
/

COMPUTING SAMPLE QUANTILES:

AN R VINAIGRETTE

ROGER KOENKER

1. Introduction

A classical problem in computational statistics is: how to compute the τth sample quantile?
It seems ridiculously simple: don’t you just sort the observations and find the k = τn smallest
one. Maybe, but not if you are interviewing for a job at Google. Sorting is quite efficient, and
can be done in O(n log n) comparisons, but why would we want to fully sort the observations
when we only need to care about a small range of them?

Linear methods began appearing in the 1960s, notably Hoare (1961), an adaptation of the
better known “quicksort,” Hoare (1962). An elegant analysis of Eppstein (2007) shows that
“quickselect” requires an expected number of comparisons,

[2n(1 + log(n/(n− k)) + 2k log((n− k)/k))(1 + o(n)),

or, in the median, k = n/2, worst case, 2n(1 + log(2) + o(1)) ≤ 3.3863n+ o(n) comparisons.
Floyd and Rivest (1975) proposed an algorithm1 that improved upon Hoare’s “quickselect,”

and provided an implementation in Algol 68. Subsequent work by Kiwiel (2005) established
an expected performance bound of n + min(k, n − k) + O(

√
n) for this algorithm. In 1996 I

made a very literal translation of the Floyd-Rivest “select” algorithm from Algol to Ratfor, a
preprocessor for Fortran, and incorporated it into my Splus package for quantile regression.
This implementation involved Fortran that made a recursive call (to itself). This was formally
a no-no in Fortran 77, but for a time certain compilers tolerated it. After the transition to
R about 2001, at some point compilers on some CRAN test machines began to baulk at
this recursive feature and I had to remove it from the package. Coincidently, around this
time I had an email exchange with Krzysztof Kiwiel who had been working on “select” and
had run across my Fortran version. His paper, Kiwiel (2005) clarified several aspects of the
theoretical performance of the “select” algorithm and also provided a Fortran version that
circumvented the recursive call. He kindly gave me permission in 2006 to include his code as
part of my quantreg package. In a somewhat quixotic effort to convince R-core to replace
the extant quantile function, I wrote interface code to produce all nine varieties of quantiles
as described in the R man page for quantile. It was eventually judged to be insufficiently
faster to justify the switch.2

In Koenker (2020) I recently tried to review the ecosystem of methods in the quantreg
package for computing quantile regression estimates and evaluating their precision. This
rekindled my interest in computation of univariate quantiles, and in particular the weighted

January 13, 2021. A genre manifesto for R Vinaigrettes is available at http://davoidofmeaning.
blogspot.com/2016/12/r-vinaigrettes.html.

1There seems to be some confusion in the literature about the terminology of these early contributions.
Hoare’s “quickselect” is sometimes referrred to as “quickfind,” and an early paper of Tibshirani (2008) misat-
tributes “quickselect” to Floyd and Rivest. Knuth (1998) offers an authoritative account.

2It always amazed me that there were nine such varieties to resolve what was, after all, an ambiguity of
measure zero. Empson (1930) could only come up with seven.

1

2 ROGER KOENKER

4 5 6 7 8 9

−
4

−
3

−
2

−
1

0
1

log10(n)

lo
g 1

0(T
)

quantile
select
kuantile

Figure 1. CPU Time (in seconds) for Computing a Single Quantile as a
Function of Sample Size

quantiles that correspond to solving univariate quantile regression problems that force the
fitted quantile regression line to be a ray through the origin. In the remainder of this note
I’d like to first review the the classical univariate sample quantile problem, and then briefly
turn to the weighted quantile problem.

2. Univariate Sample Quantiles

My interface to the Kiwiel code, because in part it accounts for all nine varieties of quantiles,
seemed a bit bulky, so I wondered whether something closer to the original implementation of
Floyd and Rivest might perform somewhat better. In the interim I had learned that Fortran
90 had reinstated the possibility of recursive calls. So I thought I would experiment with
my old literal translation as a warm-up excercise before embarking on the weighted quantile
coding that was my ultimate aim. The modification required for this was essentially just
to add the word “recursive” before subroutine, The directory src/ratfor in the package
quantreg contains the new version of the code in Ratfor.

In Figure 1 I compare the cpu time required to compute a single quantile for samples
of various sizes with the functions, quantile from base-R, kuantile from the quantreg
package, and q489 from the quantreg package. The shaded regions represent the band
between the first and third quantiles for each method based upon 50 replications and measured
by the microbenchmark function. Both quantreg procedures exhibit a clear advantage over
the base-R method with q489 having a slight advantage due perhaps to the overhead entailed
by the more elaborate R interface of the kuantile method.

COMPUTING SAMPLE QUANTILES: AN R VINAIGRETTE 3

3. Weighted Quantiles

In their simplest form weighted quantiles arise when we have repeated values of some
observations and would like to use case weights to account for this repetition. More generally,
we may wish to consider more general weights for each observation. These weights should
be non-negative to preserve the convexity of the underlying optimization problem. One
interpretation of the general weighted quantile estimate is to consider the problem,

min
a∈R

n∑
i=1

ρτ (yi − xia)

this is sometimes referred to as “regression through the origin” since we seek a scalar slope
coefficient to minimize the usual quantile regression objective function. In effect this is a
weighted quantile problem with observations zi = yi/xi and weights wi = |xi|. To solve such
problems we need to order the zi’s and find the element such that the cumulative sum of the
ordered weights exceeds a theshhold, a concise implementation of this strategy is given in the
following R code.

wquantile <- function(x, y, t = 0.5) {
ord <- order(y/x)

z <- (y/x)[ord]

wabs <- abs(x[ord])

k <- sum(cumsum(wabs) < ((t - 0.5) * sum(x) + 0.5 * sum(wabs)))

z[k + 1]

}

Of course, this requires a full sort of the zi’s so there should be a more efficient algo-
rithm that operates like the Floyd-Rivest “select” method. A UK astrophysics project called
“Starlink” produced such an open source implementation called KPG1 QNTLx, unfortunately
my attempts to link it via R to do comparisons floundered; for sample sizes up to about
1,000,000 it performs quite well, but for larger sample sizess it segfaulted with a “memory
not mapped” error. I was not able to track down the source of this error despite attempts
to explore with my limited knowledge of fortran debugging with gdb and valgrind. As an
alternative I wrote a version of “select” employing weights that was almost successful; it was
relatively quick, didn’t segfault at large sample sizes but unfortunately didn’t quite get the
right answer. It was typically only wrong by one or two order statistics, but again I lost
patience trying to determine what was going wrong. Intrepid readers, if any, interested in
pursuing this are encouraged to take a closer look at the code which will be made available
with the pdf of this document.

4. Updating Sample Quantiles

Given an sample quantile based on n observations, we might also ask whether there is an
efficient way to update our estimate when presented with new observations. This was the
first example in the celebrated Robbins and Monro (1951) paper on stochastic approximation.
There are several variants of this problem. One approach is closely tied to the Robbins-Monro
algorithm and has been investigated by Holst (1985), Toulis et al. (2020) and others. Space
efficient estimation methods are proposed by Tierney (1983), and Rousseeuw and Bassett
(1990). Estimation of quantiles in distributed networks has been explored by Chambers et al.
(2006), and Hammer et al. (2019), among others.

4 ROGER KOENKER

5. Conclusion

Quantiles play a crucial role in many statistical applications and larger sample sizes in-
evitably pose new challenges. My own interest in efficient computation of weighted sample
quantiles stemmed from an old realization that the bounded variable simplex method of Bar-
rodale and Roberts (1974) for solving `1 regression problems, and a fortiori other quantile
regression problems, is essentially gradient descent combined with a step length optimization
solving a weighted quantile problem. See Koenker (1996) for further details.

References

Barrodale, I. and Roberts, F. (1974), ‘Solution of an overdetermined system of equations in
the `1 norm’, Communications of the ACM 17, 319–320.

Chambers, J. M., James, D. A., Lambert, D. and Vander Wiel, S. (2006), ‘Monitoring net-
worked applications with incremental quantile estimation’, Statistical Science 21, 463–475.

Empson, W. (1930), Seven Types of Ambiguity, Chatto and Windus.
Eppstein, D. (2007), Blum-style analysis of quickselect. Available from https://11011110.

github.io/blog/2007/10/09/blum-style-analysis-of.html.
Floyd, R. W. and Rivest, R. L. (1975), ‘Algorithm 489: The algorithm select for finding the

ith smallest of n elements’, Comm. ACM 18, 173.
Hammer, H. L., Yazidi, A. and Rue, H. (2019), ‘A new quantile tracking algorithm using a

generalized exponentially weighted average of observations’, Applied Intelligence 49.
Hoare, C. A. R. (1961), ‘Algorithm 65: Find’, Comm. ACM 4, 321–322.
Hoare, C. A. R. (1962), ‘Quicksort’, Commuter Journal 5, 10–16.
Holst, U. (1985), Recursive estimation of quantiles, in G. Lindgren, ed., ‘Contributions to

Probability and Statistics in Honour of Gunar Blom’, Lund University Press, pp. 179–188.
Kiwiel, K. C. (2005), ‘On floyd and rivest’s select algorithm’, Theoretical Computer Science
347, 214–238.

Knuth, D. K. (1998), The Art of Computing Programming: Sorting and Searching, Vol. 3,
2nd edn, Addison-Wesley.

Koenker, R. (1996), rqx: Barrodale and Roberts lite. Available from: http://www.econ.

uiuc.edu/~roger/research/rq/rqx.R.
Koenker, R. (2020), Quantile regression methods: An R vinaigrette. Available from http:

//www.econ.uiuc.edu/~roger/research/vinaigrettes/vinaigrette.html.
Robbins, H. and Monro, S. (1951), ‘A stochastic approximation method’, Annals of Mathe-

matical Statistics 22, 400–407.
Rousseeuw, P. J. and Bassett, G. W. (1990), ‘The remedian: A robust averaging method for

large data sets’, Journal of the American Statistical Association 85, 97–104.
Tibshirani, R. J. (2008), Fast computation of the median by successive binning. available

from: urlhttps://www.stat.cmu.edu/ ryantibs/papers/median.pdf.
Tierney, L. (1983), ‘A space-efficient recursive procedure for estimating a quantile of an

unknown distribution’, SIAM Journal on Scientific and Statistical Computing 4, 706–711.
Toulis, P., Horel, T. and Airoldi, E. M. (2020), ‘The proximal Robbins–Monro method’,

Journal of the Royal Statistical Society: Series B .

https://11011110.github.io/blog/2007/10/09/blum-style-analysis-of.html
https://11011110.github.io/blog/2007/10/09/blum-style-analysis-of.html
http://www.econ.uiuc.edu/~roger/research/rq/rqx.R
http://www.econ.uiuc.edu/~roger/research/rq/rqx.R
http://www.econ.uiuc.edu/~roger/research/vinaigrettes/vinaigrette.html
http://www.econ.uiuc.edu/~roger/research/vinaigrettes/vinaigrette.html

	1. Introduction
	2. Univariate Sample Quantiles
	3. Weighted Quantiles
	4. Updating Sample Quantiles
	5. Conclusion
	References

