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1. Introduction

Confidence intervals for extreme quantiles require a distinct theory from that describing
the behavior of central quantiles. This theory has been pioneered for quantile regression
by Victor Chernozhukov in his Phd thesis and a considerable body of subsequent work, as
reviewed in Chernozhukov et al. (2018). In this note I would like to describe very briefly the
implementation of some of these methods in the R package quantreg.

2. Confidence Intervals for Extreme Regression Quantiles

In accordance with general R principles inference about various linear model coefficient
estimates is available by subjecting a fitted object containing point estimates to a summary

function. In the case of fitted objects produced by the function rq in the quantreg there
are already quite a few options to choose among; the lastest addition to these methods
is the option se = "extreme". It uses a relatively new bootstrapping option described in
Chernozhukov et al. (2019) to do subsampling and produces percentile intervals for each
of the estimated coefficients. There are several tuning parameter choices involved in this
procedure: the size of the subsamples, denoted by mofn; a bandwidth, denoted kex; and
the number of bootstrap replications, denoted by R. These parameters are described in more
detail in the documentation of the function summary.rq and of course in the code itself.

To illustrate the use of this option we will consider the financial application in Chernozhukov
et al. (2018), investigating value-at-risk estimates for Citigroup return from 2009 to 2015. The
data is constructed as described in the supplemental material for the Handbook chapter and
stored as the compressed image D.Rda. Then the code to reproduce a version of Figure 18.2
of their chapter is quite simple.

library(quantreg)

load("D.Rda")

p <- ncol(D)

mofn <- floor(50 + sqrt(nrow(D)))

taus <- (1:99)/100

fit <- rq(Y ~ ., tau = taus, data = D)

extreme <- summary(fit, se = "extreme", mofn = mofn, kex = 5+p)

pfit <- plot(extreme)

October 1, 2020. Thanks to Victor Chernozhukov and Ivan Fernandez-Val for making their code available
and suggesting an implementation in quantreg. Thanks too to Shuowen Chen for helpful comments on an
earlier version of the quantreg implementation.
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Figure 1. Extreme Value Quantile Inference for Citigroup Data: The point-
wise bands illustrated here use the bootstrap method of Chernozhukov et al

central <- summary(fit, se = "ker")

plot(central, ylim = pfit$Ylim) # Use "extreme" plotting limits

One shouldn’t draw any firm conclusions from a single realization like this, but I hope that
the new syntax might encourage someone to make a more systematic comparison. It is slightly
odd that the extremal method produces a few very short intervals for central quantiles, but of
course it is not intended to be used for central quantiles. Chernozhukov et al. (2018) suggest
the rule of thumb that τn/p < 30 as a theshold for the use of the extremal intervals.
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Figure 2. Conventional Central Quantile Inference for Citigroup Data: The
pointwise bands illustrated here use the kernel method of Powell.

3. Estimating Pareto Tail Exponents

The other new feature introduced for handling extremal quantile regression problems is
a pair of functions for estimating the tail index of the response observations. These are
implemented in a umbrella function ParetoTest with options for the Hill (1975) method and
the Pickands (1975) method. To explore the performance of these two methods a very simple
simulation experiment was undertaken. The setup is a very simple bivariate linear model with
iid Student t2 errors. The Pareto tail exponent is thus 1/2, and we would hope and expect
that both methods would produce estimates and confidence intervals that reflected this target
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Hill Pickands
Estimate 0.583 0.333
BC-Estimate 0.507 0.375
Lower 0.399 0.068
Upper 0.604 0.685

Table 1. Simulation Results for the ParetoTest Function: A simple bivariate
linear model with iid Student t errors with two degrees of freedom is considered.
Mean estimates based on 500 replications for Hill and Pickands estimates are
reported as well as bias-corrected estimates and percentile confidence bounds
based on 200 bootstrap replications.

value. As can be seen in the summary table, the Hill estimator is quite well centered at the
desired value, but the Pickands estimator is substantially downward biased, as is its bias
corrected version and confidence interval. This is confirmed in an examination of histograms
of the 500 replications of the two estimators illustrated in Figure 3.

# Toy Simulation of Hill vs Pickands for t2 model

require(quantreg)

set.seed(1729)

n = 2000

R = 500

A = array(0,c(R,6,2))

x = rnorm(n)

for(i in 1:R){
y = x + rt(n,2)

A[i,,1] = ParetoTest(y ~ x, 0.05, flavor = "Hill")$z

A[i,,2] = ParetoTest(y ~ x, 0.05, flavor = "Pickands")$z

}
B = apply(A,2:3,mean)[1:4,]

dimnames(B) = list(c("Estimate", "BC-Estimate", "Lower", "Upper"),

c("Hill", "Pickands"))

par(mfrow = c(1,2))

load("sim1.Rda")

hist(A[,1,1],40, main = 'Hill Estimates', xlab = 'Estimate')

hist(A[,1,2],40, main = 'Pickands Estimates',xlab = 'Estimate')

4. Conclusion

Inference for extremal quantile regression is an important practical objective that has
heretofor been neglected in the quantreg package. It is to be hoped that making the im-
plementations described above available will encourage others to explore and improve upon
these features.
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Figure 3. Histograms of 500 Hill and Pickands estimates of a Pareto Tail
Exponent: The simulation setting has target tail exponent of 1/2, so the Hill
estimator is quite well centered, however the Pickands estimator is somewhat
downwardly biased.
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