T(A,7) = T(0,7) — ET(A,7) ||= Op(logn).

ne

If we note that for (A, 7) € Dy,
| ET(A, 7) <07 Y |l wi/oi |* O4/logn)
1

+n 72 | 2i/oi ||* O(logn) = O(/logn)
1

and by Lemma 3.5 below,
swp | 7(0,7) = Op(nt/4/Tog ).
T€[e,1—¢]
Then
sup || T(A, 7) [ O,(n'//log ).

ne

The first part of the lemma follows from (3.7) and (3.5) is obtained by using Lemma
3.1. O
LEMMA 3.4 Under C1-C5, supp__ || T(A,7) =T(0,7) = ET(A,7) ||= Op(logn).
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PROOF We can use the procedures in the proofs of the proposition and Lemma
A.2 in Koenker and Portnoy (1987). The proof consists of two parts. The first
part is to get a probability inequality and the second part is to apply the chaining
argument. Since the second part is similar to KP’s argument without major change,

we will omit the details. The only thing that needs to be proved is that for A € D,
P(Ty(A7) — T5(0.7) — ET;(A,7) |2 Mogn) < 2exp(~Alogn (14 o(1)) (3.8)

where T is the jth component of T. Denote v;; as the jth component of x;z}/0?,
and

Tj = nl/z(Tj(A, ) —=T;(0,7) — ET;(A, 7))

SO
n

T;(A,7) = n~1/2 Z v (u; — F_l(T) — n_l/zai_lx;A).
1

Adopting KP’s notation, Markov’s inequality yields

P(ITj] 2 M) < e (Mj(t) + M (1))
for t > 0, A\, > 0, where log M;(t) = _] log M;;(t) and

log Mi;(t) < cln ™o ai Al(vit)” exp(|vijt])

for some constant ¢. Since by condition C4, we have

ol <l izt f? | <) 2o |P= O(n'/2)
thus, using C3,

log M;(t) <c| A Z | @i/0i H3 2 exp(Bnl/Zt) < ¢'n y/log nt? exp(Bnl/zt)
1
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where ¢ and B are constants. Finally, if we take t = n='/2 and \,, = An'/?logn,

SO

P(|T;| > Ant/?logn) < 2exp(—Alogn + ¢'v/logn )
= 2exp(—Alogn(l+ o(1)))
and (3.8) follows. a
LEMMA 3.5 Under C1-C5, sup, ¢, | T(0,7) ||= Op(n'/4/logn).
PROOF The proof is similar to that of Lemma 3.2. Again using Bernstein’s

Theorem

n2t?

2r (1= )5 | i JE 41 Oi)"

P(n'/2|Tj(0,7)| > nt) < 2exp(—
Set t = An~'/4/Togn, so

27(1 — T)Z | @i/oq ||t +t O(n3/2) < O(n5/4) + O(n5/4\/log n) = O(n5/4\/log n.)
1

For n large, there exists B > 0, such that

P(|T;(0,7)] > An'/%/logn) < 2exp(—BA?n'/*%/logn.)

The proof is completed using this inequality and the chaining argument. O
The next two lemmas use the procedure from Jureckova(1977, Lemma 5.2).

LEMMA 3.6 Let DY = {(A,7): 7 € [e,1 — €], | A ||= K/Iogn}. Then under

C1-C5, there exists K > 0 such that P(innge[—A’V(A, )] < n~*(logn)?) — 0.

PROOF Let 7, = n~/*(logn)?, then

P(inf [-A'V(A, 7)] < )

Dy
<PUinf [-AT (A, 7)] < s, i [-A(V(0,7) = F(F7H(r))Q22)] 2 24a)

+ P(g%f[—A'(V(O, )= f(FH(7)Q20)] < 2n,) =T+ I1

n
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For the first part I, if we note the fact

{inf [~A'V(A, 7)) <, inf [~A'(V(0,7) = f(F7(7)Q22

C{sup(A'(V(A, 1) = V(0,7) + F(F1(7))Q24)) = 1n}

0
Dne

C{sup | V(A7) = V(0,7) + f(FH(1)Q2A ||= 10/ Ey/log n}

ne

and 1,/ Ky/Togn = K~'n~"/*(logn)*/?, which has higher order than n~'/*logn, it

follows from (3.5) that I — 0 as n — 0.

For II, since for (A, 1) € DO

ne?

= A'(V(0,7) = f(FTH(7)Q2A) = —A'V(0,7) + f(FH(7))A'Q2A

>— A VO,7) ||+ min fF(F ) Amin(Q2) || A |7

TE[e,1—¢]

= — K\/logn || V(0,7) || +d0XoK?logn

By assumption, ¢¢ = min g[,1—¢| FIF7YH7)) > 0, Ao = Amin(Q2) > 0, hence it

follows from Lemma 3.2 that for large K,

Il < P(—K lognsup | V(0,7) || +doro K logn < 2n,)
D

=P( sup | V(OT |I> K poro/logn —o(1)) —

T€[e,1—¢]

LEMMA 3.7 Under C1-C5, for K as chosen in Lemma 3.6, let

Df ={(A7):7€[e,1—¢, || A|> K/logn)}

Then
P(inf || V(A7) ||l< K~'n~Y4(logn)*/*) — 0.

ne

PROOF Since

—pr(u; — F_l(T) — n_l/zai_lx;A/\), A>1

16
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is a convex function in A, the gradient of the function in A, —A’V(/\A, 7), is non-

decreasing in A. Hence for all A and A > 1,
—AVA, 1) > =A'V(A, 1), (3.10)

For || A ||> KJ/logn, let Ay = (A/ || A ||) - K/logn, thus || Ay ||= KJ/logn
and A can be represented by A; as A = AA; for A > 1. Hence by the Schwarz
inequality

—AVAT) S| AL V(AT |
and then by (3.10)

I VA7) 12 =AV(A 7/ | A2 =ATV(AL7)/ | Ayl

Thus,
inf || V(A7) || 2 inf (=AY (A, 7)/ [ Ay f])
|A]>K/log n Dy
- g%f(—A'V(A,T))/I(\/logn.

Further, by Lemma 3.6,

P(inf || V(A7) || < K7~ (logn)*/?)
D €

n

< Pinf (-AV(A, 7)) < n7(logn)?) — 0.

LEMMA 3.8 Under C1-C5, sup ¢ 1_¢ || Ba(1,%) = B(7) ||I= 0,6/Togn/n).
PROOF Let A(T) :ﬁ(gn(r, 3)— (7)), using Lemma A.2 in Carroll and Ruppert
(1980), we have

~

I VIA@), 7)1 (b + Dn ™2 max || i/ |
uniformly in 7. Using (3.6), we have
l2i/wéi | <ll@ifoi | + | /o > Op(n™ )+ | 2ifoi || Op(n™")
= O(n'/*) + 0y(1) + Op(n~ ) = Oy(n'/*)
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hence

sup || V(A(r),7) [|l= Op(n=/%). (3.11)
0<r<1
Now, combining (3.9) and (3.11) we have
P( sup || fulr,4) = B(r) |2 E/logn/n)

T€[e,1—¢]

<P( sup | A = Ky/Iogn, sup || VAL < n Y logn)
T€[e,1—¢] T€[e,1—¢]

FP( swp VAT, |2 0 logn)

T€[e,1—¢]

<P(inf | V(A7) |[<n Y logn) 4 o(1)

<P(inf | V(A7) ||< K n"Y4(logn)*/?) + o(1) = o(1).
d
PROOF OF THEOREM 2.1 The result follows from the combination of Lemma

3.3, Lemma 3.8 and (3.11). O
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