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Abstract. Nonparametric maximum likelihood estimation of mixture models has proven
to be a valuable tool for empirical Bayes decision making. The question naturally arises:
Is there something special about the likelihood criteria, or could other minimum distance
criteria serve equally well? If so, can we say something about under what circumstances
various criteria perform well. To initiate such an investigation an implementation of a class
of Rényi entropy criteria that incorporates most of the usual minumum distance candidates
is implemented and some preliminary testing is undertaken.

1. Introduction

In the R package REBayes, Koenker and Gu (2015–2024) we have provided functions for
solving a wide variety of nonparametric maximum likelihood problems of the form,

min
G∈G

{
n−1

n∑
i=1

log f(yi) | f(y) =
∫

φ(y|θ)dG(θ).
}

In practice, we have found it more efficient to solve the corresponding dual problem,

max
ν∈Rn

{
n−1

n∑
i=1

log νi | n−1
n∑

i=1

νiφ(yi|θ) ≤ n for all θ
}
,

to recover the the primal solution from the dual solution we must solve,

n−1
m∑
j=1

φ(yi|θ̂j)gj =
1

ν̂i
.

The dual constraint obviously has to be evaluated on a grid, {t1, . . . , tm} of θ’s, and we

denote the discrete mass of Ĝ at these points by the gj ’s. There are typically O(log n) of
these corresponding to the active constraints. See Koenker and Mizera (2014), and Polyanskiy
and Wu (2020).

We have argued elsewhere, Koenker and Mizera (2010, 2018) that the family of Rényi diver-
gences offers a convenient class of alternatives to the maximum likelihood criterion for shape
constrained density estimation. In that context, modifying the fitting criterion to match
a concavity constraint was essential to preserve the convexity of the underlying variational
problem. For mixture problems there is no such obligation, but several authors have enter-
tained special cases of minimum distance fitting that fall nicely into the Rényi class. Since
the implementation of the Rényi alternatives was already available in the medde function of
the REBayes package, it was relatively simple to adapt this code for fitting mixture models.
For NPMLE fitting we rely on the function KWDual implementation of the dual form of the
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α = -1 α = -0.5 α = 0 α = 0.5 α = 1 α = 2
n= 500 2.22 2.23 2.21 2.22 2.20 2.94
n= 1000 2.20 2.20 2.19 2.20 2.19 2.93

Table 1. RMSE for several alternative minimum distance estimators: Poisson case

α = -1 α = -0.5 α = 0 α = 0.5 α = 1 α = 2
n= 500 0.96 0.97 0.96 0.96 0.98
n= 1000 0.96 0.97 0.95 0.96 0.98

Table 2. RMSE for several alternative minimum distance estimators: Gauss-
ian case

discretized probllem. A modified version of this function allows the user to specify a param-
eter, alpha, that selects a fitting criterion from the Rényi menu. Calls to various special
fitting functions: Gmix, Pmix, etc. can pass the the alpha parameter to the KWDual through
the R dots mechanism. Further details on the implementation of the Rényi fitting criteria in
Mosek, ApS (2022), may be found in Koenker (2019).

2. Some Simulation Evidence

To begin to explore performance of these alternative minimum distance fitting criteria, we
will consider two canonical empirical Bayes compound decision models: a Poisson mixture
model,

Yi ∼ Pois(θi), θi ∼ U [0.5, 15], i = 1, . . . , n,

and the Gaussian sequence model,

Yi ∼ N (θi, 1), θi ∼ U [0.5, 15], i = 1, . . . , n.

We consider six values of the Rényi parameter α: {−1,−0.5, 0, 0.5, 1, 2}. The value α = 0
corresponds to maximum likelihood fitting, α = 0.5 to Hellinger fitting, α = 1 to Shannon
entropy, and α = 2 to Pearson fitting. Performance is evaluated by a root mean squared error
criterion: for each replication of the experiment, we compute,

L(θ̂, θ) =
{
n−1

n∑
i=1

(θ̂i − θi)
2
}
,

where θ̂i denotes the posterior mean EĜ(θ|Y = yi). These quantities are then averaged over
replications of the experiment, and the square root of these averages are reported. Two sample
sizes, n ∈ {500, 1000}, are considered and the number of replications is set to R = 1000.

In Table 1 we report root mean squared errors for the Poisson experiment. The NPMLE
procedure, α = 0 performs well as does the Shannon entropy procedure, α = 1, while the
other procedures are very slightly worse, only the Pearson α = 2 procedure is clearly inferior.

In Table 2 we report root mean squared errors for the Gaussian experiment. Again, the
NPMLE procedure, α = 0 performs well as does the Shannon entropy procedure, α = 1,
while the other procedures do almost as well. However, the Pearson, α = 2, setting for the
Gaussian model produces unbounded solutions that fail to yield sensible estimates of G. This
is rather mysterious and is left for future investigation.
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Available from http://www.econ.uiuc.edu/~roger/research/vinaigrettes/Mosek9.

pdf.
Koenker, R. and Gu, J. (2015–2024), REBayes: An R package for empirical Bayes methods.
Available from https://cran.r-project.org/package=REBayes.

Koenker, R. and Mizera, I. (2010), ‘Quasi-concave density estimation’, Annals of Statistics
38, 2998–3027.

Koenker, R. and Mizera, I. (2014), ‘Convex optimization, shape constraints, compound deci-
sions, and empirical Bayes rules’, Journal of the American Statistical Association 109, 674–
685.

Koenker, R. and Mizera, I. (2018), ‘Shape Constrained Density Estimation Via Penalized
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