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Abstract. An R implementation of an estimator of the the quantile selection model
proposed recently by Arellano and Bonhomme (2017) is described. Method of moments
estimation of the model’s copula parameters, however, is contrasted with a somewhat
unconventional profile likelihood approach.

1. Introduction

Arellano and Bonhomme (2017) have recently proposed a new approach to analysing
sample selection effects in the context of a general quantile regression model, thereby ex-
tending the classical parametric selection methods of Heckman (1979). A central feature
of their approach is the estimation of the parameters of a copula function that determines
the dependence between the random components of the (latent) selection model and the
observable outcome model. This note contrasts a profile likelihood alternative with the
method of moments strategy for estimating the copula parameters proposed by Arellano
and Bonhomme (2017). The possibility of likelihood based alternatives was already sug-
gested by Arellano and Bonhomme (2017), so this can be considered a tentative first step
in this direction.

2. A QRious Likelihood

Quantile regression, at least as it was originally conceived, posits a local statistical model
focussed on estimating a single conditional quantile function while professing total indif-
ference about the form of adjacent conditional quantile functions. However, when one
writes,

QY |X(τ |x) = x>β(τ) τ ∈ (0, 1),

a global model for the entire conditional distribution of Y given X has been specified, so it
is natural to ask: Can we compute a global likelihood value for fitted models of this form?

To achieve this dubious objective we obviously need estimates of the conditional density
of Y at each observed setting of the conditioning covariate vector, X. Given estimates of

Version: September 17, 2020. Code and data to reproduce the results reported here will be available
from the binary version of the quantreg package downloadable from a CRAN mirror near you. The R
function browseVignettes("quantreg") should bring up a browser window with links to the pdf version
of this document and the file with the R code that generates the computational results described.
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the conditional quantile function at each X = xi, this is just a matter of smoothing. In
problems of moderate size all of the solutions to the problem,

β̂(τ) = argminb

n∑
i=1

ρτ (yi − xib),

can be very efficiently computed by parametric linear programming, and thus for any x
we have Q̂(τ |x) as a piecewise constant (CAGLAD) function on (0,1). In the quantreg
package for R the invocation,

data(stackloss)

fit <- rq(stack.loss ~ stack.x, tau = -1)

fhat <- predict(fit, type = "fhat")

loads the infamous stackloss data, fits a model for the entire quantile regression process
and computes a list of n conditional densities, one for each of the original observations.
Smoothing is done with the function akj, which implements Silverman’s well-known adap-
tive kernel density estimator. Given these conditional densities it is easy to define a function
to compute the log likelihood:

logLik.rq.process <- function(fit){

y <- model.response(model.frame(fit))

fhat <- predict(fit, type = "fhat")

fy <- mapply(function(f,y) f(y), fhat, y)

sum(log(fy))

}

To illustrate we can compare the log likelihoods for the unconditional and conditional
quantile models as follows,

f0 <- rq(stack.loss ~ 1, tau=-1)

f1 <- rq(stack.loss ~ stack.x, tau=-1)

l0 <- logLik(f0)

l1 <- logLik(f1)

which yields l1 - l0 =−34.446−−70.736 = 36.289. It remains to be seen if Professor Wilks
ghost can be persuaded to divulge a limiting distribution theory for such log likelihood ratio
statistics. It is not at all obvious how one might count degrees of freedom for such global
quantile regression models. It is also evident that in applications with much larger sample
sizes it is impractical, and obviously superfluous to compute all the distinct solutions of
the QR process. Portnoy (1991) shows that the expected number of distinct solutions is
of order O(n log n). In what follows we adopt the pragmatic attitude that a grid of a few
hundred τ ∈ (0, 1) is sufficient to produce a reasonable estimate of conditional densities
provided a reasonable choice of the initial bandwidth for the pilot estimate of the Silverman
procedure is employed.



QUANTILE SELECTION MODELS: AN R VINAIGNETTE 3

It may be noted at this point that a fully efficient likelihood procedure would require that
we weight the usual QR objective by estimates of the local conditional density. See Koenker
(2005) Section 5.3.1. We reserve this (rather utopian) diversion for future exploration.

3. Estimation of the QR Selection Model

Leaving aside for the moment (or millennium) the distribution theory for tests based on
such LRTs, our motivating application for the QR likelihood is estimation of the quantile
regression selection model of Arellano and Bonhomme (2017). Their approach involves
GMM estimation of a parametric copula model that captures the dependence between the
random components of the latent selection model and the outcome model. The objective
function involves evaluating indicator functions along a grid of τ ’s evaluated at “rotated”
quantile regression estimates. It seemed worth exploring whether the foregoing likelihood
approach might provide a more direct way to implement estimation of their model.

Our implementation of the Arellano and Bonhomme (2017) estimator exploits general
features of the R protocol for fitting linear models. The model is specified as a generalized
formula as introduced in Zeileis and Croissant (2010),

y|D ∼ X|Z,
where y is the observable outcome variable, D is the binary selection indicator, X specifies
the conditioning covariates of the outcome model, and the union of X and Z specifies the
conditioning covariates of the selection model. The outer wrapper of the fitting functions
looks like this:

rqsel <- function(formula, data, taus = 1:99/100, rhodom = c(-5,1),

grid = 0, copula = frankCopula, link = "probit", rhometh = Liksel){

# Generic Formula is y|D ~ X|Z

Form <- Formula(formula)

oform <- formula(Form, lhs = 1, rhs = 1)

sform <- formula(Form, lhs = 2, rhs = 1:2, collapse = TRUE)

v <- glm(sform, family = binomial(link = link), data = data)

D <- model.response(model.frame(v))

v <- v$fitted[D == 1]

fit <- rq(oform, tau = taus, data = data, method = "fnb", eps = 1e-4)

if(grid){

rhos <- seq(rhodom[1], rhodom[2], length = grid)

objs <- sapply(rhos,function(x, fit, copula, v)

rhometh(x, fit, copula, v), fit = fit, copula=copula, v=v)

return(list(x = rhos, y = objs))

}

else

rhohat <- optimize(rhometh, rhodom, fit = fit, v = v,

copula = copula)$minimum

rq.fit.sel(rhohat, fit, copula, v)
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}

The formula is first parsed into its outcome and selection pieces, and a binary response
model is then estimated for the selection variable, D. A propensity score, v is then extracted
and evaluated for all the selected observations, i.e., those with D = 1. In the next step a
naive QR model is estimated that ignores the sample selection effect; the output of this step
serves only as a repository for subsequent information for fitted objects that do account
for the selection. Note that the fitting of the QR model automatically drops the D = 0
observations since their response variable is coded as “NA”, i.e., missing. QR fitting is done
on a grid of τ ∈ (0, 1), by default at the percentiles.

At this stage we are almost ready to optimize over the dependence parameter of the
copula function that links the selection and outcome equations. We will restrict attention
to settings with a scalar copula parameter, by default with the Frank copula, but this
could be easily extended to more general parametric settings such as the generalized Frank
specification of Arellano and Bonhomme (2017).1

We will consider two criteria for estimating the copula parameter: the method of mo-
ments criterion of Arellano and Bonhomme (2017), and the profile likelihood criterion
described in the previous section as implemented in the functions Momsel and Liksel

respectively.

Liksel <- function(rho, fit, copula, v) {

f <- rq.fit.sel(rho, fit, copula, v)

y <- model.response(model.frame(fit))

fhats <- predict(f, type = "fhat")

fy <- mapply(function(f,y) f(y), fhats, y)

-sum(log(fy))

}

Momsel <- function(rho, fit, copula, v) {

R <- rq.fit.sel(rho, fit, copula, v)$resid

sum(apply(R,2,mean))^2

}

Both approaches rely on the novel QR estimation strategy introduced by Arellano and
Bonhomme (2017) that modifies the conventional fixed τ weighting of the objective function
with a observation specific τ̂i depending upon the estimated propensity score and the copula
dependence relation,

τ̂i = C(τ, vi; ρ)/vi,

where C denotes the distribution function of the chosen copula function evaluated at the
proposed τ , the propensity score, vi of the ith observation and the trial value of the copula
parameter, ρ. This is implemented in the function rq.fit.sel.

1This would simply entail replacing optimize by optim, and the interval rhodom by a vector of starting
values.
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rq.fit.sel <- function(rho, fit, copula, v){

taus <- fit$tau

fit$frho <- rho

x <- model.matrix(terms(fit), model.frame(fit))

y <- model.response(model.frame(fit))

cop <- copula(rho)

for(j in 1:length(taus)) {

u <- pCopula(cbind(taus[j], v), cop)/v

rhs <- t(x) %*% (1 - u)

f <- rq.fit.fnb(x, y, taus[j], rhs = rhs, eps = 1e-4)

fit$coefficients[,j] <- f$coef

fit$residuals[,j] <- v * ((f$resid <= 0) - u)

}

fit

}

In the dual formulation of the QR problem that is typically used to construct algorithms,
the introduction of this observation specific τ vector is trivially accommodated by chang-
ing the right hand side of the dual equality constraints. Instead of a scalar τ with dual
constraint X>a = (1−τ)X>1, we can write, X>a = X>(1−u), where u denotes the new τ
specific vector. Such problems are efficiently solved with the so-called Frisch-Newton linear
programming algorithm invoked by rq.fit.fnb, and described in detail in Portnoy and
Koenker (1997). This is a fortran implementation of the same algorithm used by Arellano
and Bonhomme (2017), in Matlab.

Estimated coefficients in our repository fit object are replaced by the coefficients of this
new solution for each τ on our grid, and residuals are replaced by a vector of scaled and
centered residual signs needed to evaluate the moment criterion. This new fitted object
is passed either to Momsel or Liksel which evaluate the copula fitting criteria. In the
former case, estimated conditional densities are evaluated at the observed response, logged
and summed. In the latter case we simply sum mean discrepancies from the hypothesized
moment condition and square the sum.

4. A Replication Exercise

To illustrate the foregoing approach we reconsider the model posited in Arellano and
Bonhomme (2017).2 The grid argument in rqsel can be used to evaluate the criterion
function on a grid of ρ’s equally spaced on the domain rhodom. The number of evaluation
points in this interval is set by specifying grid as a positive integer. This option is pri-
marily intended as an exploratory device for determining an appropriate domain for the

2The Appendix describes some code that transforms the data files distributed from https://sites.

google.com/site/stephanebonhommeresearch/ into R data frames that are more efficiently stored and
loaded for R.

https://sites.google.com/site/stephanebonhommeresearch/
https://sites.google.com/site/stephanebonhommeresearch/
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optimization for the copula parameter. We will illustrate with a plot of both criteria for
all four subsamples, together with an point estimate of ρ based on optimization.

Mfit <- as.list(1:4)

Lfit <- as.list(1:4)

MForm <- lw | work ~ ed + age + region + trend + I(trend^2) + I(trend^3) +

kids_d1 + kids_d2 + kids_d3 + kids_d4 + kids_d5 + kids_d6 |

I(married * ben)

SForm <- lw | work ~ ed + age + region + trend + I(trend^2) + I(trend^3) +

kids_d1 + kids_d2 + kids_d3 + kids_d4 + kids_d5 + kids_d6 |

I((1-married) * ben)

load("M.Rda")

G <- G[G[,"married"] == 1,] # Married men

Mfit[[1]] <- rqsel(MForm, data = G, grid = 15, rhometh = Momsel,

rhodom = c(-3, -0.5))

Lfit[[1]] <- rqsel(MForm, data = G, grid = 15, rhometh = Liksel,

rhodom = c(-1.5, 0.5))

load("M.Rda")

G <- G[G[,"married"] == 0,] # Single men

Mfit[[2]] <- rqsel(SForm, data = G, grid = 15, rhometh = Momsel,

rhodom = c(-12, -5))

Lfit[[2]] <- rqsel(SForm, data = G, grid = 15, rhometh = Liksel,

rhodom = c(-2.5, 1))

load("F.Rda")

G <- G[G[,"married"] == 1,] # Married women

Mfit[[3]] <- rqsel(MForm, data = G, grid = 15, rhometh = Momsel,

rhodom = c(-3, -0.5))

Lfit[[3]] <- rqsel(MForm, data = G, grid = 15, rhometh = Liksel,

rhodom = c(-1.5, 0.5))

load("F.Rda")

G <- G[G[,"married"] == 0,] # Single women

Mfit[[4]] <- rqsel(SForm, data = G, grid = 15, rhometh = Momsel,

rhodom = c(-2.5, 1))

Lfit[[4]] <- rqsel(SForm, data = G, grid = 15, rhometh = Liksel,

rhodom = c(-2.5, 1))

Mf <- as.list(1:4)

Lf <- as.list(1:4)

MForm <- lw | work ~ ed + age + region + trend + I(trend^2) + I(trend^3) +

kids_d1 + kids_d2 + kids_d3 + kids_d4 + kids_d5 + kids_d6 |

I(married * ben)

SForm <- lw | work ~ ed + age + region + trend + I(trend^2) + I(trend^3) +
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kids_d1 + kids_d2 + kids_d3 + kids_d4 + kids_d5 + kids_d6 |

I((1-married) * ben)

load("M.Rda")

G <- G[G[,"married"] == 1,] # Married men

Mf[[1]] <- rqsel(MForm, data = G, rhometh = Momsel,

rhodom = c(-3, -0.5))

Lf[[1]] <- rqsel(MForm, data = G, rhometh = Liksel,

rhodom = c(-1.5, 0.5))

load("M.Rda")

G <- G[G[,"married"] == 0,] # Single men

Mf[[2]] <- rqsel(SForm, data = G, rhometh = Momsel,

rhodom = c(-12, -5))

Lf[[2]] <- rqsel(SForm, data = G, rhometh = Liksel,

rhodom = c(-2.5, 1))

load("F.Rda")

G <- G[G[,"married"] == 1,] # Married women

Mf[[3]] <- rqsel(MForm, data = G, rhometh = Momsel,

rhodom = c(-3, -0.5))

Lf[[3]] <- rqsel(MForm, data = G, rhometh = Liksel,

rhodom = c(-1.5, 0.5))

load("F.Rda")

G <- G[G[,"married"] == 0,] # Single women

Mf[[4]] <- rqsel(SForm, data = G, rhometh = Momsel,

rhodom = c(-2.5, 1))

Lf[[4]] <- rqsel(SForm, data = G, rhometh = Liksel,

rhodom = c(-2.5, 1))

par(mfrow = c(4,2))

status <- c("Single", "Married")

gender <- c("Men", "Women")

for(i in 1:4){

main <- paste(status[1 + (i %% 2)],gender[1 + (i > 2)])

plot(Mfit[[i]], xlab = expression(rho), ylab = expression(M(rho)),

main = main, cex = 0.5)

lines(Mfit[[i]])

abline(v = Mf[[i]]$frho)

plot(Lfit[[i]], xlab = expression(rho), ylab = expression(-logL(rho)),

main = main, cex = 0.5)

lines(Lfit[[i]])

abline(v = Lf[[i]]$frho)

}
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SForm <- lw | work ~ ed + age + region + trend + I(trend^2) + I(trend^3) +

kids_d1 + kids_d2 + kids_d3 + kids_d4 + kids_d5 + kids_d6 |

I((1-married) * ben)

load("M.Rda")

G <- G[G[,"married"] == 0,] # Single men

Mc <- rqsel(SForm, data = G, rhometh = Momsel,

link = "cauchit", rhodom = c(-8, -1))

The method of moments estimates of ρ are quite close to those obtained by Arellano
and Bonhomme (2017), however, there are several puzzles that have yet to be resolved.
Foremost among these is the fact that the estimated ρ̂’s are consistently more negative for
the method of moments criterion than for the log likelihood criterion. For single men this
difference is quite substantial. Sensitivity to choices of copula and propensity score models
is also of considerable interest. As a very small step in this direction, I tried replacing the
probit link with the cauchit for the sample of single men. This had little impact on the
likelihood estimate of ρ, but increased the method of moments estimate from −8.482 to
−4.327.

Appendix A. Data Management

In this appendix we document the procedure employed to simplify the data sources
required for the replication of the Arellano and Bonhomme (2017) results. Data from
https://sites.google.com/site/stephanebonhommeresearch/ takes the form of four
comma separated value (csv) files. Only two of these are used as detailed in the code below.
These files are distinguished by gender, but have substantial overlap in the variables they
contain. These files collapsed into two files stored in R save format which is considerably
compressed and more efficiently loaded. In the process we have also collapsed groups of
binary indicator variables into single R factor variables. It may be noted that the omitted
category of these factor variables is given a null name.

undummy <- function(A) { # Convert dummy variables to factor

if(!all(A %in% c(0,1))) stop("not dummies")

A <- as.matrix(A)

a <- A %*% rep(1,ncol(A))

if(sum(a) < length(a)) A <- cbind(1-a, A)

as.factor(colnames(A)[A %*% 1:ncol(A)])

}

MakeRda <-function(){

Ddir <- "Bonhomme/Codes_for_replication/Data_files/"

files <- c("M", "F")

for(i in 1:2){

file <- paste(Ddir, "datasub_", i, ".out", sep = "")

G <- as.matrix(read.csv(file, header = TRUE))

ed <- undummy(G[,6:7])

https://sites.google.com/site/stephanebonhommeresearch/
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trend <- G[,8]

age <- undummy(G[,11:14])

region <- undummy(G[,15:25])

kids <- G[,26:31]

ben <- G[,4] + G[,5]

ofile <- paste(files[i],".Rda", sep = "")

G <- data.frame(G[,1:5], ben, ed, age, region, trend, G[,26:31])

save(G, file = ofile)

}

}
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