
Figure 1. “Whisk in 1 tsp white wine vinegar.”
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1. Introduction

Isotonic regression has a long and illustrious history beginning with work in the 1950s by
van Eeden and the four B’s as elegantly sketched in de Leeuw et al. (2009). It was from this
paper and the associated R package isotone that I first learned about the generalization of
the classical “pool adjacent violators algorithm” (PAVA) method of estimation for isotonic
mean regression to isotonic median, and quantile regression. In Figure 1 I’ve illustrated an
example where because the conditional distribution of the response, y|x is right skewed, the
fitted mean function lies above the fitted median function over most of the domain.

require(isotone)

set.seed(1729)

n <- 100

x <- sort(rchisq(n,4)) + 2

y <- log(x)+ .1*(log(x))^2 + log(x)*rchisq(n,4)/4

plot(x, y, cex = 0.5, col = "blue")

plotpava <- function(x, col = 1){
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Figure 2. Comparison of mean and median isotonic regression: The response
is conditionally rescaled χ2 and consequently the isotonic mean fit is somewhat
above the conditional median fit for this data.

o <- order(x$z)

xval <- x$z[o]

yval <- x$x[o]

lines(xval, yval, type = "S", col = col, lwd = 2)

}
g1 <- gpava(x,y,solver = weighted.fractile, p = 0.5)

g2 <- gpava(x,y)

plotpava(g1, col = 2)

plotpava(g2)

legend("bottomright", c("mean","median"), lwd = 2, col = 1:2)

The piecewise constant form of these estimates raised the question: Is there an equivalent
formulation of the underlying optimization problem based on total variation penalization?
In my experience TV penalization is usually imposed on the derivatiive, or gradient, of the
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fitted function, but there is a substantial literature on penalization of the fitted function
itself, this leads naturally to fitted functions that are piecewise constant, rather than piecewise
linear. Thus, to take the simplest example we might consider the penalized quantile regression
problems,

ĝ = argming∈G

n∑
i=1

ρτ (yi − g(xi)) + λTV (g).

This is closely related to Davies and Kovac (2001) “taut-string” methods except that there
the emphasis is on estimation of mean functions, and they have a much more sophisticated ap-
proach to a local rather than global penalty parameter, λ. The penalty enforces the piecewise
constant form of the solutions since any departure from this class of solutions would inflate
the penalty without improving the fidelity. From here, it is tempting to consider imposing the
further constraint that ĝ be monotone. Since we only need worry about the fitted function
values at the observed design points, this entails only the requirement that the (ordered) ŷi’s
be increasing, or decreasing.

Fortuitously, this formalism is easily implemented in the rqss framework of my quantreg
package in R, so it is simple to compare solutions with those from the isotone package. The
only fly in the ointment seems to be what to do with λ? We don’t really want to do any
smoothing, so we can just set λ = 0. I was doubtful that this would work, and assumed at
first that I’d have to use some bogus “small” value, but to my surprise, zero seems to be fine.

set.seed(1729)

n <- 100

x <- sort(rchisq(n,4)) + 2

y <- log(x)+ .1*(log(x))^2 + log(x)*rchisq(n,4)/4

plot(x, y, cex = 0.5, col = "blue")

f <- rqss(y ~ qss(x, constraint= "I", lambda = 0, Dorder = 0), tau = .501)

g1 <- gpava(x,y,solver = weighted.fractile, p = .501)

plotpava(g1)

plot(f, add = TRUE, col = 2)

Rho <- function(u, tau = 0.5) sum(u * (tau - (u < 0)))

R0 <- f$fidelity

R1 <- Rho(g1$y - g1$x, tau = .501)

legend("bottomright", c("isotone","TV Penalty"), lwd = 2:1, col = 1:2)

Note that in the qss term of the rqss fitting function I’ve specified Dorder = 0 so that
the TV penalty acts on g rather than g′. I’ve also specified tau = 0.501 which may seem a
bit odd, but serves the useful purpose that it avoids the multiple solutions that arise when
tau = 0.5 is specified. It should be noted that the same solutions can also be obtained by
specifying Dorder = 1 since the monotonicity enforces the same piecewise constant solutions.

In retrospect it is hardly surprising that the two problems produce the same solution,
although I still find it remarkable that the two rather different algorithms, the active-set
algorithm from the isotone package and the sparse Frisch-Newton interior point algorithm
from quantreg produce solutions whose objective functions agree to eleven decimal digits.

2. Conclusion

Arguably, an advantage of the penalized version is that it fits nicely into the additive
modeling framework of the rqss function, so one could easily incorporate additional covariate
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Figure 3. Comparison of median isotonic regression with penalized median
regression: The response is the same conditionally rescaled χ2. The TV pe-
nalized solution overplots the isotonic solution and the realized values of the
objective function agree to 11 decimal digits.

effects. As always with shape constrained estimation, inference is a challenging subject. One
might hope that having yet another perspective on the formulation of such problems might
eventually shed some new light on these questions as well.
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