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1. Introduction

Targeted maximum likelihood estimation is a general class of procedures for estimating semi-
parametric statistical models, that is models with a nonparametric nuisance parameter. Judea
Pearl, in his forward to the comprehensive exposition of van der Laan and Rose (2011), invokes
Jacob Marshak’s (1952) observations that good policy decisions rarely require a fully specified
stochastic model. Instead, decisions can be based on only a few restrictive features of the model,
e.g. average treatment effects, estimable without a full stochastic specification.

In these notes I would like to illustrate the application of this principle beginning with some
simple missing data and binary treatment settings and concluding with a discussion of a recent
paper of Dı́az (2015) on quantile treatment effects. This expositional strategy is what might be
called ”inductive learning:” we start with very simple cases and try to leverage patterns we see
into a general strategy. Those who prefer a more hard nosed approach should proceed directly to
Appendix A of van der Laan and Rose (2011).

2. Prelude: Missing Data and Double Robustness

It seems appropriate to begin with a brief discussion of Bang and Robins (2005), which can be
viewed as a precursor of the TMLE approach. Consider the standard missing data problem. We
observe Z = (Y,M,X). The response Y is observed when M = 1 and is missing otherwise. The
vector of covariates, X, is available and satisfy:

i. P (M = 1|Y,X) = P (M = 1|X) ≡ π(X)
ii. π(X) > 0 a.e.P .

The former condition is usually referred to as ”missing at random,” but perhaps more descrip-
tively as ”no unmeasured confounders.” The latter condition is usually referred to as the ”common
support” condition.

Given a random sample of the triples {Zi} i = 1, ..., n we may adopt a parametric model for
π, say the logistic, and estimate the unconditional mean of Y using the Horvitz and Thompson
(1952) estimator,

µ̂ = n−1
n∑
i=1

MiYi/π̂(Xi).

In the original survey sampling context, π(X) denoted a priori sampling weights and didn’t need
to be estimated. In the missing data setting π(X) is usually referred to as a propensity score and
we simply reweight the observed Yi’s by the inverse of their probability of inclusion to the sample.

Alternatively, we may represent µ as,

µ = E(E(Y |M = 1, X))

and this suggests estimating a model of the form,

E(Y |M = 1, X) = Ψ(s(X,β))
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for some known link function, Ψ and then estimating,

µ̂ = n−1
n∑
i=1

Ψ(s(Xi, β̂)).

Thus, for example, if Ψ is the identity link and s(X,β) = X>β, we would simply estimate β on

the observed sample and then estimate µ as the mean of the Ŷi’s for the full sample. If Yi is itself

binary we might again use the logistic link, i.e. log(u/(1 − u)) and β̂ would solve the estimating
equation,

n∑
i=1

Mi∇βs(Xi, β)(Yi −Ψ(s(Xi, β))) = 0,

so again β̂ would be the restricted MLE based on only the Mi = 1 observations. When s(X,β) =
X>β then ∇βs(Xi, β) = X.

Inquiring Minds Would Like to Know

(1) What happened to the reweighting that is usually applied in the logistic estimating
equation (IRLS) approach, see e.g. McCullagh and Nelder (1989) or my 508 notes.

(2) Why logit? Why not Cauchit? See e.g. Koenker and Yoon (2009) or my 508 notes.

Rather than choose between these two options, it seems preferable to combine them in some
way. How? Ideally, we would like an estimator that consistently estimates our parameter of
interest, µ, provided that either the propensity score model is correct, or the outcome regression
model is correct. Bang and Robins (2005) refer to this property as ”double robustness,” I would
have called it the belt and suspenders principle.

The implementation of this principle is quite straightforward, we simply augment the outcome
regression by writing,

E(Y |M = 1, X) = Ψ(s(X,β)) + φπ−1(X,α) ≡ Φ(X,β, φ)

Estimation is carried out in two stages: first, α is estimated by logistic regression, then (β, φ) are
estimated with π−1(X, α̂) acting as an additional covariate. The latter step solves the estimating
equation,

0 =

n∑
i=1

Mi∇Φ(Yi − Φ(Xi, β, φ))

which can be rewritten as,

0 = U(µ) =

n∑
i=1

π−1i Mi∇Φ(Yi − µ)− (π−1i Mi − 1)(Φ(Xi, β, φ)− µ)

or

0 = U(µ) =

n∑
i=1

π−1i Mi∇Φ(Yi − Φi)− (Φi − µ).

Note that the first term is zero since it is just the φ component of the original estimating equation,
so,

µ̂ = n−1
n∑
i=1

Φ(Xi, β̂, φ̂),

can be used as a plugin estimator.
The foregoing missing data formulation can be extended to the standard average treatment effect

problem. The data structure is almost the same, we have Z = (Y, T,X), with the assumption that
Y ⊥⊥ T |X. Now T = 1 indicates treated observations and T = 0, controls. We are interested in
estimating the average treatment effect, which can be represented either as

µ = E(TY/π(X))− E((1− T )Y/(1− π(X))),

or
µ = E(E(Y |T = 1, X))− E(E(Y |T = 0, X)).
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Thus, we can estimate µ either by

µ̂ =

n∑
i=1

(TiYi/π̂i)− ((1− Ti)Yi/(1− π̂i)),

or

µ̂ =

n∑
i=1

[Ψ(s(1, Xi, β̂))−Ψ(s(0, Xi, β̂))],

where π̂i = π(Xi, α̂) is the estimated propensity score for receiving treatment. To combine these
approaches we define the augmented outcome model,

Φ(T,X, β, φ) = Ψ(s(T,X, β)) + φ1Tπ
−1 + φ0(1− T )(1− π)−1.

We then estimate (β, φ) as before with α̂ fixed and use,

µ̂ =

n∑
i=1

[Φ(s(1, Xi, β̂, φ̂))− Φ(s(0, Xi, β̂, φ̂))].

3. TMLE: A Missing Manual

Thus far we have not mentioned efficiency. Double robustness was originally focused on achiev-
ing consistency under weaker conditions than those employed in earlier propensity score literature.
For a more extensive treatment of this approach see Kang and Schafer (2007) and the discussion
thereof. Rotnitzky and Vansteelandt (2014) and van der Laan and Rubin (2006) address the
efficiency objective relying to some degree on the prior work of Robins, van der Vaart and oth-
ers. Their strategy is to devise one-step and multi-step iterative procedures based on the efficient
semiparametric score function. I will try to briefly describe how this is supposed to work for the
standard model for missing data, and for the conventional binary treatment effect model. While
the exposition in this section focuses entirely on mean effects, have faith we are (always) headed
toward quantiles.

As in the previous section, we observe a random sample, Z1, . . . , Zn with Z = (Y,M,X) satis-
fying the conditions appearing there. The likelihood of a Z can be factored as,

L(Z) = PY (Y |M,X)PM (M |X)PX(X).

We wish to make no modeling assumption about the marginal distribution of X, so we will assume
throughout that PX will be replaced by its MLE, the empirical distribution function. In contrast,
following convention, we will adopt some convenient parametric binary response model for the
propensity score, and denote

π(X) = PM (M |X).

What distinguishes the TMLE approach is the treatment of PY . An initial estimate can be
produced based on the M = 1 subsample; this may involve some fancy machine learning methods,
but I won’t delve into that. The crucial aspect of the initial estimate, however it is produced, is
that it is inherently suspect. It needs to be modified in some way to account for the fact that it is
based entirely on the observed Y data. We have already seen a couple of variants of this idea, but
they seem rather ad hoc. It would be nice to have a more principled way to design a modification.

Ideally, we would like our estimator, θ̂ of the population mean to be efficient in the sense that it
satisfied the estimating equation representing the efficient influence function. Of course, this begs
the question of how the EIF can be found, but in the following examples the EIFs will appear like
rabbits out of the proverbial hat.

For estimating the population mean in the missing at random model the EIF is given by Bang
and Robins (2005) as,

D(Z) =
M

π(X)
(Y − µ(X)) + µ(X)− θ(Z).

Given this EIF we can consider various one parameter submodels, along the lines of van der Vaart
(2000), two are suggested in his Example 25.16:

pt(z) = c(t) exp(tD(z))p0(z),
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and

pt(z) = (1 + tD(z))p0(z).

A third option is proposed by Dı́az and Rosenblum (2015),

pt(z) = c(t)(1 + exp(−2tD(z)))−1p0(z),

The latter authors propose an iterative scheme for updating our provisional nonparametric model
p0, at each step estimating the auxiliary parameter t, and stopping when the MLE of t occurs
sufficiently close to zero. The first option would seem to be the most obvious exponential family
choice, the others are intended to deal with the (familiar) difficulty of the unbounded IF. A useful,
but rather trivial, exercise would be to verify that the MLE for t yields the EIF when t is evaluated
at zero.

I’ll illustrate the implementation of this approach in R using the first class of submodels. I
presume that it will be obvious how to adapt this code to the other submodels. To get started we
need to have data; here is a function to generate data according to the three schemes used in Dı́az
and Rosenblum (2015) for their simulation experiments. The response Y is binary, and observed
only when M = 1

DGP <- function(n, pMf = 1){

pMf <- switch(pMf,

function(X) plogis(1 + 2*X),

function(X) plogis(-1 + 2*X),

function(X) plogis(-6 + 2*X + X^2)

)

pYf <- function(X) plogis(X - X^2)

Z <- rnorm(n, sd = 1/sqrt(2))

X <- Z + rnorm(n, sd = 1/sqrt(2))

M <- rbinom(n, 1, pMf(X))

Y <- rbinom(n, 1, pYf(X))

Y[M==0] <- NA

data.frame(Y, M, X)

}

Next we need code for the log likelihood function and its gradient.

logLik <- function(t, py, pm, px, Y, M){

Dp <- function(py, pm, px)

function(Y, M) (M/pm) * (Y - py) + py - sum(px * py)

D <- Dp(py, pm, px)

A <- cbind(py * pm, (1 - py) * pm, (1 - pm))

B <- cbind(D(1,1), D(0,1), D(2,0))

a <- (A * exp(t * B)) %*% rep(1,3)

-mean(t * D(Y, M)) + log(mean(px * a))

}

gradLik <- function(t, py, pm, px, Y, M){

Dp <- function(py, pm, px)

function(Y, M) (M/pm) * (Y - py) + py - sum(px * py)

D <- Dp(py, pm, px)

A <- cbind(py * pm, (1 - py) * pm, (1 - pm))

B <- cbind(D(1,1), D(0,1), D(2,0))

a <- (A * exp(t * B)) %*% rep(1,3)

b <- (A * exp(t * B) * B) %*% rep(1,3)

-mean(D(Y, M)) + mean(px * b)/mean(px * a)

}
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Finally we have the main TMLE function. The only tricky bit is the way that the function pz

gets updated. This is an example of the flexibility of R to ”compute on the language,” that is for
functions to produce functions.

tmlex <- function(Z, tol = 1e-4, maxit = 10){

# Exponential Family TMLE for (binary) missing data model

# Thanks to Ivan Diaz for original implementation R code

# Thanks to Mikko Korpela for R-help with the Dcall bit

pZ <- function(pX, pM, pY)

function(y,m) pX * pM^m * (1-pM)^(1-m) * pY^(m*y) *

(1 - pY)^(m * (1 - y)) * (y == 2)^(1-m)

Dp <- function(py, pm, px)

function(y, m) (m/pm) * (y - py) + py - sum(px * py)

Deps <- function(eps, py, pm, px)

function(y, m) exp(eps * ((m/pm) * (y - py) + py - sum(px * py)))

Y <- Z$Y; M <- Z$M; X <- Z$X

Y[is.na(Y)] <- 2 # Aaargh.

# Initialize

fitM <- glm(M ~ X + I(X^2), family = binomial, data = Z)

fitY <- glm(Y ~ X + I(X^2), family = binomial, subset = (M==1), data = Z)

EM0 <- predict(fitM, newdata = Z, type = "response") # g1X in DR

EY0 <- predict(fitY, newdata = Z, type = "response") # Q1X in DR

pz <- pZ(1/nrow(Z), EM0, EY0)

it <- 0

eps <- Inf

while(eps > tol & it < maxit){

it <- it + 1

p11 <- pz(1,1); p01 <- pz(0,1); p20 <- pz(2,0)

px <- p11 + p01 + p20 # P(X)

pm <- (p11 + p01)/px # P(M = 1| X)

py <- p11/(p11 + p01) # P(Y = 1| M = 1, X)

eps <- optim(0, fn = logLik, gr = gradLik, method = "BFGS",

py = py, pm = pm, px = px, Y = Y, M = M)$par

Dcall <- do.call("Deps", list(eps = eps, py = py, pm = pm, px = px))

body(pz) <- call("*", body(pz), as.call(list(Dcall, quote(y), quote(m))))

}

p11 <- pz(1,1); p01 <- pz(0,1); p20 <- pz(2,0)

px <- p11 + p01 + p20 # P(X)

pm <- (p11 + p01)/px # P(M = 1| X)

py <- p11/(p11 + p01) # P(Y = 1| M = 1, X)

EIF <- Dp(py, pm, px)

theta <- sum(px * py)

list(theta = theta, var = var(EIF(Y,M))/nrow(Z), nit = it)

}

Now to illustrate useage we can do:

set.seed(1492)

Z <- DGP(1000)

a <- tmlex(Z)

Of course the standard MAR model is not that exciting, so it would be nice to demonstrate
that there are better motivations for all of this within the domain of econometrics. Fortunately,
such a motivation is close at hand, as we have already seen: estimating average treatment effects
is essentially the same problem and we can proceed exactly as described at the end of Section 2.
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Rather than dwelling on this again, however, I’d like to proceed immediately to something even
more compelling – estimation of of quantiles with missing data and quantile treatment effects.

4. Quantiles for Missing Data and QTEs

In this section I’ll rely heavily on recent work of Dı́az (2015), but let’s begin with a brief review
of EIFs for quantile models. In the simplest case we have a random sample {Y1, . . . , Yn} from
a distribution F , and we will assume as usual that F has a density f with respect to Lebesgue
measure, and that f is strictly positive on the support of F . Then the ordinary sample quantile,

Q̂(τ) = inf{y : Fn(y) ≥ τ}
where Fn denotes the usual empirical distribution function Fn(y) = n−1

∑
I(Yi ≤ y), satisfies the

condition,

0 ≈
n∑
i=1

ψτ (Yi − Q̂(τ)),

with ψτ (u) = I(u < 0) − τ . The fishy ≈ symbol reflects the possible ambiguity when nτ is
an integer and there are multiple solutions, but this isn’t very consequential since it is a 1/n
phenomenon in a 1/

√
n world. A little more effort, see e.g. my 574 Lecture 15, reveals that the

efficient influence function for estimating Q(τ) is given by,

EIFQ̂(τ)(y) =
1

f(Q(τ))

n∑
i−1

(I(y < Q̂(τ))− τ).

This isn’t terribly interesting since the density factor doesn’t really play an active role. Things
get more interesting in regression settings. We can consider the estimation of the linear quantile
regression model,

QY |X(τ |x) = x>β(τ)

as semiparametric with finite dimensional parameter, β(τ) and nuisance parameter, FY |X . Now
the EIF for β for fixed τ is

EIFβ̂(τ)(y, x) =

n∑
i−1

1
fi(x>

i β(τ)))
(I(y < x̂>i β(τ))− τ).

and each observation is weighted inside the EIF sum according to the local, conditional density
terms fi. This version of the EIF corresponds to the optimally weighted quantile regression
problem,

β̂(τ) = argminb

n∑
i=1

fi(x
>
i β(τ))ρτ (yi − x>i b).

The unweighted quantile regression estimator achieves an asymptotic covariance matrix of the
sandwich form, V = H−1JH−1 where H = limX>ΦX/n, Φ = diag(fi) and J = lim τ(1 −
τ)X>X/n. In the weighted form, the sandwich collapses to V = lim τ(1 − τ)X>X/n. This
conforms to applying the fi weights in the efficient estimating equation and thereby canceling
them out in the EIF. A variety of proposals have been made to construct one-step estimators that
estimate weights based on a preliminary estimator of β(τ) and reestimate. A possibly interesting
alternative to this approach would be to apply the TMLE strategy and iterate toward the solution
of the EIF estimating equation. We will leave this to future consideration and now return to the
missing data setting, albeit with the objective of estimating quantiles rather than means. Before
doing so, I would like to stress that a virtue of the quantile regression paradigm is that even this
efficient score formulation depends only on local information about FY |X near the τth conditional
quantile.

The missing data setting for quantile estimation is quite similar to that of the previous sections
except that the response, Y , when it is observed is no longer binary. Quantiles for binary data
are somewhat silly, although conditional quantiles for binary data have their own charms. We
maintain our prior conditions

i. P (M = 1|Y,X) = P (M = 1|X) ≡ π(X)
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ii. π(X) > 0 a.e.P .
iii. Y ⊥⊥M |X

Again, we can factor PZ = PY (y|M,X)PM (M |X)PX and as before we will denote the propensity
score, π(x) = PM (M = 1|X = x). The unconditional distribution of Y will be denoted by F and
we will assume that it has strictly positive density in a neighborhood of θ = F−1(τ), which will
be our target parameter. We will begin by focusing on the pure missing data model, and then
turn our attention to the QTE problem. Throughout we will consider the unconditional quantile θ
with the understanding that extensions to conditional quantile estimation would be an attractive
subject for future research.

The EIF for estimators of θ at P is given by,

D(P,Z) =
1

f(θ)

[
M

π(X)
(I(Y < θ)− PY (θ|1, X)) + PY (θ|1, X)− τ

]
.

This result, Lemma 1 of Dı́az (2015), combines what we have already seen regarding the MAR
model for means with the EIF result for unconditional quantiles.

Unlike the binary response setting, or for that matter estimating averages for continuous re-
sponse, for quantiles we require an initial estimator of the entire conditional distribution, PY (y|M =
1, X). In principle this could be accomplished by some form of nonparametric density estimation,
but when the dimension of X is large, or even moderate, this is not very practical; so we resort to
– what else? – quantile regression. On a grid of τ ∈ (0, 1), we compute,

Q̂Y |M=1,X(τ |x) = x>β̂(τ),

and to ensure monotonicity at all xi of Q̂ we “rearrange” Q̂(τ |x) as in Chernozhukov et al. (2009).
The gory details of this process are illustrated in the R code that is provided below for the QTET
problem. Our initial estimate of the conditional distribution of Y is easily obtained by inversion,
and the marginal by integrating out over the empirical distribution of X. Note that the latter
step integrates over the entire sample, not just the subsample with observed response, that is,

F̂n(y) = n−1
n∑
i=1

Q̂−1(y|M = 1, Xi).

Our initial estimator of θ becomes θ̂ = F̂−1n (τ).
To update PY (y|M = 1, X) Dı́az (2015) suggests the same exponential family submodel that

we have described above. Let pY (y|M = 1, x) be the density corresponding to PY (y|M = 1, x),
and denote,

pt(y|M = 1, x) = c(t, pY ) exp(tD(pY , z))pY (y|M = 1, x)

where c(t, pY ) is the normalizing constant, and

D(pY , z) =
1

π(x)
[I(y ≤ θ)− PY (y|M = 1, x)] .

At each iteration we can solve for the MLE of t, and then update to get pt̂, continuing until t̂ ≈ 0,
at which point we have a fixed point solution for the least favorable model. Rather than dwell
further on the missing data case I’d rather proceed, as does Dı́az (2015) to consider the closely
related case of estimating QTEs.

In the familiar Neyman-Rubin-Pearl causal model we have a binary treatment, T and observe
a response Y1 if T = 1, and a response Y0 if T = 0, but never both. We would like to estimate
the quantile treatment effect on the treated, by which we will mean the difference between the
τth quantile of the response distribution of the treated subjects minus the τth quantile of what
would have been the response distribution for the treated subjects if they had not received the
treatment. The former quantity is obviously estimable as,

θ̂1 = argmin
∑
i:Ti=1

ρτ (Yi − θ),

so we will concentrate on the more challenging task of estimating θ0, the counter-factual τth
quantile for the treatment subjects had they been controls. As usual we need to make identifying
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assumptions. On the face of it, the task seems formidable since we don’t observe any Y0’s for the
treatment subjects. But covariates come to the rescue. The covariates are the pixie dust, and

i. P (T = 1|Y,X) = P (T = 1|X) ≡ π(X)
ii. π(X) > 0 a.e.P .

are the “happy thoughts” that keep you airborne in the night sky of causal inference.
The distribution of the control responses for the treatment group can then be identified from

the expression,

F 0(y) =
∑
x

PY (y|T = 0, x)pX(x|T = 1).

Clearly, PY (y|T = 0, x) is estimable from the control observations in exactly the same way we
were able to estimate PY (y|T = 1, x) from the treatment group. So to obtain an estimate of F 0

we simply reweight according the mass associated with the covariates in the treatment group. For
example, if there are a lot of x = a types in the treatment group relative to their abundance in the
control group, then those guys will get more weight in this sum. This brings us back to something
similar to the missing data problem we have already considered.

The EIF for estimating θ0 is given by,

D0(pY , z) =
1

f(θ0

[
1− T
ET

π(x)

1− π(x)
(I(y ≤ θ0)− PY (θ0|M = 0, x)) +

T

ET
(PY (θ0|M = 0, x)− τ)

]
.

This looks rather complicated, but it also closely resembles the pure missing data problem we have
already considered, except that we are now focused entirely on the missing control observations
for the treatment group.

For those, like me, who believe in mathematics only insofar as it can be translated into R code
to compute something, and be experimented with, I offer my slightly modified version of the Dı́az
(2015) TMLE code for the QTET estimator. It will be noted that the function QTET actually
returns several competing estimators of the QTET. In addition to the TMLE there is a naive
estimator based on only the initial estimators of the quantiles, and two one-step methods, one
attributable to Firpo (2007) and the other discussed briefly by Dı́az (2015). I will come back to
these after a brief discussion of the TMLE implementation.

QTET <- function(Z, tau = 0.5, taus = 1:99/100, maxit = 10) {

# Computes QTET estimators as in Diaz (2015)

#

# Args:

# Z ~ data.frame consisting of:

# y ~ a response vector

# t ~ a treatment indicator

# x ~ some other conditioning covariates

# tau ~ quantile of interest

# taus ~ grid of quantiles for CQF estimation

# maxit ~ upper bound on iteration count

#

# Returns:

# tmle ~ the TMLE estimator of Diaz (2015)

# se ~ standard error of the tmle

# firpo ~ Firpo (2007) propensity score estimator

# onestep ~ one-step estimator based on tmle EIF

# Some required functions:

F <- function(x, Q, w) mean(rowSums((Q <= x) * w))

Finv <- function(u, Q, w, range)

uniroot(function(x) F(x,Q,w) - u, range, extendInt = "yes")$root

f <- function(y, Q, w, u = 1:99/100){

z <- sapply(u, function(u) Finv(u, Q, w, range(Q)))

approx(density(z), xout = y)$y
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}

D <- function(x, y, Q, w, g)

(g/(1-g)) * ((y <= x) -rowSums((Q <= x) * w))

logLik <- function(eps, t, w, Do, Dq)

-sum((1-t) * (eps * Do - log(rowSums(exp(eps * Dq) * w))))

gradLik <- function(eps, t, w, Do, Dq)

-sum((1-t) * (Do - rowSums(Dq * exp(eps * Dq) * w))/

rowSums(exp(eps * Dq) * w))

# Compute CQF of the control observations

rqf <- rq(y ~ . - t, tau = taus, data = Z, subset = (t == 0))

cqf <- predict(rqf, type = "Qhat", newdata = Z, stepfun = TRUE)

cqf <- lapply(cqf, rearrange)

Q <- t(sapply(cqf, function(f)f(unique(knots(f)))))

y <- Z$y

t <- Z$t

# Compute propensity score

fitT <- glm(t ~ . - y, data = Z, family = binomial)

g <- predict(fitT, type = "response")

# Initialization:

n <- nrow(Q)

m <- ncol(Q)

w <- matrix(1/m, n, m)

it <- 1

crit <- TRUE

q0 <- Finv(tau, Q[t == 1,], w[t == 1,], range(Q))

q1 <- quantile(y[t == 1], tau)

f0 <- f(q0, Q[t == 1,], w[t == 1])

f1 <- approx(density(y[t == 1]), xout = q1)$y

eif0 <- ((1-t) * D(q0, y, Q, w, g) +

t * (rowSums((Q <= q0) * w) - tau))/(f0 * mean(t)) # (7)

eif1 <- t * ((y <= q1) - tau)/(f1 * mean(t))

eif <- eif1 - eif0

naive <- q1 - q0

onestep <- q1 - q0 - mean(eif)

while(crit && it <= maxit){

Do <- D(q0, y, Q, w, g)

Dq <- apply(Q, 2, function(y) D(q0, y, Q, w, g))

eps <- optim(par = 0, logLik, gradLik, method = "BFGS",

t = t, w = w, Do = Do, Dq = Dq)$par

w <- exp(eps * Dq) * w/rowSums(exp(eps * Dq) * w)

q0 <- Finv(tau, Q[t == 1,], w[t == 1,], range(y))

it <- it + 1

crit <- (abs(eps) > 1e-3/n^(3/5))

}

f0 <- f(q0, Q[t == 1,], w[t == 1])

eif0 <- ((1-t) * D(q0, y, Q, w, g) +

t * (rowSums((Q <= q0) * w) - tau))/(f0 * mean(t)) # (7)

eif <- eif1 - eif0

firpo <- q1 - coef(rq(y ~ 1, tau = tau, data = Z, weights = (1-t) * g/(1-g)))

list(tmle = q1 - q0, naive = naive, firpo = firpo, onestep = onestep,

se = sqrt(var(eif)/n), nit = it)

}
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In some respects the code for the QTET is simpler than the tmlex code we saw earlier. There is
no fancy updating of the submodel function with do.call, etc., everything is dealt with explicitly
in the way that the array Dq is updated. But essentially we have the same algorithmic structure
as in earlier TMLE procedures:

Initialize pY
While(ε too big)

Construct new parametric submodel
Find MLE for ε in new model
Update pY

Return

I wouldn’t claim that the foregoing description will enable you to leap out of upper story
windows with confidence, and even so you should always remember that Captain Hook and his
pirates are lurking down below. But perhaps with some safety netting and further experimentation
it will help to guide further exploration of the TMLE paradigm. I believe that the QTE extension
of Dı́az (2015) is a particularly promising development.
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